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Abstract

The ability to design efficient distributed communications systems heavily de-
pends on a proper understanding of the distortion incurred by their constituting
elements. To this end, we study the mean squared reconstruction error behavior
of the distributed Karhunen-Loève transform. We provide a general formula to
compute this distortion under asymptotic considerations in a pure approximation
viewpoint. Using a simple illustrative example, we show how this approach allows
to obtain closed-form formulas that permit to efficiently assess the performance of
the distributed scheme.

1 Introduction

The Karhunen-Loève Transform (KLT) has received considerable attention over the last
decades owing to its significance in a plethora of signal processing tasks including image,
audio and video coding. With the emergence of distributed infrastructures like sensor
networks, there is a growing need for schemes that exhibit efficient decentralized process-
ing capabilities. To this end, the KLT was recently reconsidered in its distributed form
in [1] under the name of distributed KLT (dKLT). Similarly to its centralized coun-
terpart, the dKLT is expected to play an important role in tasks involving distributed
approximation, classification and compression.

In this context, a thorough understanding of the distortion incurred by such trans-
forms is needed in order to properly address miscellaneous questions of both theoretical
and practical interest. Among the challenges that arise in the design, use and mainte-
nance of sensor networks, the judicious processing of the data provided by the sensing
devices is crucial. In fact, the inherent low-power constraints require the development
of efficient communication protocols. A typical example is the data gathering of phys-
ical measurements to a central base station. In this monitoring scenario, the amount
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Figure 1: Block diagram of the dKLT with two terminals.

of information that needs to be conveyed in order to fulfill a given fidelity criterion is
of fundamental interest. Careful design of such networks is needed in order to account
for sensor breakdowns and unreliable communication links. The aforementioned prob-
lems require a precise knowledge of the distortion that can be expected considering the
specificities of the communication system at hand. Unfortunately, it is often analytically
difficult to gain such knowledge and the analysis of optimized transmission strategies
becomes untractable.

In this paper, we wish to give a precise characterization of the mean-squared recon-
struction error incurred by the dKLT for the various scenarios considered in [1]. To this
end, we study the asymptotic distortion of jointly Gaussian stationary sources1 from a
pure approximation point of view and extend some results about large Toeplitz matri-
ces to support the theoretical foundation of our analysis. This allows us to provide a
general formula to compute the distortion under these assumptions. We then illustrate
our results with a first-order Gauss-Markov correlation model and come up with closed-
form formulas of the reconstruction error. A crucial observation is that, in this example,
the asymptotic analysis carried in this work furnishes an excellent approximation of the
distortion in the finite dimensional regime. This highlights the practical applicability of
our approach. The formulas obtained also enable us to precisely compare the gain that
can be achieved by the presence of correlated side information at the receiver or the loss
incurred by sensors that fail to provide any approximation of their local observation.

The outline of the paper is as follows. In Section 2, we present the distributed ap-
proximation problem. Section 3 provides our theoretical analysis, illustrated in Section 4
with a simple correlation model. We finally offer some conclusions in Section 5.

We will use the following notation throughout this paper: AT , tr(A), ‖A‖ and E[A]
denote the transpose, trace, Frobenius norm and expectation of the matrix A, respec-
tively. The notation An designates a matrix A of size n × n. In particular, In stands for
the identity matrix and On for the all-zero matrix. Finally, diag(a1, a2, . . . , an) designates
a diagonal matrix with diagonal elements a1, a2, . . . , an.

2 Problem Statement

The problem that we consider in this paper is that of the distributed Karhunen-Loève
transform introduced in [1]. The benefits, tradeoffs and complexity issues that are inher-
ent to the dKLT problem are fully captured by a two-terminal scenario as illustrated in
Figure 1. Therefore, we will concentrate on this setup for the rest of the discussion.

