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Abstract—In many applications, the sampling frequency is lim-
ited by the physical characteristics of the components: the pixel
pitch, the rate of the analog-to-digital (A/D) converter, etc. A low-
pass filter is usually applied before the sampling operation to avoid
aliasing. However, when multiple copies are available, it is possible
to use the information that is inherently present in the aliasing to
reconstruct a higher resolution signal. If the different copies have
unknown relative offsets, this is a nonlinear problem in the off-
sets and the signal coefficients. They are not easily separable in the
set of equations describing the super-resolution problem. Thus, we
perform joint registration and reconstruction from multiple unreg-
istered sets of samples. We give a mathematical formulation for the
problem when there are sets of samples of a signal that is de-
scribed by expansion coefficients. We prove that the solution of
the registration and reconstruction problem is generically unique
if + 1. We describe two subspace-based methods
to compute this solution. Their complexity is analyzed, and some
heuristic methods are proposed. Finally, some numerical simula-
tion results on one- and two-dimensional signals are given to show
the performance of these methods.

Index Terms—Aliasing, sampling, offset estimation, shift estima-
tion, image registration, super-resolution.
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I. INTRODUCTION

ALIASING, caused by undersampling of a signal, is gen-
erally considered as a nuisance and has to be avoided.

To this effect, an antialiasing low-pass filter is often placed
in front of the actual sampling operation, such that the sam-
pled signal is not aliased. However, in super-resolution signal
reconstruction, aliased components contain valuable high-fre-
quency information that can be used to recover a higher res-
olution reconstruction. In this paper, we study methods to re-
construct a signal, including its high-frequency information,
from multiple aliased sampled signals with relative offsets.
The offsets are unknown and need to be computed first. For
the estimation of those offsets, we explicitly use the informa-
tion available in the aliased part of the spectrum and do not
need extra measurements.

Applications can be found in various domains, such as super-
resolution imaging. A camera is held manually while taking
multiple images of the same scene. In satellite imaging, a satel-
lite acquires images of approximately the same region at dif-
ferent moments. For one-dimensional signals, we find a similar
setup in high rate analog-to-digital (A/D) converters. A single
high-rate A/D converter is replaced by multiple lower rate con-
verters that operate with small offsets. These low-rate converters
are hard to synchronize precisely and can therefore be consid-
ered as converters with unknown offsets.

Aliasing is most often formulated in frequency domain. It is
seen as the replication of frequencies above half the sampling
frequency in the base spectrum of the sampled signal. In this
way, a frequency above half the sampling frequency is mapped
onto a frequency below this limit after sampling, and the two
cannot be distinguished from their samples. In images, aliasing
typically appears as artificial low-frequency patterns or jagged
edges. Examples are given in Fig. 1.

The aliasing in the sampled signals has two effects: it creates
artificial low-frequency patterns and makes image registration
more difficult, but it also allows reconstructing an image with
higher resolving power. Suppose that an antialiasing lowpass
filter is applied before sampling: the sampled signals are then
aliasing-free [see Fig. 2(a)]. It is much easier to register such a
set of images, as all the images contain the same low-frequency
information. However, as they all contain the same information,
no additional resolving power can be obtained by combining the
different images. In such a case, a larger image can as well be
reconstructed by interpolating a single image [Fig. 2(b)]. How-
ever, if the signals are not lowpass filtered prior to sampling
[Fig. 2(c)], multiple images can be used to recover the high fre-
quency information that was aliased. The reconstructed image
has a higher resolving power than any of the original images
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Fig. 1. Examples of aliasing in images. Artificial low-frequency patterns (a) and jagged edges (b) appear due to undersampling.

Fig. 2. Value of aliasing. If an antialiasing lowpass filter is applied to images prior to sampling (a), no additional high-frequency information can be recovered
by combining multiple images. One can as well interpolate a single image (b). If no filter is applied, the captured images are aliased (c), and high-frequency
information can be recovered by combining multiple images (d). However, new image registration methods are required to obtain sufficiently high precision.

Fig. 3. Classification of sampling methods. Sampling methods can be divided into uniform and nonuniform methods. The nonuniform sampling methods can
be subdivided depending on whether the locations are known and whether the samples are grouped in uniform sets with only unknown offsets. In this paper, we
discuss multichannel sampling methods with unknown offsets.

[Fig. 2(d)]. The drawback is that more sophisticated image reg-
istration methods are required to achieve subpixel motion esti-
mates. Two such methods will be presented in this paper. To our
knowledge, no other registration methods exist that deal with
such totally aliased signals (as opposed to partially aliased sig-
nals, which have an aliasing-free part in their spectrum, and are
addressed for example in [4]).

Sampling methods can be classified into different categories,
according to the type of sampling that is performed (see Fig. 3).
A first important distinction is between uniform and nonuniform
sampling methods. With uniform sampling, a signal is sam-
pled periodically at constant time intervals. This is the standard
setup, which is described by the Shannon–Nyquist sampling
theorem [5]. An overview of some more recent results is given
by Unser [6]. Among the nonuniform sampling methods, a dis-
tinction needs to be made between methods using known sam-

pling instants [7], [8], and other methods where the sampling
locations are unknown. If the sampling locations are unknown
and completely arbitrary, the problem cannot be solved. This
can be shown using a simple counting argument. Assume that
the signal to be reconstructed has unknown parameters. For
every additional sample, there is also an additional unknown (its
location). Therefore, the number of unknowns is always larger
than the number of measurements, and this problem is unsolv-
able. However, for discrete time (or space) signals, where the
sampling locations can only take a finite number of values, a
combinatorial solution can be found, as described by Marziliano
and Vetterli [9].

