GROUNDWATER WAVES IN A COASTAL AQUIFER:
A NEW GOVERNING EQUATION
INCLUDING VERTICAL EFFECTS AND CAPILLARITY
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ABSTRACT

Groundwater waves, i.e., water table fluctuations, are a natural phenomenon in coastal aquifers.
They represent an important part of the interaction between the ocean and aquifer, and affect the mass
exchange between them. This paper presents a new groundwater wave equation. Because it includes the
effects of vertical flows and capillarity, the new equation is applicable to both intermediate-depth aquifers
and high-frequency waves. Compared with the wave equation derived by Nielsen and others (1997), the
present equation provides a closer representation of groundwater waves. In particular, it predicts high-
frequency water table fluctuations as observed in the field. A validation of the new equation has been carried
out by comparing the analytical solutions to it with predictions from direct simulations using the numerical
model SUTRA. The effects of various physical parameters and their relative importance are also discussed.

INTRODUCTION

A coastal aquifer 18 subject to dynamic boundary conditions at the ocean-land interface, which are
characterized by the oscillations of the sea level (figure 1). These oscillations are transmitted into the
aquifer, the amplitude decreasing in the landward direction. Their influence, however, can be considerable
up to a few hundred meters inland from the shore (Lanyon and others, 1982). The water table of the aquifer
fluctuates in response to the sea level oscillations. These fluctuations are termed “groundwater waves”.
Below the water table, the pressure within the aquifer also fluctuates. The groundwater fluctuations, as

induced by the oceanic oscillations, affect water and mass exchange between the aquifer and ocean (Li and
others, 1999a).

Traditionally, groundwater waves are modeled using the Boussinesq equation. However, this
equation is valid only for shallow aquifers where the assumption of negligible vertical flow holds. Recently,
Nielsen and others (1997) used analytical methods developed for surface waves to derive a governing
equation for groundwater waves in aquifers of intermediate depths. A solution based on their governing
equation was obtained for the water table fluctuations and the oscillating pressure field in a coastal aquifer:
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where x and z are the horizontal and vertical coordinates, respectively; ¢ is time; A is the pressure

fluctuation (A(x,0,r) gives the water table fluctuations); a, is the amplitude of the oceanic oscillation; k is the
wave number; j denotes wave mode; d is the thickness of the aquifer; w= 2r/T is the frequency of the

oscillations, where T is the period (figure 1); Re denotes the real part of the function: and { =+ —1. The
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solution is a summation of an infinite number of different wave modes. To obtain (1), a vertical ocean-land

interface has been assumed with the following boundary condition applied at the interface (Nielsen and
others, 1997),

h({], z,r) = ag cos(ar) . (2)

For each mode, the following dispersion relation must be satisfied,
inawd
xd tan(xd ) = , (3)

where K and n are the hydraulic conductivity and porosity of the sand, respectively. Note that by
setting z = d, one can obtain the solution for the water table fluctuations from (1). The wave number, &, is a
complex number; its real part represents the amplitude damping rate and its imaginary part gives the phase
shift. The behavior of the wave numbers is displayed in figure 2. Only the first two modes are shown. As the
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frequency increases, the wave numbers quickly approach asymptotic values: — for the first mode and

3n
E for the second mode. The general expression for the wave number asymptotes is,
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The results shown in figure 2 were obtained with variable » and fixed values of n, K and 4. In

n . . :
general, the wave numbers approach the asymptotes as —— (the non-dimensional frequency) increases.

With these asymptotic wave numbers, the solution, (1), becomes non-analytic at z = d. It predicts zero water
table fluctuations with finite vertical velocities (w = -Koh/6z) at the free surface (except for x = 0 where w is
undefined). Such behaviour is obviously non-physical as it violates the free surface boundary condition and

contradicts the field observations of high frequency water table fluctuations (Waddell, 1976; Lewandowski
and Zeidler, 1978; Hegge and Masselink, 1991; Turner and Nielsen, 1997; Li and others, 19995).

On the other hand, Li and others (1997) investigated the influence of oceanic oscillations on coastal
aquifers and determined two mechanisms of groundwater fluctuations. They found that capillary effects are
important for high frequency oscillations and provide the mechanism for high frequency groundwater waves.
A two-dimensional boundary-element model was developed to simulate the groundwater wave propagation
in the aquifer. Capillary effects were incorporated into the model through the free surface boundary
condition using the approach of Parlange and Brutsaert (1984). The inclusion of capillary effects enables
the model to predict high frequency water table fluctuations. In this paper, we derive a new equation for
groundwater waves by incorporating capillary effects into the intermediate-depth wave equation due to
Nielsen and others (1997). The new solution will be compared with previous solutions and its validity will

be checked against the results from direct simulations using SUTRA, a numerical model developed by Voss
(1984).