The source X consists in a zero mean jointly Gaussian random vector of size 2n. It is

1For the scope of the present paper, we only consider jointly Gaussian random sources, even though
some of our results are more general.
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divided into the part XS sampled by terminal 1 and the part XSc observed by terminal 2,
both of size n.2 The corresponding covariance and cross-covariance matrices are denoted
ΣX , ΣS, ΣSc and ΣSSc , respectively. Each terminal l provides a kl-dimensional approx-
imation of its observation by mean of a suitable kl × n transform Cl (0 ≤ kl ≤ n). The
ultimate goal is to find C1 and C2 such as to minimize the mean-squared reconstruction
error between the source X and the reconstruction X̂. We will denote this distortion by
Dn(k1, k2), which is easily shown to be expressible as

Dn(k1, k2) = E[‖X − X̂‖2
F ] = tr

(

ΣX − ΣXCT (CΣXCT )−1CΣX

)

(1)

where C is a 2×2 block-diagonal matrix with diagonal blocks C1 and C2. Unfortunately,
a simple solution to the above optimization problem does not seem to exist in general.
The authors of [1] provide an iterative procedure, referred to as the dKLT algorithm, that
is proved to converge to locally optimal solutions. The algorithm works in a round-robin
fashion by fixing one transform while optimizing the other with respect to the fidelity
criterion (1). This local optimization step is referred to as the local KLT (lKLT). The
following cases are of particular interest in this discussion:

1. The conditional KLT (cKLT) is obtained by setting k2 = n and C2 = In, i.e. XSc

is perfectly conveyed to the receiver (side information). The distortion Dn(k1, n),
denoted Dc

n(k1), corresponds to the distortion incurred by the KLT of a zero mean
jointly Gaussian random vector with covariance matrix [1]

ΣW = ΣS − ΣSScΣ−1
Sc ΣT

SSc . (2)

2. The partial KLT (pKLT) is obtained by setting k2 = 0, i.e. XSc is completely
discarded (hidden part). The distortion Dn(k1, 0), denoted Dp

n(k1), can be shown
to correspond to the distortion incurred by the KLT of a zero mean jointly Gaussian
random vector with covariance matrix

ΣW = ΣS + ΣSScΣT
SScΣ−1

S (3)

plus an additional distortion tr(ΣSc−ΣT
SScΣ−1

S ΣSSc). Note that the latter expression
corresponds to the maximal distortion (k1 = 0) incurred by the cKLT of the source
XSc with XS as side information.

3. The joint KLT (jKLT) corresponds to the centralized scenario, i.e. where the two
terminals are merged. The distortion, denoted Dj

n(k) or simply Dn(k), is that of
the KLT of a zero mean jointly Gaussian random vector with covariance matrix
ΣX . In the sequel, the denomination KLT and jKLT will be used alternatively
depending on the context.

We observe that the computation of the distortion, for the cases at hand, relies exclu-
sively on the eigenvalues of some carefully chosen covariance matrices. Such eigenvalues
are generally not expressible analytically when n is finite. In the next section, we alle-
viate this problem by considering the infinite dimensional regime with additional spatial
stationarity assumptions.

2This restriction allows to work with square cross-covariance matrices, which greatly simplify the
derivations that will be presented in the sequel.
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3 Asymptotic Normalized Distortion

Let us study the setup considered in the finite case but letting n grow to infinity. In
this context, terminal l provides the reconstruction point with a description of size ⌊αln⌋
with αl ∈ [0, 1], i.e. where only a fraction αl of transformed coefficients is kept. It is
worth noting that both the size of the source and the transformed vector go to infinity
whereas the ratio remains constant and is given by αl ∼ kl/n.3 The study of the mean
squared error under these asymptotic considerations is achieved by means of the following
definition.

Definition 3.1 (Asymptotic Normalized Distortion). Let αl ∼ kl/n for l = 1, 2. The
asymptotic normalized distortion D(α1, α2) is defined as 4

D(α1, α2) = lim
n→∞

Dn(k1, k2)

n

if the limit exists.

The terminology adopted in this section follows from that of Section 2, simply replac-
ing kl by αl. In particular, D(α1), Dc(α1) and Dp(α1) denote respectively the asymptotic
normalized distortion incurred by the KLT, cKLT and pKLT of the source XS. Simi-
larly to [2], we denote by Tn(f) the Toeplitz matrix generated by the sequence {tk}
with corresponding Fourier series f . For the rest of the discussion, we will assume that
{tk} ∈ ℓ1(Z), i.e. that f exists, is continuous and bounded.5 If f is real, we will denote its
greatest lower bound and least upper bound by mf and Mf , respectively. The following
lemma is central to the computation of the asymptotic normalized distortion.

