000063853 001__ 63853
000063853 005__ 20190316233622.0
000063853 037__ $$aCONF
000063853 245__ $$aSignal Reconstruction from Multiple Unregistered Sets of Samples using Groebner Bases
000063853 269__ $$a2006
000063853 260__ $$c2006
000063853 336__ $$aConference Papers
000063853 520__ $$aWe present a new method for signal reconstruction from multiple sets of samples with unknown offsets. We rewrite the reconstruction problem as a set of polynomial equations in the unknown signal parameters and the offsets between the sets of samples. Then, we construct a Groebner basis for the corresponding affine variety. The signal parameters can then easily be derived from this Groebner basis. This provides us with an elegant solution method for the initial nonlinear problem. We show two examples for the reconstruction of polynomial signals and Fourier series.
000063853 6531_ $$amultichannel sampling
000063853 6531_ $$aGroebner basis
000063853 6531_ $$aaliasing
000063853 6531_ $$asignal reconstruction
000063853 6531_ $$aIVRG
000063853 6531_ $$aNCCR-MICS/CL1
000063853 6531_ $$aNCCR-MICS
000063853 700__ $$0241125$$g126649$$aVandewalle, Patrick
000063853 700__ $$0244018$$g115222$$aSbaiz, Luciano
000063853 700__ $$aVetterli, Martin$$g107537$$0240184
000063853 7112_ $$cToulouse, France$$aIEEE Conference on Acoustics, Speech and Signal Processing
000063853 773__ $$j3$$tProc. IEEE Conference on Acoustics, Speech and Signal Processing$$q604-607
000063853 8564_ $$uhttps://infoscience.epfl.ch/record/63853/files/01660726.pdf$$zn/a$$s171836$$yn/a
000063853 909C0 $$xU10434$$0252056$$pLCAV
000063853 909C0 $$pIVRL$$xU10429$$0252320
000063853 909CO $$qGLOBAL_SET$$pconf$$pIC$$ooai:infoscience.tind.io:63853
000063853 917Z8 $$x114218
000063853 917Z8 $$x222073
000063853 937__ $$aLCAV-CONF-2006-004
000063853 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000063853 980__ $$aCONF