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Abstract—So far, cellular networks have been operated in the danger that the other operators retaliate by behaving in the
“private” frequency bands. But recently, several researchers and sgme way.

legislators have argued in favor of a more flexible and more :

ef%]icient managemgnt of the spectrum, leading to the possible In our paper, we assu_me that mol_)lle u_sers_ Gaely
coexistence of several network operators in @hared frequency O@M across the base stations located in their neighborhood,
band In this paper, we study this situation in detail, assuming attaching to the one offering the most favorable signal quality
that mobile devices can freely roam among the various operators. (i.e., the base station with the strongest pilot signal) and band-
Free roaming means that the mobile devices measure the S'Qnalwidth, irrespectively of the operator to which the base station

strength of the pilot signals (i.e., beacon signals) of the base ; . : ;
stations and attach to the base station with the strongest pilot belongé. From the interference perspective, this operating

signal. We model the behavior of the network operators in a game Principle _iS much more_efficier_n than _the current practice,
theoretic setting in which each operator decides about the power because it enables mobile devices to find the “closest” base

of the pilot signal of its base stations. We first identify possible station in the area and hence mobile devices and base stations
are located on the vertices of a two-dimensional lattice. We then . -
prove that a socially optimal Nash equilibrium exists and that I’boamlng thUIfd be ben?;lual for b(.)th Operztorst a:cnd USErs, d
it can be enforced by using punishments. Finally, we relax the P€CaUSe the fTormer could serve an increased set ol users, an
topological assumption and show that, in the more general case, the latter could enjoy various services across several operators.
finding the Nash equilibria is an NP-complete problem. We also assume that each operator wants to cover the
Index Terms—Wireless networks, shared spectrum, pilot largest possible area by increasing the transmission range of
power control, cooperation, game theory, Nash equilibrium, NP- its base stations. At the same time, it wants to minimize
completeness interference. These two contradictory goals correspond to the
willingness to maximize the number of users who can attach
to its base stations. We model this situation as a game between
_ . ) operators in terms of power control of the base stations. We
Cellular networks are notoriously difficult to design angejieve our paper to be one of the first steps towards a deeper
operate; in particular, defining the optimal location of th@nderstanding of the trade-offs of operating cellular networks
base stations and fine tuning their configuration parametersqsshared spectrum.
very challenging. For this reason, government agencies (sucligte that the general problem of power control of base
as the FCC in the US) have sold or rented, for example Ryations is hard to solve (i.e., NP-complete); it is characterized
auction, each operator a frequency band for its exclusive usageihe following dimensions: (i) the size of the base station
in a given country or region. Only a small part of the wholgets (i) the geographic locations of the base stations and (i)
spectrum is allocated asshared spectrugrin which networks  ihqir possible radio ranges.
func'Flon in the same (unlicensed) frequency band. . Game theory is used to study the power control of user
With the progress Of. technology and the fast 9rowingevices in wireless networks, notably in cellular systems as
demand for ubiquitous high-speed wireless services, it is Cl%ﬁ‘ﬂdied in [1], [9], [12], [13], [14], [17], [27] and [29]. Game
that the pressure towa_rds more flexibility of the usage %eory is also used to study cooperation in wireless ad hoc
the sp_ectrum WlII only increase. Therefore, the_ govgrnmeﬂétworks’ for example in [5], [15] and [24], in particular
agencies are likely to adapt the current regulations in Ordgf. ,qnerative power controi [18]. A general framework for
go, mcreadsg tge gropornon of the unlicensed spectrum as, rce allocation in wireless network is addressed in [6].
|s19#sse Imt'[ ]’t[ I d i dqf band | FJ;ecently, the coexistence of multiple Internet Service
‘ etz)et\t/o ution ow?rths un |cetnse \r(e(gu_e;ncy |3n IS can 1e3fhviders (ISPs) was studied by Shakottai and Srikant in [23].
oa el er_tuste_lge 0 eh_srr)]efhrun;). et It t\{vou ?sdqﬁcrea%ﬁey consider both transit and customer prices for the ISPs.
a novte situa :gn_, tlnfw Ic ith € r?seths afns 0 tl erer11;hey show that if the number of ISPs competing for the same
operators would interfere with each other. An operator May,q,mers is large, then it can lead to price wars. In addition

be te”.‘pted to let its base .statlolns _transm|t at t.he. ma.x'm"fg]this work in wired networks, the coexistence of wireless
authorized level. But by doing this, it would maximize inter-

ference not only to its own base stations, but also to the basg _ -
tati f the other operators. and to all mobile devices i The users might have other attachment preferences based on subscription
stations o p , I VICES (e past experience, etc. We will consider the extension of user attachment

the power range of its base stations; in addition, it would fa®ehavior in our future work.

