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Assurance of equity in student outcomes includes ensuring that module results are comparable
within reasonable bounds. We present a procedure that first compares (and adjusts if necessary)
module variances. Then, student results are individually normalised to standard variates. A simple
sign test is used to identify modules with disproportionately good or poor results. Module results are
offset so as to adjust averages that do deviate. A detailed examination of an artificial data set shows
that the proposed very simple procedure yields results that agree with a sophisticated statistical
analysis.

INTRODUCTION

STUDENT EXPECTATIONS of fair and robust
grading schemes are mirrored by more general
community expectations: each group uses univer-
sity results for a variety of purposes. Employers
and admissions personnel at the student's home
university and at other educational institutions
examine grades routinely. In countries like the
United Kingdom and Australia, engineering grad-
uates are ranked according to the class of honours
attained; this honours degree outcome can affect
a graduate's career prospects for several years.
Results of examinations should, therefore, be
subject to processes to ensure fair and equitable
outcomes. Such outcomes are also necessary
because student assessment of their own perfor-
mance is often at odds with the assessment of
tutors and lecturers [1].

Not surprisingly then, at least annually,
academics expend much time and effort in reach-
ing agreement on student grades. For example, a
scheme was developed for comparing consistency
of marking of undergraduate theses [2]. It is not at
all unusual for engineering academics to attend
lengthy meetings at which detailed discussions
occur regarding differences between the perfor-
mance of individual students in different subjects/
modules (we use `module' to refer to a subject or
similar discrete component in a given year of a
degree programme), and in the overall perfor-
mance displayed in those modules. In particular,
summary statistics such as averages and standard
deviations (or variances) for various modules are
compared, discussed and, indeed, debated. Perhaps
module X has a very low average, whereas modules
Y and Z have averages 20% or more higher.
Explanations abound concerning the difficulty of
the material in X relative to Y and Z or, conversely,

the lack of difficulty of Y and Z relative to X. Or,
perhaps X has been taught by a junior or other-
wise inexperienced academic [3, 4], there was an
unforeseen timetable clash, formative assessment
items were not returned in a timely fashion, the
examiners placed different emphasises on differ-
ent aspects of assessed work [5], or library/labora-
tory facilities were inadequate in the relevant
area. In addition, these discussions are exacer-
bated by the fact that usually students have a
good deal of choice in the range of modules
studied, in which case module X might have
been taken by a group of interested students,
while those taking Y and Z were highly moti-
vated. How can examination boards (the term
`examination board' refers to the committee with
formal responsibility for awarding student
grades) be assured that the excellent grades in Y
and Z are not simply a manifestation of generous
marking?

Another explanation for disparity in module
averages is that academics, being individuals, will
produce exams of varying difficulty, or will vary in
the results awarded in marking student work of
identical quality. Perhaps on sound pedagogical
grounds, a new teaching method was employed,
with unforeseen consequences.

Clearly, procedures to quantify whether differ-
ences between module outcomes are justified on
reasonable statistical grounds can provide very
useful timesaving guidance to assist examination
boards in identifying the need for grade-moderation
discussions. On the other hand, statistical measures
and comparisons can likewise help identify when
detailed discussions are not needed.

As mentioned already, given that student results
can have a major effect on the prospects of graduat-
ing students [6], it is important that consistent and
fair grades are given. More generally, quality assur-
ance procedures should be robust and ensure equity
in student outcomes. That is, although a brief
perusal of student/module results might not suggest
any obvious outcomes necessitating discussion, a

* Accepted 5 September 2003.
** School of Engineering, Griffith University, Gold Coast,

PMB 50 Gold Coast Mail Centre, 9726 Australia

820

Int. J. Engng Ed. Vol. 20, No. 5, pp. 820±833, 2004 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2004 TEMPUS Publications.



mature quality assurance procedure would include a
standard set of quantitative checks to alert the
examination board to possibly biased or otherwise
unusual results. Quality assurance involves identi-
fying where moderation is justified, as well as where
it is not.