An important subset of the nonuniform sampling methods is
formed by multichannel sampling methods. In these methods,
multiple sets of uniformly spaced samples are measured. Each
of the sets of samples is uniform, but the different sets have a
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nonuniform offset. Papoulis [10] described a solution for mul-
tichannel sampling with known sampling locations. He showed
that a bandlimited signal can be perfectly reconstructed from
sets of samples that are sampled at the Nyquist sampling
rate. This result was extended by Unser and Zerubia in their gen-
eralized sampling approach [11], [12]. The problem with mul-
tiple sets and unknown sampling locations was solved for dis-
crete-time signals by Marziliano and Vetterli [9]. In this paper,
we will study the continuous-time case: multichannel sampling
with unknown, real-valued offsets.

A typical application of such a setup is super-resolution
imaging. The goal in super-resolution imaging is to reconstruct
a high resolution image from a set of multiple images that are
taken from almost the same point of view. Most of the times,
the images are assumed to differ by small, subpixel shifts. This
problem was first described by Tsai and Huang [13] in 1984.
A good overview of existing super-resolution methods is given
by Borman and Stevenson [14], Farsiu et al. [15], and in the
special issues on super-resolution imaging in the IEEE Signal
Processing Magazine [16] and in the EURASIP Journal on
Applied Signal Processing [17]. In most cases, super-resolution
image reconstruction is separated into two main tasks, an image
registration task followed by a reconstruction task, and these
are addressed separately [18]–[21]. However, a joint consid-
eration of the two problems offers opportunities for a better,
global solution. Such an approach will be used here and is also
presented in a frequency-domain setup by Tsai and Huang [13]
and in a maximum a posteriori framework by Hardie et al. [22].

Different methods exist to compute a high-resolution image
from a set of low-resolution images. They mainly differ by the
amount of prior information that is assumed to be available
about the images. The most generally applicable methods only
require that the images belong to a broad signal class, such as
bandlimited signals [13], or signals with finite rate of innova-
tion [23]. Other methods, such as the hallucination method by
Baker and Kanade [24], use more specific knowledge about the
image type (faces, printed text, etc.) to reconstruct a high-reso-
lution image. In general, there is a tradeoff between the amount
of prior information and the number of images required to pro-
duce good results. The methods described in this paper belong
to the first category and only use basic assumptions about the
signal class. Most other super-resolution methods either con-
sider the aliasing as part of the noise or, at most, include it
in their model for the reconstruction part. As opposed to these
methods, we will include the aliasing into our signal model and
use its information for both registration and reconstruction. In
this way, our algorithm can be used on signals with an arbitrary
undersampling factor. The reconstruction part of our algorithm
uses a frequency domain description of the aliased signal, which
is the same as the setup presented earlier by Tsai and Huang
[13] and Kaltenbacher and Hardie [19]. Some recent spatial do-
main methods are proposed by Farsiu et al. [20] and Pham et
al. [21]. For an algorithmic solution of the equations described
in this paper, one can use a special case of the variable pro-
jection method for separable nonlinear least-squares problems
[25]. Such a method is similar to the algorithm we present in
Section V.

This paper is structured as follows. First, a mathematical
description of the problem is given in Section II. Next, the

uniqueness of the solution to this problem is discussed in
Section III. Two subspace-based solution methods are de-
scribed in Sections IV and V, respectively. We discuss the
advantages and disadvantages of the different methods in
Section VI, and we also present heuristic solution methods.
In Section VII, we derive the computational complexity of
the different algorithms. Results are presented in Section VIII,
and finally some conclusions are drawn in Section IX. All the
results and figures presented in this paper are reproducible [26].
The Matlab code and data to reproduce the results are avail-
able online at http://lcavwww.epfl.ch/reproducible_research/
VandewalleSVV06.

II. MATHEMATICAL DESCRIPTION

We aim to reconstruct a continuous-time signal from multiple
uniform sets of samples with unknown offsets. The sampling
frequency of each set is too low to allow direct reconstruction,
but reconstruction is possible from the joint set of all samples
together. In this section, we formulate the mathematical frame-
work for this problem and specify notations. Assume we have
a periodic bandlimited signal1 with period 1. Such a signal can
be expressed as

(1)

where are the Fourier coefficients of .
Assume now that we sample uniformly at a rate over
the signal period . This results in a first set of samples
taken at times

(2)

We can write these samples as

(3)

with . We can write this more compactly using vec-
tors and matrices as (4), shown at the bottom of the next page.
In this equation, is the sample vector, and is the

vector of unknown Fourier coefficients. The matrix
is an inverse discrete Fourier transform (IDFT) matrix,
where the notation is used for the Hermitian transpose of the
forward discrete Fourier transform matrix . Due to the under-
sampling , some of the columns in are repeated,
and the set of (4) is thus underdetermined. We take another set
of samples at times

(5)

These are the sampling times of the first set, shifted by an un-
known offset . As the offsets are relative to the first

1Note that most of the theory developed in this paper can be extended to sig-
nals in an arbitrary finite-dimensional Hilbert space. See [27] for details. Also,
in most practical cases, the signals to reconstruct are real. Our algorithms work
both for real and complex signals.



3690 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 7, JULY 2007

set of samples, we have . We take such sets of samples
. The samples from the th set can be written as

(6)

with .2 In matrix notation, this can be expressed
as

(7)

with the IDFT matrix defined above, an
diagonal matrix with elements

, and .
Now, all the sets of samples are combined into a single

vector and, similarly, the basis matrices are combined
into , with denoting the offset vector.
This can be written as

...
...

...

(8)

The matrix has size . Assuming that the total
number of samples is larger than or equal to the number of
Fourier coefficients, or , this set of equations is in
general well determined or overdetermined if is known. If, in
addition

(9)

the number of equations is also larger than or equal to the
number of unknowns ( expansion coefficients and
offsets), and it should be possible to remove the uncertainty of
the unknown offsets.3 As we will show in the next sections,
these additional equations allow us in general to compute the
unknown offsets. Note that the challenging part of the problem

2TheW defined in (3) can therefore also be written in this notation asW .
For compactness, we keep W as a separate symbol.

