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Abstract

In this article we describe a methodology for evolving neurocontrollers of autonomous mobile robots without
human intervention. The presentation, which spans from technological and methodological issues to several
experimental results on evolution of physical mobile robots, covers both previous and recent work in the attempt
to provide a unified picture within which the reader can compare the effects of systematic variations on the
experimental settings. After describing some key principles for building mobile robots and tools suitable for
experiments in adaptive robotics, we give an overview of different approaches to evolutionary robotics and present
our methodology. We start reviewing two basic experiments showing that different environments can shape very
different behaviors and neural mechanisms under very similar selection criteria. We then address the issue of
incremental evolution in two different experiments from the perspective of changing environments and robot
morphologies. Finally, we investigate the possibility of evolving plastic neurocontrollers and analyze an evolved
neurocontroller that relies on fast and continuously changes synapses characterized by dynamic stability. We
conclude by reviewing the implications of this methodology for engineering, biology, cognitive science, and artificial
life, and point at future directions of research.

Keywords: Artificial Evolution, Autonomous Mobile Robots, Neural Networks, Evolution and Learning, Robot
Learning, Machine Learning, Bio-Inspired Machines, Robot Navigation.

1 Introduction

In this article we give an overview of our approach to artificial evolution of neural controllers for autonomous mobile
robots. The presentation, which spans from technological and methodological issues to experimental results on
evolution of physical mobile robots, covers both previous and recent work in the attempt to provide a unified picture
within which the reader can compare the effects of systematic variations on the experimental settings.

Autonomous mobile robots are machines that are expected to operate in partially unknown and unpredictable
environments. Therefore, in contrast to robots used in highly controlled and constrained environments, autonomous
robots cannot be fully pre-programmed to carry out a predefined set of actions because one does not know in advance
the universe of sensorimotor mappings required by all the situations that the robot might encounter.

Biological organisms can be a source of inspiration for design and control of autonomous mobile robots (Steels,
1995). Animals and humans are indeed autonomous agents that display robust adaptation and stable behavior in
changing environments with minimal, or without, external supervision and control (McFarland & Boesser, 1993).
In several circumstances, it might be desirable to create autonomous robots which possess features similar to those
of biological autonomous agents. Without going as far as modeling robots directly on animals or humans (Brooks,
Breazeal (Ferrell), & Irie, 1998), biological organisms can inspire the development of autonomous robots with respect
to a set of basic principles. These include the nature of the adaptation mechanisms, such as philogenetic evolution
and ontogenetic learning, the preference for behavioral stability and robustness over precision, self-organization and
self-selection of goals and values, and adaptation while interacting with an environment.

Along similar lines, but from a different standpoint, autonomous robots represent both a tool and a metaphor
for developing and testing models of adaptive behavior and cognitive abilities (McFarland & Boesser, 1993; Pfeifer
& Scheier, 1998). Autonomous robotic agents, just as biological agents, act in a physical environment where the
consequences of their own actions constantly affect their sensory input and therefore their future actions (Parisi,
Cecconi, & Nolfi, 1990), effectively opening the way to a new ecological approach to the study of artificial intelligence
(Pfeifer & Scheier, 1998).

1Video «clips of all the experimental results described in this article are accessible from the WWW page
http://diwww.epfl.ch/lami/team/floreano.
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Developing adaptive autonomous robots requires a careful methodology based on integration of control issues,
hardware design, and technological choices. In the next section we shall describe some key issues in design and
technologies for adaptive autonomous robots that are at the basis of our work. We will then introduce a methodology
for applying artificial evolution to physical robots and describe an array of experiments on mobile robots that
capitalize on the basic principles of biological adaptation mentioned above. We shall show that a variety of complex
behaviors can autonomously emerge from the interaction between the robot and the environment without human
intervention and with few externally-imposed constraints. This paper does not aim at providing definitive answers
and proofs on the mechanisms of adaptive behaviors, but simply at illustrating what we think are promising directions
of research from an engineering, biological, and cognitive perspective. Our goal is to show that artificial evolution is
not only a powerful technique for engineering adaptive autonomous robots, but also a rich tool for investigating new
hypothesis and gaining insights into the biology and technology of adaptive behavior.

2 DMobile Robots

Simulation studies have for long time been considered a valid investigation methodology for developing autonomous
robot controllers. Despite recent widespread agreement on the importance of using physical robots for development
and test of new models (Brooks, 1986, 1991; Dorigo & Schnepf, 1993; Franceschini, Pichon, & Blanes, 1991; Pfeifer,
1995; Steels, 1994), real mobile robots are used only by a minority of researchers. Some of the reasons might be
practical. For example, most of the researchers working in the field of adaptive behavior come from various disciplines,
such as biology, psychology, neurophysiology, and mathematics, and are not always very keen to fiddle with mechanical
and electronical problems that mobile robots might give. Furthermore, physical robots are usually large and fragile.
Therefore, they require large dedicated spaces and could be badly damaged by bio-inspired controllers that go through
an adaptation phase based on trials and errors.

INSERT FIGURE 1 ABOUT HERE

From this perspective, mobile robots to be used for research and development of bio-inspired adaptive systems
should be robust, relatively compact, reliable, easily interfaceable to standard computer platforms and software,
and equipped with solutions for power supply and behavioral monitoring. The Khepera miniature mobile robot
was originally developed at our laboratory by Franzi, Guignard, and Mondada as a tool to carry out research in
adaptive and bio-inspired control (Mondada, Franzi, & Ienne, 1993). In its basic configuration (figure 1), Khepera
consists of two boards: the sensorimotor board and the CPU board. The motor system uses two lateral wheels and
supporting pivots in the front and back. This configuration allows rotation of the body without lateral displacement.
The sensory system uses eight active infrared-light sensors distributed around the body, six on one side and two
on the other (this asymmetry can be used to establish the front and back of the robot). These sensors can detect
the presence of objects by emitting and measuring reflected light (the closer the object, the stronger the response),
but can also be used to measure the infrared component of ambient light. Four rechargeable NiCd batteries with
a total autonomy of approximately 30-40 minutes are secured on the sensorimotor board. The CPU board encloses
the robot’s main processor (a Motorola MC68331 with 128 Kbytes of EEPROM and 256 Kbytes of static RAM), an
A /D converter for the acquisition of analog signals coming from the sensorimotor board, and an RS232 serial-line
miniature connector which can support data transmission and power supply from an external computer.

In order to meet the criteria detailed above, the Khepera robot has been designed on the basis of the following
criteria: miniaturization, modular open architecture, expandibility, interface, and compatibility with larger robots.

