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Abstract. Co-evolution (i.e. the evolution of two or more competing
populations with coupled fitness) has severa interesting features that may
potentialy enhance the power of adaptation of artificid evolution. In particular,
as discussed by Dawkins and Krebs [2], competing populations may
reciprocally drive one another to increasing levels of complexity by producing
an evolutionary “arms race”. In this paper we will investigate the role of co-
evolution in the context of evolutionary robotics. In particular, we will try to
understand in what conditions co-evolution can lead to “arms races” in which
two populations reciprocally drive one another to increasing levels of
complexity.

1. Introduction

Co-evalution (i.e. the evolution of two or more competing populations with coupled
fitness) has several interesting features that may potentially enhance the adaptation
power of artificial evolution. First, because the performance of the individual in a
population depends also on the individual strategies of the other population which
vary during the evolutionary process, the ability for which individuals are selected is
more general (i.e. it hasto cope with avariety of different cases) than in the case of an
evolutionary process in which co-evolution is not involved. The generality of the
selection criterion isa very important property because the more general the criterion,
the larger the number of ways of satisfying it (at least partially) and the greater the
probability that better and better solutions will be found by the evol utionary process.
Consider for example the well-studied case of two co-evolving populations of
predators and prey [1]. If we ask the evolutionary process to catch one individua prey
we may eadsily fail. In fact, if the prey is very efficient, the probability that an
individual with a randomly generated genotype may be able to catch it is very low. As
a consequence, all individuals will be scored with the same null vaue and the
selective process cannot operate. On the contrary, if we ask the evolutionary process



to find a predator able to catch a variety of different preys, it is much more probable
that it will find an individual in the initial generations able to catch at least one of
them and then select better and better individuals until one predator able to catch the
original individual prey is selected.

Secondly, competing co-evolutionary systems are appealing because the ever-
changing fitness landscape, due to changes in the co-evolving species is potentially
useful in preventing stagnation in local minima. From this point of view, co-evolution
may have consequences smilar to evolving a single population in an ever-changing
environment. Indeed the environment changes continuously given the fact that the co-
evolving speciesis part of the environment of each evolving population.

Finally, the co-evolution of competing populations may produce increasingly
complex evolving challenges. As discussed by Dawkins and Krebs [2] competing
populations may reciprocally drive one another to increasing levels of complexity by
producing an evolutionary “arms race”. Let us again consider the predator and prey
case: the success of predatorsimplies afailure of the prey and conversely, when preys
evolve to overcome the predators they also create a new challenge for them.
Similarly, when the predators overcome the new preys by adapting to them, they
create a new challenge for the preys. Clearly the continuation of this process may
produce an ever-greater level of complexity. As Rosin and Belew [3] point out, it is
like producing a pedagogical series of challenges that gradually increase the
complexity of the corresponding solutions.

This nice property overcomes the problem that if we ask evolution to find a
solution to a complex task we have a high probability of failure while if we ask
evolution to find a solution first to a simple task and then for progressively more
complex cases, we are more likely to succeed. Consider the predators and preys case
again. At the beginning of the evolutionary process, the predator should be able to
catch its prey which have a very simple behavior and are therefore easy to catch,
likewise, prey should be able to escape simple predators. However, later on, both
populations and their evolving challenges will become progressively more and more
complex. Therefore, even if the selection criterion remains the same, the adaptation
task will become progressively more complex and more general.