I. INTRODUCTION
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operators in a non-shared spectrum is addressed in two csplit up into channels (i.e., separated frequency sub-bands), but
tributions. In [10], Halldrssoret al. study channel assignmentthe pilot signal is typically emitted on a single shared channel
strategies for Wi-Fi operators. They use the maximum grapdr all the base stations, which results in mutual interference
coloring problem to identify Nash equilibria and they alsof the pilot signals (in CDMA networks, the interference of
provide a bound on the price of anarchy of these equilibrithe pilot signals is referred to as tipdot pollution [22]).
In another paper [28], Zemlianov and de Veciana consider theAccording to thephysical modebf signal propagation [22],
scenario, in which users are able to choose between a celldta pilot signal of a base statidn € B can be received by
network and a Wi-Fi network. They show that congestioa user device: if its signal-to-interference-noise ratio (SINR)
sensitive strategies are better than proximity-based strateg®aeeds a reception threshaid
None of these works considers the power control of the base
stations. Fi giu > (1)
Our paper addresses the problem of pilot signal power NOJijEB,j;éi Pj - gju

control in s'hared spectrum networks. Haykin proyldes V\a/éwere P, is the transmission power of B8, g, is the
comprehensive overview [11] of the current tendencies an . ;

. .~ “channel gain between the Bf and user device: and Ny
research challenges in shared spectrum communications.|

. is'the Gaussian thermal noise. We assume that the channel
general. One of the challenges, namely opportunistic spectrum

. . gain depends only on the distance of the transmitter and the
aC_T_ﬁTSS’ : 2??Sreosrszdmlzneéhﬁ] ?ﬁgiglngi\fhsvlé[zﬂ Section IIreceiver we normalize the effect of the antenna characteristics,
bap 9 g way. thus we havey;,, = d;,” between the B$; and user device,

we describe the system model and the corresponding Pov; rere2 < a < 5 is the path loss exponent that characterizes

control game. We solve this game on a two-dimensional Iattiﬁ? = . . )
e radio signal propagation properties of the environment.

topology in Section Ill. In Section V, we present our resultls_| - o
. : nce, (1) corresponds to the Friis free space radio signal
in the case of a general topology of base stations. We exten

. . . . ropagation equation (see [22] Equation (4.1)). It captures
our study with a repeated game model in Section IV. Fmallﬁ,ov\? t%\e recegtion pO\(NeI’ d[ep]endqs on th(e nzi)st imprz)rtant
we conclude in Section VI.

factors, namely on the transmission power and the distance

between transmitter and receiver. Note that we consider the

Il. MODEL local average of the received pilot signal as described in [22].

A. System Model In reality, on a small time scale, the pilot power signals have

We make the following assumptions with respect to tr@ time-varying property due to fading. In our future work,
communication network. We assume two wireless communii€ Will consider a more realistic radio signal modelling that
cation networks, each operated by aperator and we call incorporates fading and more realistic path loss models.
the operatorsi and B. Operatori € {A, B} controls a set of We assume that (1) holds for every point in the service area
base stations (BS-sjenoted byB;. We denote the union of for at least one base station and that the user devattaches
all base stations bys. There exist no BS-s that are located0 the base statiob; with the best SINR. Thus, we can write
at the same place and belong to different operétaie also that:
assume severalsersequipped withmobile devicedo access P d-® P -d-°
the communication network. The networks reside in a given I = o > I = R
service area where the operators want to provide wireless *° +2 e i P dju 0+ Xmes.izm m mu(z)
access for the users. We restrict ourselves to two operatprs ny other base stati
in order to provide an insight in the basic principles ofo :

cooperation in a multi-operator context. Note that the problemWe abstract away the mobiles and assume that their ex-

. gcted position is uniformly distributed over the service area.
is hard to solve for a general network topology as present : :
in Sections V. _ote that this also means a balanced load on the base stations

.e., No users have to switch base stations due to the lack

We assume that the radios of the base stations and 9?eavailable bandwidth). We leave the topic of other user

mobile devices are compatible, meaning that any user is a§|§tributions for future work.

to access the network via any of the base stations. Bas ¢ that the pilot sianal te i
stations and mobiles operate on the same unlicensed band us assume that the priot signais propagate in an open
a, meaningx = 2. Then (2) defines a Multiplicatively

the frequency spectrum. Each of these devices might perforjyr. . X .
power control to optimize its transmission power and redu eighted Voronoi power diagram (MW power diagram) [20],

interference. This optimization can be realized in three ways. ich determines the set of points in the service area (potential
the power control of the pilot signal of the BS-s, of th aces of user devices) that are attached to a given base station.
downlink (BS to mobile) and of the uplink (mobile to BS). I, the MW power diagram, a point belongs to a base station

this paper, we focus on the first technique and we postponel[ 5t'5 clqsedr ft_o |:jthanf tﬁ an){ other base station, where the

investigation of the other two techniques to our future wor 1S arf].c<.a.|s f_'_?ﬁ asl ,OIPWS,' | iahted di