A perusal of the statistical and educational
assessment literature reveals various statistical
methods that could be applied to identify the
need grade moderation [7]. Unfortunately, the
level of statistical sophistication needed is likely
not readily available in many examination boards,
particularly given the time pressure under which
boards typically operate. Even with available
expertise, for many sophisticated procedures there
is frequently a substantial requirement for data
preparation and manipulation, checking and inter-
pretation. Statistical methodologies that cannot be
readily programmed within a spreadsheet are not
likely to be of widespread practical use. Fur-
thermore, interpretation of results from more
advanced procedures might rely on statistical train-
ing; individuals with such training would, likewise,
not generally be available for most examination
boards.

To make the process of arriving at final student
outcomes more concrete, we provide a conceptual
outline of the steps to be taken in Fig. 1. Grades
are collected and summarised, usually in a spread-
sheet, and summary statistics calculated. Our
purpose is to present a simple yet robust statistical
procedure for analysing results of a given cohort of
university students. It is envisaged that the proce-
dure would be applied to the results of all students
in a given year of an engineering degree program.
We proceed with this context in mind. The part of

Fig. 1 that will be the main focus of this paper is
the procedure to identify the need to adjust grades.
We present, in addition, a simple grade-adjustment
procedure.

STATISTICAL PROCEDURE

We wish to identify amongst a group of
modules, modules for which student results are
too high or too low. Following such identification,
it is expected that a grade adjustment procedure
would be implemented to adjust grades up or
down, as necessary to remove anomalies. Follow-
ing adjustment, the procedure would be re-applied
to ensure that equitable results were obtained.

Consider a cohort of students taking N modules.
Some degree programmes are based on pass-by-
year system, whereas others work on a pass-by-
module system. Either case is accommodated as we
are aiming to compare consistency of module
outcomes. It is, however, worth recalling that in
many circumstances the overall average grade is
important (say, for progression to the next
academic year, for determination of honours clas-
sifications or for allocation of academic prizes).
The overall grade will be the weighted sum of
several module results. As noted previously [8], it
`is a common misconception that the nominal
weights correspond to the relative weights of the
variables in the composite'. Put another way, the
variance computed for a student's overall average
(the composite) is weighted not according to the
assigned (nominal) weight of each module grade,
but according to the relative weight computed for
the variance of that sum. This effect is exacerbated

Fig. 1. Flow chart of the grade moderation process.
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in circumstances where each module grade comes
from distributions with different variances. The
variability of each summed component should be
approximately equal to ensure that the variability
of the weighted average fairly reflects the weight-
ing assigned to each component module [9]. Even
where an average year grade is not computed, it is
still good practice to have approximately equal
variances in each module. In practical terms,
modules with variances that are too large (relative
to a given norm) simultaneously benefit some
students (with relatively higher grades) and dis-
advantage others (with relatively lower grades).
Conversely, modules with a relatively smaller
variance cluster all grades towards the mean.
Thus, students with relatively good performances
in the module are disadvantaged while those
who performed less well benefit. Below, we shall
use a simple check to ensure module variances are
comparable.

With this in mind, a possible next step in the
procedure is to compare averages of the individual
modules. Rather than compare averages directly,
in our procedure we adopt a student-centred
approach and look at overall student performance.
To do this, the procedure identifies outliers in each
student's performance, and aggregates these for
each module. This procedure will be detailed
below.

In terms of comparing averages directly, we note
that student results in each module give the
averages xi, i� 1, . . . , N. Each average is an
estimate of the population mean, �i, assuming the
population consists of all students eligible to take
module i. Then, it is useful to test the hypothesis
H0:�1��2� . . . �N, in which case the one-way
ANOVA (analysis of variance) test would be
applied. Alternatively, one could check means in
a pairwise fashion using a variety of tests [10],
although this approach would engender consider-
able effortÐa total of N(Nÿ 1)/2 comparisons.

Elsewhere, it was concluded that an ANOVA was
the most reliable way to check comparability of
secondary subjects in national exams carried out
in the United Kingdom [11]. But, in order to have
confidence in the ANOVA results, several checks
would need to be undertaken. Since the standard
ANOVA relies on the assumption of equality of
variances (which is desirable in any case), the
estimated variances to be used in the ANOVA
should be checked statistically for equality. Like-
wise, the ANOVA procedure assumes that normally
distributed populations are being sampled; again, a
check should be carried out.