Unfortunately however a continuous increase in complexity is not guaranteed. In
fact, co-evolving populations may cycle between alternative class of strategies that
although they do not produce advantages in the long run may produce a temporary
improvement over the co-evolving population. Imagine, for example, that in a
particular moment population A adopts the strategy A, which gives population A an
advantage over population B which adopts strategy B,. Imagine now that there is a
strategy B, (Smilar to B,) that gives population B an advantage over strategy A,.
Population B will easily find and adopt strategy B,. Imagine now that there is a
strategy A, (Smilar to A)) that provides an adaptive advantage over drategy B,.
Population A will easly find and adopt strategy A,. Finally imagine that previously
discovered strategy B, provides an advantage over strategy A,. Population B will
come back to drategy B,. At this point also population A will come back to strategy
A, (because, as explained above, it is effective against strategy B,) and the cycle of
the same strategies will be repeated over and over again (Fig. 1).
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Fig. 1. The same strategies (A, and A, in population A) and (B, and B, in population B) may be
selected over and over again throughout generations as is shown in the right hand side of the
figure if the interaction between them looks like what is represented on the left side of the
Figure. In this case the repeated cycle corresponds to 4 different combinations of strategies

Notice how the cycling may involve two or more different strategies for each
population but also two or more different groups of strategies.

Of course this type of phenomena may cancel out all the previoudy described
advantages because, athough evolution may never get stuck in a particular solution,
the number of different solutions discovered might be quite limited. Moreover there is
no need to discover progressively more complex srategies. It is sufficient to re-
discover previously selected strategies that can be obtained with a limited number of
changes.

In this paper we will investigate the role of co-evolution in the context of
evolutionary robotics. In particular, we will try to understand in what conditions co-
evolution can lead to “arm races’ in which two populations reciprocaly drive one
another to increasing levels of complexity.

2. Co-Evolving Predator and Prey Robots

Several researchers have investigated co-evolution in the context of predators and
prey in smulation [1, 4, 5, 6]. More recently, we have tried to investigate this
framework first by using realistic smulations based on the Khepera [7, 8] and
subsequently the real robots [9].

In this section, we will first describe our experimental framework and the results
obtained in a smple case. Then, we will describe other two experimental conditions
more suitable to the emergence of ‘am races between the two competing
populations.



2.1 The Experimental Framework

As often happens, predators and prey belong to different species with different
sensory and motor characteristics. Thus, we employed two Khepera robots, one of
which (the Predator) was equipped with a vision module while the other (the Prey)
had a maximum available speed set to twice that of the predator. The prey has a black
protuberance, which can be detected by the predator everywhere in the environment.
The two species could evolve in a square arena 47 x 47 cm in size with high white
walls so that predator could always see the prey (within the visual angle) as a black
spot on a white background (see Fig. 2).

Both individuals were provided with eight infrared proximity sensors (six on the
front side and two on the back) which had a maximum detection range of 3-4 cm in
our environment. For the predator we considered the K213 module of Khepera which
is an additional turret that can be plugged in directly on top of the basic platform. It
consists of a 1D-array of 64 photoreceptors which provide a linear image composed
of 64 pixels of 256 gray-levels each, subtending a view-angle of 36°. However the
K231 module a so allows detection of the position in the image corresponding to the
pixel with minimal intensity. We exploited this facility by dividing the visual field
into five sectors of about 5° each corresponding to five simulated photoreceptors. If
the pixel with minima intensity lay insgde the first sector, then the first simulated
photoreceptor would become active; if the pixel lay inside the second sector, then the
second photoreceptor would become active, etc. From the motor point of view, we set
the maximum wheel speed in each direction to 80mm/s for the predator and 160mm/s

for the prey.
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Fig. 2. Left and center: details of simulation of vison, of neura network architecture, and of
genetic encoding. The prey differs from the predator in that it does not have 5 input units for
vision. Eight bits code each synapse in the network. Right: Initid starting position for prey
(left, empty disk with smal opening corresponding to fronta direction) and predator (right,
back disk with line corresponding to frontal direction) in the arena. For each competition, the
initial orientation is random

In line with some of our previous work [10], the robot controller was a simple
perceptron comprising two sigmoid units with recurrent connection at the output
layer. The activation of each output unit was used to update the speed value of the



corresponding wheel every 100ms. In the case of the predator, each output unit
received connections from five photoreceptors and from eight infrared proximity
sensors. In the case of the prey, each output unit received input only from 8 infrared
proximity sensors, but its activation value was multiplied by 2 before setting the
wheel speed. This structure, which is well-suited for the evolution of Braitenberg-like
obstacle avoidance, was chosen as being aminimally sufficient architecture to evolve
something interesting while maintaining system complexity at a manageable level; for
the same reason, the architecture was kept fixed, and only synaptic strengths and
output units threshold values were evolved.