To mitigate interference, the shared frequency band is usueﬂl efinition 1. hemu tip |c.:at|ve'y weighted power distance
tween the pointa andb; is defined as:

2To reduce operating costs, operators of current cellular networks often 9
share the same site. However, if users can freely roam, then this site sharing d (u by: w») _ di, (3)
does not make sense anymore. MPWAT T w;
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whered;,, is the Euclidian distance between the pointand
b; andw; is a weight assigned to poirt

We can define thé/oronoi region V' (b;) around a base
stationb; € B as the set of points that are “closer” to point
b; than to any other poinb; (i.e., b; # b;). Hence, we can
write V'(b;) as:

V(bl) = {u|dmpw(u7 biawl) S dmpw(ua bj;wj) fO’f‘ { 7é ]}
4
We can write thé/oronoi diagramV(B) of all base stations
B as:

V(B) = JV(b:) (5)

whereb; € B.
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g. 1. Base stations on the vertices of a two-dimensional lattice. Hase

- _Fi
Due to the complex shape of the Voronoi diagram WItE«e operator with a larger radio range.

multiplicatively weighted distances, it is difficult to derive an-
alytical solutions for the pilot power control problem. Hence,
we apply aradio range modelthat is widely used in the
literature. We will show in Section IlI-D that the principles
derived from the range model hold for the physical model as
well.

Let us derive from (1) theadio range of the pilot signal .
of the BSb; as the Euclidian distance within which the users
are able to attach to this base station if there is no interference
from other devices:

P;
BNy

According to the radio range model, we can define the Addi- *
tively Weighted Voronoi power diagram (AW power diagram)
[20]. In the AW power diagram, the distance is defined as
follows:

Definition 2: The additively weighted power distandse-
tween the points; andb; is defined as:

ped

r; =

(6)

)

. _ g2
dapw(u7 biv wz) - dzu — W;

A3: Each BS belonging to the same operator has the
same radio range. We show in Section V that relaxing
this assumption makes the power control problem NP-
complete.

A4: There exists a limitatiolPyax on the transmission
power of any base station, which is defined by the
regulator of the wireless spectrum. Then, the maximum
radio rangeRuax can be derived from (6) by substituting
P, = Puax- Furthermore, if the radio ranges of all base
stationsb,,, € BB are equal, we denote the minimum radio
range for whichAl holds by Ryin = ?d.

A5: The users can freely roam between any of the base
stations (i.e., the operators do not forbid roaming between
their networks).

A6: Users are uniformly distributed over the area and
hence, the expected load is the same on every base station.
A7: The base stations and the mobile devices have
omnidirectional antennae. The investigation of the effect
of directional antennas is part of our future work.

These assumptions ensure an open spectrum environment,

whered;, is the Euclidian distance between the pointand
b; andw; is a weight assigned to poini.

In this paper, we substitute; = r? and hence we obtain a
Voronoi diagram in the Laguerre geometf®0]. This model

in which users enjoy ubiquitous wireless connectivity. In
particular, we make Assumptiok3, as well as the assumption
that the base stations are placed on the vertices of a grid, to
make the model tractable. This special scenario is reasonable

corresponds to a Voronoi diagram, where the distance g 5 small number of base stations, such as for a small city
defined as a tangential Euclidean distance to circles centeﬁ%qwork_ We will show stability points for this special model.

at the base stations’ locations and radii corresponding to th@it. sre motivated to study this special model

radio ranges.

because we

wanted to provide some quantitative insights into the power

We assume that the base stations are placed on the vertices,o| problem. The general problem is very involved: We
of a two-dimensional lattice in an alternating way such that aRy,q\ that if operators can set an arbitrary radio range for their
BS that belongs to operatet has four neighboring BS-s thaty,se stations (i.eA3 does not hold), then the power control

belong to operatoB (a small part of the network is shown in
Figure 1). Let us calll the smallest Euclidian distance between
base stations. In Section V and 1V, we will extend our model
to general network topologies.

To further specify our model, we assume that:

problem is hard to solve.

B. Power Control Game
We model the power control problem with two operators as

o Al: Operators want to provide wireless access serviegwo-player, nonzero-sum game. We refer to the two operators
everywhere. Thus, no place remains uncovered in ths players A and B, respectively. Due tA3, we designate

service area.

the radio ranges of the pilot signal of the playersshyand

o A2: Operators can estimate or measure their coverageg. The strategyof the players defines their best radio range.

including the action of other operators.