In a standard one-way ANOVA, the experimen-
tal subjects (in this case, students) should be drawn
as independent samples. Sample outcomes used
in the ANOVA should be uncorrelated. Since
the students being assessed generally take several
modules in a given academic year, it is highly
doubtful that the results in different modules
would be uncorrelated. The one-way repeated
measures ANOVA [12] is applicable for correlated

samples [13]. Non-parametric approaches are
available [14], however the implementation of
these is not straightforward and can involve data
manipulation such as ranking. As mentioned in the
introduction, given time constraints and perhaps
lack of significant statistical expertise, generally it
is not practically feasible to carry out these pro-
cedures and, in the case of parametric tests,
associated assumption checking. In that case, we
proceed to a simplified approach, described below.

In comparing student performance across many
modules, the key question we wish to answer is
whether the outcomes are comparable. This ques-
tion immediately focuses attention on the average
grade awarded in each module. However, even if
all modules have comparable averages, as already
mentioned a fair comparison would be based on
the condition that the results in each module
also exhibit comparable variability. To evaluate
comparability of module outcomes, we aim to
discern cases where a student's grade in a given
module is markedly different from their year
average. Modules with a high proportion of
better-than-average or worse-than-average per-
formances are identified for grade moderation.
Details of an algorithm (Grade Adjustment Pro-
cedure, GAP) that achieves these steps is presented
in Fig. 2. The various steps in this figure are
discussed below.

GAP: details of steps undertaken in Fig. 2
For convenience, we assume all module grades

are given as percentages.
In Step 1, individual module variances are

checked for equality. There are several methods
for comparing variances [15]. A simple (although
parametric) procedure begins with calculation of
the average variance over all the modules. Then,
we compare individual module variances with the
average. That is, compute:

s2 � 1

N

XN

i�1

s2
i �1�

where N is the number of modules, s2
i is the

estimated variance for module i and s2 is the
average module variance. For each module, we
accept the hypothesis that �2

i = �2 at the 0.1
(0.05, 0.01) significance level if:

si ÿ sj j
s

�������
2ni

p
< 1:64�1:96; 2:58� �2�

where ni is the number of students taking module i.
The check in (2) is an approximation to the
appropriate �2-based statistic [13]:

ni ÿ 1� �s2
i

s2
< �2

niÿ1;� �3�

where � is the significance level. The tests in (2)
and (3) both assume that s is independent of si,
which is clearly not the case. However, it would be
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the case if the average in (1) were modified such
that it was computed without considering si. We do
not follow this approach here since it adds another
small complication to the GAP, and has only a
small effect. With or without this modification,
the check in (2) is conceptually easy to apply and
might be more appropriate than (3) since normality
in the examination marks data set is not checked. If
(2) is not satisfied for any given module, then either
a more sophisticated test such as (3) should be
applied, or the module grades should be adjusted
(adjustments are discussed subsequently). On the
other hand, there could be grounds for leaving the
module results untouched and accepting that the
variance of grades in that module is larger or
smaller than in other modules.

In Step 2, the average and standard deviation is
computed for each student's results. These are used
in Step 3 to compute, for each student, normalised
results. This step is simply to allow for easy
searching of each student's (possibly) better-than-
expected and worse-than-expected results.

Next, in Step 4, the average and standard devia-
tion (or variance) of each module's normalised

results are calculated. These statistics are not used
directly; rather they are computed to give an overall
view of the variability between the outcomes of
particular modules. For example, it highlights
which modules have high and low averages. The
variances of each module should cluster around
unity since variance compatibility has been checked
in Step 1. If module grades were adjusted subse-
quently, then the change in these summary statistics
would confirm the action taken.

The target standard deviation selected in Step 5
should be large enough to assist in detection of
outlier results. A typical choice would be select a
target of 1. If the module results were normally
distributed with mean 0 and standard deviation of
1, then there would be about 16% of the grades
above �target and below ÿtarget. The numbers of
results outside �target are counted in Step 6.