Lemma 3.2. Let Tn(f) be a sequence of Hermitian Toeplitz matrices with (real) eigen-

values λ
(n)
m , such that 6

∫

λ:f(λ)=x
dλ = 0 for all x. Then, for any non-negative integer

s,

lim
n→∞

1

n

n−1
∑

m=0

(

λ(n)
m

)s
1x

(

λ(n)
m

)

=
1

2π

∫

λ:f(λ)≤x

f s(λ) dλ .

Proof: Let us proceed by induction. For s = 0, we know that the assertion holds
true by [2, Corollary 4.1]. Assume it has been proved for s − 1, we now prove it for s.
We first note that the LHS of the assertion can be expressed as

1

n

n−1
∑

m=0

(

λ(n)
m

)s−1
min

(

x, λ(n)
m

)

−
x

n

n−1
∑

m=0

(

λ(n)
m

)s−1
+

x

n

n−1
∑

m=0

(

λ(n)
m

)s−1
1x

(

λ(n)
m

)

.

Since min is a continuous function, we can apply Szegö’s theorem [2, Theorem 4.2] to the
first and second summations and our induction assumption to the third one. Passing to

3The notation αl ∼ kl/n means that limn→∞ kl/n = αl.
4The normalization factor n adopted here corresponds to the size of the source vectors XS and XSc .

In the rest of the discussion however, this factor will always be chosen such as to have a maximal
distortion equal to 1.

5All the results presented here hold for the more general case where {tk} ∈ ℓ2(Z), but the general-
ization involves mathematical sophistication which is beyond the scope of this work.

6This technical condition ensures the continuity of the limiting eigenvalue distribution. Unless oth-
erwise stated, λ implicitly ranges from 0 to 2π in all the subsequent integrals involving Fourier series.
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Figure 2: Computation of the asymptotic normalized distortion in a “water-filling” fash-
ion. The shaded area corresponds to the distortion (up to a scaling factor 2π).

the limit, we obtain

lim
n→∞

1

n

n−1
∑

m=0

(

λ(n)
m

)s
1x

(

λ(n)
m

)

=
1

2π

∫

f s−1(λ) min (x, f(λ)) dλ −
x

2π

∫

f s−1(λ) dλ +
x

2π

∫

λ:f(λ)≤x

f s−1(λ) dλ

=
1

2π

∫

λ:f(λ)≤x

f s(λ) dλ

and the proof follows. �

The LHS expression of Lemma 3.2, with s = 1, corresponds to the asymptotic nor-
malized distortion incurred by the KLT of a zero mean jointly Gaussian random vector
with covariance matrix Tn(f), where only the eigenvalues greater than x are preserved.
Keeping a fraction α of transformed coefficients amounts to evaluate the above expression
at the value xα satisfying

F (xα) = P (λ ≤ xα) = 1 − α (4)

where F (x) denotes the limiting eigenvalue distribution [2, Corollary 4.1] of Tn(f). This
is summarized in the following theorem.

Theorem 3.3 (Asymptotic Normalized Distortion). Consider a zero mean jointly Gaussian
random vector X of size n whose covariance matrix is given by the Hermitian Toeplitz
matrix Tn(f) with

∫

λ:f(λ)=x
dλ = 0 for all x. The asymptotic normalized distortion in-

curred by the KLT of the vector X when only a fraction α of transformed coefficients is
kept is given by

D(α) =
1

2π

∫

λ:f(λ)≤xα

f(λ) dλ

where xα satisfies F (xα) = 1 − α.

Theorem 3.3 illustrates the fact that the computation of the asymptotic normalized
distortion amounts to integrate f in a “water-filling” fashion as shown in Figure 2. As
α ranges from 0 to 1, xα scopes from Mf to mf as dictated by equation (4). A closed-
form computation thus heavily depends on the ability to express xα as a function of α.
In particular, when f is symmetric (i.e. Tn(f) is a real Hermitian matrix) and strictly
decreasing in [0, π], it can be seen that the above formula reduces to

D(α) =
1

π

∫ π

πα

f(λ) dλ (5)
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i.e. the knowledge of the limiting eigenvalue distribution is not required. Note that The-
orem 3.3 holds in the more general setting where the covariance matrix is asymptotically
Toeplitz with real eigenvalues.