In order to keep things as simple as possible and given the small size of the
parameter set, we used direct genetic encoding [11]: each parameter (including
recurrent connections and threshold values of output units) was encoded using 8 bits.
Therefore, the genotype of the predator was 8 x (30 synapses + 2 thresholds) bits long
while that of prey was 8 x (20 synapses + 2 thresholds) bitslong.

Two populations of 100 individuals were each co-evolved for 100 generations.
Each individual was tested against the best competitors of the previous generations (a
similar procedure was used in [6, 12]). In order to improve co-evolutionary stability,
each individual was tested against the best competitors of the ten previous generations
(on this point see also below). At generation 0, competitors were randomly chosen
within the same generation, whereas in the other 9 initial generations they were
randomly chosen from the pool of available best individuals of previous generations.

For each competition, the prey and the predator were always positioned on a
horizontal line in the middlie of the environment at a distance corresponding to half
the environment width, but always at a new random orientation. The competition
ended either when the predator touched the prey or after 500 motor updates
(corresponding to 50 seconds at maximum on the physical robot). The fitness function
for each competition was simply 1 for the predator and O for the prey if the predator
was able to catch the prey and, conversely 0 for the predator and 1 for the prey if the
latter was able to escape the predator. Individuals were ranked after fitness
performance in descending order and the best 20 were allowed to reproduce by
generating 5 offspring each. Random mutation (bit substitution) was applied to each
bit with a constant of probability pm=0.02.

For each set of experiments we ran 10 replications starting with different randomly
assigned genotypes.

In this paper we will refer to data obtained in simulation. A simulator developed
and extensively tested on Khepera by some of us[13] was used. However some of the
experiments described have also been successfully replicated on real [9].

! The parameters used in the simulations described in this paper are mostly the same as in the
simulation described in [7]. However, in these experiments we used a simpler fitness formula
(a binary vaue instead of a continuous vaue proportiona to the time necessary for the
predator to catch the prey). Moreover, to keep the number of parameters as small as possible,
we did not use crossover. In the previous experiments, in fact, we did not notice any
significant difference in experiments conducted with different crossover rates.



2.2 Measuring Adaptive Progressin Co-Evolving Populations

In the co-evolutionary case, the Red Queen effect [14] makes it hard to monitor
progress by taking measures of the fitness throughout generations. In fact, because
fitnesses are defined relative to a co-evolving set of traits in the other individuals, the
fitness landscapes for the co-evolving individuals vary. As a consequence, for
instance, periods of sasisin the fitness vaue of the two populations may correspond
to a period of tightly-coupled co-evolution.

To avoid this problem, different measure techniques have been proposed. Cliff and
Miller [15] have devised a way of monitoring fithess performance by testing the
performance of the best individual in each generation against all the best competing
ancestors which they call CIAO data (Current Individua vs. Ancestral Opponents).

A variant of this measure technique has been proposed by some of us and has been
called Master Tournament [7]. It consists in testing the performance of the best
individual of each generation against each best competitor of al generations. This
latter technique may be used to select the best solution from an optimization point of
view [7]. Both techniques may be used to measure co-evolutionary progress (i.e. the
discovery of more general and effective solutions).

2.3 Co-Evolution of Predator and Prey Robots: A Smple Case

The results obtained by running a set of experiments with the parameter described in
Section 2.1 are shown below. Fig. 3 represents the results of the Master Tournament,
i.e the performance of the best individua of each generation tested against all best
competitors. The top graph represents the average result of 10 simulations. The
bottom graph represents the result of the best run.