In Step 7 the statistic T̂ is used in the modified
sign test [16, 17], which tests whether A�B. By
carrying out this test, we are checking whether the
proportion of students who did well in the module
balances the proportion that did not. If a skewed
distribution was expected, then the test could be

Fig. 2. Details of a Grade Adjustment Procedure (GAP) to identify modules where moderation of grades is warranted.
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adjusted to account for this. The test does not rely
on distributional assumptions, although it is
assumed that the outcomes are independent,
which is a reasonable assumption for grades of
individual students. The test T̂ > 2 is significant at
the 0.05 level, and the hypothesis is rejected. It is
significant at the 0.1 level for T̂ > 1.6.

At this juncture it is worth mentioning that some
modules might be expected to have better
outcomes than others. Typically, modules that
rely mainly on coursework material such as assign-
ments have outcomes that are much higher than
modules that are graded wholly on supervised
examinations [18]. The difference in each mode
of assessment can be estimated on current or
historical data. Our experience is that modules
relying on coursework for assessment have indivi-
dual student outcomes around 0.5 of a standard
deviation above supervised examinations. Assum-
ing that (on average) higher grades are acceptable
for such modules, this effect is easily included
in Step 7. For each module, the proportion of
the grade allocated to coursework material is
denoted as p. Then, in Step 7a, replace target by
target� 0.5p and in Step 7b replace ÿtarget by
ÿtarget� 0.5p. On the other hand, if the examina-
tion board deems it unacceptable that coursework
material should have higher average grades, the
test in Step 7 will identify clearly any such
modules.

Grade adjustment
Once a decision has been taken to adjust module

grades, the question of the amount of adjustment
naturally arises. This is a policy decision that
should be decided prior to taking action. Below,
we adopt the criterion that grades should be
adjusted minimally to achieve the goal of satisfying
the statistical test imposed.

There are two opportunities to adjust grades in
Fig. 2, at Steps 1 and 8. At Step 1, the goal is to
adjust the variance of a particular module (or
modules). If student grades in a module are
denoted as x, then a change in variance is achieved
using:

xnew � a xold : �4�
where a is the adjustment factor. Clearly, the
transformation in (4) will change the module
average by the factor a. This is not important
since below we discuss how the module grades
will be offset to adjust the average. Alternatively,
we can adjust the variance while maintaining the
calculated module average by altering (4) to:

xnew � a xold � �1ÿ a�xold : �5�
For both (4) and (5), the relationship between the
estimated variances (Var) is:

Var�xnew� � a2 Var�xold�: �6�
Since the amount of the adjustment is known, an
approximate value for a is easily calculated to
satisfy the condition in (2). Note that (6) is not
exact in terms of computing a since the average
variance (s2) computed in (1), and used in (2), will
change when any module grades are adjusted.

The other place where adjustment is suggested is
in Step 8. At this stage, it is expected that only an
offset is needed, i.e., xnew��xold b. If more than
one module is identified as needing adjustment,
only the module with the largest T̂ is adjusted by a
fixed, small amount (say 0.5%). Adjustment
continues until the imposed statistical test is
satisfied.

Following adjustment, the adjusted grades are
examined in case any lie outside the range 0±100%.

Fig. 3. Various grade adjustments (xold is the original grade and xnew is the adjusted grade). No adjustment is given by the 1:1 line
(dashes). The solid line shows a nearly variance-preserving offset with small adjustments at the end of the range to remove the
possibility of outliers. The dotted line shows a combination of straight-line adjustments, with changes to both the module variance

and mean.
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If values outside this range are detected, then either
they are moved to the appropriate boundary or a
different correction is needed. In order to preserve
the variance, it is suggested that a modified offset
adjustment is used. An example is given in Fig. 3.
This figure shows a uniform offset over most the
range (in this case 5±95%), with small adjustments
made close to the boundaries (in practice only
one end, 0 or 100%, would need this limitation
imposed). Note, also, that the Step 1 variance
adjustment described by (6) might lead to an out-
of-range adjustment. It is perfectly acceptable to
let this situation continue until the completion of
Step 8, as the Step 8 adjustment would tend to
bring the outliers back into range. Alternatively,
the variance adjustment in Step 1 can be changed
to include an offset and scaling, as given by the
dotted line in Fig. 3. This type of adjustment might
in any case be more applicable to modules where
student grades are strongly skewed. Because the
1:1 mapping has been altered to 2 straight lines,
the variance of the transformed data will depend
on the location of the majority of the scores in
the adjusted module. For example, the dotted line
in Fig. 3 will tend to increase the overall variance
(relative to the initial module variance) if most
of the results lie to the right of the slope
discontinuity.