3This supposes of course that the MN equations are independent, which is
generally the case if offsets with different non-integer parts are used between the
sets of samples. Remark that in practical situations, numerical instability might
occur if the offsets are chosen very close together [12].

Fig. 4. Illustration of the different variables with M = 2 and a Fourier basis.
(a) Time-domain representation of the signal f(t) and its sets of samples y
(—) and y (– –). (b) Frequency-domain representation of the absolute values
of the signal spectrum (—) and its aliased copies after sampling (– –).

is that it is nonlinear in the offsets and that and have to
be found simultaneously. In summary, the most important
variables in this reconstruction problem are listed here (see also
Fig. 4):

the number of samples in each set ;
the length vector of the th set of samples;
the number of unknown Fourier coefficients

;
the length vector of the expansion coefficients to
be reconstructed;
the number of sets of samples;
the length vector of the offsets between the
different sets of samples.

The unknown variables are the Fourier coefficients and the
offsets . We assume that all the other variables are known. This
is evident for the sets of samples , the number of samples
per set and the number of sets , as they form the input of
the problem. We will also require that the number of Fourier
coefficients , or at least an estimate for , is available.

The DFT of a set of samples can be written as

(10)

where is a square DFT matrix, and is the
matrix defined in (3). The resulting vector has length

...
...

...
...

...

...

...

(4)
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Fig. 5. Example of the problem setup. Bandlimited function with two sets of
two samples and unknown offset between the sets.

and is an aliased and phase shifted version of . If we take, for
example, , we get

(11)

where is the central part of the matrix
, and is the th block of length from the vector .

In general, if is not a multiple of , we can still perform the
same decomposition by adding zeros to up to the next multiple
of .

Before tackling the problem in general, let us first analyze a
very simple and intuitive example.

Example 2.1: Take a bandlimited function (see Fig. 5),
with , and . Using (8), we can write

(12)

The unknown offset in the matrix is multiplied with the ex-
pansion coefficients in and makes the problem nonlinear. As
described in (7), we can write (the lower part of ) as an
IDFT matrix multiplied with a diagonal matrix

(13)

From the above example, we see that the unknown offsets
and signal coefficients are mixed up, which makes the problem

challenging. Once the offsets are known, (8) is reduced to a set
of linear equations in the unknown signal coefficients. This can
be solved straightforwardly using a least-squares method. From
this description, we clearly see that the hardest part of the recon-
struction problem is the estimation of the offsets. In the next sec-
tions, we will concentrate on this problem, and present methods
to compute these offsets based on properties of subspaces.

III. UNIQUENESS OF THE SOLUTION

In this section, we discuss the existence and uniqueness of a
solution to the super-resolution problem with unregistered sets
of samples. It follows straightforwardly from the description
above that a solution exists (at least in the ideal, noiseless case).
The uniqueness of such a solution is less trivial.

Let us start with an intuitive statement about uniqueness. A
unique solution exists if there is a unique mapping from each set
of samples to a single space generated by the columns of .
In other words, the intersection of the spaces generated for two
different offset vectors only contains the trivial zero vector,
except for possibly some degenerate cases. This argument fol-
lows the one made by Marziliano for discrete sampling with un-
known locations [28]. In general, the intersection of two such
spaces has a lower dimension than the spaces themselves and
thus, the set of sample vectors for which a unique solution ex-
ists is dense in the signal space. We shall therefore ignore the
degenerate cases.

As we discussed in Section II, the matrix can be written
as the product of an IDFT matrix with an di-
agonal matrix . For aliased signals, some of the columns in

are repeated, and the corresponding columns of only
differ by their multiplication factor . These columns corre-
spond to overlapping frequencies in the sampled spectrum.

If all the sets of samples are considered together, the th
column of the matrix is a repetition of times the same
basis vector , the th column of , multiplied by the different
factors

(14)

Example 3.1: For example, if we take , and
, there are two overlapping frequency components (see

Fig. 6). We have

(15)
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Fig. 6. Signal spectrum before (a) and after sampling (b), for L = 5 andN = 4. The base spectrum (—) and aliased spectrum (– –) overlap for the first and last
spectral component, corresponding to the first and fifth column in (15).

with . The first and the fifth column of are equal,
such that the corresponding columns of only differ by their
factors and from .

Because the Fourier basis vectors of the matrix
are orthogonal (note that we use in this matrix,
and not ), the vectors are also orthogonal to each other
for any set of offset values . Only the vectors corresponding to
overlapping spectrum coefficients (like the first and fifth column
in Example 3.1) are not orthogonal, because they are composed
by the same Fourier vector but have different coefficients.
Each vector describes a trajectory in for varying values
of . This trajectory is defined more precisely in the following
theorem.

Theorem 3.1: For varying , any vector (with ) de-
scribes a trajectory in the -dimensional subspace of

span

with ...
. . .

...
(16)

where is an matrix, and represents the Kronecker
product. The vectors corresponding to overlapping spec-
trum coefficients belong to the same space , while other vec-
tors belong to orthogonal subspaces .

Proof: The trajectory of as a function of is in iff we
can write any arbitrary as a linear combination of the columns
of . From (14) and (16), we can write the vector as a
linear combination of the columns of by solving the set
of linear equations

. . .
...

...
...

