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Abstract— So far, cellular networks have been operated in
“private” frequency bands. But recently, several researchers and
legislators have argued in favor of a more flexible and more
efficient management of the spectrum, leading to the possible
coexistence of several network operators in ashared frequency
band. In this paper, we study this situation in detail, assuming
that mobile devices can freely roam among the various operators.
Free roaming means that the mobile devices measure the signal
strength of the pilot signals (i.e., beacon signals) of the base
stations and attach to the base station with the strongest pilot
signal. We model the behavior of the network operators in a
game theoretic setting in which each operator decides about the
power of the pilot signal of its base stations. We first identify
possible Nash equilibria in the theoretical setting in which all
base stations are located on the vertices of a two-dimensional
lattice. We then relax this topological assumption and show
that, in the more general case, finding the Nash equilibria is an
NP-complete problem. Finally, we prove that a socially optimal
Nash equilibrium exists and that it can be enforced by using
punishments.

Index Terms— Wireless networks, shared spectrum, pilot
power control, cooperation, game theory, Nash equilibrium, NP-
completeness

I. I NTRODUCTION

Cellular networks are notoriously difficult to design and
operate; in particular, defining the optimal location of the
base stations and fine tuning their configuration parameters is
very challenging. For this reason, government agencies (such
as the FCC in the US) have sold or rented, for example by
auction, each operator a frequency band for its exclusive usage
in a given country or region. Only a small part of the whole
spectrum is allocated as ashared spectrum, in which networks
function in the same (unlicensed) frequency band.

With the progress of technology and the fast growing
demand for ubiquitous high-speed wireless services, it is clear
that the pressure towards more flexibility of the usage of
the spectrum will only increase. Therefore, the government
agencies are likely to adapt the current regulations in order
to increase the proportion of the unlicensed spectrum as
discussed in [3], [7].

The evolution towards unlicensed frequency bands can lead
to a better usage of the spectrum. Yet, it would also create
a novel situation, in which the base stations of different
operators would interfere with each other. An operator may
be tempted to let its base stations transmit at the maximum
authorized level. But by doing this, it would maximize inter-
ference not only to its own base stations, but also to the base
stations of the other operators, and to all mobile devices in

the power range of its base stations; in addition, it would face
the danger that the other operators retaliate by behaving in the
same way.

In our paper, we assume that mobile users canfreely
roam across the base stations located in their neighborhood,
attaching to the one offering the most favorable signal quality
(i.e., the base station with the strongest pilot signal) and band-
width, irrespectively of the operator to which the base station
belongs1. From the interference perspective, this operating
principle is much more efficient than the current practice,
because it enables mobile devices to find the “closest” base
station in the area and hence mobile devices and base stations
can significantly decrease their transmission power. This free
roaming could be beneficial for both operators and users,
because the former could serve an increased set of users, and
the latter could enjoy various services across several operators.

We also assume that each operator wants to cover the
largest possible area by increasing the transmission range of
its base stations. At the same time, it wants to minimize
interference. These two contradictory goals correspond to the
willingness to maximize the number of users who can attach
to its base stations. We model this situation as a game between
operators in terms of power control of the base stations. We
believe our paper to be one of the first steps towards a deeper
understanding of the trade-offs of operating cellular networks
in shared spectrum.

Note that the general problem of power control of base
stations is hard to solve (i.e., NP-complete); it is characterized
by the following dimensions: (i) the size of the base station
sets, (ii) the geographic locations of the base stations and (iii)
their possible radio ranges.

Game theory is used to study the power control of user
devices in wireless networks, notably in cellular systems as
studied in [1], [9], [12], [13], [14], [17], [27] and [29]. Game
theory is also used to study cooperation in wireless ad hoc
networks, for example in [5], [15] and [24], in particular
for cooperative power control [18]. A general framework for
resource allocation in wireless network is addressed in [6].

Recently, the coexistence of multiple Internet Service
Providers (ISPs) was studied by Shakottai and Srikant in [23].
They consider both transit and customer prices for the ISPs.
They show that if the number of ISPs competing for the same
customers is large, then it can lead to price wars. In addition
to this work in wired networks, the coexistence of wireless

1The users might have other attachment preferences based on subscription
type, past experience, etc. We will consider the extension of user attachment
behavior in our future work.
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operators in a non-shared spectrum is addressed in two con-
tributions. In [10], Halld́orssonet al.study channel assignment
strategies for Wi-Fi operators. They use the maximum graph
coloring problem to identify Nash equilibria and they also
provide a bound on the price of anarchy of these equilibria.
In another paper [28], Zemlianov and de Veciana consider the
scenario, in which users are able to choose between a cellular
network and a Wi-Fi network. They show that congestion
sensitive strategies are better than proximity-based strategies.
None of these works considers the power control of the base
stations.

Our paper addresses the problem of pilot signal power
control in shared spectrum networks. Haykin provides a
comprehensive overview [11] of the current tendencies and
research challenges in shared spectrum communications in
general. One of the challenges, namely opportunistic spectrum
access, is addressed in the paper of Wanget al. [26].