APPLICATION

The procedure outlined above is demonstrated
on an artificial data set (Table 1). Two different
methods of analysis are used: (1) the GAP
described above and (2) an ANOVA-based analy-
sis. For (1), the approach taken was exactly as
described above. For (2), several steps were taken;
these were: (i) data were checked for normality, (ii)
variances were checked using equation (3) and (iii)
a one-way repeated-measures ANOVA was
performed.

The construction of the data set followed several
steps, with the aim of making the data distribution
somewhat non-normal, so as to emulate our
experience the type of data sets that are the
outcome of academic examination procedures in
engineering degree programmes, but not so non-
normal that use of the ANOVA was precluded.
All calculations were carried out in Microsoft
EXCEL.

Data were generated using the four steps:

1. A set of standard normal variates, zi,j, i� 1, . . . ,
20; j� 1, . . . , 12; was generated.

2. These were transformed into correlated variates
(i.e., correlated in `j', but independent in `i'), ci,j,
using the formula [19]: ci,j+1� r ci,j� zi,j(1Ðr2)1/2,

Table 1. Synthesised data set of student results and modules: M denotes a set of module results and S denotes a set of student
results
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i� 1, . . . , 20; j� 1, . . . , 11; ci,1� zi,1. The 20
independent sequences of 12 correlated variates
were computed; these were used below to simu-
late grades for 20 students. A correlation coeffi-
cient, r, of 0.95, was used.

3. Another two (20� 12) sets of random variates
were generated; these were uniformly distribu-
ted over (0,1). Call these Set u and Set v. Based
on the sequences generated in 2) above, syn-
thetic student grades were then calculated
using: gi,j� ci,j(11� 20ui,j)� 56� 10vi,j, i� 1, . . . ,
20; j� 1, . . . , 12.

4. Various entries were randomly removed.

One realisation of the sequence of steps (1± 3) used
in the subsequent analysis is given in Table 1.
There are 12 modules (M1, . . . , M12) taken by
20 students (S1, . . . , S20). A cursory examination
of the module outcomes does not reveal any
markedly untoward results, particularly with
regard to the module averages. The module vari-
ances vary by a factor of 2 approximately
(compare M8 and M10). Although the GAP is
not reliant on normality of the underlying data,
normality is a requirement for application of the
ANOVA procedure. The module data shown in
Table 1 were checked for normality using the �2

goodness-of-fit test. Each module's results satisfied
the test at the 0.1 significance level.

The simplified procedure described above was
carried out. In the analysis we took in all steps the
�� 0.1 level of significance. The check in (2)
showed that no variance adjustments were
needed. This result was confirmed by applying
the �2 test in (3). The largest statistic was
computed for M10, with a value of 26.6. This is
less than the critical value of �2

19;0:1� 27.2. Next,
Step 7 in Fig. 2 revealed that modules M1, M2, M3,
M4 and M9 should be adjusted. The relevant T̂
values were within range when these modules were
offset by ÿ2, ÿ3.5, ÿ2.5, 1.5 and 0.5%, respec-
tively. The modified set of grades is shown in
Table 2.

Clearly, the adjustments made between Table 1
and Table 2 are modest. We can examine these
changes in more detail by applying a one-way
repeated-measures ANOVA to the data in each
table. Results for Table 1 are given in Table 3,
while those for Table 2 are given in Table 4.

