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ABSTRACT

In this paper, we model a spatially varying channel where a source
is moving along a random trajectory with respect to a fixed re-
ceiver. The aim is to compute the power spectral density corre-
sponding to the channel impulse response as a function of tempo-
ral and spatial frequencies. The trajectory of the source follows
an autoregressive model where the poles of the system control the
smoothness of the path. Theoretical results are presented for the
AR2 case and generalized to any ARn systems. Simulations results
are shown and compared to the presented theory. The stochas-
tic plenacoustic function analyzed in this paper also models time-
varying channels governed by the wave equation, like they appear
in acoustic echo cancellation or ultra wide band communication
channels.

1. INTRODUCTION

In this paper, we introduce a stochastic version of the plenacoustic
function (PAF). The PAF has been introduced in [1] and studied
in more details in [2]. The PAF characterizes the sound field in
space, eg. inside a room. It contains all the information about
the spatial evolution of the sound field. The PAF was first studied
along a line in a room. There it was observed that the two dimen-
sional Fourier transform of the PAF has a bow-tie shape. Study-
ing this specific shape led to interesting results regarding sampling
and interpolation of the sound field. It allowed to state how many
microphones (or loudspeakers) are necessary to sample and re-
construct the sound field up to a certain temporal frequency and
with a specific SNR on the reconstruction. The study of the PAF
has been further generalized to planar or circular arrays of micro-
phones [2, 3].

In this paper, we consider a source v placed at an arbitrary
position on a curve Γ(s) and a receiver r at a constant position as
shown in Fig. 1. Γ(s) is a random process describing the trajectory
and s is its independent variable. s can be seen as a curved abscissa
and therefore s corresponds to the position of the source. We are
interested in modeling the channel between the source and the re-
ceiver. We therefore imagine that at each position Γ(s) the source
sends a Dirac pulse and the impulse response is measured at the
receiver. The measured room impulse response is a function of the
time t representing the duration of the recorded impulse response.
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Considering all the room impulse responses measured from each
position along the random trajectory, the total dataset recorded by
the microphone is a function of both s and t. We call this dataset
the stochastic plenacoustic function (SPAF) p(s, t)1. In order to
characterize the channel from the source to the microphone, this
paper studies the autocorrelation and the power spectral density
(PSD) of the SPAF.

The study presented in this paper finds applications in the mod-
eling of channel impulse responses for acoustic and electromag-
netic waves. A model for this kind of channel impulse responses
could be used in echo cancellation problems where one would
adapt the rate of changes of the adaptive algorithms per temporal
frequency band. In the electromagnetic case, a possible application
is the communication between a fixed and a mobile station where
the equalizer has to be adapted for multipath cancellation. As will
be observed in this paper, the PSD of our process has a narrow
support along its spatial frequency at low temporal frequencies.
The rate of change could then be lower than for higher temporal
frequencies where the spatial support is large. This frequency de-
pendent choice of the rate of change in adaptive algorithms is a
direct application of our work and is matter of current research.
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Fig. 1. Setup of the problem.

2. MODEL FOR THE MOVING SOURCE

The typical movement of an object is described by differential
equations. For simplicity, we consider a linear model described
by a state-space system in controller canonical form:j

U̇(s) = FU(s) + bW (s)
Y (s) = cT U(s),

(1)

1In this paper, we present s as a parameter corresponding to the position
along the trajectory. An other alternative is to consider the time-varying
source along the trajectory. In that case, the time-varying channel would
be represented by the channel impulse response h(s, t) where s would be
the delay of the emitted pulse and t the time. It can then be easily proven
that h(s, t) = p(s, t − s).
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U(s) corresponds to the state variables of the system and W (s)
corresponds to the input signal. The output of the system is Y (s).
In our study, we consider the input W (s) of the system to be a
white Gaussian stationary process. Further, the output of the sys-
tem is the state variable corresponding to the position. With this
choice, it can be shown that the output of the system Y (s) follows
precisely a continuous autoregressive (AR) model. The order of
the model is dependent on the size of the matrix F in (1). For sim-
plicity, we will present the study of the autocorrelation function of
a source moving following an AR2 law. Further, the results will
be generalized for any AR order. As will be discussed further, in-
creasing the order of the autoregressive model allows to create a
smoother output of the system.

2.1. AR2 Process

In the two dimensional case, the two state variables are position
X(s) and velocity V (s). The input W (s) is a white Gaussian
stationary process. To write the system (1) in two dimensions, we
set

U(s) =

»
X(s)
V (s)

–
, F =

»
0 1

−a0 −a1

–
, b =

»
0
1

–
, c =

»
1
0

–
. (2)

Using (2), (1) can be rewritten asj
Ẍ(s) = −a0X(s) − a1Ẋ(s) + W (s)
Y (s) = X(s).

(3)

The correlation of Y (s) is defined as

RY (s) = E[Y (l + s)Y (l)]. (4)

Since Y (s) is a stationary process, RY (s) does not depend on l.
If the system is stable, only the steady state term is present at

the output, i.e.