(17)

As this set of equations is of full rank (because is nonsin-
gular), it always has a unique solution, and our vector is there-
fore part of . Vectors corresponding to overlapping Fourier
coefficients are composed from the same Fourier basis vectors

, and therefore belong to the same space .
The orthogonality between two subspaces and for

can easily be seen. As each of the subspaces is generated by the
columns of the matrices defined in (16), it is sufficient that we

prove that any arbitrary column of is orthogonal to any
column of . Denoting the th column of as , we can
write the inner product between two such vectors as

(18)

This is valid because from the orthogonality of the
Fourier basis.

From this analysis, we can see that the problem can be con-
sidered in each of the subspaces separately by projecting
onto the different -dimensional subspaces. The projection of

onto the subspace is called

(19)

An illustration for two overlapping vectors in a three-dimen-
sional space is sketched in Fig. 7.

Assuming that , at most columns
of belong to the same subspace . If there are vectors

from in a particular subspace , these vectors form
a basis for . As the vector is also in , it belongs to
the subspace spanned by these vectors for any value of
. However, for the subspaces containing less than vectors

, the span of these vectors does not cover the entire space
. Hence, the projection of onto generally only belongs

to span for a single offset vector . The offset
vector can then be uniquely determined from these subspaces,
and the signal coefficients are thus also uniquely determined.

There are certain cases for which it is not sufficient to require
. The vectors in the space (the columns

) do not depend on , and therefore, no information
about the offsets can be derived from these vectors. So if only
the space contains less than vectors, it is not possible to
derive the offsets from the sets of samples. This happens when
the number of overlapping parts of the frequency spectrum is
even (and therefore also the number of sets of samples is
even). In that case, we need .

Example 3.2: Looking back at Example 3.1, we can see that
the first and fifth column of span the subspace , except in
the degenerate case when . The projection of onto these
two columns will therefore always be the same as its projection
onto . No information about can be derived from this sub-
space. However, for and , there is only one column of
in each of these subspaces, and the projections onto that column
or onto the space only coincide for the correct value of .
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Fig. 7. Illustration of the trajectory of the span of two columns ��� (the planes in this drawing) in a three-dimensional space V for different offset values (0; t and
t ). Only for the correct offsets t, the vector y belongs to the space spanned by the two columns.

Fig. 8. Difference between the sample vector projected onto the spaces V
and the corresponding columns of � . The space V contains two vectors, and
ky � ŷ k is zero for any value of t . Similarly, V does not depend on
t , and thus it gives no information about the offset either. Both V and V
clearly indicate the correct value of t .

The subspace is a one-dimensional subspace that does not
depend on , and does therefore not give any information about

. The difference between the projection of the sample vector
onto and its projection onto the corresponding columns

of , is plotted for varying values of in
Fig. 8. We need at least one higher dimensional subspace con-
taining only 1 column from in order to be able to compute

. Therefore, we require that , or .
This can be summarized as follows. If

for odd, or for even, a bandlimited signal
with Fourier coefficients can be uniquely reconstructed from

uniform sets of samples with unknown offsets.

IV. SOLUTION USING MATRIX RANK

In this section, we describe a first solution method for the
problem of finding relative offsets described in Section II.

A. Method

As shown in (10), the discrete Fourier transform of the
th set of samples can be written as

(20)

with a square DFT matrix, and an IDFT
matrix. If we extend to a length that is a multiple of , we
can split the Fourier coefficient vector in blocks of length

, and obtain (see also (11))

(21)

The vectors represent the overlapping parts of the Fourier
spectrum due to undersampling, and there are such
parts. This means that for any set of samples, is a
linear combination of the parts of the Fourier spectrum

(22)

In other words, each vector belongs to the -di-
mensional subspace span . If we
have more than sets of samples , and ,
the rank of the matrix containing all the sets of samples should
therefore be

rank

with (23)
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Fig. 9. Signal reconstruction algorithm using the matrix rank method from Section IV. The estimate for the offsets t̂ and the corresponding sample matrix Y
are updated iteratively. Once the estimate is good enough, the signal parameters ��� are reconstructed.

In general, if the estimated offsets do not have the correct
values, rank . For most offset values , the matrix

will be of full rank (and ). The correct values
of the offsets can then be found as the values for which the
rank of the matrix becomes . A schematic description of the
complete reconstruction algorithm built on this method is given
in Fig. 9.

B. Discussion

As there are overlapping parts in the sampled Fourier spec-
trum, we need at least sets of
samples to find the offsets using this method. If more sets of
samples are available, we still have rank , and this
adds some robustness to both the offset estimation and the signal
reconstruction. However, each new set of samples also adds a
new unknown offset, thereby increasing the complexity of the
estimation.

Remark that the operation performed by multiplying a
sample vector with a matrix does not change its
norm . It merely performs a rotation to align the sample
vector into the -dimensional subspace.

The computation of the rank of a matrix has a rather ‘bi-
nary’ outcome: either it is , or it has an integer value larger
than . Hence, if the measurements are noisy, this test is very
likely to fail even for the correct values of . It is therefore
much better to evaluate the th singular value of the ma-
trix , or the determinant of the square matrix . This
can also give an indication about the quality of the current ap-
proximation. While the determinant requires less computations,
it is also numerically less stable than a singular value decom-
position. The th singular value could be computed using
the inverse power method described by Strang [29]. This is an
iterative method to approximate the smallest singular value of
a matrix. It requires the solution of a linear system of
equations in each iteration. The number of iterations needed will
generally be very small, because the th singular value is
typically much smaller than the first singular values.

The objective function based on (23) can thus be written as

(24)

where the operation stands for computing the th
singular value of the matrix .