Robot miniaturization can bring several advantages, if realized in the appropriate proportions. The experimenter
can build complex environments on a limited surface. For a miniature robot like Khepera which measures 55 mm in
diameter, a standard office desk of 0.9 m x 1.8 m represents a working surface equivalent to that of a tennis court
for a standard-size robot with a diameter of 55 cm. A compact working surface also allows an easier monitoring of
the robot behavior. Fundamental laws of physics give higher mechanical robustness to a miniature robot. In order
to intuitively understand this physical phenomenon, compare a robot of 50 mm in diameter crashing against a wall
at 50 mm/s with a robot of 1 m in diameter crashing against the same wall at 1 m/s. The miniature robot will
resist the collision, the other robot will probably report serious damages. However, miniaturisation brings also some
drawbacks, such as the difficulty of mounting large devices on the robot (ultrasonic sensors, laser range finders, etc.).
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INSERT FIGURE 2 ABOUT HERE

A modular open architecture enables different possible configurations and experiments using the same basic compo-
nents. It also means possibilities for extensions that are developed for specific research goals, such as bio-morphic
sensors or actuators. To this end, Khepera has an extension bus that makes it possible to add turrets on the top
of the basic configuration, depending on the needs of the experiments which one wishes to perform (figure 2). This
modularity is based on a parallel and a serial bus. The parallel bus can be used for simple extensions directly under
control of the main Khepera processor. The serial bus implements a local network for inter-processor communica-
tion. Using this second bus, other processors can be connected to the main one in order to build a multi-processor
structure centred on the Khepera main processor. This kind of structure has the advantage that one can employ
additional computational devices on extension modules, thus keeping the main processor free for global management
of the robot behaviour.

This is the case, for example, of the localization module which can compute the robot istantaneous position
and communicate the result to the main processor on the robot. Evolved controllers cannot fully understood by
isolating it from the environment and looking at their structures because several solutions are intimately related
to the physical interactions between the robot and the environment. In order to facilitate analsys, an external
positioning system was developed for monitoring the behavior of the robot and correlating it with the dynamics of
the neurocontroller being tested. A device emitting laser beams at predefined angles and frequencies was positioned
on the top of the environment and the Khepera was equipped with an additional turret capable of detecting laser
beams and computing in real-time the robot displacement. This computation was carried out on a private processor
placed on the additional turret. Every 300 ms robot position and controller variables were sent to a programmable
acquisition software (Cheneval, 1995) on the workstation which instantaneously processed and visualized data while
the robot freely interacted with the environment.

In order to facilitate its interface, the Khepera robot has been designed so that it can be attached to any computer
through a serial connection and rotating contacts. The serial connection provides electrical power and supports fast
data communication (up to 57kBaud) between the robot and the workstation. The user can easily control the robot
interactively or from a program while it moves nearby on the desktop as if it was a simulated robot. Alternatively,
one can download the code on the microcontroller of the robot and use the cable only for power supply or data
reports, thus exploiting the CPU power and disk storage of the workstation to record all the necessary data while
the robot freely interacts with its own environment, and later analyze them. This setup is quite useful for testing
adaptive controllers that require extended periods of time, such as in the evolutionary approach.

Once a model has been developed and tested on a miniature robot, it might be desirable to test it on a different
platform. For example, on might wish to extend the architecture to open environments, rough terrains, or simply
incrementally evolve competencies for increasingly more complex robots. Crossplatform compatibility in mobile
robotics is a rare feature, especially between robots of very different sizes. Software compatibility alone is not sufficient
to guarantee a good transfer of algorithms between different robots. Mechanical structure, sensor caracteristics, and
many other aspects of the physical platform also play an important role in the feasibility of the transfer.

INSERT FIGURE 3 ABOUT HERE

With this goal in mind, the Koala robot (figure 3) has been designed to support transfers from the Khepera robot.
Despite the different size, shape, and sensorimotor configuration, the Koala robot is very similar to the Khepera
in many essential aspects. The six wheels of Koala are driven by two motors, as for Khepera, each controlling one
side of the platform. The central wheels on the two sides are lower than the others, so that rotation of the whole
platform is very similar to that of the Khepera. The proximity sensors of the Koala are based on the same concept
used for those of the Khepera, but the measurement range is scaled up to the larger size of the Koala. Also, the
number of sensors has been changed from 8 on the Khepera to 16 on the Koala. The Khepera hardware modularity
described above has also been both supported and scaled up in the Koala. In addition to the serial extension bus
of the Khepera, the Koala is equipped with a fast inter-processor parallel communication bus to support transfer
of larger amounts of data. At the software level, the two robots are compatible, having the same low-level BIOS
software and the same communication facilities.
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3 Artificial Evolution

In the experiments described in this paper, we have employed a combination of evolutionary computation and neural
networks. The emphasis here is not on reproducing specific performances of living organisms or detailed biological
functions, but rather on investigating how behavioral autonomy and free interaction can support the development of
complex, robust, and stable behaviors in partially unknown and changing environments.

An evolutionary algorithm (e.g., Holland, 1975; Koza, 1992; Schwefel, 1995) searches the space of solutions
(phenotypes) encoded on strings (genotypes) of finite length by selecting, reproducing, and recombining the best
strings in a population for several generations until an optimal solution is found. Typically, evolutionary algorithms
are used to find optimal parameter values for a function, where the value returned by the function of the encoded
parameters is translated into the probability of selecting and reproducing the best strings (Goldberg, 1989).

In evolutionary robotics, genetic strings encode some characteristics of the controller, and the selection criterion
(fitness function) is based solely on the behavior of the robot. This means that the feedback required by artificial
evolution could be very simple and sparse, for example only whether a mobile robot has reached a target location.
Since artificial evolution is based on selective reproduction and random variations of encoded strings, various char-
acteristics of the controller (or even the morphology of the robot (Lund, Hallam, & Lee, 1997)) can be genetically
encoded and co-evolved. Only behavioral success drives the progressive discovery of solutions that ultimately depend
on the interactions between the robot and its environment. Other adaptive techniques, such as supervised learning,
gradient descent, or implementation of dedicated circuits, require more information on the environment, the robot,
and the desired behavior. Therefore, although they might generate powerful controllers, they are limited to situations
where this information is available.

3.1 Related work

The idea of representing the control system of a robot as an artificial chromosome subject to the laws of genetics and
of natural selection dates back to the end of the 80’s, but appeared in the scientific press only a couple of years later
(Beer, 1990; Parisi et al., 1990; Cliff, 1991; Floreano, Miglino, & Parisi, 1991) when the first simulated robots with
a sensorimotor system began evolving on computer screens. However, only during this decade, with the appearance
of several new mobile robots designed according to the principles outlined in section 2, several researchers began
evolving controllers for physical robot.