In the dKLT context, the asymptotic normalized distortion, for the cases at hand,
can be computed by considering the covariance matrices given by equations (2) and (3).
The derivation relies on the assumption that these matrices are asymptotically Toeplitz,
i.e. that the underlying processes are asymptotically stationary. This is the case for the
example provided in the next section.

4 Example: First-Order Gauss-Markov

In this section, we apply the results obtained in Section 3 to a first-order Gauss-Markov
process. Owning to its simplicity, it is particulary suited for the analytical development
that will be presented in the sequel. We come up with closed-form formulas for the
asymptotic normalized distortion that allow us to assess the performance of the dKLT
and to precisely compare the different scenarios considered previously. We also relate
our results to the general two-terminal solution obtained numerically using the dKLT
algorithm.

Let us consider a first order Gauss-Markov source X with correlation parameter ρ,
i.e. a random process that satisfies

Xn = ρXn−1 + Zn (6)

for ρ ∈ (0, 1) 7 and where Zn are i.i.d. zero mean Gaussian random variables with variance
1 − ρ2. We will consider the case where terminal 1 samples the odd coefficients and
terminal 2 observes the even ones, i.e.

XS = (X1, X3, . . . , X2n−1)
T and XSc = (X2, X4, . . . , X2n)T . (7)

The covariance matrix ΣX is thus given by the 2× 2 block Toeplitz matrix with Toeplitz
blocks

ΣS = ΣSc = Tn(f) and ΣSSc = Tn(g) (8)

where f and g are the Fourier series given by

f(λ) =
1 − ρ4

1 + ρ4 − 2ρ2 cos λ
and g(λ) =

ρ(1 − ρ2)(1 + e−iλ)

1 + ρ4 − 2ρ2 cos λ
. (9)

This approach is motivated, for example, by super-resolution imaging problems, where
two subsampled versions of the same signal are processed in order to build a higher res-
olution image. The analysis of the distortion in this scenario allows to precisely quantify
the gain achievable by the use of a low-resolution image as side information. It also gives
a useful characterization of the loss incurred due to the interpolation of missing sam-
ples. The next theorem provides a closed-form formula for the asymptotic normalized
distortion incurred by the KLT of the source XS.

Theorem 4.1 (Asymptotic Normalized Distortion - KLT). The asymptotic normalized
distortion incurred by the KLT of the source XS where only a fraction α of the coefficients
is kept is given by

D(α) = 1 −
2

π
arctan

(

1 + ρ2

1 − ρ2
tan

(πα

2

)

)

.

7The case ρ ∈ (−1, 0) follows immediately by considering |ρ|.
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Figure 3: Asymptotic normalized distortion of the KLT. (a) Asymptotic normalized
distortion D(α) of the source XS for ρ = 0, 0.1, . . . , 0.9 (from top to bottom). (b)
Asymptotic normalized distortion D(α) (plain) of the source XS, and its approximation
(dashed) for ρ = 0.6 and n = 10. (c) Approximation error e(n) as a function of the size
of the source vector for ρ = 0.6.

Proof: Let ΣS = Tn(f). We can readily check that f > 0, f is symmetric and
strictly decreasing in [0, π]. The asymptotic normalized distortion can thus be computed
using (5) as [3, p. 181]

D(α) =
1 − ρ4

π

∫ π

πα

1

1 + ρ4 − 2ρ2 cos λ
dλ = 1 −

2

π
arctan

(

1 + ρ2

1 − ρ2
tan

(πα

2

)

)

and the proof follows. �

We provide in Figure 3 the asymptotic normalized distortion D(α) of the KLT of the
source XS as function of α. We also show how the asymptotic normalized distortion is
approximated for ρ = 0.6 and n = 10. We observe that even for small values of n, the
asymptotic analysis presented here offers a very good approximation of the distortion in
the finite dimensional regime. This highlights the practical applicability of our results.
We also compute the approximation error e(n) = 1

n

∑n

k=0 |Dn(k) −D(k/n)|2 to quantify
the quality of the estimate with respect to the size of the source vector. The observed
exponential decay suggests, once again, that the results obtained by our asymptotical
analysis approximate accurately the distortion we would compute with a finite number
of measurements.