This paper is organized in the following way. In Section II,
we describe the system model and the corresponding power
control game. We solve this game on a two-dimensional lattice
topology in Section III. In Section V, we present our results
in the case of a general topology of base stations. We extend
our study with a repeated game model in Section IV. Finally,
we conclude in Section VI.

II. M ODEL

A. System Model

We make the following assumptions with respect to the
communication network. We assume two wireless communi-
cation networks, each operated by anoperator and we call
the operatorsA andB. Operatori ∈ {A,B} controls a set of
base stations (BS-s)denoted byBi. We denote the union of
all base stations byB. There exist no BS-s that are located
at the same place and belong to different operators2. We also
assume severalusersequipped withmobile devicesto access
the communication network. The networks reside in a given
service area, where the operators want to provide wireless
access for the users. We restrict ourselves to two operators
in order to provide an insight in the basic principles of
cooperation in a multi-operator context. Note that the problem
is hard to solve for a general network topology as presented
in Sections V.

We assume that the radios of the base stations and the
mobile devices are compatible, meaning that any user is able
to access the network via any of the base stations. Base
stations and mobiles operate on the same unlicensed band of
the frequency spectrum. Each of these devices might perform
power control to optimize its transmission power and reduce
interference. This optimization can be realized in three ways:
the power control of the pilot signal of the BS-s, of the
downlink (BS to mobile) and of the uplink (mobile to BS). In
this paper, we focus on the first technique and we postpone the
investigation of the other two techniques to our future work.
To mitigate interference, the shared frequency band is usually

2To reduce operating costs, operators of current cellular networks often
share the same site. However, if users can freely roam, then this site sharing
does not make sense anymore.

split up into channels (i.e., separated frequency sub-bands), but
the pilot signal is typically emitted on a single shared channel
for all the base stations, which results in mutual interference
of the pilot signals (in CDMA networks, the interference of
the pilot signals is referred to as thepilot pollution [22]).

According to thephysical modelof signal propagation [22],
the pilot signal of a base stationbi ∈ B can be received by
a user deviceu if its signal-to-interference-noise ratio (SINR)
exceeds a reception thresholdβ:

Pi · giu

N0 +
∑

j∈B,j 6=i Pj · gju
≥ β (1)

where Pi is the transmission power of BSbi, giu is the
channel gain between the BSbi and user deviceu and N0

is the Gaussian thermal noise. We assume that the channel
gain depends only on the distance of the transmitter and the
receiver we normalize the effect of the antenna characteristics,
thus we havegiu = d−α

iu between the BSbi and user deviceu,
where2 ≤ α ≤ 5 is the path loss exponent that characterizes
the radio signal propagation properties of the environment.
Hence, (1) corresponds to the Friis free space radio signal
propagation equation (see [22] Equation (4.1)). It captures
how the reception power depends on the most important
factors, namely on the transmission power and the distance
between transmitter and receiver. Note that we consider the
local average of the received pilot signal as described in [22].
In reality, on a small time scale, the pilot power signals have
a time-varying property due to fading. In our future work,
we will consider a more realistic radio signal modelling that
incorporates fading and more realistic path loss models.

We assume that (1) holds for every point in the service area
for at least one base station and that the user deviceu attaches
to the base stationbi with the best SINR. Thus, we can write
that:

Pi · d−α
iu

N0 +
∑

j∈B,j 6=i Pj · d−α
ju

≥ Pl · d−α
lu

N0 +
∑

m∈B,l 6=m Pm · d−α
mu

(2)
for any other base stationbl.

We abstract away the mobiles and assume that their ex-
pected position is uniformly distributed over the service area.
Note that this also means a balanced load on the base stations
(i.e., no users have to switch base stations due to the lack
of available bandwidth). We leave the topic of other user
distributions for future work.

Let us assume that the pilot signals propagate in an open
area, meaningα = 2. Then (2) defines a Multiplicatively
Weighted Voronoi power diagram (MW power diagram) [20],
which determines the set of points in the service area (potential
places of user devices) that are attached to a given base station.
In the MW power diagram, a point belongs to a base station
if it is “closer” to it than to any other base station, where the
distance is defined as follows:

Definition 1: The multiplicatively weighted power distance
between the pointsu andbi is defined as:

dmpw(u, bi;wi) =
d2

iu

wi
(3)
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wherediu is the Euclidian distance between the pointsu and
bi andwi is a weight assigned to pointi.

We can define theVoronoi region V (bi) around a base
stationbi ∈ B as the set of pointsu that are “closer” to point
bi than to any other pointbj (i.e., bi 6= bj). Hence, we can
write V (bi) as:

V (bi) = {u|dmpw(u, bi; wi) ≤ dmpw(u, bj ;wj) for i 6= j}
(4)

We can write theVoronoi diagramV(B) of all base stations
B as:

V(B) =
⋃

V (bi) (5)

wherebi ∈ B.
Due to the complex shape of the Voronoi diagram with

multiplicatively weighted distances, it is difficult to derive an-
alytical solutions for the pilot power control problem. Hence,
we apply a radio range modelthat is widely used in the
literature. We will show in Section III-D that the principles
derived from the range model hold for the physical model as
well.