Example 4.1: Let us consider a bandlimited function with
unknown Fourier coefficients. It is sampled with two

sets of 90 samples, with offsets . The objective

Fig. 10. Example of the objective function in (24). A signal with 81 unknown
Fourier coefficients is sampled with two aliased sets of 90 samples. The exact
offset is t = 0:6. Next to the global minimum, it also contains many local
minima.

function from (24) is shown as a function of in Fig. 10.4

Similarly, in a more realistic setup, we sample the same function
with (aliased) sets of samples and offsets

. The objective function is shown in Fig. 11(a)
as a function of the offsets and . For this signal, a slice
of the objective function for is shown in Fig. 11(b).
This figure shows the three singular values as a function of ,
showing the clear minimum of for , while the other
singular values are much larger and remain almost constant.

In the above examples, the objective function (24) is very
“flat,” except for a small region around the optimal offset values.
At an arbitrary value away from the correct solution, it is there-
fore not possible to predict what would be a better approxima-
tion. Standard minimization algorithms such as gradient descent
will generally not converge to the right solution for such func-
tions. However, from the example with three sets of samples, we
can see that the objective function is not completely arbitrary.
Horizontal, vertical, and diagonal lines appear. They correspond
to relative alignments of two out of the three sets of samples. It
is therefore interesting to use this information in the search for
the minimum. Such a heuristic algorithm will be described in
Section VI.

4Note that this example is not very interesting from a practical point of view,
as there is actually no aliasing in the sampled signals (N > L). However, this
is the setup that is required for this method if we have only two sets of samples
(M > S).
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Fig. 11. Example of the objective function in (24). A signal with 81 unknown
Fourier coefficients is sampled with three aliased sets of 41 samples. The exact
offsets are t = 0:2 and t = 0:6. (a) Two-dimensional objective function has
many local minima. (b) A slice of the error surfaces for t = 0:2 is shown for
the different singular values. The three singular values � ; � , and � do not
vary much, except for � at the correct offset value.

V. SOLUTION USING PROJECTIONS

In this section, we describe a method that uses projections
onto a subspace basis to find the relative offsets. This setup is the
same as the setup used by Golub et al. in their variable projection
method [25].

A. Method

From (8), we can see that belongs to span . However,
this is only true if the matrix is constructed using the correct
values for the offset vector (except for degenerate cases). For
another (incorrect) set of offset values , (8) no longer holds and
the sample vector is not in span anymore. One can test

the correctness of the offset vector by verifying if the projection
of the sample vector onto span gives the sample vector
again. Or mathematically

for

for
(25)

Therefore, this can be used to build an optimization problem for
finding the correct offsets . We search for the value of such
that the following function is minimized:

(26)

Using this method to find the offsets between the sets of sam-
ples , we can derive an algorithm to reconstruct the signal

from its combined sets of samples . A block diagram of
such an algorithm is given in Fig. 12. Note that this algorithm
does not use any specific property of the Fourier transform. It
can be applied to arbitrary signals in a finite-dimensional Hilbert
space, like wavelets, uniform splines, etc. More details can be
found in [27].

B. Discussion

For this method, we need to have at least as many samples
as the total number of unknowns, or for

odd, and for even (see Section III).
Therefore, we need sets of samples
for odd, or for even. Let us now study
some examples of the objective function (see (26)) as
a function of the offsets .

Example 5.1: A bandlimited function with 81 unknown
Fourier coefficients is sampled with two sets of 90 samples.
The same function is used here as in Example 4.1. The offset
vector that we used is . The objective function

from (26) is shown as a function of the offset in
Fig. 13(a). It is 0 at the correct offset value and is
larger at other values of . Next to this global minimum, the
function also has many local minima.

Similarly, we also take three sets of 41 samples from a ban-
dlimited function with again 81 Fourier coefficients. The offset
vector for this example is . Fig. 13(b) shows the
objective function as a function of the offsets and . Smaller
values are represented by darker gray levels. Again, the min-
imum can clearly be seen, and is at the intersection of the dark
horizontal, vertical and diagonal lines corresponding to pairwise
alignments between the sets of samples. However, the objective
function also has many local minima.

From these examples, it is clearly visible that (26) is not easy
to minimize (just like (24) in Section IV). Next to the global
minimum, the objective function has also many local minima.
We cannot use a standard algorithm like gradient descent for
minimization. However, as can also be seen from Fig. 13(b),
the objective function shows the same structure of horizontal,
vertical, and diagonal lines as in Fig. 11(a).

Let us now give some further interpretation of the above re-
sults. As it was discussed in Section III, the -dimensional
sample space can be divided into orthogonal subspaces of di-
mension . It is therefore possible to split the function from
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Fig. 12. Signal reconstruction algorithm using the projection method from Section V. The estimate for the offsets t̂ is updated iteratively. Once the estimate is
considered good enough, the signal parameters ��� are reconstructed.

Fig. 13. Examples of the objective function in (26). Next to the global min-
imum, it also contains many local minima. (a) Two aliased sets of 90 samples,
with 81 unknown coefficients. The exact offset is t = 0:6. (b) Three aliased
sets of 41 samples, with 81 unknown coefficients. The exact offsets are t = 0:2

and t = 0:6. Small values are represented by dark pixels.

(26) into independent terms according to these -dimensional
subspaces

(27)

In this equation, is the projection of onto the subspace
spanned by the th vector for different values of , and

is the projection of onto the vectors that belong to this
space. An example of such a decomposition is given in Fig. 14.

As we also described in Section III, for the frequencies that
have overlapping spectrum coefficients, the spaces and
span are the same, regardless of the value of . For these
frequencies, , and they do not contribute to
the objective function in (27). The other terms each contribute a
periodic term to the global objective function. The minimum of
(27) can therefore be found by minimizing the different compo-
nents individually (see Fig. 14). For each of the components, we
can now minimize over an -dimensional subspace instead of
the original -dimensional space. In each of the subspaces,
we still need to minimize the objective function jointly over the

offsets , but the vectors to project are now length in-
stead of previously. This approach also allows us to elim-

Fig. 14. Example of the decomposition of the objective function into its dif-
ferent components belonging to orthogonal M -dimensional subspaces.

inate those subspaces from the search space that do not give in-
formation about the offsets. Such a decomposition reduces the
complexity of our algorithm by a factor , but even in such a
case, the complexity is still slightly higher than the complexity
of the rank-based method presented before.