Let us now consider the case where the side information XSc is available at the
receiver. The next theorem provides a closed-form formula for the asymptotic normalized
distortion in this scenario.

Theorem 4.2 (Asymptotic Normalized Distortion - cKLT). Consider the source XS and
the receiver side information XSc. The asymptotic normalized distortions incurred by the
cKLT of the source where only a fraction α of the coefficients is kept is given by

Dc(α) =
1 − ρ2

1 + ρ2
(1 − α).

Proof: It can be easily shown that ΣW defined in (2) is asymptotically equivalent to
the Toeplitz matrix Tn(f − |g|2/f) where s = f − |g|2/f can be computed as

s(λ) =
1 − ρ4

1 + ρ4 − 2ρ2 cos λ
−

2ρ2(1 − ρ2)(1 + cosλ)

(1 + ρ2)(1 + ρ4 − 2ρ2 cos λ)
=

1 − ρ2

1 + ρ2
.
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Figure 4: Asymptotic normalized distortion of the cKLT. (a) Asymptotic normalized
distortion Dc(α) of the source XS with receiver side information XSc for ρ = 0, 0.4, 0.8
(from top to bottom). (b) Asymptotic normalized distortion of the source XS with
(Dc(α), plain) and without (D(α), dashed) receiver side information XSc for ρ = 0.6. (c)
Gain due to receiver side information as a function of ρ for α = 0.1.

Since
∫

λ:s(λ)=x
dλ 6= 0 for all x, Theorem 3.3 cannot be applied. Furthermore, ΣW is

only asymptotically Toeplitz thus [2, Lemma 4.1] does not hold. Nevertheless, using the
inverse formula of a Kac-Murdoch-Szegö matrix, we can easily show that

ΣW = ΣS − ΣSScΣ−1
Sc ΣT

SSc = diag(1 − ρ2,
1 − ρ2

1 + ρ2
, . . . ,

1 − ρ2

1 + ρ2
)

i.e. all the eigenvalues λ
(n)
m are given by (1 − ρ2)/(1 + ρ2) except the maximum one λ

(n)
n

which is equal to 1− ρ2. Since the asymptotical normalized distortion is not affected by
the change of a finite number of eigenvalues, it can be computed as

Dc(α) = D(α, 1) = lim
n→∞

∑n−k

m=1 λ
(n)
m

n
= lim

n→∞

1 − ρ2

1 + ρ2

(

1 −
k

n

)

=
1 − ρ2

1 + ρ2
(1 − α)

where α ∼ k/n. �

Theorem 4.2 shows that the prediction error of the odd coefficients by the even ones
has uncorrelated components, i.e. the error process is white. This is due to the first-
order property of the Gauss-Markov process and it yields the above linear decrease in
distortion. We show in Figure 4 the asymptotic normalized distortion Dc(α) of the
cKLT of the source XS with side information XSc as function of α. We also compare
the asymptotic normalized distortion of the source XS with (cKLT) and without (KLT)
receiver side information for different values of ρ. We clearly see the gain achieved by
providing the central decoder with some correlated side information. The exact gain can
be expressed using Theorems 4.1 and 4.2. As ρ → 0, XS and XSc become uncorrelated,
i.e. the presence of side information does not provide any gain. When ρ → 1, the corre-
lation among the components of XS allows to perfectly recover the discarded coefficients
without the need for XSc.

We treat now the source vector XSc as hidden part and derive the asymptotic nor-
malized distortion of the pKLT.

Theorem 4.3 (Asymptotic Normalized Distortion - pKLT). Consider the source XS and
the hidden part XSc. The asymptotic normalized distortion incurred by a pKLT of the
source where only a fraction α of the coefficients is kept is given by

Dp(α) = 1 +
α(1 − ρ2)

2(1 + ρ2)
−

2

π
arctan

(

1 + ρ2

1 − ρ2
tan

(πα

2

)

)

.
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Figure 5: Asymptotic normalized distortion of the pKLT. (a) Asymptotic normalized
distortion Dp(α) of the source XS with hidden part XSc for ρ = 0, 0.1, . . . , 0.9 (from top
to bottom). (b) Asymptotic normalized distortion of the source XS with (Dp(α), dashed)
and without (D(α), plain) hidden part XSc for ρ = 0.6. (c) Loss due to the hidden part
as a function of ρ for α = 0.1.