Let us derive from (1) theradio rangeof the pilot signal
of the BSbi as the Euclidian distance within which the users
are able to attach to this base station if there is no interference
from other devices:

ri = α

√
Pi

βN0
(6)

According to the radio range model, we can define the Addi-
tively Weighted Voronoi power diagram (AW power diagram)
[20]. In the AW power diagram, the distance is defined as
follows:

Definition 2: The additively weighted power distancebe-
tween the pointsu andbi is defined as:

dapw(u, bi;wi) = d2
iu − wi (7)

wherediu is the Euclidian distance between the pointsu and
bi andwi is a weight assigned to pointbi.

In this paper, we substitutewi = r2
i and hence we obtain a

Voronoi diagram in the Laguerre geometry[20]. This model
corresponds to a Voronoi diagram, where the distance is
defined as a tangential Euclidean distance to circles centered
at the base stations’ locations and radii corresponding to their
radio ranges.

We assume that the base stations are placed on the vertices
of a two-dimensional lattice in an alternating way such that any
BS that belongs to operatorA has four neighboring BS-s that
belong to operatorB (a small part of the network is shown in
Figure 1). Let us calld the smallest Euclidian distance between
base stations. In Section V and IV, we will extend our model
to general network topologies.

To further specify our model, we assume that:

• A1: Operators want to provide wireless access service
everywhere. Thus, no place remains uncovered in the
service area.

• A2: Operators can estimate or measure their coverage
including the action of other operators.

A

AB

B

d

Fig. 1. Base stations on the vertices of a two-dimensional lattice. HereA is
the operator with a larger radio range.

• A3: Each BS belonging to the same operator has the
same radio range. We show in Section V that relaxing
this assumption makes the power control problem NP-
complete.

• A4: There exists a limitationPMAX on the transmission
power of any base station, which is defined by the
regulator of the wireless spectrum. Then, the maximum
radio rangeRMAX can be derived from (6) by substituting
Pi = PMAX. Furthermore, if the radio ranges of all base
stationsbm ∈ B are equal, we denote the minimum radio
range for whichA1 holds byRMIN =

√
2

2 d.
• A5: The users can freely roam between any of the base

stations (i.e., the operators do not forbid roaming between
their networks).

• A6: Users are uniformly distributed over the area and
hence, the expected load is the same on every base station.

• A7: The base stations and the mobile devices have
omnidirectional antennae. The investigation of the effect
of directional antennas is part of our future work.

These assumptions ensure an open spectrum environment,
in which users enjoy ubiquitous wireless connectivity. In
particular, we make AssumptionA3, as well as the assumption
that the base stations are placed on the vertices of a grid, to
make the model tractable. This special scenario is reasonable
for a small number of base stations, such as for a small city
network. We will show stability points for this special model.
We are motivated to study this special model, because we
wanted to provide some quantitative insights into the power
control problem. The general problem is very involved: We
show that if operators can set an arbitrary radio range for their
base stations (i.e.,A3 does not hold), then the power control
problem is hard to solve.

B. Power Control Game

We model the power control problem with two operators as
a two-player, nonzero-sum game. We refer to the two operators
as players A and B, respectively. Due toA3, we designate
the radio ranges of the pilot signal of the players byrA and
rB . Thestrategyof the players defines their best radio range.
The goal of the players is to maximize the area they cover
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rH rL

H L

OL = coverage area of the light player
YL = interference area of the light player

OH = coverage area of the heavy player

d

P

rH rL

H L

OH = coverage area of the heavy player

YL = interference area of the light player

(OL = coverage area of the light player is zero)

d

(a) (b)

Fig. 2. Coverage and interference area of a base station, illustrated with two base stations: (a) both BS-s have a coverage area; (b) the BS-s of the light
player are overwhelmed by the BS-s of the heavy player and thus the light player has no coverage area at all.

with their pilot signal as expressed by theirutility function.
To express the utility of the players formally, let us introduce
the following concepts.

Assume that the two players choose a different radio range.
Let us call the player with the larger radio rangeheavyand
the player with the smaller rangelight. Let us denote the radio
range of the heavy player byrH and the one of the light player
by rL (recall from A3 that a player has the same range for
all of its base stations). In this section, we assume thatA is
the heavy player andB is the light player (i.e.,rA = rH

andrB = rL); note, however, that it can be the opposite due
to the symmetric situation. Since the placement of the BS-s
is symmetric and the players apply the same radio range to
all of their BS-s, we can analyze the game considering two
neighboring base stations, as shown in Figure 2.

We define thecoverage area (Oi) for any BS bi as its
Voronoi regionV (bi) in the radio range model (i.e., in the
Voronoi diagram in the Laguerre geometry). We define the
interference area (Yi) for a BSbi as:

Yi = Ti −Oi = r2
i · π −Oi (8)

whereTi is the total area covered by the radio range andri

denotes the radio range of BSbi.
Note that the coverage area of a player depends on the radio

range of the other player. Accordingly, we can distinguish two
cases as follows.

