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ABSTRACT. Richards’ equatioa, the govering equation for single phase unsaturated flow in soil, is highly non-
lincar and, consequently, is difficult 1o solve cither analytically or numerically. The nonlinearity enters through the
soil hydraulic functioas, viz., the soil moisture characteristic curve and the unsaturated hydraulic conductivity, We
present an exact quasi-analytical solutioa for the ooe-dimensional Richards’ equation subject o an arbitrary, fime-
dependent poading depth. The solution depends on solving a Arst-order ordinary differential equation. For certain
special cases, such as when the surface ponding depth is coastant, fully analytical results can be derived. The the-
ory is used in & number of applicatioas. For example, an existing analytical approximatioa for cumulative infiltra-
Uoa subject 10 a ponded, time-dependent surface head is checked. As well, a drainage formula is derived. New
results for solute transport coupled with a noalinear adsorption isotherm are derived by making use of an exact
mapping between Richards' equation and the goveming solute ransport equation.

1. Notatlon

arg argument

A function of time

B constant defined by (54)

c normalised solute concentration

cg adsorpdon Isotherm fitting parameter

o normalised solute concentration at soil surface
€1, €3 constants, L

C function defined by (7), T

C. value of C when v, s constant, T"!

D solute diffusion/dispersion coefficient, LT
D, Cumulative drainage, L

Ei(.) exponential integral with argument .

P magnitude of the gravitational acceleration, LT
H(.) Heaviside function with argument ,

[ cumulative infiltration, L

I quantty of solute In the soil profile, L

K hydraulic conductivity, LT

K, saturated hydraulic conductivity, LT

n Ume step number

p fluid pressure offset such that p = 0 is | atmosphere, ML-IT2
[ normalised solid phase concentration

) sorptivity, LT 12

S sorpuivity for zero surface head, LT2
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' time, T

v pore fluid velocity, LT

W() function, with argument ., defined by (19)
z position, L

g solute front position, L

Z; initial height of reservoir, L

B constant, L

Y constant, L

b parameter defined by (27)

€ constant, T

At time increment in numerical scheme to compute A, T
AB 8,-0,

ﬂ'."F W;(D} “ Wa L

8 volumetric water content

0, residual volumetric water content
8, saturated volumetric water content
i parameter defined by (26)

p density of soll water, ML

') pressure head, L

Y air-entry head, L

Vs surface pressure head, L

2. Iniroduction

The prediction of infiltration into soil Is a key element of hydrologic catchment modelling. Green and
Ampt (1911) presented a remarkably simple infiltration formula for the cumulative amount of water (0
enter a dry soil profile due to a ponded surface condition. Their formula is still used widely because it
captures the essential short and long time behaviour of ponded water infiltration. Thus, it is of sufficient
accuracy for many applications (¢.g., Onstad et al., 1973).

The Greea-Ampt formula relies on the assumption of a sharp front of infiltrating water. Recendly, Bar-
ry et al. (1993b) showed that the Green-Ampt formula can be derived without this assumption. Instead,
the soll molsture characteristic curve is a particular function of the hydraulic conductivity. It is this latter,
less prescriptive, relationship which leads to the Green-Ampt infiltration formula.

The Green-Ampt approach is easily extended to other, more complicated scenarios. For example, a
depth-dependence of the hydraulic conductivity or the initial water content in the soil profile can be in-
roduced. A common extension is to consider the ponding depth at the soil surface to be ime dependent
as it would be, for instance, If runoff or evaporation occurred. In the following, the exact approach of
Barry et al. (1993b) is extended to derive an exact solution for the case of a time-dependent surface con-
dition. In addition, a corresponding exact solution is presented for solute transport subject to a nonlinear
sorption isotherm.

3. Exact Solution for Infiltration with a Time-Dependent Surface Head

The governing equation for one-dimensional, unsaturated fluid flow is (Richards, 1931)
a8 3 ay
5 = E[xwgE-rw}]

where K s the hydraulic conductivity and y (= p/pg) is the pressure head. The z-axis is assumed [0 be
pointed downwards. Recalling that if only infiltration or drainage is considered, then the soil moisture
characteristic curve, W(8), is single-valued, and (1) can be writien as

d8 3y dKay [a\p 1] dty
= -1+ K—.
dy ot dyaz\az dz*

(1)

(2)
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Following Barry et al. (1993b), a solution for (2) is sought in the form

Z
A AORS v )

where v, is the surface pressure head and A is an unknown function of time. Further, define the soil
moisture capacity as

dA
de  dk di

C) = = o= (4)
Y ‘FEEH(‘F,"FH

where C is an arbitrary function of time. Note that y and 1 are independent variables in (4). With (4),
substitution of (3) into (2) yields

dA
A = (1—4)c(s) (5)
which has the solution .