After this preliminary analysis, the full set of
grades in Table 1 was modified by randomly
removing results. This step was to obtain a set of
results that more closely replicates academic
outcomes. The modified set of results and

Table 2. Grades from Table 1 after adjustment (M1, M2, M3, M4 and M9 modified, other results as in Table 1)
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Table 3. One-way repeated-measures ANOVA results for grades in Table 1 (0.1 significance level):
notation for this and other ANOVA tables follows that of Jaccard and Becker [12]

Table 4. One-way repeated-measures ANOVA results for grades in Table 2 (0.1 significance level)

Table 5. New set of student grades generated by randomly removing entries from Table 1
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summary statistics are shown in Table 5. All
students take two compulsory modules, M1 and
M2, with the other modules taken by a portion of
the cohort. In addition, several students took all
available modules. The averages of the results in
the compulsory modules are higher than the other
modules. The averages of several other modules
have increased, relative to Table 1. Also relative to
Table 1, variances in Table 5 have changed
slightly, but overall there is little difference.

The procedure outlined above is implemented
again. Again, the variance check, (2), indicated
that no modules required adjustment. Similarly,
the �2 test in (3) was satisfied for all modules. In
contrast to the data in Table 1, where M10

produced the largest statistic, for Table 5 M11

produced the closest statistic (19.9) to the critical
�2 value (22.3). Again, the T̂ statistic was not
satisfied for modules M1, M2, M3, M4 and M9.
Also, it was not satisfied for M8. The T̂ -test was
satisfied by adjusting each module grade as
follows: M1 and M2 by ÿ1.5%, M3 by ÿ2%, M4

by 3%, M8 by 0.5% and M9 by 1.5%. The modified
grades are shown in Table 6.

The results in Table 5 and Table 6 were subjected
to a one-way repeated-measures ANOVA. Unlike
the previous case, where the entire grade matrix was

filled, the one-way repeated-measures ANOVA
cannot be applied where the matrix has missing
entries, as is the case in Table 5 and Table 6. Thus,
the missing data has to be replaced in order to
carry out the analysis. Here, since we have the
missing data (Table 1), we could simply replace it.
However, in practice the data would not be known
so a fair comparison of the approach presented
and the results of the one-way repeated-measures
ANOVA should entail replacing the missing data
following a standard approach, before the
ANOVA is performed.

Kirk [20] recommends replacing the data such
that the error sum-of-squares is minimised (while
maintaining the module averages). For the data
matrix shown in Table 5, the minimisation was
performed, with results as given in Table 7. Simi-
larly, the missing data from Table 6 were replaced,
with results as given in Table 8. The one-way
repeated-measures ANOVA was applied, in turn,
to the grades in Table 7 and Table 8. In the
ANOVA, degrees of freedom were reduced to
account for the replaced data. This test is sensitive
to departures of circularity [20]. Where circularity
is in doubt, an approximate F statistic should be
used, with (further) reduced degrees of freedom.
Because missing grades were added, we used an

Table 6. Results from Table 5 after modification due to application of the GAP; modules not included have not been altered
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existing approach [20, Table 6.4±2] to compute
the reduced degrees of freedom factor �̂. Results
making use of this factor in the one-way repeated-
measures ANOVA test of the grades in Table 7
and Table 8 are shown in Table 9 and Table 10,
respectively.

DISCUSSION

We consider first the analysis of the full set of
results, as given in Table 1. The GAP outlined in
Fig. 2 identified that no module variances were in
need of adjustment. This was confirmed by the test
based on the �2 distribution. If the �2 test is
available, as it is in Microsoft EXCEL, the simpli-
fied test in (2) could be replaced by (3). However,
strictly speaking the data should be checked for
normality before applying the test. Our experience
is that the test in (2) yields results that are
acceptable. This discussion also applies to the
variance adjustment check carried out on the
modified data in Table 5, so the variance adjust-
ment procedure is not mentioned further.

Application of the T̂ statistic test in the GAP
indicated the need to offset several sets of module
grades. We note that the average before adjust-
ment was 59.3, after adjustment it was 58.8. All the
adjustments were in the direction of the average.

Two changes are worthy of note as they bring out
features of the GAP.