In the first case, both players have a non-empty coverage
area as presented in Figure 2a. For this case, the following
condition holds:

rH <
√

r2
L + d2 (C1)

We can express the coverage area of the heavy player by
calculating the area of the octagon. As shown in Figure 2,
this area can be calculated based on the distanced of the two
base stations, the distancesHP and LP and the rangesrH

andrL. Thus, we can write the coverage area as follows:

OH =
d4 + 2d2(r2

H − r2
L)− (r2

H − r2
L)2

d2
(9)

The coverage area of the light player is as follows:

OL =
(d2 − r2

H + r2
L)2

d2
(10)

If Condition C1 does not hold, then the light player is
overwhelmed by the heavy player, meaning that the pilot signal
of the heavy player is the strongest everywhere (as presented
in Figure 2b). If the heavy player overwhelms the light player,
the coverage area functions are as follows:

OH = (
√

2d)2 = 2d2 (11)

OL = 0 (12)

In addition to C1, we can derive a condition for the radio
ranges of the two players fromA1 from the geometry pre-
sented in Figure 1 as follows:

r2
H ≥ (

√
2

2
d− rL)2 + (

√
2

2
d)2 = d2 −

√
2drL + r2

L (C2)

In the limit case, in which the equality holds in (C2), they just
cover the service area (as shown in Figure 1).

From (C2) andA4, we can derive the definition interval for
rH : √

d2 −
√

2drL + r2
L ≤ rH ≤ RMAX (13)

Similarly, from (C2) we get the bounds onrL knowing that
it is positive and smaller thanrH :

max{0,

√
2

2
(d−

√
−d2 + 2r2

H)} ≤ rL ≤ rH (14)

The upper bound comes from the fact thatrH ≤
√

2
2 (d +√

−d2 + 2r2
H) for all values ofrH . Note that the expressions

in (13) and (14) always take real values.
We assume that the goal of the players is to maximize their

utility, in other words to maximize their coverage area while
minimizing their interference area (i.e., the area, which is in
their radio range, but they do not cover eventually). We define
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Fig. 3. Utility function (a) of the heavy player ford = 1km, γH = 0.1, rL = 0.6km andRMAX = 1.5km (defined by the regulator); and (b) of the light
player ford = 1km, γL = 0.1 andrH = 1.5km.

the utility per base station for playeri playing ri given that
the other playerj playsrj at its BS-s as follows3:

Ui(ri, rj) = Oi − γi · Yi = (1 + γi) ·Oi − γi · r2
i · π (15)

where γi ≥ 0 is a cooperationparameter that defines how
much playeri cares about the size of its interference area.
Note that the cooperation parameter provides a general method
to model both internal considerations of the operator such as
cooperativeness, as well as external cooperation enforcement
mechanisms such as an agreement between operators or a
power priceinduced by the regulator of the spectrum.

Let us graphically present the utilities of the players based
on expression (15). Figure 3a presents an example for the
utility of the heavy player for a fixed value ofrL and Figure 3b
presents the utility of the light player for a fixed value ofrH .
In the next section, we derive stability points in the game using
these utility functions.

III. S INGLE-STAGE GAME

In this section, we consider asingle-stage game, where both
players simultaneously choose their radio range once and for
all. This corresponds to the case in which the base stations
are not able to perform power control during the operation of
the network, thus the radio power has to be set manually at
the installation of the base stations. We use this basic scenario
to study the basic equilibria of the power control game. We
extend our investigation to more complex scenarios in the
following sections.

We make use of the concept of Nash equilibrium [8], [19],
[21] to show stability points in the game. Let us denote the
strategy of playeri by si ∈ S and the strategy of the other
player by sj ∈ S, whereS is the set of strategies (i.e., the
set of possible radio ranges). Then, we can define thebest
response functionof player i as follows (as presented in [21]
Equation (15.1)):

3Note that due to the specific scenario, the utility of playeri can be
calculated by multiplyingUi with the number of its base stations. In this
scenario, we refer to the utility per base station as the utility of the player.

Definition 3: For anysj ∈ S, defineBRi(sj) to be the set
of player i’s best strategies givensj .

BRi(sj) = {si ∈ S : Ui(si, sj) ≥ Ui(s
′
i, sj), ∀s

′
i ∈ S}

Based on this definition, we can formulate the Nash equi-
libria as follows (corresponds to Equation (15.2) in [21]):

Definition 4: In a Nash equilibrium, in which the players
play ŝi and ŝj , we have:

ŝi ∈ BRi(ŝj), i ∈ {A,B}
Hence, in a Nash equilibrium, none of the players is motivated
to change its strategy. This formulation shows us a method to
find Nash equilibria: we first find the best response function
for each player, then we identify a set of strategies for which
Definition 4 holds.

A. Best Response Function

We derive the best response function for the heavy player
from the utility functions presented in Figures 3a. For the
heavy player, its utility is a concave function with a maximum
point rH,top as shown in Figure 3a. We can deriverH,top by
maximizing (15) with the coverage area defined in (9).

rH,top =

√
2(1 + γH)(d2 + r2

L)− d2γHπ√
2
√

1 + γH

(16)
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Fig. 4. Best response function of playeri for variousγi values ford = 1km
andRMAX = 1.5km
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We can identify different best response strategies for this
case, corresponding to the definition interval of the utility
function, as follows.