The goal of the players is to maximize the area they cover
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[ | OH = coverage area of the heavy player | °

I OL = coverage area of the light player [ vL = interference area of the light player

[ ] YL = interference area of the light player (OL = coverage area of the light player is zero)
() (b)

Fig. 2. Coverage and interference area of a base station, illustrated with two base stations: (a) both BS-s have a coverage area; (b) the BS-s of the light
player are overwhelmed by the BS-s of the heavy player and thus the light player has no coverage area at all.

with their pilot signal as expressed by theitility function. The coverage area of the light player is as follows:
To express the utility of the players formally, let us introduce 22 219
the following concepts. O = (" —rfy +77)° (10)

Assume that the two players choose a different radio range. a?
Let us call the player with the larger radio rangeavyand If Condition C1 does not hold, then the light player is
the player with the smaller randight. Let us denote the radio overwhelmed by the heavy player, meaning that the pilot signal
range of the heavy player by; and the one of the light player of the heavy player is the strongest everywhere (as presented
by r1 (recall from A3 that a player has the same range fon Figure 2b). If the heavy player overwhelms the light player,
all of its base stations). In this section, we assume thd the coverage area functions are as follows:
the heavy player and is the light player (i.e.;ra = ry
andrp = rp); note, however, that it can be the opposite due On = (V2d)* = 24° (11)
to the symmetric situation. Since the placement of the BS-s
is symmetric and the players apply the same radio range to OrL=0 (12)

all of their BS-s, we can analyze the game considering twQ aqddition to C1, we can derive a condition for the radio

neighboring base stations, as shown in Figure 2. ~ ranges of the two players frorAl from the geometry pre-
We define thecoverage area @;) for any BSb; as itS gented in Figure 1 as follows:

Voronoi regionV (b;) in the radio range model (i.e., in the

Voronoi diagram in the Laguerre geometry). We define the V2 5 V2 9 9
. > (X124 — vy _ _ X
interference area;) for a BSb; as: rh 2 (5d =) + (Sod) =d Vadrp +17 (C2)

Y, =T, —0; =1 - 7n—0; (8) Inthe limit case, in which the equality holds i€2), they just
cover the service area (as shown in Figure 1).

whereT; is the total area covered by the radio range and  From (C2) andA4, we can derive the definition interval for
denotes the radio range of B&

Note that the coverage area of a player depends on the ramd
range of the other player. Accordingly, we can distinguish two \/d2 —V2drp + 1] <7 < Ruax (13)
cases as follows.

In the first case, both players have a non-empty coverag
area as presented in Figure 2a. For this case, the followin

condition holds: V2
- _ _ ]2 2
T < AJr2 4 d? (C1) max{0, 5 (d m)} <rp<rg (14

We can express the coverage area of the heavy player the upper bound comes from the fact that < %(d +

calculating the area of the octagon. As shown in Figure 2/ 42 1 2,2 for all values ofr;. Note that the expressions

this area can be calculated based on the distarafethe two in (13) and (14) always take real values.

base stations, the distancés” and LP and the rangesy e assume that the goal of the players is to maximize their

andry. Thus, we can write the coverage area as follows: tility, in other words to maximize their coverage area while
d* 4+ 2d2(r2 —12) — (ry, — r2)? minimizing their interference area (i.e., the area, which is in

Similarly, from (C2) we get the bounds ory, knowing that
g?s positive and smaller thang:

On dé (9) their radio range, but they do not cover eventually). We define
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Utility U, (m2)
2,
Utility UL (m%)
L o

the light player

helmed
is overwhelme -3r the light player
is overwhelmed

2 I I 1 . . . . I I
700 800 900 1000 1100 1200 1300 1400 1500 0 500 1000 1500
Radio range [ (m) Radio range n (m)

(@) (b)

Fig. 3. Utility function (a) of the heavy player fat = 1km, vg = 0.1, v, = 0.6km and Ryax = 1.5km (defined by the regulator); and (b) of the light
player ford = 1km, v, = 0.1 andrg = 1.5km.

the utility per base station for playérplaying r; given that Definition 3: For anys; € S, defineBR;(s;) to be the set
the other playerj playsr; at its BS-s as follow’s of playeri’s best strategies givesy,.

Ui(ri,rj) = 0i —vi - Yi=(1+7) - 0i =i i -m (15) BR;(s;) = {si € 5: Ui(si,s5) = Ui(5;75j)a VS; €5}
Based on this definition, we can formulate the Nash equi-
where~; > 0 is a cooperationparameter that defines howlibria as follows (corresponds to Equation (15.2) in [21]):
much playeri cares about the size of its interference area. Definition 4: In a Nash equilibrium, in which the players
Note that the cooperation parameter provides a general metingl s, and 3;, we have:
to model both internal considerations of the operator such as
cooperativeness, as well as external cooperation enforcement 5; € BRy(3;), i € {A, B}
mechanisms such as an agreement between operators éteace, in a Nash equilibrium, none of the players is motivated
power priceinduced by the regulator of the spectrum. to change its strategy. This formulation shows us a method to
Let us graphically present the utilities of the players basdéd Nash equilibria: we first find the best response function
on expression (15). Figure 3a presents an example for fieé each player, then we identify a set of strategies for which
utility of the heavy player for a fixed value of, and Figure 3b Definition 4 holds.
presents the utility of the light player for a fixed valuergf.
In the ne.>§t sectlop, we derive stability points in the game usu&g_ Best Response Function
these utility functions.
We derive the best response function for the heavy player
from the utility functions presented in Figures 3a. For the
[Il. SINGLE-STAGE GAME heavy player, its utility is a concave function with a maximum
h point 7 ;0p, @S shown in Figure 3a. We can derivg .o, by

In this section, we considersangle-stage gamavhere botl ximizing (15) with the coverage area defined in (9).