Observe that this algorithm is not limited to bandlimited sig-
nals and sets of samples differing only by unknown offsets. As
we use projections onto the space spanned by sampled basis
functions, we can apply this algorithm to signals in an arbitrary
(known) finite-dimensional Hilbert space. More complex mo-
tions like rotations or scalings can be taken into account by sam-
pling the basis functions accordingly.

VI. PRACTICAL ISSUES

A. Sampling Kernel

In the different methods described above, no sampling kernel
was considered. The signals are sampled using Diracs. Although
this is not very realistic, it is an approximation that is often made
to simplify the analysis. In most cases, it is not very difficult
to take a different sampling kernel into account. The sampling
operation can be considered as a convolution with a sampling
kernel, followed by the actual sampling. In the frequency do-
main, this convolution can be seen as a multiplication with the
Fourier transform of the sampling function. Therefore, as long
as the sampling kernel does not remove frequencies, the recon-
structed function can always be divided by the sampling kernel
function again. This should cancel the effect of the sampling
kernel. Such an operation can be performed after the reconstruc-
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tion of an aliasing-free signal using the methods described in
this paper. Of course, this supposes that the sampling kernel is
known, space–time invariant, and not too ill-conditioned.

B. Images and Higher-Dimensional Signals

The above approaches were described for one-dimensional
functions. However, all the methods can be extended to higher
dimensional functions. Nothing in the descriptions is limited
to a one-dimensional signal, so the algorithms can be directly
applied to images or higher dimensional signals. The two-di-
mensional equations are derived in the Appendix. Of course,
the complexity increases fast with the dimensionality. While a
minimum of sets of samples are required for a 1-D
signal using the rank-based method, and
sets of samples for the projection-based method, we need at
least 2-D images for the rank-based method, and

images for the projection-based method.
As signals can be shifted along each of their dimensions, the
number of offsets (which is also the dimensionality of the search
space) also increases rapidly. Examples of the above methods on
images are shown in Section VIII.

C. Minimization

The main difficulty with the methods described in Sections IV
and V is to find the global minimum of the objective functions.
A good approximation of the offsets is required for an ap-
proach like gradient descent to converge to the global minimum.
Such an approximation could be obtained by evaluating the error
functions from (24) or (26) on a uniform (dense) grid of pos-
sible values . The global minimum can then be found with high
probability close to the smallest value obtained on this uniform
grid. However, this is a computationally very intensive method.
It only makes sense if the number of sets of samples —and
therefore also the number of offsets—is small, or when a first es-
timate of the offsets is available. Although this may sound like
moving the problem to obtaining such a first estimate, it is a rea-
sonable assumption. For example in super-resolution imaging,
the shifts between the images are generally very small. There-
fore, our search could be restricted to a small area around the
origin (for example 10 10 pixels). Similarly, a first estimate
could also be obtained from another registration method that
does not use the aliasing. Such a method is described in the next
subsection. Other approaches are heuristic methods that rely on
the lines that can be seen in Figs. 11(a) and 13(b). They will also
be described in the next subsection.

During the minimization, it would be interesting to know
whether the global minimum has been found, or whether the
current optimum is a local minimum. Such an indication can
be obtained by evaluating (24) or (26) for the current value of
. Even for noisy measurements, there is a large difference be-

tween the average values of these functions and their value at the
global minimum. This can therefore be used to check whether
the algorithm has converged, and whether the result is reliable.

D. Heuristic Approaches

The high computational complexity of the algorithms from
Sections IV and V is mainly due to the coupling between the
offsets, i.e., the need to search the different offsets between the

signals jointly. The joint minimum is not necessarily located at
the intersection of the minima from individual optimizations.

Algorithm 6.1 (Hierarchical Approach): If the sets of sam-
ples are images, we know that their coefficients are not arbi-
trary Gaussian random variables. In general, the amplitude of
the Fourier transform of a natural image decays like (with

the frequency) [30]. We can therefore assume that a good esti-
mate for the offsets can be obtained from the low frequencies of
the sampled sets. For these frequencies, the aliased coefficients
are much smaller than the base spectrum coefficients, and can
be neglected in a first estimate. We used the method from Van-
dewalle et al. [4] for this. Once we have such an initial estimate,
we can use the methods from Sections IV or V using a gradient
descent algorithm to obtain a more precise estimate for the mo-
tion parameters, taking the aliasing into account.

Algorithm 6.2 (Keeping the Best Pairwise Alignments):
From the horizontal, vertical, and diagonal lines that are often
visible in figures like Figs. 11(a) and 13(b), it can be seen that an
independent pairwise alignment often works. Such lines corre-
spond to pairwise registrations of the first and second, first and
third, and second and third signals, respectively. Therefore, we
search a fixed number of local minima for the pairwise reg-
istration between the first set of samples and each of the other
sets. When performing such a pairwise registration between the
first and the th set of samples, all the other offset values are
kept constant. For each pair, a vector of possible offset values

is obtained. Next, the best combination
of these pairwise local minima is searched among all possible
combinations. The global minimum can then be searched in the
neighborhood of this value of . Keeping only a single minimum
for each of the pairwise alignments is generally not
sufficient, due to the different approximations made by pairwise
registration. However, by trying all the combinations of the best

pairwise alignments, the algorithm typically converges
to the correct result. In our simulations using five sets of 32 32
images, good results were obtained with , but the optimal
number depends on the size of the problem.