1) If rH,top <
√

d2 −√2drL + r2
L, then the best response

of the heavy player is the lower bound in (13), because
the utility function is strictly decreasing:

BRH(rL) =
√

d2 −
√

2drL + r2
L (17)

2) If
√

d2 −√2drL + r2
L < rH,top < RMAX, then the best

response is (this corresponds to Figure 3a).

BRH(rL) = rH,top (18)

3) Finally, if rH,top > RMAX, then the best response of the
heavy player is:

BRH(rL) = RMAX (19)

For the light player, the best response strategy should be
one of the bounds as defined in (14) as shown in Figure 3b. If
the upper bound in (14) applied, then the light player would
have reason to become a heavy player (i.e., apply a radio range
larger than the upper bound in (14)). Hence, it is enough to
compare only the lower bound with the best response solutions
derived in (17), (18) and (19). The lower bound has two cases
as expressed in (14).

Let us now define thecritical rangeof playerj as the range
rj for which the utility of playeri, whether the heavy or the
light player, is equal. We denote the critical radio range byr∗j .
If player j plays a radio range larger than the critical range of
player i, then playeri should be the light player.

We can now derive the best response function of the players
by substituting (17) through (19) in the utility function and
compare them with the utility playingri = 0. The result
is shown in Figure 4. We can notice that the critical range
(identified by the vertical lines) decreases as the cooperation
parameterγi increases.

Table I presents the critical ranges for playeri as a function
of γi, and we show the numerical values of the limits in
Table II. If γi < d2

π·R2
MAX−d2 , then the critical range is larger

than the maximum rangeRMAX and hence, the best response
is neverri = 0. Note thatγLIM1 = d2

π·R2
MAX−d2 ≤ 1

π−1 for any
RMAX > d. If γi ≥ γLIM3, then the critical ranger∗j ≤ RMIN

and the player necessarily playsRMIN.

TABLE I

CRITICAL RADIO RANGES DEPENDING ON THE VALUE OFγi

Value ofγi Critical range: r∗j
γi < γLIM1 r∗j > RMAX, no critical range exists
γLIM1 ≤ γi < γLIM2 d < r∗j < RMAX

γLIM2 ≤ γi < γLIM3 RMIN < r∗j < d

γi ≥ γLIM3 r∗j ≤ RMIN, no critical range exists

B. Nash Equilibria in the Single Stage Game

Let us designate the stability point in the game as follows.
NEMIN denotes a Nash equilibrium in which the players play
the radio ranges (RMIN, RMIN). Similarly, we define the Nash

TABLE II

NUMERICAL VALUES OF THE LIMITS OF γi

γLIM1
d2

π·R2
MAX−d2 < 1

π−1
≈ 0.46

γLIM2
2(−4+2π−√2π)

8−8π+π2 ≈ 0.59

γLIM3
2

π−2
≈ 1.75

equilibriumNEMAX for the joint action (RMAX, RMAX). We write
NEMIN,i,j if the players just cover the service area, but they
have a different radio range (i.e., their radio ranges define the
limit case in (C2) as shown in Figure 1). In the subscript,i
refers to the player with the larger radio range.

We can identify Nash equilibria in the single stage game
based on Definition 4 by searching for the intersections of the
possible best response functions shown in Figure 4 using the
corresponding equations (14), (17), (18) and (19).

1) The radio ranges of the players just cover the service
area. They play one of the minimum Nash equilibria
(meaningNEMIN or NEMIN,i,j). This case holds for:

a) γA > γLIM2 or;
b) γB > γLIM2.

2) There is a unique Nash equilibriumNEMAX if
γA < γLIM1 andγB < γLIM1;

3) No Nash equilibrium exists if
γLIM1 < γA < γLIM2 and
γB < γLIM1 or vice versa.

Table III shows the types of different Nash equilibria as a
function of the cooperation values of the players.

C. Equilibrium Selection

From Table III, we can observe that there exist a variety of
Nash equilibria depending on the parameters (i.e., cooperation,
maximum radio range) in the power control game. In order to
assess the success of the players in these Nash equilibria, we
use the concept ofPareto-optimality.

Definition 5: A pair of radio ranges is Pareto-optimal (or
socially optimal), if none of the players can increase its utility
unless the utility of another player decreases.

In order to assess the feasible region (all possible values of
the utilities) of the radio ranges, we show the utilities for each
possible values ofrA andrB for γA = γB = 0.1 in Figure 5.
Furthermore, let us distinguish theNEMIN,i,j0 state in which
the player with the larger radio range playsri = d and the
other player playsrj = 0.

The following theorem shows that, depending on the pa-
rameter values, the minimum Nash equilibria can be socially
optimal.

Theorem 1:If severalNEMIN,i,j Nash-equilibria exist in the
grid scenario, theneach of them is Pareto-optimal, except for
the following cases:

1) If γA > γLIM3 andγB < γLIM3, then onlyNEMIN,B,A0 is
Pareto-optimal.

2) If γA < γLIM3 andγB > γLIM3, then onlyNEMIN,A,B0 is
Pareto-optimal.