Brooks (1992) proposed the idea of evolving primitives of a behavior language for autonomous mobile robots,
effectively combining a subsumption architecture (Brooks, 1986) with a genetic programming approach (Koza, 1992).
The term Evolutionary Robotics has been coined by a group of researchers at the University of Sussex (Cliff, Harvey, &
Husbands, 1993) whose approach is based on a combination of simulations and physical robots guided by evolutionary
Dynamical-Recurrent-Neural-Networks (Harvey, Husbands, Cliff, Thompson, & Jakobi, 1997). The Sussex group
has developed a new evolutionary paradigm called Species Adaptation Genetic Algorithm (Harvey, 1992, 1993)
for incrementally evolving neurocontrollers and patterns of logical gates and connections for reconfigurable circuits
(Thompson, Harvey, & Husbands, 1996). A research group at the Italian Research Council in Rome has introduced
the concept of Ecological Neural Networks (Parisi et al., 1990) within the framework of evolutionary sensorimotor
organisms and carried out a set of experiments that combine new simulation tools (Nolfi, Floreano, Miglino, &
Mondada, 1994b) and physical robots. The Rome group has put particular emphasis on evolution of network
architectures (Nolfi & Parisi, 1995; Nolfi, 1997), evolution and learning (Nolfi, Elman, & Parisi, 1994a; Nolfi &
Parisi, 1996), and investigations of cognitive models of animal behavior with evolving robots (Miglino, Denaro,
Tascini, & Parisi, 1998). Within a similar approach, Lund has explored issues on the co-evolution of controllers
and robot morphologies (body plans) in simulations (Lund et al., 1997) and is currently looking at interactive
evolution of robots for educational and entertainment applications (Lund, Miglino, Pagliarini, Billard, & Ijspert,
1998). Interactive selection of robot controllers by humans, also named subjective fitness, has been tested also
by Gruau, whose work is characterized by evolution of modifiable neural architectures compactly encoded on the
genotype as developmental rules (Gruau, 1996; Gruau & Quatramaran, 1997). Almost all the approaches employed
in the research described above are based on evolution of neural controllers. A number of other persons have evolved
other types of controllers, for example machine code (Nordin & Banzhaf, 1996), Boolean functions on reconfigurable
circuits for vision-based navigation (Keymeulen, Iwata, Konaks, & Suzuki, 1998), and classifier systems (Dorigo &
Colombetti, 1998). Several broad surveys of this field within the perspective of robotic applications are provided by
Gomi (1996, 1997, 1998).
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4 Environmental Shaping

Our approach is characterized by two main features: online evolution carried out entirely on physical mobile robots
and a simple fitness function that emphasizes the role of environmental interactions in the development of new
behaviors.

INSERT FIGURE 4 ABOUT HERE

The robot is attached to a workstation through a serial cable which provides power supply and communication of
sensory values and motor commands every 300 ms. The evolutionary algorithm and robot controllers run on the
workstation (figure 4). In the following sections we shall review several experiments that use the same or similar
fitness function. It will be shown that different behaviors and/or controller dynamics emerge from the interaction
between the types of robots, environments, and genetic encodings considered, without being explicitly programmed.

In this section we shall briefly review two experiments in (more details can be found in Floreano & Mondada,
1996a) that show how different environments can shape drastically different behaviors in neurocontrollers evolved
under similar selection criteria. These data will be useful for evaluating and comparing more recent results described
in the next two sections.

4.1 The looping maze

In one of our first experiments, we tested the hardware and software methodology described above for a simple
reactive navigation task. The Khepera robot was placed in a looping maze environment (figure 5).

INSERT FIGURE 5 ABOUT HERE

A genetic algorithm (Goldberg, 1989) was used to evolve the synaptic strengths of a neural network composed of
eight sensory units and two motor units. Each sensory unit was clamped to one of the eight active infrared sensors
whose reading was updated every 300 ms. Each motor unit received weighted signals from the sensory units and
from the other motor unit, plus a recurrent connection with itself with a 300 ms delay. The net input of the motor
units was offset by a modifiable threshold and passed through a logistic squashing function. The resulting outputs,
in the range [0, 1], were used to control the two motors so that an output of 1 generated maximum rotation speed
in one direction, an output of 0 generated maximum rotation speed in the opposite direction, and an output of 0.5
did not generate any motion in the corresponding wheel. A population of 80 individuals, each coding the synaptic
strengths and threshold values of the neural controllers was initialized with all weights set to small random values
centered around zero. Each individual was tested on the physical robot for 80 sensorimotor cycles (approximately
24 seconds) and evaluated at every cycle according to the following fitness function

@:V(l—\/ﬂ)(l—i) (1)

where V is the average rotation speed of the two wheels, Av is the absolute value of the algebraic difference between

the signed speed values of the wheels (positive is one direction, negative the other) and i is the normalized activation
value of the infrared sensor with the highest activity. The first component is maximized by speed, the second by
straight motion, and the third by distance from objects.

INSERT FIGURE 6 ABOUT HERE

Each generation took approximately 40 minutes, including 5 seconds of random motion between tests of new indi-
viduals. The whole evolutionary process was fully automated, and statistics were collected on the hard disk of the
workstation. During the first 100 generations both average and best fitness values grew steadily, as shown in figure 6.

INSERT FIGURE 7 ABOUT HERE
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A fitness value of 1.0 could be achieved only by a robot moving straight at maximum speed in an open space. In the
environment shown in figure 5, where some of the sensors were almost always active and where several turns were
necessary to navigate, 0.3 was the maximum value attained (even when continued for further 100 generations; data
not shown). Figure 7 shows the trajectory of the best individual of the last generation (data collected and plotted
using the laser positioning device described in section 2).

INSERT FIGURE 8 ABOUT HERE

Although, the fitness function did not specify in what direction the robot should navigate (given that it is perfectly
circular and that the wheels can rotate in both directions), after a few generations all the best individuals moved
in the direction corresponding to the side with the higher number of sensors (figure 8). Individuals moving in the
other direction had higher probability of colliding into corners without detecting them and thus disappeared from
the population.

INSERT FIGURE 9 ABOUT HERE

Another way of describing the adaption process is the “state-space approach” proposed by ethologists for quanti-
tatively measuring adaptation of biological autonomous agents (McFarland & Houston, 1981). The activity of an
animal depends on its state, which is characterized by a set of variables such as its energy level, the perception of
the environment, etc. These state variables define an n-dimensional state space, where the axes are provided by
n state variables considered. Adaptation is then described as a transition from an initial oscillatory state towards
a sub-region of this space. This region, which is compact and bounded, represents the equilibrium conditions of
the animal (Sibly & McFarland, 1974). Within this framework, the robot can be described as a point in a three-
dimensional space defined by three state variables corresponding to the three fitness components. Figure 9 shows the
position of the best individuals at each generation within this graph. The best individuals of the last 20 generations
remain within the same compact subregion of the space, despite the constant perturbations of the recombination
and mutation operators, which represents the stability condition for the evolved controllers.