The paper is organized as follows: First, the new equation with the capillary effects included is
presented in section 2. Then, the differences between the present solution and previous ones are discussed.

Next, validation of the new solution is carried out in section 3 using direct numerical simulations from
SUTRA. Finally conclusions are drawn in section 4.

2. NEW GROUNDWATER WAVE EQUATIONS WITH CAPILLARY EFFECTS

Using a Rayleigh expansion of the potential function in terms of the aquifer depth, Nielsen and
others (1997) derived a groundwater wave equation, which includes the effects of vertical flows, i.e.,
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where n is the fluctuation of the water table, and tan[a' EJ is an infinite order differential

operator as defined by Nielsen and others (1997). Following Parlange and Brutsaert (1984) and Li and
others (1997), we derive a new groundwater wave equation from (5),
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where B is the thickness of the capillary fringe (figure 1). The details of the derivation can be found
in Parlange and Brutsaert (1984) and Li and others (1997) and thus are omitted here. Essentially, the
technique is based on the Green-Ampt approximation applied to the capillary fringe. The second term on the
right-hand side of (6) accounts for capillary effects on groundwater waves. An interpretation of this term'’s
physical meaning is given in later discussion. It should be noted that equation (6) is in linearised form,
implying that only small amplitude oscillations are considered here. Nielsen and others (1997) also assumed
this restriction in order to obtain analytical solutions.

Wave dispersion
Based on (6), the dispersion relation is expressed as,

inad
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This new dispersion relation is different from that of Nielsen and others (1997) as described by (3).
The extra term in the denominator is due to the inclusion of the capillary term in (6). The solution for the
oscillating pressure in the coastal aquifer subject to the oceanic oscillation as described by (2) is of the same
form as (1); however, the dispersion relation that determines x for each mode is now given by (7). As the
oscillation frequency w increases, the right hand side of (7) approaches a finite number, nd/B, different from
the behaviour of (3). It can be shown that the free surface boundary condition takes the following form,

on B 0
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Compared with the normal linearised free surface boundary condition, (8) has an extra term on the
right-hand side (i.e., the second term). This term accounts for the apparent water exchange between the
aquifer and capillary fringe that occurs when the water table fluctuates (Li and others, 1997).

In figure 2, we show the new dispersion relation in comparison with that of Nielsen and others
(1997). The following parameter values were used in the calculation: K = 0.00049 m/s, d =3 m, n = 0.45 and
B = 0.19 m. Significant differences between the two become evident as the frequency of the oscillation
increases, showing the importance of capillarity for high-frequency oscillations. Moreover, as the frequency
increases, the wave numbers now approach asymptotic values different from those given by (4). This is a
fundamental difference between the present solution and that of Nielsen and others (1997). Recall that the
latter becomes non-physical at the free surface at the high frequency limit: no water table fluctuation with
finite vertical velocities. This situation does not arise in the present solution. As the frequency of the
oscillation increases, capillarity starts to affect the process and changes the behavior of the wave number. At
the high-frequency limit, the wave number for each mode is less than that given by (4); the solution, (1),
remains analytic at z =  and predicts water table fluctuations.
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Predicted groundwater waves
(comparison with Nielsen and others (1997) and Barry and others (1996))

In figure 3, we show the high frequency groundwater waves as predicted by the present analytical
solution. The following parameter values were used in the calculation: K = 0.00049 m/s,d=3m,n=045,T

= 10 s and B = 0.19 m. In contrast, Nielsen and others (1997) solution predicts no water table movement. It

n
is interesting to note that, at high frequencies (i.e., —» 00 ), the water table fluctuations respond
simultaneously to oceanic oscillations because the imaginary part of the wave number vanishes at high

frequencies. In other words, the water table fluctuations become a standing wave. This feature has been
observed in the field and discussed in Li and others (1997).