First, the average for M4 increased from 57.8 to
59.3, i.e., above the final average. The process of
adjustment involved changing module grades in
increments of 0.5%, re-evaluating T̂ for each
module, with the sequence of adjustments based
on the largest T̂ . This stepwise adjustment proce-
dure is simple, but yields adjusted grades that are
not unique in the sense that other combinations of
changes are feasible. For example, the average of
M4 in Table 5 could be adjusted back to its original
(starting) value and still satisfy the T̂ statistic test.
In our applications of the GAP, an overarching
principle is to change grades as little as possible, so
in practice the result for M4 would stay at its
original value. Because the GAP yields results
that are (possibly) non-unique, after adjusting
grades it is recommended that module offsets be
perturbed in the direction of the original average to
check whether a smaller offset would suffice.

The second feature exhibited by the results in
Table 5 is that the averages of M1 and M2 are
further away from the overall average than that of
M3, yet the average of the latter was adjusted
downwards by 2.5%, which is nearly as much as
the adjustments to the former (downward adjust-
ments of 2% and 3.5%, respectively). This can
occur since the GAP is not directly concerned

Table 7. Grades from Table 5 after filling in missing data (bold face indicates filled-in data)
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with adjusting module averages. Rather, because it
is student-centred the GAP is aimed at altering
imbalances in overall student performance, where
the latter is calculated on an individual basis. It is
the aggregate of the better-than-expected and
worse-than-expected individual performances in
each module that is checked in applying the T̂
statistic. Clearly, adjusting the average of a module
will adjust this aggregate, which is why module
results are offset. Indeed, it is the ability of the T̂
statistic to uncover overall aggregate performance
that makes it a useful tool in identifying modules
for which very high or very low averages are
acceptable. In this context, simple examination of
averages alone, in the absence of aggregate perfor-
mance, would not be a suitable way of identifying
acceptably high or low averages. In the case of M3,
it could be argued that since all the students took
that module, there should be less adjustment to it
and more to M1 and M2. However, that assertion
relies on the notion that student performance in
each module should be somehow identical. Our
starting point is that student performance in indi-
vidual modules should not be identical; rather, that
it should be expected to vary within reasonable
limits.

Because the data in Table 1 satisfy the normality
assumption, we can apply the one-way repeated-
measures ANOVA to test the hypothesis of equality

of module means. The results in Table 3 give the F
statistic of 1.9 that exceeds the critical F value,
Fcrit, of 1.6. That is, the ANOVA outcome is that
we would reject the hypothesis of equality of
module means in Table 1, in agreement with the
GAP

Next, the one-way repeated-measures ANOVA
was used to check equality of means for the
adjusted grades in Table 2, with results presented
in Table 4. In this case, the outcome is that the null
hypothesis is not rejected, and so module means
can be accepted as being equal. This outcome
confirms that the GAP adjustment is reasonable,
and that it has achieved its aim of moderating the
module outcomes such that they are comparable.

For a slightly more realistic examination of the
GAP, grades were randomly removed from Table 1
to create the data set in Table 5. Application of the
GAP yielded several adjusted modules (Table 6).
Before the one-way repeated-measures ANOVA
could be applied, however, the missing data were
replaced such that the Error Sum-of-Squares was
minimised. The filled-in grades corresponding to
Table 5 and Table 6 are presented in Table 7 and
Table 8, respectively. This step was taken to allow
a more realistic test of the GAP than simply filling
in the missing grades with the original data.
Following Kirk [20], the value of Fcrit was modified
using the correction of Box [21, 22]. Keppel [23]

Table 8. Grades from Table 6 after filling in missing data (bold face indicates filled-in data)
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recommends using this correction where there is
any doubt regarding the underlying assumptions
for the one-way repeated-measures ANOVA.
Because the repeated-measures ANOVA relies on
in-filling of the data, it was concluded that the Fcrit

modification was necessary.
In Table 9 we present the ANOVA analysis of

the data in Table 7. The calculated F statistic (2.8)
is well above the adjusted Fcrit (2.2), in which case
the hypothesis of equal module means is rejected.
This conclusion was also reached by the GAP.
Next, the ANOVA analysis was repeated on the
GAP-adjusted data presented in Table 8, with
results given in Table 10. In this case, the F statistic
(1.8) is less than the adjusted Fcrit, and so we do not
reject the hypothesis of equality of module means.
Again, this is the outcome that was desired as a
result of applying the GAP.