3 1—A (1) .
0=A(1) —A(0) +£n[1_5(0):|+J‘C(I}dL (6)

0

We consider soils which have a well defined air-entry value, given by y,. Then, using (4), C is de-
fined as

v,  dKda
dy dt
c(t) = ﬁf p hd dy. (7)
S LAY, V)]

A slightly different definition of C Is appropriate if the surface pressure head becomes lower than .
We focus here on infiltration under ponded conditions (y, > 0), in which case (7) should be used (Barry
et al., 1993b). With this definition, the soil moisture characteristic curve is

(¥ .
=
f =y
.o Aly,—-¥) ]
0—9 dt
r_ - ¥ <Y,
=) Ve dX (8)
d
J
=g Al ]
- lr‘FE‘Fa

This theoretical development is similar to that presented by Barry et al. (1993b), except that here the
surface head s permitted to be a function of time. The right side of (8) is unrealistic because of the
presence of the time-dependent surface head, whereas the soll moisture characteristic curve is usually
taken to be independent of this quantities. However, it will be shown below that useful results can be
Obtained, particularly for soils which are of the Green and Ampt (1911) rype. Before proceeding to the
Green-Ampt case, we determine when the soil moisture characteristic curve is independent of time.
Any surface pressure head that satisfies
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W,(f) = ¢ + c/A(r) 9
will reduce (8) to
[ v 4K
v
——d
j.f-'l"\lf y
6-06 o
L R T (10)
AB dy
d
J.Cl_‘l’ v
Ly2y, .

The solution presented by Barry et al. (1993b) is for soil moisture characteristic curves defined by (10),
with ¢, representing the (constant) surface pressure head. Further, (7) then shows that C is constant, and
so (6) Identical o (11) of Barry et al. (1993b). Thus, their results appear to apply not only (o a fixed head
surface pressure head, but also to the time dependent surface head given by (9). However, for this later
case, Barry et al. (1993b) showed that the solution (3) reduces to the case of a constant pressure head
condition at the surface under a translation of distance ¢4 in the profile.

Regardless of the functional form of (), integration of Darcy's law gives the cumulatdve infiltration
at the soil surface as

4

1 4
= - 11
/ K‘,Il A{r]dr (11)
0
assuming that y, > .

3.1. Green-Ampt Soll

A Green-Ampt soil is one which has a hydraulic conduction function defined by

K(y) = KH(y-vy,), (12)
where H is the Heaviside step function. Using (12), C is found from (7) to be

dA | AB 4 )

Friii o018 A A (13)
Then, from (5), A is defined by the solution of

AB 4 e

B a4 (Vw14 = 1-4, e

with A(0) = 0 (Barry et al., 1993b). For a Green-Ampt soil, (11) becomes

[=-A8 A1) (y, - yo)- (15)

Now, using (15), (14) can be written as the familiar Green-Ampt infiltration equation
dl
IE = K,A8(y, -y ) +K, I (16)

Thus, the theory has reduced to the Green-Ampt model as it should. Exact infiltration formulas can be
derived from (16) upon specification of suitable functional forms of y,. For example, if a fixed head of
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waler exists at the soil surface at ¢ = 0 then, if the fluid is not replenished, the falling head Green-Ampt
model results. Equation (16) is solved by setting W, = Y,(0) - I. Since 1(0) = 0, the solution to (16) can
be written as (Philip, 1992a)

1

arg

Figure 1. The function W(arg). Above and below the line W = -1 lie the two branches Wused here, l.e.,
W, and W,,,, respectively.

) 1(1-48)
(1-48) %K, = I(1-48) -ﬁlpﬁﬂ!n[l+ ]

AyAB
which can be expressed explicitly in the equivalent form

(17)

I1(1-A8) tK (1 -A8) 1] 08

AyAB —=W {_EIF[H L= AyAB
The function W(arg) is defined by solutions of (Fritsch et al., 1974)

Wexp(W) = arg. (19)

The behaviour of the function W is displayed in Fig. 1. Note that Barry et al. (1993b) give simple
approximations for portion of this function in the region arg < 1. Barry et al. (1993a) have derived an
efficient scheme to compute W for all arg. Obviously, other solutions can be determined for (16) upon

specification of y; (e.g., Philip, 1992b). However, we wish to consider more general soils than those
defined by (12).
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3.2. Solution for a General Soil

We consider soils having the property that their soil moisture characteristic curve satisfies (8). As men-
tioned already, (8) is not considered as a realistic model. Rather, it defines a class of soils for which
exact results can be derived. Subsequently, these results will be used to test a general infiltration for-
mula

Equation (11) gives an exact infiltration formula in terms of the unknown function A, which is

defined in turn by (5). A short ime expansion of (5) in powers unmmcasilyhcczlmmad. It is not
difficult w show as ¢t — 0 that

v. dK

2t dy
A=- 20
ﬂﬂj.'qil{u} _vdw+ﬂ(:}, (20)

Thus, from (11), the sorptlvity for this class of soils is

248
;s=x;1n T : 21
dy

q V.0 —yY

An approximate solution for A(t) can now be developed. First, we define X as

dy, 24¥,
ar ol

X(n "‘“’:*""?.:_T:"":*cu—m‘ (22)
di

With A(Q) =0, the solution to (5) is, in terms of the W function,

t
A = 1+Wm{-¢.rp -lu‘[C(E}df } (23)
0

For a given K, (7) and (22) define C implicitly. In (23), however, the integral of C is needed. This can
be achieved using a simple numerical approximation. Upon setting ¢ = nAt, and using the trapezoidal
rule (Davis and Polonsky, 1964), (23) becomes