To examine the amplitude damping, we notice that, at high frequencies, (1) can be rewritten as h(x,
d, t) = apA(x)exp(iwx). In figure 4a, we plot the normalised amplitude of the water table fluctuations against
x. Assuming that A(x) is of an exponential form, i.e., A(x) = exp[-k(x)x], we curve-fitted the simulation
results and found that k(x) = 4.4682 x 10™x* — 1.2769 x 107 + 1.3687 x 10"%*— 6.8115 x 10"'x + 2.0307.
Barry and others (1996) solved the modified Boussinesq equation with capillarity correction (Parlange and
Brutsaert, 1984) for water table responses to boundary oscillations,

n=a, exp(~ k1x)l:05(mf - kzx], (9a)
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Note that this solution includes capillarity but no vertical flow effects. According to (9), the
amplitude of water table decays inland exponentially, i.e., A(x) = exp(-kx) where k is a constant. For the
values of K, d, n, w and B used in the above calculation, k equals 0.8885. In contrast, the present solution
predicts that k varies with x. The predicted amplitude damping in the near-shore region is greater than that
given by (9) as shown in figure 4b. The damping rate, however, decreases with the distance inland and
becomes less than the constant rate (i.c., 0.8885) predicted by Barry and others (1996). In other words,
tailing of water table fluctuations further inland compensates the high amplitude damping in the near-shore
region. The difference between these two solutions is due to the effects of the vertical flow in the aquifer of
an intermediate depth as observed in the field (Nielsen, 1990; Kang and others, 1994). In figure 5, we show
the amplitude damping observed in the field (Kang and others, 1994) in comparison with the predictions of
the analytical solution, (1). The agreement between the two is reasonably good and both indicate a non-
exponential amplitude damping. Mathematically, the non-exponential amplitude damping is caused by the
presence of several modes of waves with different wave numbers. The vertical flow effects are reduced as

the aquifer depth decreases. The influence of the aquifer depth on the groundwater waves will be discussed
further in section 3.

According to the model of Nielsen and others (1997), i.e., (1) and (3), there exist no fluctuations of
the water table at high frequencies but the internal pressure oscillates and the amplitude of the pressure
fluctuations increases with the depth (i.e., d - z). In figure 6, we compare the results of pressure fluctuations
from the present solution and those of Nielsen and others (1997) based on the same parameter values as
above. Large differences exist between the predictions of the two solutions. Near the shore (e.g., x = 1 m),
the differences are larger close to the water table (z = 3 m) than in the deeper areas (z near 0), suggesting that
the difference of pressure fluctuations (in the aquifer) is essentially caused by different water table behaviour
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in both solutions. This trend, however, is reversed in areas further inland (e.g., x = 5 m) because the pressure
fluctuation at depth is influenced by not only the local water table fluctuations but also the seaward pressure
field; the latter factor becomes more important with increasing depth and distance inland. As the distance
from the shore increases, differences between the two solutions in deep areas become relatively large in
relation to differences of the solutions near the water table. At both locations, less amplification of the
pressure fluctuation with the depth is observed in the predictions of the present solution (figures 6¢ and d).
Note that, in the figures, the inverse of the amplification factor is plotted.

The difference between the predictions from the present solution and those of Nielsen and others

(1997) decreases as the wave period increases (i.e., -K— —> () since capillary effects then become

negligible (Li and others, 1997).
3. DIRECT SIMULATION OF GROUNDWATER WAVES USING SUTRA

To verify the present analytical solution, we carried out numerical simulations of the groundwater
fluctuations using SUTRA, an existing finite element code (Voss, 1984). This code models
saturated/unsaturated groundwater flow and uses the three-parameter formula of van Genuchten (1980) for
describing the relationship between the saturation and pressure in the unsaturated zone, i.e.,

B 1-s,
]

where s is the water saturation, s,, is the residual saturation, p is the capillary pressure. Here o, n;
and ny = (n;-1)/n, are the three empirical parameters that determine the shape of the retention curve in the
unsaturated zone. Two different types of retention charactenistics were used in the simulations with 5,. = 0, o
= (.00005 Pa™' and n, = 2, and Spe = 0, oo = 0.00005 Pa"' and n; = 4, respectively. The retention curves are
shown in figure 7 where the water saturation is plotted against the vertical elevation. The thickness of the
capillary fringe is estimated as 0.19 m and 0.42 m for the first (figure 7b) and second (figure 7c) retention
curve, respectively. The values of other model parameters for each simulation are listed in table 1.
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High frequency groundwater waves

The simulated high-frequency water table fluctuations from Siml are shown in figure 8. These
groundwater waves are similar to those displayed in figure 3 as predicted by the present wave equation; in
particular, they are simultaneous groundwater responses to the oscillations at the boundary with the
amplitude decreasing inland. Differences between the numerical and analytical results mainly exist in the
falling phase. The numerical simulation showed that a seepage face was formed as the sea level fell. The
seepage face dynamics are not included in the analytical solution. The vertical dot-dashed line in the figure
indicates that the peaks of the water table fluctuations occurred simultaneously at all locations.