We have also investigated a method that searches specifically
for the lines in the objective function as they were shown in
Figs. 11(a) and 13(b). However, because initially the objective
function is unknown, it is not trivial to design an algorithm that
finds these lines. Also, not all the lines indicating pairwise align-
ments are visible for every specific realization. Finally, such
lines are less distinguishable for decreasing signal-to-noise ratio
(SNR) values. Such an algorithm therefore typically has lower
performance and/or a higher computational complexity than the
uniform grid evaluation presented in the previous section.

VII. COMPLEXITY

In this section, we discuss the computational complexity of
the different methods. For each of the methods described above,
the complexity of computing the offsets can be written as the
number of times the error function has to be evaluated multi-
plied with the number of operations required to evaluate the
error function. In this analysis, we will assume that the variables

and grow at the same rate, and grows at a lower rate.
The number of operations required for the reconstruction is the
same for all the algorithms and is thus not determinant.
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TABLE I
COMPUTATIONAL COMPLEXITY FOR THE DIFFERENT METHODS ON 1-D SIGNALS. THE TOTAL COMPLEXITY IS

OBTAINED BY MULTIPLYING THE NUMBER OF FUNCTION EVALUATIONS WITH THE COMPLEXITY OF A SINGLE

FUNCTION EVALUATION. THE COST TO OBTAIN THE INITIAL ESTIMATE IN ALG. 6.1 IS DENOTED AS C

Let us start by analyzing the complexity of the objective func-
tion evaluation both for the matrix rank method (Section IV) and
the projection method (Section V). In the matrix rank method,
the smallest singular value of the matrix has to be com-
puted for every error evaluation. The construction of for a
specific set of offsets requires operations. To
compute the smallest singular value, we use the inverse power
method on [29]. This matrix multiplication involves

operations, and the inverse power method itself re-
quires operations, where is the number of
iterations required for the method to converge. As we assume
that the difference with the second smallest singular value is
large, convergence will be fast. So the total number of opera-
tions becomes

(28)

For the projection method, we need to compute the projection
of the sample vector onto the space spanned by the columns
of . This can be done using (25). In general, such a projection
has complexity

(29)

However, if enough storage space is available, these projection
matrices can be precomputed, because they do not depend on
the actual signal. In that case, the complexity is reduced to

(30)

For the Fourier basis, the complexity of such a projection can be
strongly reduced. The blocks of the matrix can be di-
vided into an IDFT inverse Fourier transform block ,
multiplied by an diagonal offset matrix

(see also (8)). Using this decomposition, we can sim-
plify the projection formula (25). The multiplication can
be decomposed into multiplications , where is
the Fourier transform of . This Fourier transform can be com-
puted outside of the iteration loop, because it is independent of
the offsets . Only the multiplications with the diagonal matrices

remain, which require operations. The matrix
has nonzero elements only on the main diagonal and on the

th diagonals, due to the orthogonality of the Fourier vectors.
Its inverse, , can therefore be computed efficiently in

operations. Finally, the multiplication
with the first matrix can be decomposed into multiplica-
tions with diagonal matrices, and inverse DFTs. As the error
can as well be computed in the Fourier domain (using Parseval’s
theorem), we only need to multiply with the diagonal matrices,
which requires again operations. The overall complexity
can then be approximated as

(31)

where is the maximum number of overlapping spectral com-
ponents, which is typically of the same order as , or

.
For the standard algorithm described in Section VI-C, we

first evaluate the objective function on a uniform grid of
points, requiring error evaluations. Next, a standard min-
imization algorithm is applied near the minimum value that was
obtained on the uniform grid from the first part. Let us call the
number of error evaluations in this second part of the minimiza-
tion (typical values in our simulations are around ).
This is negligible compared to the number of evaluations on the
regular grid, and the total number of evaluations with this stan-
dard algorithm can therefore be approximated as

(32)

For the hierarchical method from Algorithm 6.1, we need
only evaluations. Of course, the complexity for computing the
initial estimate needs to be added to this. Algorithm 6.2, using
pairwise alignments, requires

(33)

error function evaluations. The complexity of the different algo-
rithms is summarized in Table I.

For the reconstruction, the set of linear equations from (8) has
to be solved. The complexity of this operation is

.
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Fig. 15. Results of the different algorithms as a function of the signal-to-noise
ratio (SNR) for white Gaussian noise signals. The matrix rank algorithm
from Section IV performs slightly better than the projection algorithm from
Section V. Both algorithms perform clearly better than the algorithms that do
not use the aliasing for registration (method from [4] and from [31]). Parameter
values of M = 3; L = 81, and N = 41 were used. (a) Offset estimation
error as a function of the SNR of the sampled signals. An offset error of 1
corresponds to a shift over the entire signal period. (b) Success rate of the
registration and reconstruction as a function of the SNR.

VIII. RESULTS

The above algorithms are tested and compared in a number
of simulations. We also compared our algorithms to our ear-
lier approach [4] and the algorithm by Pham et al. [31]. The
algorithm from [4] estimates the offsets from the phase differ-
ence between two signals for low frequency values, as it was
designed for partially aliased signals. The algorithm from [31]
is an iterative Taylor-based algorithm, and we used the imple-
mentation by Pham et al. [32]. The simulations are performed on
one-dimensional random bandlimited signals. The Fourier coef-
ficients of the signals are generated as a white Gaussian random
process. Hence, the resulting (time domain) signals also form
white Gaussian random processes. A number of simulations are

Fig. 16. Results of the different algorithms as a function of the SNR for pink
Gaussian noise signals (with 1=! behavior). Parameter values of M = 3; L =