. . ) a
players simultaneously choose their radio range once and o7

all. This corresponds to the case in which the base stations V2L + i) (& +r]) — d*ygm
are not able to perform power control during the operation of THtop = NoNiEr (16)
H

the network, thus the radio power has to be set manually at
the installation of the base stations. We use this basic scenario
to study the basic equilibria of the power control game. We 1500
extend our investigation to more complex scenarios in the
following sections.

We make use of the concept of Nash equilibrium [8], [19], 1000
[21] to show stability points in the game. Let us denote the

£
strategy of playet by s; € S and the strategy of the other o - :
player bys; € S, whereS is the set of strategies (i.e., the sl i
set of possible radio ranges). Then, we can definebis <V
response functiowf player: as follows (as presented in [21] m;jﬁmz
Equation (15.1)): |
0 500 1000 1500

T (m)

SNote that due to the specific scenario, the utility of playecan be i ] )
calculated by multiplyingl; with the number of its base stations. In thisFig. 4. Best response function of playigfor various~; values ford = 1km
scenario, we refer to the utility per base station as the utility of the playerand Ruax = 1.5km
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TABLE I

We can identify different best response strategies for this
NUMERICAL VALUES OF THE LIMITS OF Yi

case, corresponding to the definition interval of the utility

function, as follows. a2
YLIM1

1
TR & < —7~046

2(—4+27—V2m)
LIm2 e 0.59

YLIM3 % ~ 1.75

1) Ifraiop < \/d2 —2dr;, + 7’%, then the best response
of the heavy player is the lower bound in (13), because
the utility function is strictly decreasing:

= 2 _ 2
BRp(re) \/d Vadry + "L (1) equilibriumNEyax for the joint action Ruax, Rmax). We write

NEuin,:,; If the players just cover the service area, but they
have a different radio range (i.e., their radio ranges define the
limit case in C2) as shown in Figure 1). In the subscript,
BRy(rr) = TH.top (18) refers to the player with the larger radio range.
We can identify Nash equilibria in the single stage game
ased on Definition 4 by searching for the intersections of the
possible best response functions shown in Figure 4 using the
BRg(rr) = Ruax (19) corresponding equations (14), (17), (18) and (19).
e1) The radio ranges of the players just cover the service
area. They play one of the minimum Nash equilibria
(meaningNEwin or NEwin ;). This case holds for:

2) If \/d2 —V2drp, + 712 < ri0p < Ruax, then the best
response is (this corresponds to Figure 3a).

3) Finally, if g 10p > Ruax, then the best response of the0
heavy player is:

For the light player, the best response strategy should b
one of the bounds as defined in (14) as shown in Figure 3b. If
the upper bound in (14) applied, then the light player would
have reason to become a heavy player (i.e., apply a radio range a) va > Ymz OF;
larger than the upper bound in (14)). Hence, it is enough to b) v > m2.
compare only the lower bound with the best response solution®) There is a unique Nash equilibriuNEyax if
derived in (17), (18) and (19). The lower bound has two cases ~v4 < yuwmi andvys < yum1;

as expressed in (14). 3) No Nash equilibrium exists if
Let us now define theritical range of player; as the range Ym < va < qyumz and
r; for which the utility of playeri, whether the heavy or the vB < Yum1 OF Vice versa.

light player, is equal. We denote the critical radio rangepy  Taple 11l shows the types of different Nash equilibria as a
If player j plays a radio range larger than the critical range @finction of the cooperation values of the players.
playeri, then playeri should be the light player.

We can now derive the best response function of the players o _
by substituting (17) through (19) in the utility function andC. Equilibrium Selection

compare them with the utility playing; = 0. The result  From Table I, we can observe that there exist a variety of

is shown in Figure 4. We can notice that the critical rangQash equilibria depending on the parameters (i.e., cooperation,

(identified by the vertical lines) decreases as the cooperatig@ximum radio range) in the power control game. In order to

parametery; Increases. assess the success of the players in these Nash equilibria, we
Table | presents the critical ranges for players a function yse the concept dpareto-optimality

of v;, and we ShOV\iFthe numerical values of the limits in Definition 5: A pair of radio ranges is Pareto-optimal (or
Table Il If 7 < —~—3, then the critical range is largersocially optimal), if none of the players can increase its utility

than the maximum rang&vax and hence, the best respons@nless the utility of another player decreases.

is neverr; = 0. Note thatyums = W < L for any In order to assess the feasible region (all possible values of
Rmax > d. If v > yuwms, then the critical range; < Ruin  the utilities) of the radio ranges, we show the utilities for each
and the player necessarily playgn. possible values of 4 andrg for v4 = v = 0.1 in Figure 5.