To verify the analytical prediction of the wave damping, we calculated the normalised wave
amplitude from the simulated water table fluctuations as A(x) = a(x)/a, and a(x) = nue. The results are
compared with those predicted by the present analytical solution with B = 0.19 m, as shown in figure 9a.
Also plotted in the figure is the prediction from the boundary element model of Li and others (1997). This
model simulates the two-dimensional saturated flow in the aquifer and includes capillary effects through the
free-surface boundary condition. The agreement among these three predictions is very good. Note that all
parameter values used in the analytical solution and the BEM simulation are the same as those prescribed in
the direct (SUTRA) numerical simulation, including the thickness of the capillary fringe which was
determined according to the modelled retention curve (figure 7). The good agreement shown in the figure
indicates that the new wave equation describes the groundwater responses to the boundary oscillations. The
results also suggest that the capillary-effects approximation present in the analytical solution and the BEM
model adequately describe the influence of the unsaturated flow on the saturated flow in the aquifer.
Different values of B (0.1 and 0.3 m) were also used and the resulting analytical predictions were found to
differ noticeably from the numerical predictions (dashed and dot-dashed lines in figure 9a). This indicates
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that the wave damping is sensitive to the thickness of the capillary fringe at high frequencies. In calculating
the analytical solution, we used up to 200 wave modes, which was found to be sufficient numerically. For all
the modes, the imaginary part of the wave number is approximately zero, i.e., there is no phase shift since

nawd
—— = 1731, 13 large.
K

We also compare the results of the pressure oscillations, and the present analytical solution again is
found to agree well with the SUTRA simulations (figure 10). In contrast, the solution of Nielsen and others

(1997) failed to describe the numerical results; particularly, it predicted no oscillations at the water table,
contradicting the direct numerical simulations.

To further examine the capillary effects, we explored the numerical predictions of the pressure at
various locations around the water table. In analysing the high-frequency water table fluctuations, Li and
others (1997) assumed that the pressure profile within the capillary fringe is linear and that the pressure at
the top boundary of the capillary fringe remains constant. In figure 11, the simulated pressure profiles above
the water table (within the capillary fringe) are displayed at high and mid oceanic oscillation stages (right
panel). The pressure at the top boundary of the capillary fringe (i.e., z = 3.19 m) is found to be
approximately constant. In the unsaturated zone (above the capillary fringe), pressure changes are due to
water content changes. The latter will not occur on the time scale of the period of high-frequency oceanic
oscillations because the water movement in the unsaturated zone is a slow process. The simulation results
also show that the pressure profile within the capillary fringe is nearly linear and that its slope varies with
time, consistent with experimental data and previous modelling efforts (e.g., Bond and Collis-Geaorge, 1981;
Barry and others, 1993). The changes of the vertical pressure gradient with a constant pressure at the top of
the capillary fringe lead to oscillations of the phreatic surface, i.e., water table fluctuations. These
phenomena are essentially due to the capillary effects on the aquifer as described by equation (8), and are
consistent with the analysis by Li and others (1997). To recap this analysis, we illustrate the meaning of the
second term on the right hand side of equation (8) in figure 12: the vertical velocity (w) at the water table
represents the pressure gradient of the linear pressure profile within the capillary fringe (s,). As w changes
with the time, the gradient of the pressure profile fluctuates. The change of pressure gradient (As,),
proportional to the change of w, leads to the water table fluctuations (An) since the pressure at the top
boundary of the capillary fringe is a constant. The pressure within the capillary fringe can change quickly
because the water saturation in the fringe is close to unity (figure 7). Therefore, high-frequency water table
fluctuations are essentially pressure responses to the oceanic oscillations.

Another simulation was conducted with a different type of retention characteristic for the
unsaturated zone as shown by the dashed curve in figure 7a, in which case B equals 0.42 m. Again, the

analytical solution is found to describe wave damping predicted by the direct numerica! simulation and the
results are sensitive to the estimate of B (figure 9b).