81, and N = 41 were used. (a) Offset estimation error as a function of the
SNR of the sampled signals. An offset error of 1 corresponds to a shift over the
entire signal period. The algorithm from [31] has a lower average absolute error
than the rank based and projection based algorithms presented here. They still
outperform the algorithm from [4], however. (b) Success rate of the registration
and reconstruction as a function of the SNR. Both algorithms presented here
outperform the other algorithms and compute the offsets up to a precision of
10 in a larger proportion of the simulations.

performed with different random offset values, and different
amounts of additive white Gaussian noise. The performance of
the different algorithms on 1-D signals is compared in Figs. 15,
–17. Fig. 15(a) and (b) shows the mean absolute error in the shift
estimates and the success rate as a function of the SNR, respec-
tively. The success rate of the methods is defined as the relative
number of simulations in which the error on the registration is
smaller than . All the results were averaged over 250 simu-
lations. Parameter values of , and were
used in all the simulations. An offset value of 1 corresponds to
a shift over the whole signal period. We can see that the method
using matrix rank from Section IV performs slightly better than
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Fig. 17. Results of the different algorithms as a function of the number of sam-
plesN . Parameter valuesM = 3 andL = 81were used in all simulations, and
for N , values from 25 to 45 were used. No noise was added in this setup. The
algorithm from Section V performs better than the algorithm from Section IV if
the number of samples per set N is not sufficiently high. (a) Offset estimation
error as a function of the number of samples per set N . An offset error of 1
corresponds to a shift over the entire signal period. (b) Success rate of the reg-
istration and reconstruction as a function of the number of samples per set N .

the method using projections described in Section V. It can also
be clearly seen that both the rank-based and the projection-based
algorithm perform much better on such signals than the methods
that do not use the aliasing that is present in the sampled signals
(from [4] and [31]).

Fig. 16 shows the results of similar simulations as those from
Fig. 15. However, to simulate the typical behavior of images, we
performed the simulations on pink noise signals, that have a
decay as a function of the frequency . We can see that in such a
case, the influence of the aliasing is decreased, and the methods
from [4] and [31] perform much better than in the previous sim-
ulation. The method by Pham et al. [31] even has a better av-
erage performance than our methods described here. However,
from Fig. 16(b), we can see that our algorithms still computed

the offsets up to a precision of in a larger proportion of the
cases. Moreover, if the sampling frequency is further reduced
(and the number of sets increased), more aliasing is present
in the sampled signals, and the performance of the algorithms
from [4] and [31] will typically decrease faster than the algo-
rithms presented here.

The absolute error in the shift estimates and the success rate
are plotted as a function of the number of samples per set in
Fig. 17. In these simulations, parameters and
were used, and for , values from 25 to 45 were taken. No
noise was added for these simulations. Again, the results were
averaged over 250 simulations. The performance of the different
algorithms increases with increasing number of samples. This is
what we expected, as an increasing number of samples per set
gives increasing amounts of information for the same number
of unknowns. For the matrix rank algorithm from Section IV,
the minimum number of samples per set that are required in
this setup is , while for the projection algorithm from
Section V, samples per set are needed. This explains
the better performance of the projection algorithm for

. With more than 41 samples per set, both algorithms
perform very well. When samples are available per set,
all algorithms have low accuracy.

Our algorithms are also applied to some 2-D signals (images).
In this case, the signals were undersampled by only two, be-
cause of the high complexity (see the discussion in Section VI).
The results can be seen in Fig. 18. A double resolution image
is accurately reconstructed from a set of low resolution images,
both using the rank-based algorithm from Section IV [Fig. 18(a)
and (b)] and the projection-based algorithm from Section V
[Fig. 18(c) and (d)].

In all the simulations, we use periodic signals. This is not the
case in most real applications, but we can generally assume that
the shift between the sets of samples is small. The differences
between the signals due to their aperiodicity are therefore small,
and can be neglected.

IX. CONCLUSION

In this paper, we presented a theory of super-resolution from
unregistered aliased sets of samples. We formulated the problem
mathematically, and proved that the solution is unique if enough
sets of samples are available. We described two methods to
compute this unique solution. In the first method, the rank of
a modified sample matrix is checked. The second method uses
projections onto subspaces to compute the offsets between the
different sets of samples. Both methods can be used for the re-
construction of one or two-dimensional signals from multiple
sets of aliased samples. The main limitation of these methods is
their computational complexity. They are therefore mainly ap-
plicable in domains that do not require real-time reconstruction.
For example in satellite imaging, a very high resolution is de-
sired, even if this requires some computational effort. Future
work is mainly oriented towards reducing the computational
complexity of the methods. In many cases, this super-resolu-
tion problem can be written as a set of polynomial equations.
It is then possible to reconstruct the signal using Gröbner basis
methods [33], [34], which are, however, computationally very
expensive.
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Fig. 18. Results of the different algorithms on images. (a) One of the five 32� 32 images used as input for Algorithm 6.2, with the rank-based method from
Section IV. (b) Reconstructed 63� 63 image from the images from (a). (c) One of the five 8� 8 images used as input for Algorithm 6.1, with the projection-based
method from Section V. (d) Reconstructed 15� 15 image from the images from (c).

APPENDIX

In this Appendix, we extend the above theory to 2-D signals.
Assume we have a periodic, bandlimited image

with (34)

It is sampled with images at horizontal and vertical frequen-
cies and

(35)

The discrete Fourier transform (DFT) of such an image can be
expressed as

(36)

In other words, is a weighted sum of the overlapping
Fourier coefficients at frequency . Combining all the DFT co-
efficients into a vector , we can write (see also (11))

(37)

with now
, and

. The analysis from Section IV is
therefore still valid for 2-D signals.

Similarly, we can combine all the samples of an image into a
vector (with )

(38)

with an sampled basis matrix with elements
. We can

then repeat the analysis from Section V using (38) instead of
(7).
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