Y (s) =

Z s

−∞

c
T
e

F (s−l)
bW (l)dl. (5)

Therefore, RY (s) for s ≥ 0 can be written as follows:
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(6)

using that E[W (l1)W (l2)] = σ2δ(l1 − l2). For simplicity, we as-
sume that the matrix F can be diagonalized. If this is not the case,
similar results can be derived by using the Jordan decomposition
[4]. Then, F can be decomposed using its eigenvalues λ1 and λ2

and eigenvector matrix V . Therefore,

e
F s = V

»
eλ1s 0
0 eλ2s

–
V
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L(s) M(s)
N(s) O(s)

–
. (7)

Using (7), it can be shown that (6) can be rewritten as

RY (s) = σ
2

Z s

−∞

M(s − l)M(−l)dl, (8)

with M(s− l) = C1e
λ1(s−l) + C2e

λ2(s−l) where C1 and C2 are
obtained as C1 = V [1, 1]V −1[1, 2] and C2 = V [1, 2]V −1[2, 2].

By integrating (8), and taking into account that RY (s) is an
even function, we obtain

RY (s) = −σ
2

„
e
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1
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–
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e
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(9)

Introducing now the random vector Y = [Y (0)Y (s)]T , the
correlation matrix RY is

RY =

»
E[Y (s)Y (s)] E[Y (s)Y (0)]
E[Y (0)Y (s)] E[Y (s)Y (s)]

–
, (10)

the probability density function of Y is given by:

fY(y) =
1

2π
p

|RY |e
−RY (0)

2|RY |
(y2

0+y2
s−

2RY (s)

RY (0)
ysy0)

. (11)

Note that in this expression, ys corresponds to a realization of the
random variable Y (s) and y0 to a realization of the random vari-
able Y (0).

2.2. Generalization to ARN process

In the case of an ARN process the previous formulae can be gen-
eralized. The matrix F is still considered to be diagonalized and
therefore can be decomposed in its N eigenvalues λ1 . . . λN and
N eigenvectors represented by the eigenvector matrix V of dimen-
sion N . The autocorrelation of the process Y (s) is then

RY (s) = −σ
2

"
NX

i=1

 
NX

j=1

CiCj

λi + λj

!
e

λi|s|

#
, (12)

where Ci = V [1, i]V −1[i, N ].
In order to compare different ARN processes, one has to nor-

malize the noise input signals. The normalization is chosen to ob-
tain a unitary variance for the output of the system, Y (s). For this,
one simply needs to impose that

σ
2 = − 1PN

i=1

“PN

j=1

CiCj

λi+λj

” . (13)

3. STOCHASTIC PLENACOUSTIC FUNCTION

In this section, the stochastic plenacoustic function is introduced.
Further, the channel corresponding to a source on a random tra-
jectory with respect to a fixed receiver is analyzed in time and
frequency domain. In order to characterize the channel impulse
response p(s, t), we send a signal v(s, t) and measure r(t), the
receiver signal. v(s, t) represents a two dimensional signal. It is
function of s the position and t the time. In the following, s is con-
sidered as an independent variable not related to t. We therefore
have that

r(t) =

Z ∞

−∞

Z ∞

−∞

v(s, u)p(s, t − u)duds. (14)
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Replacing v(s, t) = δ(t)δ(s − s1), the output is r(t) = p(s1, t).
For simplicity of the calculations, a few assumptions will be

added to the model. First, the movement of the source will follow
an AR model along one line as shown in Fig. 2. We consider a
mean distance between source and receiver of d.

y

d

sr

Fig. 2. Setup of the problem.

For each possible position of the source we consider the room
impulse response between that position and the receiver. In the
further mathematical derivations only the free field situation will
be considered. In that case, one can rewrite the SPAF as in [2]

P (s, t) =
δ(t − |Y (s)+d|

c
)

4π|Y (s) + d| , (15)

with c the speed of sound propagation.
Another assumption done to simplify the calculations, is to

consider the receiver far enough from the source to neglect the
attenuation depending on the distance, i.e. the denominator in
(15). Also, we consider d to be at least a few times larger than
the standard deviation of the process Y . With those assumptions,
we consider the Fourier transform of the SPAF along the temporal
frequency axis and call this process Z(s, ω) defined as

Z(s, ω) = e
−j ω

c
(d+Y (s))

. (16)

The covariance function of the process Z(s, ω) can be calcu-
lated as follows for s ≥ 0:
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e
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with C = 1

2π
√

|RY |
. Using E[ejωY ] = ejE[Y ]ω−
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2 and

[5], (18) becomes in the AR2 case
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In the generalized case of an ARN process, it can be shown
that

RZ(s, ω) = e
−(ω

c )2[
PN

i=1 Di(1−eλi|s|)] − e
−(ω

c )2
PN

i=1 Di , (21)

with Di = −σ2PN

j=1

CiCj

λi+λj
.