Furthermore, let us distinguish théEvn ; ;o State in which
the player with the larger radio range plays= d and the
other player plays; = 0.

TABLE |
CRITICAL RADIO RANGES DEPENDING ON THE VALUE OFy;

value of; Critical range: r’ The following theorem shows that, depending on the pa-
~i < TUML 7% > Rwax, no critical range exists rameter values, the minimum Nash equilibria can be socially
v < v <umz | d <ri < Ruax optimal.

umz S % <yums | Bwin <ri<d ' Theorem 1:If severalNEyy ; ; Nash-equilibria exist in the

Vi Z M3 7} = Hwin, no critical range exists grid scenario, therach of them is Pareto-optimagxcept for

the following cases:

L . 1) If YA > YLIM3 andfyB < YLIM3, then onIyNEMW,B,AO is
B. Nash Equilibria in the Single Stage Game Pareto-optimal.
Let us designate the stability point in the game as follows. 2) If y4 < yumsz andvyg > yums, then onlyNEwin, 4,50 IS
NEwin denotes a Nash equilibrium in which the players play Pareto-optimal.
the radio rangesRuin, Rmin). Similarly, we define the Nash  We provide the proof of the theorem in Appendix I-A.
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TABLE Ill
NASH EQUILIBRIA (NE) IN THE SINGLE STAGE GAME AS A FUNCTION OF THE COOPERATION VALUES

B < umt | vt < vB < yum2 | vz < vB < YuM3 YB > YLIM3
Ya < YLm1 NEmax no NE NEmIN, 4, B NEmiN, A, B
Yumr < va < yumz | ho NE no NE NEwmin, 4, B NEmiN, A, B
yum2 < va < yumz | NEwin,B, A NEwin, B, A NEwin, 4,8 5 NEuin,B,A | NEuin,a,B ; NEvin,B, 4
YA > M3 NEwvin,B,4 | NEwin,B, 4 NEwmin, 4,5 ; NEmin,B,4 | NEmin,4,B ; NEmin,B,a ; NEvin

TABLE IV
THE BEST(PARETO-OPTIMAL) NASH EQUILIBRIA IN THE REPEATED GAME AS A FUNCTION OF THE COOPERATION VALUES

B <yumt | yumt < vB < um2 | yume < v < Yums YB > YLIM3
Ya < ML NEmax no NE NEwmiN, 4, B NEmIN, 4, B0
umr < va < yumz | ho NE no NE NEwmiN, 4, B NEmIN, 4, B0
yumz < va < yums | NEwin, B, 4 NEwmiN, B, 4 NEmin,a,B ; NEmin,B,4 | NEmiN,4,B0
YA 2 YLIM3 NEwmin,B,40 | NEwiN, B, 40 NEwin, B, a0 NEwvin,4,B ; NEun,B,4 ; NEmin
ZOX 105 i
wilities
% 3‘ Esz'RFS\MN))
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Fig. 5. The utilities for the possible values ofi andrp if d = 1km and A

va =78 =0.1

Fig. 6. Discrete area model with points érdistance.

Based on Theorem 1, we can identify the most beneficial

Nash equilibria from Table Ill. We express this modifiedpstituting it with a grid of intervat as shown in Figure 6.
solution in Table IV. In our numerical study we use a grid of 100x100 points. For a

Table IV shows that if the operators are cooperative, th%‘i\/en set of radio ranges, we determine the number of points
they should play the minimum radio range with which theyhat helong to the base station in the middle of the considered
are able to cover the service area. Furthermore in a fajfeqa in each of the radio models. This results in an empirical
solution, they should both plagtwin. However, if one of the yaiue of the coverage area. We substitute this coverage area
players does not cooperate and the other does, then the nRflge into (15) to obtain the utility of the players in both
cooperative player can increase its radio range to force {gses and then we calculate the best responses from the utility
cooperative player out of the game. If none of the playefgnction. Figure 7 shows an example of the best response of
cooperate, then they will end up in both playing the maximumayer; who controls the base station in the middle of Figure 6
radio rangeRmax. for each of the radio models.

We can observe that the best response functions are very
similar for the two models. We performed our numerical

analysis for various values of; and v, and it resulted in

Our model based on the Voronoi diagram in the Laguer{ e same conclusion. Hence, the conclusions about the Nash

geometry results in coverage areas with §tra|ght separatg)&umb“a in the radio range model hold for the physical model
lines. We adopted this model, because if we applied the o .
: . . e as well. However, the derivation of the precise values;a&nd
physical radio model based on (1), it would be difficult to . . : : )
: . ~; requires an extensive set of numerical calculations. This fact
derive a closed-form expression for the coverage and hence,: :

- . motivated us to study the problem based on the radio range
for the utility of the players. We now use a numerical method
. . model.

to compare the radio range model to the physical model an

to show that the principles derived in our model hold for the
physical model as well.