INSERT FIGURE 10 ABOUT HERE

Similarly, on the time scale of a single individual, when a controller (figure 10) is pulled away from the equilibrium
region, for example by positioning it close to two walls, it will return to the stability region (in fact, implementing
obstacle avoidance and forward navigation).

4.2 Battery recharge

In a second set of experiments, we modified the environment by positioning a battery charger on a corner of a square
arena and a light tower over it (figure 11).

INSERT FIGURE 11 ABOUT HERE

The sensory system of the robot (and consequently the set of input units of the neural controller) was extended by
enabling two ambient-light sensors (one on each side), fitting one infrared sensor beneath the platform of the robot
(capable of telling apart black from white floor), and adding a sensor of battery charge. When the robot happened
to pass over the recharging area, delimited by a black-painted area on the floor, its battery became instantaneously
recharged. The battery was characterized by a fast linear discharge, allowing only 50 sensorimotor loops. The neural
network under evolution was augmented by including five fully-connected hidden units. The same fitness function
described above was used (except for the middle term which had been used to encourage straight navigation in the
previous experiment) and accumulated at every time step.
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INSERT FIGURE 12 ABOUT HERE

A population of 100 individuals was encoded and randomly initialized as in the experiment described in the previous
section. Each individual started with a fully charged battery; individuals that happened to pass, or stay over
the recharging zone could perform a higher number of sensorimotor loops during which their fitness points were
accumulated. The maximum number of sensorimotor steps was set at 150. The robot evolved for 10 days in a room
where the only illumination was provided by the small light tower over the recharging zone. All fitness indicators
constantly increased (figure 12).

INSERT FIGURE 13 ABOUT HERE

The best individuals also managed to achieve an increasing number of sensorimotor steps (figure 13). After ap-
proximately 200 generations they were capable of navigating around the environment, covering long trajectories and
avoiding walls and the recharging area; only when the battery was almost discharged they initiated a straight nav-
igation towards the recharging zone and exited it once their battery was charged. These individuals always arrived
at the recharging area with only 2 or 3 sensorimotor steps (approximately 1 second) of residual energy. Initiation of
the trajectory for recharging depended on the location of the robot within the environment.

INSERT FIGURE 14 ABOUT HERE

A set of behavioral and “neuroethological” analyses were performed using the external positioning device described
in section 2. By correlating the robot behavior and position with the activation of the neurons in real time while the
robot freely moved in the environment, it was possible to show that some units specialized for reactive behaviors,
such as obstacle avoidance, forward motion, battery monitoring, light following, while others displayed more complex
activation patterns. One of them revealed a pattern of activation levels that depended on whether the robot was
oriented facing the light tower or facing the opposite direction (figure 14). In the former case, the activation reflected
zones of the environment and paths typically followed by the robot during navigation. For example, one can see a
path frontally leading to the recharging area which is marked by specific neural activity. In the latter case, the same
neuron displays a gradient field orthogonally aligned with the recharging area. This gradient provides an indication
of the distance from the recgarging area. This pattern of activity is not significantly affected by the charge level
of the battery, which is integrated elsewhere in the neural network. More details and other behavioral and neural
measures can be found in (Floreano & Mondada, 1996a).

4.3 Discussion

The differences between the behavioral outcomes of these two experiments are mainly due to the characteristics of
the environment in which the robot has evolved, rather than to the neurocontroller architectures or to the fitness
functions. An environment is not a set of objective features that exist independently of the robot, but the set of
features that can be perceived by the robot and that play some role in its mission, which here is to accumulate fitness
points for selective reproduction. From this ecological perspective, the characteristics of the robot shell and of its
sensorimotor system are part of the environment. The main difference between artificial evolution, as it has been used
here, and other approaches to adaptive behavior is that the former capitalizes on the interactions between the robot
and the environment seen from the robot’s perspective, whereas the latter methods often impose architectural and
adaptive constraints that derive from the experimenter’s view of the environment (for further discussion of this issue,
see also Nolfi, 1997). The emergent direction of motion in the experiment with the looping maze is a very simple
example of how evolution develops solutions that match the environmental characteristics from the perspective of
the agent.

Self-selection of information and of suitable solutions is relevant also for the value system of an autonomous robot.
In simple words, a value system provides the agent with a way to judge what is good and what is not. A value
system can be used for regulating behavior and modulating learning (McFarland & Boesser, 1993; Pfeifer & Scheier,
1998). Typically, in reinforcement learning approaches (e.g., Kaelbling, Littman, & Moore, 1996) and other adaptive
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models, such as map learning (e.g., Burgess, Recce, & O’Keefe, 1994), the value system is externally imposed by
the experimenter. For example, certain sensory configurations or locations of the environment are associated with
positive rewards or can trigger synaptic changes. This strategy might make sense from an engineering point in simple
environments, but it might fail in more complex settings where multiple values should be developed, integrated, and
appropriately weighted depending on the circumstances. Artificial evolution could potentially be a way for developing
autonomous agents that self-select their value system. For example, in the experiment with the battery charger the
neurocontroller autonomously discovered the battery charger and learned to periodically return to it because this
behavior allowed it to be fitter in the evolutionary task of keeping as much as possible away from obstacles. Battery
charging, and all the neural machinery that was evolved in order achieve this self-selected “goal”, was not directly
specified in the fitness function, but emerged as a sub-goal functional to the maximization of a more general fitness
criterion defined from the perspective of the robot: keep the wheels moving and the sensor activations low.

5 Re-adaptation

The results from the two experiments described above indicate that artificial evolution can develop efficient neu-
rocontrollers exploiting relevant features of the environment that were not explicitly defined in advance. From an
engineering perspective, the price to pay is the amount of time required by the evolutionary process carried out on
physical robots. The question, then, is to what extent the system can generalize and/or re-adapt to modified envi-
ronmental conditions without re-training it from scratch. Artificial evolution of neurocontrollers offers generalization
at two levels: the individual and the population. At the individual level, generalization capitalizes on the feature
invariants encoded by the neural network. At the population level, generalization is provided by diversity of the
individuals. Depending on the selection pressure, a population will sooner or later converge to a single solution, but
the mutation operator will still maintain a number of different solutions distributed around the best individual.

5.1 Environmental re-arrangement

Consider the experiment with the battery charger described in the subsection 4.2. One way of testing the general-
ization properties of the evolved neurocontrollers consists in manipulating the arrangement of the environment.

