

Optimization of an SOFCbased decentralized polygeneration system for providing energy services in an office-building in Tōkyō

C. Weber, F. Maréchal, D. Favrat, S. Kraines, M. Koyama

1/15

Goal and description

Define optimal configurations for an SOFC-based decentralized polygeneration (energy) system:

Providing:

heating, cooling and electricity services to a building

Minimizing:

Total costs CO₂-emissions

Compare with the current situation.

Building description

- 10 floors
- 20 offices per floor, 50m² per office-room
- 12 working-hours per day

3/15

Energy services required throughout the year

(Pfl Daily consumption profiles

One daily profile for each energy requirement per month 5/15

(Pf(Efficiency of the devices

SOFC:

$$\eta_{el} = \frac{el_{SOFC}}{Fuel \cdot LHV} = 46 - 53\%$$

 η_{el} : Electrical efficiency of the SOFC [-]

el_SOFC: Electricity generated by the SOFC [kW]

Fuel: Fuel flow [mol/s]

LHV: Lower heating value [kJ]

Absorption-chiller:

$$COP = \frac{Cooling_load}{Heat_load} \cong 1.15$$

COP: Coefficient of performance [-]

Cooling load: Cooling provided by the chiller [kJ]

Heat_load: Heat required by the chiller in the generator [kJ] 9/15

MO-NLP

Multi-objective optimization problem on two levels, investment and operational.

Min: Costs, CO₂-emissions

Subject to: Thermodynamic models

Electricity balance

SOFC part-load ≥ 0.3 * SOFC size

Decision variables

1. Multi-objective genetic algorithm:

Configuration parameters: sizes and

operating conditions: SOFC

Absorption-chiller (ACH)

Heat-exchanger (HEX)

Storage devices

2. Linear optimization algorithm:

Optimal operation of: SOFC

Absorption-chiller

Storage tanks

Use backup-devices.

11/15

Assumptions

13/15

- All devices (except storage) perfectly insulated,
- The losses of the storage devices are maximum 10% at full charge,
- The temperature of the stocks is the same at the beginning and the end of the day,
- All the efficiencies and COP (coefficient of performance) are constant, regardless of the part load fraction,
- The values for costs and emissions are valid for Tōkyō.

Results SOFC: 154 kW SOFC: 460 kW η_{el} SOFC: 46% η_{el} SOFC: 53% ACH: 171 kW ACH: 370 kW HEX: 112 kW HEX: 327 kW Storage: 0 m³ Storage: 212 / 33 m³ 1500 Exergetic eff.: 38% Exergetic eff.: 52% 40 60 80 100 120 140 Annual costs [mio-¥/year] (= 0.3 mio-€) (= 0.9 mio-€)

Conclusions

Output of the optimization problem

Minus 40% CO2-emissions by double the costs

Methodology

 Modular tool easy to adapt (other technologies, other regions, other buildings,...)

15/15

Pareto curve

Low cost, high CO2-emissions

Naive solution

Lower cost, lower CO2-emissions

Infeasible region

Low CO2-emissions

Cost

16/15