These results show that, at least in this case, phases in which both predators and
preys produce increasingly better results are followed by sudden drops in
performance. As a consequence, if we look at the average result of different
replications in which increase and drop phases occur in different generations, we
observe that performance does not increase at all throughout the generations. In other
words the efficacy and generadity of the different selected strategies does not increase
evolutionarily. In fact, individuals of later generations do not necessarily score well
against competitors of much earlier generations (see Fig. 4, right side). Similar cases
have been described [3, 6].

The ‘arm races’ hypothesis would be verified if, by measuring the performance of
each best individual against each best competitor, a picture approximating that shown
on the left side of Fig. 4 could be obtained. In thisideal situation, the bottom-left part
of the square, which corresponds to the cases in which predators belong to more
recent generations than the prey, is black (i.e. the predator wins). Conversely, the top
right part of the square, which corresponds to the cases in which the prey belong to
more recent generations than the predators, is white (i.e. the prey wins).
Unfortunately, what actually happens in atypica run is quite different (see right part
of Fig. 4). The digribution of black and white spots does not differ significantly in the
two sub-parts of the square.
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Fig. 3. Performance of the best individuals of each generation tested against all the best
opponents of each generation (Master Tournament). Performance may range from O to 100
because each individua istested once against each best competitor of 100 generations. The top
graph shows the average result of 10 different replications. The bottom graph shows the result
in the best replication (i.e. the smulation in which predators and preys of a given generations
attain their best performance). Data were smoothed using rolling average over three data points

This does not imply that the co-evolutionary process is unable to find interesting
solutions [7]. This merely means that effective strategies may be lost instead of being
retained and refined. Such good strategies, in fact, are often replaced by other
strategies that, although providing an advantage over the current opponents, are much
less general and effective in the long run. In particular, this type of process may lead
to the cycling process described in Section 1.2 in which the same strategies are lost
and re-discovered over and over again.

The cycling between the same class of strategy is actualy what happens in these
experiments. If we analyze the behaviors of the best individuals of successive
generations we see that in all replications, evolving predators discover and rediscover
two different classes of drategies: (A,) track the prey and try to catch it by



approaching it; (A,) track the prey while remaining more or less in the same area and
attacking the prey only on very special occasions (when the prey is in a particular
position relative to the predator). Smilarly the prey cycles between two class of
strategies. (B,) tay still or hidden close to a wall waiting for the predator and
eventualy try to escape when the IR sensors detect the predator; (B,) move fast in the
environment, avoiding walls.

generations prey generations prey

generations predator
generations predator

Fig. 4. Performance of the best individuals of each generation tested against all the best
opponents of each generation. The black dots represent individua tournaments in which the
predators win while the white dots represent tournaments in which the prey wins. The picture
on the left represents an ided situation in which predators are able to catch all prey of previous
generations and the prey are ableto escape all predators of previous generations. The picture on
the right represents the result for the best simulation (the same shownin Fig. 3).

Now, as in Fig. 1, the strategy A, is generadly effective against B,, in fact the
predator will reach the prey if the prey does not move too much and has a good
chance to succeeding given that the prey can only detect predators approaching from
certain directions. Strategy B, is effective against strategy A, because the prey is
faster than the predator and so, if the predator tries to approach a moving fast prey, it
has little chance of catching it. Strategy A, is effective against strategy B, because, if
the prey moves fast in the environment, the predator may be able to catch it easily by
waiting for the prey itself to come close to the predator. Finally, strategy B, is very
effective against srategy A,. In fact if the predator does not approach the prey and the
prey stays ill, the prey will never risk being caught. This type of relation between
different strategies produces a cycling process similar to that described in Fig. 1.