INSERT FIGURE 15 ABOUT HERE

The first frame of figure 15 shows a typical trajectory of the best neurocontroller after 240 generations. If the battery
is not automatically re-charged when the robot arrives to the charging area, the robot will circulate over the black
area until all the residual energy is exhausted (figure 15, center). If the light source is moved to the top right corner
(but the charging area is not moved), the robot will head toward the light and move in its surroundings until all the
energy is exhausted (figure 15, right). Therefore, the position of the light tower represents an important perceptual
cue.?

INSERT FIGURE 16 ABOUT HERE

In order to test the generalization properties of the population and the re-adaptation dynamics, the population
of neurocontrollers of generation 240 was tested and incrementally evolved in three new environmental conditions,
each one identified by positioning the light tower in a different corner of the environment (top-right, bottom-right,
and bottom-left). For each condition, the genetic algorithm was restarted on the population of generation 240 and
continued for 80 additional generations. Data for all conditions are displayed in Figure 16, including data from the
previous ten generations for the sake of comparison. The presence of several individuals which were “sub-optimal”
in the original environment, but resulted fitter in the new environment prevented a dramatic drop of the both fitness
indicators. Re-adaptation of the population to each new condition took place relatively quickly; approximately 20
generations (10% of the time required for evolution from scratch) were sufficient to generate an individual perfectly
adapted to the new environment which reported the same performances already measured for the best individual of

2Indeed, in experiments reported elsewhere (Floreano & Mondada, 1996a) on the best evolved individual, it was observed that if the
light was switched off during the return to the charger, the robot performed wide circular trajectories looking for gradient information.
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generation 240 in the original environment. Re-adaptation was extremely rapid when the light source was positioned
in the corner opposite to charging area (Figure 16, b); this indicates that the mirror symmetry of the new environment
does not require a drastic change in the internal representation developed by the neurocontrollers. In other words,
whereas conditions a and ¢ require a 90-degree rotation of the mapping from sensors to actions, involving changes
in several synaptic weights, condition b can be successfully solved by changing few synaptic weights which result in
a 180-degree rotation of the sensorimotor mapping. If this is the case, then one would expect that only few best
individuals (i.e., those which already developed a correctly oriented map in the original environment) could benefit
from mirror symmetry of the new environment; this is indeed shown by the sharp contrast between the performance of
the best individual and the average performance of the population which displays the same initial drop and recovery
rate as in conditions a and ec.

5.2 Crossplatform evolution

Consider now the simple experiment described in subsection 4.1 where the robot learns to navigate in a looping maze
(figure 5). The evolved neurocontroller has developed a pattern of synaptic weights that matches the morphology of
the Khepera, its sensorimotor layout, and the response properties of the infrared sensors. However, this platform-
specific solution does not allow a successful transfer of the evolved controllers onto a robot with a different morphology.
Rather than starting evolution from scratch on a new robot, one might wish to continue evolution on the new robot
incrementally. From the point of view of the neurocontroller, changing the sensorimotor characteristics of the robot
is just another way of modifying the environment.

INSERT FIGURE 17 ABOUT HERE

The Koala robot described in section 2 was placed within a scaled-up version of the looping maze already employed
for the Khepera robot (figure 17). Only eight of the sixteen infrared sensors available on the Koala were selected as
input to the neurocontroller (see figure 3; from left clockwise: L4, L3, L1, R1, R3, R4, R7, L7). As for the Khepera,
the response of each infrared sensor was linearly compressed within the range [0, 1].

INSERT FIGURE 18 ABOUT HERE

After 106 generations of evolution on the Khepera robot, the last population of neurocontrollers was incrementally
evolved on the Koala robot until generation 150 (figure 18) without any further change to the software parameters.
After a partial drop in performance, in approximately thirty generations the best individuals report fitness values
similar to those recorded during the last generations on the Khepera and are capable of performing full laps of the
maze. In this experiment, re-adaptation was mainly concerned with a new body shape and a different layout of the
sensors. For example, the passage on the top right corner of the environment requires a rotation in place for the
Koala whereas the Khepera—in its original maze—could go around it without stopping.

5.3 Discussion

The incremental evolutionary approach described in this section works as long as there is enough diversity in the
population of individuals. The amount of diversity required depends on many factors, such as the genetic encoding
used, the type of changes made to the environment, and other evolutionary parameters, such as the selection pressure,
the mutation rate, the population size, etc. However, there is trade-off between the amount of diversity that must
be maintained and the ability of the system to discover stable solutions. We think that in the long run this approach
is not likely to be a viable solution to open-ended evolution. Open-ended evolution will require several variations
that go beyond a traditional genetic algorithm, such as a genetic encoding that can capitalize on previously evolved
behaviors, genetic operators that can keep diversity while limiting damage to highly fit genes, and an evolutionary
program that is more inspired upon natural evolution rather than upon algorithms for function optimization.
However, this simple type of incremental evolution is a viable solution to the bootstrapping problem, that is the
attempt to evolve from scratch a very complex behavior which might correspond to a very tiny and peaked region
of the fitness landscape. In this case, it is very likely that all the individuals of the initial generation will report zero
fitness and no progress might take place. A solution consists of starting to evolve the population on simple versions
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of the desired task, and incrementally evolve the same population with increasingly more complex environments and
fitness functions (e.g., see Harvey, Husbands, & Cliff, 1994).

6 Evolution of Plastic Controllers

In nature, adaptation to the environment takes place at multiple levels and time scales, ranging from the long-term
dynamics of phylogenetic evolution to the fast process of ontogenetic learning. Most of the work in Evolutionary
Robotics, including the experiments described above, are inspired upon the mechanisms of phylogenetic evolution.
From a theoretical perspective, Hinton and Nowlan (1987) showed that learning might ameliorate and speed up
artificial evolution by exploring the space surrounding an individual on the fitness landscape. The combination
of artificial evolution and learning has recently attracted much interest (e.g., see Belew & Mitchell, 1996; Turney,
Whitley, & Anderson, 1996), but most computational approaches are limited to a combination of genetic algorithms
and traditional supervised learning algorithms (e.g., see Parisi et al., 1990; Ackley & Littman, 1992).

In this section we describe a different approach based on the assumption that the neural mechanisms underlying
ontogenetic learning are themselves developed and shaped by the evolutionary process. Once connected to the robot,
the evolved neurocontrollers continuously modify their synaptic strengths according to the plasticity rules specified
in the genotype. Each genotype encodes a set of parameters that describes static and dynamic characteristics of the
synapses, but not synaptic strengths. As soon as a neurocontroller is decoded from the genotype, its synapses are
initialized to small random values which will begin to change depending on the interactions between the robot and the
environment; once the maximum life-time for an individual neurocontroller has expired, the final synaptic strengths
are not written back into the chromosome. Therefore, rather than using artificial evolution as a surrogate of learning,
this approach is concerned with exploring the evolution of learning. For the sake of analysis and comparison with
the experiments already described above, the same looping maze and fitness function described in section 4 were
used also here and all the experiments were carried out on the Khepera robot.