We provide the proof of the theorem in Appendix I-A.
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TABLE III

NASH EQUILIBRIA (NE) IN THE SINGLE STAGE GAME AS A FUNCTION OF THE COOPERATION VALUES

γB < γLIM1 γLIM1 < γB < γLIM2 γLIM2 ≤ γB < γLIM3 γB ≥ γLIM3

γA < γLIM1 NEMAX no NE NEMIN,A,B NEMIN,A,B

γLIM1 < γA < γLIM2 no NE no NE NEMIN,A,B NEMIN,A,B

γLIM2 ≤ γA < γLIM3 NEMIN,B,A NEMIN,B,A NEMIN,A,B ; NEMIN,B,A NEMIN,A,B ; NEMIN,B,A

γA ≥ γLIM3 NEMIN,B,A NEMIN,B,A NEMIN,A,B ; NEMIN,B,A NEMIN,A,B ; NEMIN,B,A ; NEMIN

TABLE IV

THE BEST (PARETO-OPTIMAL) NASH EQUILIBRIA IN THE REPEATED GAME AS A FUNCTION OF THE COOPERATION VALUES

γB < γLIM1 γLIM1 < γB < γLIM2 γLIM2 ≤ γB < γLIM3 γB ≥ γLIM3

γA < γLIM1 NEMAX no NE NEMIN,A,B NEMIN,A,B0

γLIM1 < γA < γLIM2 no NE no NE NEMIN,A,B NEMIN,A,B0

γLIM2 ≤ γA < γLIM3 NEMIN,B,A NEMIN,B,A NEMIN,A,B ; NEMIN,B,A NEMIN,A,B0

γA ≥ γLIM3 NEMIN,B,A0 NEMIN,B,A0 NEMIN,B,A0 NEMIN,A,B ; NEMIN,B,A ; NEMIN
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Fig. 5. The utilities for the possible values ofrA andrB if d = 1km and
γA = γB = 0.1.

Based on Theorem 1, we can identify the most beneficial
Nash equilibria from Table III. We express this modified
solution in Table IV.

Table IV shows that if the operators are cooperative, then
they should play the minimum radio range with which they
are able to cover the service area. Furthermore in a fair
solution, they should both playRMIN. However, if one of the
players does not cooperate and the other does, then the non-
cooperative player can increase its radio range to force the
cooperative player out of the game. If none of the players
cooperate, then they will end up in both playing the maximum
radio rangeRMAX.

D. Discussion

Our model based on the Voronoi diagram in the Laguerre
geometry results in coverage areas with straight separation
lines. We adopted this model, because if we applied the
physical radio model based on (1), it would be difficult to
derive a closed-form expression for the coverage and hence
for the utility of the players. We now use a numerical method
to compare the radio range model to the physical model and
to show that the principles derived in our model hold for the
physical model as well.

We compare the coverage areas in both models as follows.
We transform the continuous area into a discrete area by

A

AB

B

d

B

B

AA

A

ε

Fig. 6. Discrete area model with points inε distance.

substituting it with a grid of intervalε as shown in Figure 6.
In our numerical study we use a grid of 100x100 points. For a
given set of radio ranges, we determine the number of points
that belong to the base station in the middle of the considered
area in each of the radio models. This results in an empirical
value of the coverage area. We substitute this coverage area
value into (15) to obtain the utility of the players in both
cases and then we calculate the best responses from the utility
function. Figure 7 shows an example of the best response of
playeri who controls the base station in the middle of Figure 6
for each of the radio models.

We can observe that the best response functions are very
similar for the two models. We performed our numerical
analysis for various values ofγi and γj and it resulted in
the same conclusion. Hence, the conclusions about the Nash
equilibria in the radio range model hold for the physical model
as well. However, the derivation of the precise values ofγi and
γj requires an extensive set of numerical calculations. This fact
motivated us to study the problem based on the radio range
model.

IV. REPEATED GAME

In the previous section, we assumed that the radio range of
the base stations has to be set in advance and no power adjust-
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ment is possible. In this section, we consider the possibility
of an iterative power control in arepeated game. We assume
that the operators do not know the end of the game, hence
we study the problem in an infinite repeated game model with
discounting [2], [8]. We will show that cooperation (i.e., both
players playingRMIN) can be enforced in the cases in which
no cooperative equilibrium exists.

We extend the single-stage game as follows: We assume
that the game is split up into steps denoted byt. In each step,
player i ∈ {A, B} adjusts the radio range of its base stations
according to its strategysi.

Furthermore, let us define the discounted cumulative utility
in k < ∞ time steps as:

Ūi(k) =
k∑

t=0

Ui(t) · ωt (20)

where0 < ω < 1 is the discounting factor, which expresses
the value of future utilities for the players. The discounting
factor is sometimes interpreted as a value related to the
probability that the game ends in the subsequent time slot4.

We now prove a theorem to show that non-cooperation
based onRMAX is a Nash equilibrium.

Theorem 2:Both players playingRMAX in all time steps is
a Nash equilibrium ifγi < γLIM1 andγj < γLIM1 holds.