What actually happensin the experiments is not so simple as in the description we
have just given because of several factors. (1) the strategies described are not single
strategies but classes of smilar strategies. So for example there are plenty of different
ways for the predator to approach the prey and different ways may have different
probabilities of being successful againg the same opposng strategies, (2) the
advantage or disadvantage of each drategy against another strategy varies
guantitatively and is probabilistic (each strategy has a given probability of beating a
competing strategy); (3) populations at a particular generation do not include only one
strategy but a certain number of different strategies although they tend to converge
toward a single one; (4) different strategies may be easier to discover or re-discover
than others.

However the cycling process between the different class of strategies described
above can be clearly identified. By analyzing the behavior of the best individuals of
the best simulation (the same as that described in Fig. 3 and 4), for example, we can



see that the strategy B, discovered and adopted by preys at generation 21 and then
abandoned after 15 generations is rediscovered and re-adopted at generation 58 and
then at generation 98. Similarly the strategy A,, first discovered and adopted by the
predator at generation 10 and then abandoned after 28 generations for strategy A,, is
then rediscovered at generation 57. Interestingly, however, preys also discover a
variation of strategy B, that includes also some of the characteristics of strategy B,. In
this case, preys movein circles waiting for the predator asin strategy B,. However, as
soon as they detect the predator with their IR sensors, they start to move quickly
exploring the environment as in strategy B,. This type of strategy may in principle be
effective against both strategies A1 and A2. However sometimes preys detect the
predator too late, especially when the predator approaches the prey from its left or
right rear side which is not provided with IR sensors. Also, it might be that this hybrid
strategy which is effective against both predator-strategies, it is not as effective
againgt either predator strategy as the appropriate “pure’ escape strategies. Therefore
the hybrid strategy, despite its generalized effectiveness, is eventually turned into one
of the pure strategies, namely the one that is more effective against whatever strategy
is, at that time, being adopted by the predator.

2.4 Testing Individuals against All Discover ed Solutions

In arecent article, Rosin and Belew [3], in order to encourage the emergence of ‘arms
races in a co-evolutionary framework suggested saving and using as competitors al
the best individuals of previous generations:

So, in competitive coevolution, we have two distinct reasons to save
individuals. One reason is to contribute genetic material to future
generations,; this is important in any evolutionary algorithm. Selection
serves this purpose. Elitism serves this purpose directly by making
complete copies of top individuals.

The second reason to save individuals is for purposes of tesing. To
ensure progress, we may want to save individuals for an arbitrarily long
time and continue testing against them. To this end, we introduce the
‘hall of fame', which extends elitism in time for purposes of testing. The
best individual from every generation, is retained for future testing.

From Rosin and Belew [3], pp. 8.

This type of solution is of course implausible from a biological point of view.
Moreover, we may expect that, by adopting this technique, the effect of the co-
evolutionary dynamic will be progressively reduced throughout generations with the
increase in number of previous opponents. In fact, as the process goes on, thereis less
and less pressure to discover strategies that are effective againg the opponent of the
current generation and greater and greater pressure to develop solutions capable of
improving performance against opponents of previous generations.

However, as the authors show, this method may be much more effective than a co-
evolutionary framework in which individuals compete only with opponents of the



same generation. More specifically, we think, it may be a way to overcome the
problem of the cycling of the same strategies. In this framework in fact, ad hoc
solutions that compete successfully againgt the opponent of the current generation but
do not generalize to opponents of previous generations cannot spread in evolving
populations.