INSERT FIGURE 19 ABOUT HERE

The architecture of the neurocontroller consisted of three neurons—one hidden neuron and two motor neurons—
each receiving synaptic connections from the eight infrared sensors and from the hidden neuron itself (27 synapses);
as in the previous experiments, this architecture could not be modified by the evolutionary algorithm. Synaptic
connections could have a driving or a modulatory effect on the postsynaptic neuron; afferent signals were combined
in a two-component activation function (Phillips, Kay, & Smyth, 1995) which gave an output between 0 and 1 (figure
19). Driving signals determined whether the unit activity was below or above 0.5 (which, when transformed into the
range +0.5 for motor control, was the point of inversion of wheel rotation), whereas modulatory signals could enhance
or dampen the unit response, but could not change the direction of wheel rotation. Each synapse was individually
coded on binary chromosomes by a set of four properties: whether driving or modulatory (1 bit), whether excitatory
or inhibitory (1 bit), its learning rule (2 bits), and its learning rate (four values encoded on 2 bits: 0.0, 0.33, 0.66,
and 1.0). Four Hebbian learning rules were taken into consideration: simple Hebb, postsynaptic, presynaptic, and
covariance (see Willshaw & Dayan, 1990).

These rules were modified in order to satisfy the following constraints. Synaptic strength could not grow indefi-
nitely, but was kept in the range [0, 1] by means of a self-limiting mechanism which depended on synaptic strength.
Because of this self-limiting factor, a synapse could not change sign, which was genetically specified, but only strength.
Synaptic strength change Aw depended solely on presynaptic and postsynaptic activations x, y.

The simplest learning mechanism—plain Hebb— allows only synaptic strengthening

Aw = (1—-w)zxy (2)

The postsynaptic rule keeps the strengthening conditions of the Hebb rule, but also adds the possibility of synaptic
weakening when the postsynaptic unit is active and the presynaptic unit is not

Aw=w(-1+z)y+ (1 —w)zxy (3)

Conversely, in the presynaptic rule synaptic weakening takes place when the presynaptic unit is active, but the
postsynaptic unit is inactive
Aw=wz (-1+y)+ (1 —w)zy (4)
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It should be noticed that the postsynaptic and presynaptic rules, once simplified, are respectively very similar to the
“instar” and “oustar” learning rules described by Grossberg (1980, 1982). Finally, the covariance rule strengthens
or weakens a synapse depending on the difference between the activation levels of the presynaptic and postsynaptic
units: if the presynaptic and postsynaptic activation levels differ by more than half the maximum node activation
(|z — y| > 0.5), synaptic strength is reduced in proportion to that difference, otherwise it is increased in proportion

to the difference ( Flen) i Fe
. 1—w)F(x,y) if Flax,y) >0
Aw = { (w)F(z,y) otherwise (5)

where F(z,y) = tanh(4(1 — |z — y|) — 2) is a measure of the difference between the presynaptic and postsynaptic
activity. F(z,y) > 0 if the difference is bigger or equal to 0.5 (half the maximum node activation) and F(z,y) < 0
if the difference is smaller than 0.5.

As soon as a neurocontroller is decoded and attached to the sensors and motors of the robot, each synapse is
assigned its sign (excitatory or inhibitory), role (driving or modulatory), learning rate, and its strength is initialized
to a new random value in the range [0.0,0.1]; all synaptic strengths are updated every 300 ms (the duration of one
sensorimotor loop) according to the following discrete-time equation

wt = w™! + pAw! (6)

where 7 is the learning rate.

Three different runs of this experiment were made. In all cases the best individual fitness reached a maximum
value around the 50th generation (® = 0.23,+£0.09). As compared to the evolution of synaptic strengths described in
section 4.1, the neurocontroller reached the same performance level much faster (almost twice as fast), but displayed
more inter- and intra-generation fitness variability. The evolved behaviors displayed smooth paths around the arena
(figure 7). It should be noticed that this behavior was developed by each individual neurocontroller during the first
few sensorimotor loops, independently of the initial random values assigned to the synapses. As for the experiment
described in section 4, all the best individuals across the three runs advanced in the direction corresponding to the
higher density of sensors.

INSERT FIGURE 7 ABOUT HERE

The evolved neurocontrollers displayed different behavioral strategies and learning modalities both within a single
population and across the three evolutionary runs. From an observer perspective, these behaviors were variations
of two main strategies that could be labeled as “reactive obstacle avoidance” and “active wall following”. Reactive-
obstacle-avoidance looked very similar to the behavioral strategy evolved in the experiment of section 4.1, except
for initial bumps into walls that disappeared after a few sensorimotor loops. Here, we shall analyze an active-wall-
following behavior displayed by one of the best individuals.

The robot was positioned facing a corner of the inner wall, the synapses were initialized to small random values,
and the robot was let free to move (see figure 7, left; initial position corresponds to the set of superimposed bars in
the lower portion of the environment). During the initial 6-7 sensorimotor loops, the robot alternated backward and
forward motions until it found a wall on its right side. It then began moving forward (counterclockwise) keeping the
wall at a distance of 2 cm on the right side. Every second or third action, it slightly turned toward the wall and then
resumed forward navigation. This turning behavior was gradually reduced when the robot moved along a straight
long wall (e.g., along the north and east walls). When the robot encountered a wall frontally, it stopped, backed
shortly while rotating to the right, and then resumed forward motion in the new direction. After the first lap of the
maze, the path became smoother with less trajectory adjustements (Figure 7, right).

INSERT FIGURE 21 ABOUT HERE

Figure 21 plots the strengths of all the active synapses in the network during the first 100 sensorimotor loops visualized
in figure 7. All the synapses to the internal node remain close to zero, except for those from the rear sensors and
the self-recurrent connection. As a consequence, the internal unit is maintained always moderately active, without
regard to the external sensory information, providing constant signal to the motor wheels also in the absence of
sensory information. Since the synapses conveying these signals are both driving and excitatory, the internal unit
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generates a constant forward rotation of both wheels. Similarly, all the synapses from the sensors on the left side
of the body to the two wheels remain close to zero (except for one—not plotted here—which uses the postsynaptic
rule and can rapidly strengthen if the robot finds something on the left side). All the remaining synapses to the
right-wheel neuron are excitatory: since most of them are modulatory, they can accelerate the rotation speed when
the sensors on the right side become more active. The excitatory driving synapse from the central sensor to the right
wheel causes fast accelerations and decelerations which, combined with the inhibitory effect of the corresponding
synapse to the left-wheel neuron, can generate backward rotations when something is frontally detected. Synapses
connecting the three sensors on the front-right side to the left wheel are responsible for the wall-following behavior.
The synapse corresponding to the rightmost sensor (nearly always highly active) quickly learns to transmit constant
and high excitation to the left wheel. This excitation—that would lead the robot against a wall—is counterbalanced
by the driving inhibitory signals that come from the other two front-right sensors: the corresponding synapses display
an oscillatory pattern that is responsible for the frequent small turns toward the wall. These turns are functional
because they provide information about the wall curvature by allowing all the three right-front sensors to receive
information on distance from the wall. the gradual stabilization of behavior displayed by the robot trajectory is
reflected by the weakening of the oscillations displayed by the inhibitory synapse from the center-right sensor to the
left motor.