3.1. Power spectral density of the SPAF

The PSD SZ(γ, ω) is given by the Fourier transform of the corre-
lation function, i.e.

SZ(γ, ω) =

Z ∞

−∞

e
−jγs

RZ(s, ω)ds. (22)

We are currently investigating a closed-form solution of such an
integral. Nevertheless, numerical evaluation of (21) and of its
Fourier transform are shown in Fig. 3(a) and Fig. 3(b) for an AR2
case. As can be seen from Fig. 3(b), the PSD of the SPAF has most
of its energy contained in a bow-tie region. The intuition behind
this result is the following. Considering a source emitting a wave-
form of very low temporal frequency. If the source position varies
slightly, the signals received at the receiver will be very correlated
since the wavelength is very large. Thus, the Fourier transform
of their correlation function will have a small support. When the
temporal frequency of the emitted signals increases, the received
signals are less and less correlated even for small variation of the
source position. Therefore the PSD of the SPAF gets a larger sup-
port for higher temporal frequencies.

(a)

(b)

Fig. 3. Study of the SPAF in free field. (a) Rz(s, ω) as obtained
from (20) with eigenvalues at −10 and −100. (b) PSD of this
SPAF.

3.2. Influence of the poles of the AR system

By changing the poles (or eigenvalues) of the system, one can con-
trol the smoothness of the trajectory. This modifies the opening of
the bow-tie shaped spectrum of Fig. 3(b). The smaller the poles
are (in absolute value), the more narrow is the spectrum, while for
very large values of the poles (in absolute value), the frequency
support of the PSD of the SPAF gets very wide. The variation of
the spatial bandwidth of the PSD in function of the position of the
pole has been studied in the case of an AR1 system. The pole of the
system has been changed from −.5 to 32. For each of these poles
a cut of the PSD of the SPAF was shown at a temporal frequency
of 500 Hz in Fig. 4.
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Fig. 4. Comparison at the same temporal frequency for the PSD of
a SPAF for different values of the poles of the AR1 system.

3.3. Influence of the order of the AR system

As known from system theory [4], for a fixed position of the poles,
increasing the order of an AR model leads to smoother trajectories.
Also, for smoother trajectories it is observed that the PSD of the
SPAF decays faster. In Fig. 5, a cut of the PSD of a SPAF was
considered at a temporal frequency of 500 Hz. The AR models of
the three first orders are compared. The poles are all around −5.
It can be seen that the AR3 model decays the fastest.
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Fig. 5. Comparison at the same temporal frequency for the PSD of
a SPAF for AR sytems of different orders.

4. SIMULATIONS AND EXPERIMENTAL
MEASUREMENTS

In this section, we present some results obtained by simulations of
discrete AR processes. First, simulations were done to show that
the higher the order of the AR process, the smoother the trajectory
is, as was already discussed in Section. 3.3. A smoother trajectory
relates into a smoother time of arrival from the source to the re-
ceiver. In the case of an AR1 process, it can be seen in Fig. 6(a)
that with low pass systems (pole of the system at −5) the time
of arrivals are not very smooth. With an AR2 process with two
poles at −5, the time of arrival get smoother as shown in Fig. 6(b).
Further, simulations were done to add the effect of reflections in-
troduced by reverberation. We still consider the setup of Fig. 2
but the source and receiver are inside a room. Next to the direct
path, reflections on the walls need to be considered. These reflec-
tions can be seen as virtual sources. It can be shown that the virtual
sources located along the axis of the source and the receiver (axis x

in Fig. 2) have a similar PSD as the one of the original source. The
other virtual sources being further from the receiver and not on the
line source-receiver can be shown to have a narrower frequency
support. Therefore the frequency support of the PSD correspond-
ing to the reverberant field is included in the support of the free
field PSD. In the simulations, we put the source far enough away
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Fig. 6. Smoothness of the AR processes. (a) AR1 process simu-
lated with a discrete pole at −5. (b) AR2 process simulated with
two poles around −5.

from the source as in our model and simulated in Fig. 7(a) the PSD
of the SPAF in free field and in Fig. 7(b) for a reverberant room.

(a) (b)

Fig. 7. PSD of SPAF. (a) For a free field case. (b) For a reverberant
room.

5. CONCLUSION

In this paper, we have presented a stochastic model for a spatially
varying channel in the case of a source moving along a random
trajectory with respect to a fixed receiver. We have modeled the
trajectory of the source as an autoregressive model where the poles
of the system control the smoothness of the path. Theoretical re-
sults are presented for the AR2 case and generalized to any ARn
systems. The power spectral density corresponding to the channel
impulse response as a function of temporal and spatial frequency
has been studied. Simulations results have been shown and com-
pared to the presented theory. This theoretical study gives a ba-
sis for a stochastic model of time-varying channels as found in
communication environments where a physical process (e.g. user
movement) drives a time-varying impulse response of a channel.
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