We applied the hall of fame selection regime to our predator and prey framework
and measured the performance of each best individua against each best competitor
(Master Tournament). As shown in Fig. 5 and 6, in this case, we obtain a progressive
increase in performance. Results are obtained by running a new set of 10 simulations
in which each individual is tested against 10 opponents randomly selected from al
previous generations. All the other parameters remain the same.
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Fig. 5. Performance of the best individuals of each generation tested against all the best
opponents of each generation (Master Tournament). The top graph shows the average result of
10 different replications. The bottom graph shows the result in the best replication (i.e. the

simulation in which predators and prey of a given generation attain the best performance). Data
were smoothed using arolling average over three data points

Fig. 5 shows how in this case the average fitness of the best individuas tested
againgt all best competitors progressively increases throughout generations, ultimately



attaining near to optima performances. Fig. 6 shows how this is accomplished by
being able to beat most of the opponents of previous generations. The results do not
exactly match the ideal stuation described in Fig. 4 (left side) in which predators and
prey are able to beat dl individuas of previous generations. In the best smulation
described in Fig. 5 (bottom graph) and Fig. 6, for example, there are two phases in
which preys are unable to beat most of the predators of few generations before. The
general picture, however, approximates the ideal one.

generations prey

generations predator

Fig. 6. Performance of the best individuals of each generation tested against all the best
opponents of each generation. Black dots represent individual tournaments in which the
predators win while white dots represent tournaments in which the prey wins. Result for the
best simulation (the same shown in Fig. 5)

If we look at the strategies selected in this set of experiments we see that they are
of the same class as those described in the previous Section. However, in this case the
strategies are more stable (i.e. in general they are not suddenly replaced by another
strategy of a different class). This enables the co-evolutionary process to
progressively refine the current strategies instead of cycling between different classes
of strategies restarting each time from about the same point.

2.5 How ‘Arms Races can Continue Progressively to Produce More General
Solutionsin Certain Conditions

In section 2.3 we showed how ‘arms races spontaneously emerge in a co-
evolutionary framework. However, we also showed how the innovations produced by
such a process may be easily be logt because the evolutionary processtendsto fail in a
dynamic attractor in which the same type of solutions are adopted over and over by
the two co-evolving populations. In section 2.4 we showed how the tendency to cycle
between the same type of strategies may be reduced by preserving al previousy
discovered strategies and by using all of them to test the individual of the current
population. However we aso pointed out that this techniques which is biologically
implausible, has its own drawbacks which may prevent it from scaling up.

In doing so, however, we also learned what characteristics may cause the sudden
loss of the acquired abilities which often have to be rediscovered later on. As we
showed in Section 2.3, evolution tends to produce the alternation of the same



solutions over and over when there are two or more different classes of solutions that
interact in a certain way among themselves. This implies that, if such conditions are
not verified, ‘arms races should in principle be able to produce better and better
solutions without falling into cycling periods.

Of coursg, it is not easy to predict the cases in which the conditions that produce
cycling between the same drategies are absent. However, by analyzing the type of
solutions selected by evolution in the experiments described above, we can try to
make some predictions. One thing to consider, for example, is that the prey has a
limited sensory system that enables it to perceive predators only at a very limited
distance and not from all relative directions (there are no IR sensors able to detect
predators approaching from the rear-left and rear-right side). Given this limitation, the
prey cannot improve its strategy above a certain level. It can compete with co-
evolving predators only by suddenly changing strategy as soon as predators select an
effective strategy againg them. However, if we increase the richness of the prey’s
sensory system we may expect that the prey will be able to overcome well adapted
predators by refining its strategy instead of radically changing its behavior.
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Fig. 7. Performance of the best individuals of each generation tested against all the best
opponents of each generation (Master Tournament). The top graph shows the average result of
10 different replications. The bottom graph shows the result in the best replication (i.e. the
simulation in which predators and prey of a given generation attain the best performance). Data
were smoothed using arolling average over three data points



To investigate this hypothesis we ran a new set of simulations in which the prey
also was provided with a camera able to detect the predators’ relative position. For the
prey we considered another turret under development at LAMI, which consists of an
1D-array of 150 photoreceptors which provide a linear image composed of 150 pixels
of 256 gray levels each [16]. We chose this wider camera because the prey, by
escaping the predators, will only occasionally perceive opponents in their frontal
direction. As, inthe case of predators, the visua field was divided into five sectors of
44° corresponding to five smulated photoreceptors subtending a view-angle of 220°.
As a consequence, in this experiment, both predator and prey are controlled by a
neural network with 13 sensory neurons. Moreover, in this case, both predator and
prey could see their competitors as a black spot against a white background. Asin the
experiments described in Section 2.3, individuals were tested against the best
competitors of the 10 previous generations (not against competitors selected from al
previous generations as in the experiments described in Section 2.4). All other
parameters remained the same.