We compare the coverage areas in both models as followsln the previous section, we assumed that the radio range of
We transform the continuous area into a discrete area the base stations has to be set in advance and no power adjust-

D. Discussion

IV. REPEATED GAME
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- ‘ « Ry in the next time step if the other player playBghn

600 1 in the previous time step, or
500[ , ; ] « Rumax for the nextk; time steps, if the other player played

i

anything else.
The parametek; (also called thgpunishment intervaldefines
300 ] the number of time steps for which playepunishes the other
player. Note that the Punisher strategy is similar to the well-
known Tit-For-Tat (TFT) strategy [2}. The major difference

best reposnse of player i; BR‘(r)

100 e is that it retaliates any defection by playirdguax instead of
N T e copying the same behavior. Furthermore, the Punisher strategy
radio range of player j: is different from theTrigger strategy defined in [16], because

the Punisher strategy imposes a punishment that is comparable
to the amount of misbehavior and thus it is able to recover
from erroneous defections.
If both players cooperate, they both pl&yn. In this case
ment is possible. In this section, we consider the possibilitgey both have theooperative utilityC; = Up (R, Fwin)°-
of an iterative power control in wpeated game/\/e assume |f playerz defects, Whlle thelothel’ player does not, the defect-
that the operators do not know the end of the game, heriB player has @heating gainG; = Un (BR;(Rwmin), Bmin)-
we study the problem in an infinite repeated game model wigibstitutingy; to vy, we can obtain the best response value
discounting [2], [8]. We will show that cooperation (i.e., both32; (Rmin) from (16):
players playingRyn) can be enforced in the cases in which d2(3 — (1 — 3.
. g . , _d*B— (7 —3)v))
no cooperative equilibrium exists. BR;(Ruin) = _
. . 2(1+ ’YJ)
We extend the single-stage game as follows: We assume _ ) )
that the game is split up into steps denotedtbin each step, If we substituter; = 7 = R into (15), we get a cheating
playeri € {A, B} adjusts the radio range of its base statior@iN G; = Un (BR;(Rvin), Rvin):

according to its strategy;. d*(8 + (16 — 6m)y; + (8 — 67 + 72)73)

Fig. 7. Best response function of playefor v; = v; = 0.1, d = 500m
and Ryax = 700m.

(21)

Furthermore, let us define the discounted cumulative utility G; = 1057 (22)
in k < oo time steps as: g
. After the defection, player retaliates by playingRyax
TN eyt and playerj plays its best response to this radio range.
Ul(k)_gUl(t) v (20) In this case playerj has the defection utility D; =

. . . . UH(RMA)(, BRj(RMAx)). If BRj(RMAx) = Ruax, then its
where0 < w <1 is the discounting factarwhich expresses utility for the nextk; time slots is the defection utility’::
the value of future utilities for the players. The discounting J
factor |s sometimes interprete_d as a value rela_ted to the D;- = (1+7j)d2 *’YijAAxW (23)
probability that the game ends in the subsequent timé.slot ) . i

We now prove a theorem to show that non-cooperatidh B (fmax) = 0, then _'tS utility for the next; time slots
based onRyax is @ Nash equilibrium. is the defection utilityD; :

Theorem 2:Both players playingRuax in all time steps is D’ =0 (24)
a Nash equilibrium ify; < ym1 andy; < w1 holds. J

Proof: Let us assume that playérplays Ruax all the Otherwise, if player; played Ry, it would have a coop-

time. Since the decision of the other player does not affegtation utility C; for all the k; time slots:
playeri's radio range, we can analyze the game by time steps. 22— (1 —2)y))
In any time step, playernecessarily becomes the heavy player C; = J
(or they are of equal weight). H; < yum1 and~y; < w1,

then the best strategy of the other playerjs= r; = Rwax ) )
in every time step. proven in the following theorem.

In this case, the players are in a socially non-optimal Theorem 3:A Nash e_qumbrlumNEM..N based .O,nRM'N IS
equilibrium. We have seen in Theorem 1 that for high enfqrceable with t.h@unlsherstrategy (|.e._, playefr is able to
and~yp values, cooperation does not need to be enforced. \R}én'Sh the d2efect|on of the other playgrif
will now prove conditions that enable the players to enforce 1) 7 < 7= and
cooperation for other cooperation values. We prove in this 2)
section that they can do better, by applying a strategy called
Punisher

Definition 6: If playeri plays thePunisherstrategy, it plays 5TFT defines the choice of a given player in the next time slot, whereas

Rmin in the first time step. For any further time steps, it playsiae Punisher strategy defines the punishment interval as a set of subsequent
time slots.
4Based on this interpretation, we assume that the discounting factor is théNote that forrq = rg, Uy (ra,rg) = Ur(ra,rp). Hence we can
same for both players. apply any of the two utility functions.