Effects of aquifer depth

The inclusion of capillary effects in the new groundwater wave equation prevents the analytical
solution from becoming non-physical at high frequencies. However, as the aquifer depth increases, the wave

(2 —1)n

number will still approach 2d , leading, again, to non-physical solutions. However, the limiting

process (1.¢., taking d to infinity) violates the premise used in the derivation of the wave equation, which was
based on the Rayleigh expansion of the potential function in terms of the vertical elevation (z). Thus, the
aquifer depth needs to be finite for the expansion to be valid. It is, therefore, expected that the solution will
not apply in the limit of a very deep aquifer. On the other hand, the solution based on the intermediate-depth
groundwater wave equation should collapse to the one predicted by the modified Boussinesq equation

(Barry and others, 1996) when a shallow aquifer is considered. Taking the limit of (1) and (7) with d going
to zero shows this.

To examine the effects of the aquifer depth, we conducted another two simulations with small and
large aquifer depths. In both simulations, we considered high-frequency oceanic oscillations. Figure 13a



compares the predicted amplitude damping in a shallow aquifer. The present analytical solution agrees well
with the SUTRA simulation results. The analytical solution of Barry and others (1996) based on the
modified Boussinesq equation is also found to perform well. Both analytical solutions, in fact, overlap with
cach other. At high frequencies, the solution of Barry and others (1996) predicts a simple form for the

’ n
amplitude decay: A(x) = Exp[- EEI] The results of a deep aquifer are shown in figure 13b. It is

clear that the analytical solution fails in this case.

4. CONCLUSION

A new groundwater wave equation has been developed by combining the effects of capillarity and

vertical flows in coastal aquifers. The new equation resolves the difficulties with the equation of Nielsen and
others (1997) in predicting high frequency groundwater waves.

We have verified the new wave equation by comparing its solution of the water table fluctuations
and internal pressure oscillations with those from direct numerical simulations using SUTRA. The new
analytical solution was found to describe well the aquifer’s responses to high-frequency boundary
oscillations provided that the aquifer is of a shallow or intermediate depth. For shallow aquifers, the new

solution reduces to the solution of Barry and others (1996), which appears as a limiting case of the present
theory.

In this study, a vertical interface with a uniform head fluctuation was assumed to allow an
analytical solution to be obtained for the derived groundwater wave equation. With this solution, the validity
of the new governing equation can be examined. The equation, however, can be applied to a sloping beach
with swash motion, in which case a moving boundary is involved and numerical solutions are required.

NOTATION
A normalized amplitude of the oscillation, a/a,
a amplitude of the oscillation [L]
g amplitude of the oscillation at the ocean-aquifer interface [L]
B thickness of the capillary fringe [L]
d aquifer depth (L]
h oscillating pressure head [L]
: V-1
K hydraulic conductivity LT
n effective porosity
P capillary pressure [Pa]
5 water saturation
8, pressure gradient in the capillary fringe
f fime [T]
r period of the oscillation [T]
W vertical flow velocity (LT
x coordinate in the cross-shore direction [L]
z coordinate in the vertical direction [L]
I fluctuation of the water table [L]
K wave number L
W frequency of the oscillation [T

45



g @, G o) camiliary e 1 K5 |
_____ ‘ ‘%mpa{}" __x__
HHARE
envelope of WTF
coastal aquifer: d, K, n,

WTF: water table fluctuations

Figure 1. Schematic diagram of a coastal aquifer and the groundwater waves.
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Figure 8. High frequency water table fluctustions from Siml.
Dashed line shows the sea level oscillations and the solid line is the
clevations of the exit point of the water table, A scepage face was
formed during the falling phase of the oscillations.

Dotted lines are the elevations at various locations.

The arrow indicates that as x increases, the water table fluctuation decays.
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Table 1. Vales of model parameter used in the simulations

Simulation Model Parameters
No. d [ K(m/s) T(s) ao (m) [ B (m) Size of the
(m) simulation
domain (L x H)
Sim] 3 0.00049 |10 0.15 [ 0.19 (first retention curve) | 10 x 10 m?
Sim2 3 0.00049 10 0.15 1042 (second retention | 10 x 10 m*
curve)
Sim3 0.1 |0.00049 |10 0.01 [0.19 10 x 1 m’
Sim4 70 | 0.00049 10 0.5 0.19 100 x 100 m’

n = 0.45 for all simulations
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