If we measure the average performance of the best predators and prey of each
generation tested against al the best opponents of each generation (Master
Tournament) a significant increase in performance throughout generationsis observed
(Fig. 7). In the case of the best replication, in particular, although predators
performance decrease in the last 20 generations, the best individuals up to generation
80 are able to overcome most of their opponents of previous generations (Fig. 8).

generations prey

generations predator

Fig. 8. Performance of the best individuals of each generation tested against all the best
opponents of each generation. Black dots represent individual tournaments in which the
predators win while white dots represent tournaments in which the prey wins. Result for the
best simulation (the same as that shownin Fig. 7)

These results show how by changing the initial conditions (in this case by changing
the sensory system of one population) ‘arms races can continue to produce better and
better solutionsin both populations without falling into cycles.

Interestingly, in their simulations in which also the sensory system of the two co-
evolving populations was under evolution, Cliff and Miller observed that “.. pursuers
usually evolved eyes on the front of their bodies (like cheetahs), while evaders usually
evolved eyes pointing sideways or even backwards (like gazelles).” [16, pp.506]. The
authors did not provide enough data in their paper to understand whether their
simulations fell into solution cycles. However, even though both the nervous system
and the sensory system were under co-evolution in their case, it seems that Cliff and



Miller did not observe any co-evolutionary progress toward increasingly general
solutions. In fact, they report that ‘co-evolution works to produce good pursuers and
good evaders through a pure bootstrapping process, but both types are rather specially
adapted to their opponents current counter-strategies.” [16, pp. 506]. However, it
should be noted that there are severa differences between Cliff and Miller
experiments and ours. The fitness function used in their experiments, in fact, is more
complex and includes additional congtraints that try to force evolution in a certain
direction (e.g. predators are scored for their ability to approach the prey and not only
for their ability to catch it). Moreover, the genotype-phenotype mapping is much
more complex in their cases and includes several additional parameters that may
effect the results obtai ned.

3. Discussion

Evolutionary Robotics is a promising new approach to the development of mobile
robots able to act quickly and robustly in rea environments. One of the most
interesting features of this approach is that it is a completely automatic process in
which the intervention of the experimenter is practically limited to the specification of
a criterion for evaluating the extent to which evolving individuals accomplish the
desired task. However, it is <till not clear how far this approach can scae up.

From this point of view, one difficult problem is congtituted by the fact that the
probability that one individual within the initial generationsis able to accomplish the
desired task, at least in part, is inversely proportional to the complexity of the task
itself. Asa consequence, if we apply this methodology to solving a complex task we
are likely fail because all individuals of the initia generations are scored with the
same zero values and as a consegquence the selection mechanism cannot operate. We
will refer to this problem as the bootstrap problem.

This problem arises from the fact that in artificia evolution people usualy start
from scratch (i.e. from individuals obtained with randomly generated genotypes). In
fact, one possible solution to this problem isthe use of ‘incrementa evolution’. In this
case, we start with asimplified verson of the task and, after we get individuas able to
solve such a simple case, we progressively move to more and more complex cases
[17, 18, 19]. This type of approach can overcome the bootstrap problem, although it
also has the negative consequence of increasng the amount of supervision required
and the risk of introducing inappropriate congtraints. In the case of incremental
evolution in fact, the experimenter should determine not only an evaluation criterion
but also a ‘pedagogica’ list of simplified criteria. In addition the experimenter should
decide when to change the selection criterion during the evolutionary process. Some
of these problems may arise also when, athough the selection criterion is left
unchanged throughout the evolutionary process, it is designed to include rewards also
for sub-components of the desired behavior [20].