. (25)

Cooperation can be enforced using the Punisher strategy as

G;— D,

cijj'(l_“’)“ (26)
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n* 0 ‘ ‘ ‘ : We provide the proof in Appendix I-C.

| Since finding the maximum utility for an operator is NP-
“““““““““ ‘ complete in general, it is impossible to calculate the best
‘ ] responses for a given player in polynomial time. Thus, we
8 ﬂfo:::a ] can state the following result.

— Yorisre | Corollary 2: Finding Nash equilibria in the power control
game for general values of radio ranges is NP-complete.

utility of player j (Ul)

Tl e 1 VI. CONCLUSION

4 = o = = 0 In this paper, we have investigated the problem of co-
time slots 1) existing wireless operators in a shared spectrum. We have
Fig. 8. Average utiity of playeri for d — 1k ol R assumed that the operators apply power control at the base
. 8. . = m, v; = 0.1, = . . . . .-
1.5km andw — 0.1 if player j applies a punishment. One-time defectiorStations to mitigate interference, while providing a permanent
is quickly retaliated and hence cooperation is the best choice. The Trigg@rvice to the users. To the best of our knowledge, our paper
strategy stabilizes in infinite punishment, and the Punisher strategy returngdohe first to investigate this problem.
th tive state. L . . .
© cooperaiive state The contribution of this paper is threefold. First, we have
shown that Nash equilibria exist if the operators set the power
wherew < 1, 7; # 0 and; # 0. of their base statloqs at .the beglnnlng of th_e c.)perat.|on gf the
jaetwork. We have identified different equilibrium situations
that depend on the cooperativeness of the operators. Second,
we have proved a condition for which a socially optimal
ki > log,, (1 G- Dj - w)) 1 27) Nas_h equilibrium exists and that it can be enforged using
Cj— Dy punishments. Third, we have shown that the solution of the

We refer to Appendix I-B for the proof of the theorem. Not@oWwer control problem is NP-complete for a general topology
that forw = 1, cooperation can always be enforced using tHf _base stations. In general, our results show which operation
Punisher strategy. This principle is expressed in general by #ints are beneficial for the players and how these should be
Nash folk theorem [8]. achieved. .

The typical value ofk; is small (ford = 1km, v; = 0.1, In terms of fu_tur_e work, we W|_II so_lve the power control
Ruax = 1.5km andw = 0.1, the value isk; = [1.23] = 2). problem by deS|gn|ng an gpp_roxmgnon_ algorithm that con-
For higher values of;, Ryax andw, the punishment interval is verge§ to a des[rable gthbnum ;ltuat|0n for a gene_ral set
one time slot (i.e., there is an immediate punishment). Figurégradio ranges; in particular, we will study the properties of
illustrates the average per time slot utility of a player for botfe convergence by simulations. Furthermore, we will Qonslder
cooperation and defection. One can observe that cooperaf@iVer control on the data channels as well. We also intend to
is more beneficial, because defection is quickly retaliated Sjudy the effect of other techniques to mitigate interference,

If the above condition holds, the punishment interval
defined by:

the other player. such as directional antennae and mobile devices with multiple
Based on Theorem 3, we state the following result. antennae.
Corollary 1: If both players play théunisherstrategy and
the conditions of Theorem 3 hold, then it results in a Nash ACKNOWLEDGEMENTS
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This gives the condition ok;, because the left side is strictly
positive. Thus the inequality cannot be fulfilled if the right
side is non-positive, meaning that:

G; —D;

C; — Dy
If the condition in (36) holds, we can take the logarithm of
both sides in (35). Sincev < 1, the logarithm function is

strictly decreasing and hence the direction of the inequality
changes.

(1—w) <1 (36)

G.—D.
k; >1 1- 2. (1~ -1 37
on. (1- G =p - (1-0) (37

Due to the symmetric situation, the same arguments apply
for the opposite case that defines the punishment interval for

player ;.

C. Proof of Theorem 4

To prove the theorem, let us consider the special case of
finding the optimal radio range allocation in the presence of
a single operator. In this case, operatdras the utility:

|Bi|
Ui= Y [A+%) Opn—v-12 7] (38)
bm=1
. Bi
Let us denote the whole service arealy; = Lmlzl Om.

Since thev; values are the same for all base stations, we can
reformulate the utility as:
|Bi|
Ui=1+49) Ow—yi-7 Y 12 (39)
bm=1
Under the assumption that= 2, the power is proportional
to the square of the radio range. Chamatedl. [4] as well as
Varbrand and Yuan [25] have proven that finding the minimum
power allocation in the network of a cellular operator while
maintaining the total coverage is NP-complete. Hence, the
minimum value ofU; cannot be determined in polynomial
time. Because the problem is NP-complete for the special case
of one operator, we conclude that it is NP-complete in the
general game as well.
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