Proof: Let us denote by Dp
1(α) the asymptotic normalized distortion that corre-

sponds to ΣW defined in (3). It can be easily shown that ΣW is asymptotically equivalent
to the Toeplitz matrix Tn(f + |g|2/f) where s = f + |g|2/f can be computed as

s(λ) =
(1 − ρ2)(1 + 4ρ2 + ρ4 + 2ρ2 cos λ)

(1 + ρ2)(1 + ρ4 − 2ρ2 cos λ)
.

We can readily check that s > 0, s is symmetric and strictly decreasing in [0, π]. The
asymptotic normalized distortion can thus be computed using (5) as [3, p. 181]

Dp
1(α) =

1 − ρ2

π(1 + ρ2)

∫ π

πα

1 + 4ρ2 + ρ4 + 2ρ2 cos λ

1 + ρ4 − 2ρ2 cos λ
dλ

= 2 −
(1 − α)(1 − ρ2)

(1 + ρ2)
−

4

π
arctan

(

1 + ρ2

1 − ρ2
tan

(πα

2

)

)

.

Let us denote by Dp
2(α) the asymptotic normalized distortion that corresponds to tr(ΣSc−

ΣT
SScΣ−1

S ΣSSc). Since ΣS = ΣSc , we can directly compute Dp
2(α) by evaluating at α = 0

the asymptotic normalized distortion of the cKLT obtained in Theorem 4.2. Thus,

Dp
2(α) = Dc(0) =

1 − ρ2

1 + ρ2
.

Using a normalization factor 2n, the result follows from adding the two above contribu-
tions pondered by a factor 1/2. �

We show in Figure 5 the asymptotic normalized distortion Dp(α) of the pKLT of the
source XS with hidden part XSc as function of α. We also compare the asymptotic
normalized distortion of the source XS with (pKLT) and without (KLT) hidden part.
We clearly see the loss incurred by having to reconstruct the missing information at the
central decoder. Furthermore, increasing ρ allows to estimate more and more accurately
the missing data, hence reducing the gap between the two distortions. The exact loss
can be expressed using Theorems 4.1 and 4.3 with appropriate normalization.

Let us now consider again the general two terminal setup introduced in Section 2.
Assume that terminal 1 (resp. terminal 2) only keeps a fraction α1 (resp. α2) of trans-
formed coefficients. We can then represent the asymptotic normalized distortion surface
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Figure 6: Asymptotic normalized distortion D(α1, α2) for ρ = 0.6. The inside of the
distortion surface is obtained using the dKLT algorithm.

as a function of α1 and α2. This is shown in Figure 6 for ρ = 0.6. The inside of the dis-
tortion surface is obtained numerically using the dKLT algorithm whereas the analytical
expression of the border is perfectly known. In fact, it corresponds to the asymptotic
normalized distortion obtained for the pKLT (α1 = 0 or α2 = 0) and the cKLT (α1 = 1
or α2 = 1). The inherent symmetry is due to the fact that ΣS = ΣSc . Note that the
dKLT algorithm only provides a locally optimal solution which here is conjectured to
be global owing to the regularity of the covariance matrix. This perspective shows that
even if the overall distortion surface is not known, it is somehow constrained by its bor-
ders. Furthermore, the approximation problem allows a convenient representation of the
asymptotic normalized distortion as a function of parameters that range over a finite
interval.

5 Conclusions

In this work, we have studied the mean squared distortion behavior of the dKLT under
asymptotic considerations. A “water-filling” type formula has been provided in order
to compute the asymptotic normalized distortion of stationary processes. Our findings
have been illustrated with a simple correlation model that has permitted us to obtain
closed-form formulas for the distortion incurred by different scenarios of both theoretical
and practical interest.

The analysis provided in this paper has been carried from a pure approximation
point of view. However, the optimality of transform coding, for jointly Gaussian random
sources, allows us to relate this approach to the compression (rate-distortion) framework.
In particular, we can precisely compare the distortion introduced by the approximation
and compression stages in an optimal transform coder.
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