Proof: Let us assume that playeri plays RMAX all the
time. Since the decision of the other player does not affect
playeri’s radio range, we can analyze the game by time steps.
In any time step, playeri necessarily becomes the heavy player
(or they are of equal weight). Ifγi < γLIM1 and γj < γLIM1,
then the best strategy of the other player isrj = ri = RMAX

in every time step.
In this case, the players are in a socially non-optimal

equilibrium. We have seen in Theorem 1 that for highγA

andγB values, cooperation does not need to be enforced. We
will now prove conditions that enable the players to enforce
cooperation for other cooperation values. We prove in this
section that they can do better, by applying a strategy called
Punisher.

Definition 6: If player i plays thePunisherstrategy, it plays
RMIN in the first time step. For any further time steps, it plays:

4Based on this interpretation, we assume that the discounting factor is the
same for both players.

• RMIN in the next time step if the other player playedRMIN

in the previous time step, or
• RMAX for the nextki time steps, if the other player played

anything else.
The parameterki (also called thepunishment interval) defines
the number of time steps for which playeri punishes the other
player. Note that the Punisher strategy is similar to the well-
known Tit-For-Tat (TFT) strategy [2]5. The major difference
is that it retaliates any defection by playingRMAX instead of
copying the same behavior. Furthermore, the Punisher strategy
is different from theTrigger strategy defined in [16], because
the Punisher strategy imposes a punishment that is comparable
to the amount of misbehavior and thus it is able to recover
from erroneous defections.

If both players cooperate, they both playRMIN. In this case
they both have thecooperative utilityCi = UH(RMIN, RMIN)6.
If player i defects, while the other player does not, the defect-
ing player has acheating gainGi = UH(BRi(RMIN), RMIN).
Substitutingγj to γH , we can obtain the best response value
BRj(RMIN) from (16):

BRj(RMIN) =
d2(3− (π − 3)γj))

2(1 + γj)
(21)

If we substituteri = rL = RMIN into (15), we get a cheating
gain Gj = UH(BRj(RMIN), RMIN):

Gj =
d2(8 + (16− 6π)γj + (8− 6π + π2)γ2

j )
4(1 + γj)

(22)

After the defection, playeri retaliates by playingRMAX

and player j plays its best response to this radio range.
In this case playerj has the defection utility Di =
UH(RMAX, BRj(RMAX)). If BRj(RMAX) = RMAX, then its
utility for the nextki time slots is the defection utilityD

′
j :

D
′
j = (1 + γj)d2 − γjR

2
MAXπ (23)

If BRj(RMAX) = 0, then its utility for the nextki time slots
is the defection utilityD

′′
j :

D
′′
j = 0 (24)

Otherwise, if playerj playedRMIN, it would have a coop-
eration utility Cj for all the ki time slots:

Cj =
d2(2− (π − 2)γj)

2
(25)

Cooperation can be enforced using the Punisher strategy as
proven in the following theorem.

Theorem 3:A Nash equilibriumNEMIN based onRMIN is
enforceable with thePunisherstrategy (i.e., playeri is able to
punish the defection of the other playerj) if

1) γj < 2
π−2 and

2)
Gj −Dj

Cj −Dj
· (1− ω) < 1 (26)

5TFT defines the choice of a given player in the next time slot, whereas
the Punisher strategy defines the punishment interval as a set of subsequent
time slots.

6Note that forrA = rB , UH(rA, rB) = UL(rA, rB). Hence we can
apply any of the two utility functions.
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whereω ≤ 1, γi 6= 0 andγj 6= 0.
If the above condition holds, the punishment interval is

defined by:

ki ≥ logω

(
1− Gj −Dj

Cj −Dj
· (1− ω)

)
− 1 (27)

We refer to Appendix I-B for the proof of the theorem. Note
that for ω = 1, cooperation can always be enforced using the
Punisher strategy. This principle is expressed in general by the
Nash folk theorem [8].

The typical value ofki is small (for d = 1km, γj = 0.1,
RMAX = 1.5km andω = 0.1, the value iski = d1.23e = 2).
For higher values ofγj , RMAX andω, the punishment interval is
one time slot (i.e., there is an immediate punishment). Figure 8
illustrates the average per time slot utility of a player for both
cooperation and defection. One can observe that cooperation
is more beneficial, because defection is quickly retaliated by
the other player.

Based on Theorem 3, we state the following result.
Corollary 1: If both players play thePunisherstrategy and

the conditions of Theorem 3 hold, then it results in a Nash
equilibrium.

V. NP-COMPLETENESS OF THE GENERAL PROBLEM

In this section, we analyze the power control problem for
general network topologies and for general values of radio
ranges in the single stage game.

The goal of playeri is to allocate the radio ranges such that
their overall utilityUi =

∑|Bi|
bm=1 Um is maximized, where|Bi|

is the number of bases stations that belong to playeri and the
utility per base stationUm is as follows (derived from (15)).

Ui =
|Bi|∑
m=1

[
(1 + γi) ·Om − γ · r2

m · π]
(28)

whereOm is the coverage area andrm is the radio range of
base stationbm.

We can now formulate the following theorem.
Theorem 4:Finding the maximum utility of playeri for

general values of radio ranges is NP-complete.