In practical terms, we have found that the
variance adjustment in the GAP is often necessary,
unlike the synthetic cases examined here. Within
EXCEL, the variance adjustment can be set up and
solved as an optimisation problem (using Solver in
EXCEL). We have found it convenient to use a
penalty function approach [24] to ensure minimal
grade adjustment while satisfying (2) for each
module. On the other hand, EXCEL's Solver is
less useful for satisfying the T̂ statistic test, as this
test is not in the form of a continuous function.
However, `manual' adjustments as described above
can be carried out very rapidly.

We now turn to discussing overall features of the
GAP:

. The GAP process is designed to bring module
results to within a pre-determined range. This
range is controlled by the significance level used,
with a smaller significance leading to a broader
allowable range.

. During the GAP iterations, it can occur that
modules are identified for moderation that were

not identified previously. This merely indicates
that that module is near the limits of the allow-
able range.

. We have suggested that, at completion of the
GAP, the module offsets are adjusted back
towards zero in order to check sensitivity.

. If, after adjustment, the examination board
decides that overall results are too high or too
low, albeit within the allowable range, then all
results can be adjusted up or down simply by
offsetting each grade uniformly.

. The variance adjustment procedure is very
simple, but may not be applicable to modules
with strongly skewed distributions. For such
distributions, there are grounds for applying
the `scaling and offset' adjustment shown in
Fig. 3.

. Properly applied, this type of adjustment will
reduce the skew of the module grade distribu-
tion, while simultaneously increasing or decreas-
ing the overall variance of the module grades. It
should be remembered, however, that in using
this type of adjustment scheme, the effect on the
module average should be ignored; rather the
focus should be wholly on the module variance.
The module average will be accounted for sub-
sequently in Step 8 of the GAP.

CONCLUSIONS

Our aim was to present and evaluate a simple,
easily applied grade-adjustment procedure (GAP)
to help analyze and moderate grades in engineering
degree programs. The GAP is guided by the desire
to permit different performances and academic
assessments to stand, i.e., we recognise that it is
not desirable to simply scale results so that a pre-
defined distribution is obtained for all modules.
Rather, while recognising that differences between

Table 9. One-way repeated-measures ANOVA results for grades in Table 7 (�� 0.1 significance level)

Table 10. One-way repeated-measures ANOVA results for grades in Table 8 (�� 0.1 significance level)
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modules are expected, we wanted to constrain
variability between results of different modules.
This approach permits different performances
and academic assessments to stand, while main-
taining equity and fairness across all module
outcomes.

Clearly, the approach taken in the GAP will
produce sets of module results that are internally
consistent. The question of normative scaling then
naturally arises in the following form: How do we
accommodate external norms that should be
applied to the results of a given cohort? Again,
we reiterate that scaling all grades to a single
normed distribution would assume that all teach-
ing is identical, student opportunities and cir-
cumstances are not markedly different and that
teaching quality is invariant with time. The system
described here aims to allow all these (and other)
variables to operate while identifying and adjust-
ing results modules that appear statistically to
be outliers relative to overall performance of the

cohort. Thus, scaling to a norm is possible simply
by using the norm variance (actually, standard
deviation) in the test of variances, see (2). If the
norm distribution were symmetric, then applica-
tion of the T̂ statistic in the GAP would proceed as
given. Otherwise, it would be adjusted (specifically,
either A or B) to account for the asymmetry of the
norm.

The GAP has been shown to be consistent with a
more sophisticated ANOVA approach in the
detailed analysis of an artificial data set. While
we recognise that the data set used is possibly more
`well behaved' than real student outcomes, the
artificial set was used as it was mildly non-
normal, and could be reasonably tested in an
ANOVA for comparison with the GAP. We have
used the GAP and variants of it over the past few
years and find that it produces outcomes are
acceptable to our academic colleagues in that the
moderated grades obtained are agreed as repre-
senting fair and justifiable outcomes for students.
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