INSERT FIGURE 22 ABOUT HERE

A key observation from this experiment is that behavioral stability is not expressed by a final stable state of the
synaptic configuration, as in most connectionist models (Hertz, Krogh, & Palmer, 1991), but rather by dynamic
equilibrium in an n-dimensional state-space (where n is the number of synapses). Figure 22 plots the trajectory of
the neurocontroller in the reduced state-space of the first three principal components of the recorded synaptic activity
during the first 100 actions of the individual (displayed in figure 7). During the first 6 actions the neurocontroller
moves toward a subregion of space where there is little change along the first and second principal components.
During the remaining actions, almost all the residual variation takes place in the dimension of the third principal
component and is gradually reduced as the robot performs the second lap around the maze.

The evolved individuals could not store genetic information on the fine details of the environment in the form of
precise synaptic strengths, as in the experiment described in section 4, but the pattern of active synapses and their
sign was sufficient to store some basic behaviors. For example, in the case of the neurocontroller analyzed above, at
the beginning the robot always moved backward until it found a wall and then it positioned itself so that the wall
happened to be on its right side. This sort of reflex, that is genetically inherited and immutable behavior, effectively
puts the the neurocontroller in a position from where it can effectively engage in a dynamic adaptation process (other
analyses can be found in Floreano & Mondada, 1996b).

6.1 Discussion

The genetic encoding used in this experiment was motivated by the desire to keep the number of independent variables
as small as possible while capturing some of the biological elements relevant in the evolution of adaptive nervous
systems. Therefore, the genotype encoded only gross properties of the synapses, such as their postsynaptic effects
(driving or modulatory) (Hirsch & Gilbert, 1993) and their signs, but not synaptic strengths. The choice of encoding
four variations of the Hebb rule, and the learning rates, was motivated by neurophysiological evidence for these
plasticity rules in biological nervous systems (Kelso, Ganong, & Brown, 1986; Stent, 1973; Singer, 1987; Stanton
& Sejnowski, 1989; Yang & Faber, 1991), and inspired upon biological findings of genes regulating the expression
of NMDA receptors (Hollman & Heinemann, 1993) which are thought to be the most likely mechanism responsible
for activating different types of Hebbian learning. Artificial evolution selected some of the available features and
discarded others. For example, the internal unit of the neurocontroller analyzed above was not used for processing
sensory information, and the plain Hebb rule was used very sparsely (as in most individuals of the last generations).
Since the Hebb rule does not allow weakening of a synapse, it was used only for synapses responsible for establishing
basic competencies, such as motion generation from the internal unit.

The stable behavior achieved during “lifetime” by the controllers was regulated by fast and continously changing
synapses characterized by dynamic stability. In the conventional view, synapses are relatively (statically) stable and
slow components of the nervous system. In most connectionist models, synaptic change takes place on a slower
time scale than neuron activations. Consequently, synaptic changes are identified with learning of new skills or
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acquisition of new knowledge, while neuron activations are identified with the expression of behavior and of existing
knowledge.? Within this perspective, the neurocontrollers evolved in this experiments offer a complementary view
of adaptive behavior where fast-changing synapses are responsible for both learning and behavior regulation. From
a computational perspective, this functioning modality adds an extra degree of freedom to the neurocontroller.
Preliminary investigations in dynamic environments where two robots, a predator and a prey, are co-evolved in the
same arena have shown that predators equipped with evolved plastic controllers can adapt their behavior on-the-fly
and catch a higher number of prey displaying different escape strategies (Floreano & Nolfi, 1997) than predators
equipped with evolved controllers that have the same architecture, but fixed synaptic weights.

Life-time adaptation of the evolved neurocontroller analyzed above is supported by an evolved reflex—backing
against a wall—that increases the probability of the controller to be in a situation from where it can learn a behavior
that is useful for selective reproduction, in this case straight navigation without collision. Evolved reflexes can be
seen as an implicit value system because they increase the probability of getting explicit values (Pfeifer & Scheier,
1998), that is fitness points.

7 Conclusion

We have described a methodology for building, evolving, and analyzing autonomous mobile robots. The charac-
teristics of the robots employed in these experiments, combined with a set of tools for monitoring the evolutionary
progress, have allowed us to run all the experiments on physical robots for extended periods of time and perform
“neuroethological” analyses in order to link behavioral performance with neural dynamics. In all the experiments
described in this article we have employed very similar fitness functions and neural architectures in the attempt to
study how the evolved controllers are affected by the environment and by the encoding strategy employed.

The design of the fitness function is one of the most delicate steps involved in setting up an evolutionary system.
Our approach described here consists in choosing simple functions, designed from the perspective of the robot, that
use only sensory information locally available to the robot and capitalize on the interaction dynamics between the
robot and its environment. In this way, evolution can gradually build and combine solutions that perfectly match
the physical characteristics of the robot and of the environment without externally imposed constraints based on an
observer’s perspective. The evolution of a preferential direction of motion (section 4.1) and of a battery-charging
behavior (section 4.2) are two examples of solutions that have not been explicitly imposed by the experimenter.

From an engineering point of view, one might be tempted of accelerating evolution by, for example, devising
fitness functions that explicitly select individuals with desired macro-behaviors or by evolving higher-level primitives.
Although this strategy can indeed generate complex controllers very quickly (Urzelai, Floreano, Dorigo, & Colombetti,
1998), the self-organizing potentialities of the evolving controllers are limited by the constraints imposed by the
experimenter. Conversely, if one wishes to use artificial evolution for investigating cognitive and biological aspects
of autonomous behavior, it would be more fruitful to concentrate efforts on devising increasingly more challenging
environments and situations—rather than fitness functions—that could implicitly push the evolutionary individuals
towards more complex abilities.

Artificial evolution can also be a tool for exploring alternative forms of adaptation and gaining insights on
mechanisms that might (or might not) be used by biological forms of life, but have not yet been discovered. The
experiment on the evolution of plastic controllers described in the last section goes in this direction. The evolved
controllers make use of fast and continuously changing synapses that are dynamically stable, suggesting new ways
in which a network of interconnected adaptive elements might achieve adaptive behavior. From an Artificial Life
perspective, evolutionary robots are embodied and embedded systems suitable for exploring life-as-it-is and life-as-
it-could-be (Langton, 1990).