Another possible solution of the bootstrap problem is the use of co-evolution. Co-
evolution of competing populations, in fact, may produce increasingly complex
evolving challenges spontaneously without any additionad human intervention.
Unfortunately however, no continuous increase in complexity is guarantied. In fact,
the co-evolutionary process tends to fail into dynamical attractors in which the same



solutions are adopted by both populations over and over (we will refer to this problem
as the cycling problem). What happens is that a a certain point one population, in
order to overcome the other population, finds it more useful to suddenly change its
strategy instead of continuing to refine it. Thisis usualy followed by a similar rapid
change of strategy in the other population. The overal results of this process is that
most of the characters previoudy acquired are not appropriate in the new context and
therefore are lost. However, later on, a similar sudden change may bring the two
populations back to the original type of strategy so that the lost characters are
probably rediscovered again and again.

The effect of the cycling problem may be reduced by preserving al the solutions
previoudly discovered in order to test the individuals of the current generations [3].
However, this method has drawbacks that may affect some of the advantages of co-
evolution. In fact, as the process goes on there is less and less pressure to discover
strategies that are effective against the opponent of the current generation and
increasing pressure to develop solutions able to improve performance against
opponents of previous generations which are no longer under co-evol ution.

We bdieve that the cycling problem, as the loca minima problem in gradient-
descent methods (i.e. the risk of getting trapped in a sub-optimal solution when all
similar solutions produce a decrease in performance), is an intrinsic problem of co-
evolution that cannot be eliminated completely. However, we also believe that the
negative effects of such a problem do not apply to all cases and so completely cancel
out the advantages of co-evolution. There may be cases, such as that described in
Section 2.5, in which co-evolution may progressively produce more complex
solutions for alarge number of generations without losing the acquired characters by
cycling between different types of solutions.

Moreover, different mechanisms may be able to limit the problems caused by the
tendency to cycle between the same types of solutions.

Ontogenetic plagticity, for example, may allow individuals of one population to
cope with different classes of drategies adopted by the second population, thus
reducing the adaptive advantage of a sudden shift in the behavior causing the cycling
problem (on the effects of some forms of ontogenetic plagticity in this framework see
[8]). Interestingly, one can argue that co-evolution not only creates the adaptive
pressure for ontogenetic adaptation (i.e. the ability to adapt during one's lifetime to
different types of opponents dtrategies produce a significant increase in the
adaptation level of oneindividual) but also create the conditions in which ontogenetic
adaptations can easily arise. In fact, coevolution, by faling into cycles of different
classes of strategies, tends to select individuals which can shift from one class of
strategy to another with only a few changes at the genotype level. It is plausible to
argue that, for such individuals, a limited number of changes during ontogeny will be
able to produce the required behavioral shift. In other words, it will be easier for co-
evolving individuals to change their behavior during their lifetime to adopt strategies
already adopted by their close ancestors thanks to the cycles occurring in previous
generations.

Another factor that may limit the cycling problem is the richness of the
environment. In the case of co-evolution, competing individuas are part of the
environment. This means that part, but not al of the environment is undergoing co-
evolution. Now the probability that a sudden shift in behavior will produce viable
individuals is inversely proportional to the richness of the environment that is not
under co-evolution. Imagine, for example, that an ability acquired under co-evolution,



such as the ability to avoid inanimate obstacles, involves a characteristic of the
environment which is not under co-evolution. In this case it will be less probable than
a sudden shift in grategy involving the lost of such ability will be retained. In fact the
acquired character will dways have an adaptive value independently of the current
strategies adopted by the co-evolving population. The same argument applies to the
cases in which one population is co-evolving against more than one other population.
The probability of retaining changes that involve a sudden shift in behavior will
decrease because, in order to be retained, such changes would have to provide an
advantage over both co-evolving populations.
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