We provide the proof in Appendix I-C.
Since finding the maximum utility for an operator is NP-

complete in general, it is impossible to calculate the best
responses for a given player in polynomial time. Thus, we
can state the following result.

Corollary 2: Finding Nash equilibria in the power control
game for general values of radio ranges is NP-complete.

VI. CONCLUSION

In this paper, we have investigated the problem of co-
existing wireless operators in a shared spectrum. We have
assumed that the operators apply power control at the base
stations to mitigate interference, while providing a permanent
service to the users. To the best of our knowledge, our paper
is the first to investigate this problem.

The contribution of this paper is threefold. First, we have
shown that Nash equilibria exist if the operators set the power
of their base stations at the beginning of the operation of the
network. We have identified different equilibrium situations
that depend on the cooperativeness of the operators. Second,
we have proved a condition for which a socially optimal
Nash equilibrium exists and that it can be enforced using
punishments. Third, we have shown that the solution of the
power control problem is NP-complete for a general topology
of base stations. In general, our results show which operation
points are beneficial for the players and how these should be
achieved.

In terms of future work, we will solve the power control
problem by designing an approximation algorithm that con-
verges to a desirable equilibrium situation for a general set
of radio ranges; in particular, we will study the properties of
the convergence by simulations. Furthermore, we will consider
power control on the data channels as well. We also intend to
study the effect of other techniques to mitigate interference,
such as directional antennae and mobile devices with multiple
antennae.
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APPENDIX I
PROOFS

A. Proof of Theorem 1

Suppose that in any state of the game playeri increases its
radio range. It is easy to see that the utility of player increases
if γi < 2

π−2 . Similarly, the utility of the other player increases
if its range increases and we haveγj < 2

π−2 . Hence, if both
γi < 2

π−2 and γj < 2
π−2 , then the increase of the utility

of one of the players results in the decrease of the utility of
the other player. Hence, anyNEMIN,i,j state is Pareto-optimal.
However, if playerj hasγj > 2

π−2 , then decreasing its range
increases its utility and hence the only Pareto-optimal state is
NEMIN,i,j0.

B. Proof of Theorem 3

Let us assume that playerj deviates in time stept0. Let
us assume that it applies the best option, hence it plays
BRj(RMIN). The Punisher strategy played by playeri reduces
the discounted cumulative utility of playerj for the time
interval from t0 to t0 + ki if:

Gj + Dj ·
ki∑

t=1

ωt ≤ Cj ·
ki∑

t=0

ωt (29)

If ω = 1, we can write (29) as follows:

Gj + Dj · ki ≤ Cj · (ki + 1) (30)

Hence, we obtain the following bound on the punishment
interval:

ki ≥ Gj − Cj

Cj −Dj
(31)

Note that ifω = 1, then cooperation is always enforceable.
Now if ω < 1, we can transform the sums in (29) to the

same intervals:

Gj −Dj + Dj ·
ki∑

t=0

ωt ≤ Cj ·
ki∑

t=0

ωt (32)

Since the sums are geometric sequences, we can write that:

Gj −Dj ≤ (Cj −Dj) · 1− ωki+1

1− ω
(33)

If γj < 2
π−2 , thenCj−Dj > 0. Furthermore, we have1−ω >

0, and we can rewrite the inequality:

Gj −Dj

Cj −Dj
· (1− ω) ≤ 1− ωki+1 (34)

Reordering the inequality gives us:

ωki+1 ≤ 1− Gj −Dj

Cj −Dj
· (1− ω) (35)



IEEE INFOCOM 2006 11

This gives the condition onki, because the left side is strictly
positive. Thus the inequality cannot be fulfilled if the right
side is non-positive, meaning that:

Gj −Dj

Cj −Dj
· (1− ω) ≤ 1 (36)

If the condition in (36) holds, we can take the logarithm of
both sides in (35). Sinceω < 1, the logarithm function is
strictly decreasing and hence the direction of the inequality
changes.

ki ≥ logω

(
1− Gj −Dj

Cj −Dj
· (1− ω)

)
− 1 (37)

Due to the symmetric situation, the same arguments apply
for the opposite case that defines the punishment interval for
player j.

C. Proof of Theorem 4

To prove the theorem, let us consider the special case of
finding the optimal radio range allocation in the presence of
a single operator. In this case, operatori has the utility:

Ui =
|Bi|∑

bm=1

[
(1 + γi) ·Om − γ · r2

m · π]
(38)

Let us denote the whole service area byOtot =
∑|Bi|

bm=1 Om.
Since theγi values are the same for all base stations, we can
reformulate the utility as:

Ui = (1 + γ) ·Otot − γi · π
|Bi|∑

bm=1

r2
m (39)

Under the assumption thatα = 2, the power is proportional
to the square of the radio range. Chamaretet al. [4] as well as
Värbrand and Yuan [25] have proven that finding the minimum
power allocation in the network of a cellular operator while
maintaining the total coverage is NP-complete. Hence, the
minimum value ofUi cannot be determined in polynomial
time. Because the problem is NP-complete for the special case
of one operator, we conclude that it is NP-complete in the
general game as well.