Independently of the point of view adopted, we believe that in the years to come it will be necessary to invest
much research efforts in incremental open-ended evolution in order to evolve artificial agents displaying the complexity
and adaptivity of biological autonomous systems. From this broader perspective, the experiments described here
are initial explorations in the artificial evolution of autonomous robots aimed at investigating the methodology and
evaluating the potentials. Despite some initial theoretical work in this direction (Harvey, 1992, 1993), pursuing
an incremental open-ended evolutionary program will require starting several new research projects looking from
a different perspective at issues such as genetic encoding, evolvable primitives, developmental programs, selection

3This view has been partially challenged by Yamauchi and Beer (1995) , who have evolved and analyzed continuous-time recurrent
neural networks that give the external appearance of performing reinforcement learning while, in fact, these networks have fixed connection
weights and use only internal node dynamics.
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criteria, evolutionary operators, and principles of fitness design for autonomous artificial organisms that interact with
partially unknown and unpredictable physical environments.
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Figure 1: The miniature mobile robot Khepera beside a ruler (in cm). Black pucks around the body are active
infrared sensors. Rechargeable batteries are sandwiched between the sensorimotor board and the motherboard; the
latter hosts the microcontroller (black square), EEPROM, RAM, and communication ports.
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Figure 2: The open modular architecture of the Khepera robot.



Figure 3: Left: The Koala robot, despite its shape and size (31 x 32 x 18 cm), has operating features similar to
those of the Khepera robot with which it is fully compatible. Right: Layout of infrared sensor positions. L=left;
R=right.
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Figure 4: Evolutionary experiments on a single robot. Each individual of the population is decoded into a corre-
sponding neurocontroller which reads sensory information and sends motor commands to the robot every 300 ms
while its fitness is automatically evaluated and stored away for reproductive selection.



Figure 5: Bird’s-eye view of the looping maze and the Khepera.
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Figure 6: Average fitness of the population and fitness of the best individual at each generation (error bars show

standard error over three repeated runs).



Figure 7: Trajectory of the robot controlled by the best individual of the last generation. Data recorded and plotted
every 300 ms using the laser positioning device described in section 2 above. Segments represent the axis between
the two wheels.
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Figure 8: The direction of motion evolved by all best neurocontrollers corresponds to the side with the highest
number of infrared sensors.



Figure 9: State-space representation of evolutionary adaptation. Each dot is the state of the best individual of a
generation. The arrow shows the direction of motion during evolution. The dots concentrate in a sub-space indicated
by the arrow tip in the last 20 generations (xz = 0.6 £ 0.07, y = 0.6 £ 0.05, z = 0.4 £ 0.15).



Figure 10: State-space representation of the behavior of the best individual of the last generation when positioned
close to two walls. By moving away from the walls and initiating the navigation behavior, the controller in fact
returns to the equilibrium zone (x = 0.65, y = 0.6, z = 0.5).



Figure 11: Bird’s-eye view of the arena, the light tower, and the Khepera.
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Figure 12: Average population fitness (continuous line) and fitness of the best individual (dotted line) at each
generation in the experiment with the battery charger.
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Figure 13: Number of sensorimotor steps achieved by the best individuals in the experiment with the battery charger.
Each individual starts with a full battery which lasts 50 sensorimotor steps, if not recharged. The maximum number

of steps allowed is 150.
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Figure 14: Contour map of the activation levels of an internal unit while the robot was positioned at various locations
in the environment for four different conditions depending on orientation and battery charge. The recharging area
is located at the top left corner of each map.
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Figure 15: Trajectories of best individual of generation 240 in three environmental conditions. Left: Test in training
conditions. The robot starts with a full battery in the bottom right corner (only the first 50 actions are displayed).
Center: The battery is not automatically recharged when the robot arrives on the charging area. The robot starts
in the centre of the environment with an almost discharged battery. Right: The light source is positioned on the
top right corner, but the charging area remains at the original location.



fitness nr. of actions

0.7 156,
A A s Ak R PN N O
<N \ INIUNY NN
a) LA A a 100
0. 41\‘ ',\" i
\

VWI\VAMW{\/\ 50
0.1
230 260 290 320 230 260 290 320
fitness nr. of actions
0.7 156
h N V
b “”\‘— \/ ‘\ r/"*A\’\l’\:AV"‘\("Jﬂ‘uN \'\/-V\"’\\,A/d FuE
Y 100
0.4
vvrL/vaMNwJ“/A””VMHJu/Jan %0 ©
0.1
230 260 290 320 230 260 290 320
fitness nr. of actions

0.7 156
nh AL AN N\l
C) J ’\._‘ ‘ M /‘\" ‘,".Jv’ 'l \\l\/ vy

ol 100
L4
i
uy

' O

230 260 290 320 230 260 290 320

Figure 16: Re-adaptation in environments with a new light position. Each row (a, b, and c) plots—respectively—the
average population fitness (continuous line) and the fitness of the best individual (dotted line) across generations,
the number of actions during life for the best individual at each generation, and a sketch of the light position (small
circle) in the environment (the black sector represents the charging area). For the sake of comparison, each plot
includes data for the last ten generations of the original run (see figures 12 and 13) shown here to the left of the y
axis.



Figure 17: The Koala robot, without the protective white shell, in a scaled-up version of the looping maze used for
evolution on the Khepera (see also figure 5).
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Figure 18: Average population fitness and fitness of the best individual across generations. Evolution begins on the
Khepera; from generation 107 it continues on the Koala. Data from a single run smoothed using rolling averages
(window size=3).
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Figure 19: Activation function combining driving and modulatory signals (Kay & Phillips, 1996). 0.5 is the point
of inversion of wheel rotation. Modulatory signals can enhance or dampen the unit response, but not change the
direction of wheel rotation.



Figure 20: Trajectory of the robot that learns to navigate during life. Position data, visualized as bars representing
the axis connecting the two wheels, were acquired with the laser positioning system every 300 ms. Data refer to the
best individual of the last generation of one evolutionary run. Left: trajectory during the first lap (the robot starts
in the lower portion of the environment and advances counterclockwise). Right: trajectory at the second lap.
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represent synapses that remain close to zero.



Figure 22: State-space representation of synapse dynamics during the first 100 actions plotted as trajectory within
the space of the first three principal components. Arrows indicate the starting position and the range of oscillation
between action sequences 20-80 and 80-100. Oscillations within the subspace of the third (smallest) component
correspond to fine trajectory adjustments.