L
A(nAr) = 1+Wm(—¢xp|:—l-%ffiﬂ} —?C(nm}—mzcum)”. (24)

Thus, (7) and (22) give a single equation with A(nAs) and C(nAr) as the unknowns, as does (24). How-
ever, (24) gives A(nAr) explicitly, so that the combination of (7) and (22) reduces o a single nonlinear
equation with C(nAs) as the only unknown. These equations are solved stepwise in time starting at As
using (20) to give A(As). It is easily shown that, w0 the same order of accuracy, C(As) = A(Af)%2A1. With
C, and hence A known, the cumulative infiltration can be determined from (11) using a convenient quad-
rature formula, for example, the trapezoidal rule. Accuracy is specified by suitable choice of As. The re-
sults, however, are limited to the class of soils defined by (8). One use of the exact solution is to check
more general analytical approximations for infiltratdon. A general infiltration formula for a ime-depend-

ent bead condition has been proposed (Parlange et al., 1985). The exact results presented here provide
the opportunity to check directly the accuracy of this formula.
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Before proceeding, we note that when the surface pressure head is constant, an infiltration equation
of the form of (16) can always be derived following the approach used here, as shown by Barry et al.
(1993b). For a time-dependent surface pressure head, such a simple formula is possible only in the case
of the step function hydraulic conductivity, (12). Thus, the Green-Ampt assumption is extremely useful
in simplifying the governing equation.

3.3. Infiltration Formula

Parlange et al. (1985) proposed an approximate infiltration formula for an arbitrary ponded, time-de-
pendent surface condition, extending the earlier, less general, infiltration formula of Parlange et al.
(1982). For infiltration into a dry soil, the Parlange et al. (1985) formula is:

2
K,y (A6 (1+p) 5o 5K,
— = In| 1+ , (25)

dl K 20K, di _X

dt ¢ dt #
where Sg is the sorptivity for a zero surface head, and . and & are defined, respectively, by

L
[Sg+2K,y,(0)A8] p = j (6, -08(y)]K(y)dy (26)
and »
1 48

§=1- AOK, dwﬁ’w}dqﬂ. (27)

The parameters y and § are constants for any particular soil, and so (25) is a first-order differential
equation for / which is solved numerically. The most convenient solution method results from rewrit-
ing (25) as

dI _ EKJ
:T:*K:'—E_l- (28)
H
where
IEK’I
B = WF [HEIF (H'\" -TJ:I (19]
S
0
and
E‘F; () K;.d.ﬁ-{-l + W)
H = x . (30)
S
0

‘The advantage of (28) is that it isolates the derivative term. Standard integration methods, such as
the Runge-Kutta technique (e.g., Davis and Polonsky, 1964), can then be employed to solve (28) very
easily and efficiently. The only difficulty with numerical integration of (28) is that dl/dt — e as  — 0.
However, in this limit, / is given by 5t/ In general, S will be unknown, although it is assumed that S,
is known. Then, S can be approximated by (Green and Ampt, 1911)

5% = 5p+2K,y, (0) 48, (31)

Clearly, the approximation (31) has been used o derive (26). More accurate sorptivity approximations
are available and have been extensively tested (Parlange, 1975; Barry et al., 1992; Parlange et al.,
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1992, 1993), should they be required.
For a constant y,, (28) can be integrated explicitly. The solution is

208K2 (1 - §)
2
Sﬂ

B-H B
=5In(1+—gﬁ—) [HE—H—I}+In{E}—(H-E}(1-E]. (32)

Equation (32) provides a straightforward formula to calculate /(1) for constant head infiltration.

3.3.1. Application to falling head infiltration A simple calculation shows that (25) reduces to (16) in
the imit 6 — 0 and p — 0 (Parlange et al., 1985). In other words, (25),is exact for the case of a Green-

Ampt soil. As shown by (12), such soils are characterised by rapid changes in hydraulic conductivity
around the air-entry value. To test (25) then, we choose a conductivity that is slowly varying, e.g.,

y p
K = x,[ﬁ') Y < Y, (33)

There is nothing particularly significant about this hydraulic conductivity, other than its slow variation.
Indeed, it is unrealistic since the conductivity in most soils would vary much more rapidly than pre-
dicted by (33) (Reichardt et al., 1972).

Before solving (28), i and & must be calculated. Upon substituting (8) and (33), as necessary, into
(26) and (27), we find, respectively,

2
Xy, x°
3n (1 =X ) +y? 2
-(s3+ 2Ky, an)p Yot U YR S
; (34)
2K,y A8 x[zy X+X +2y2ln (1 - i]]
a a Ya
and
a-pp YR TS T
LY (35)

2y X+ X +2y2In (1 - wi}

Equations (34) and (35) are functions of time. This is due to the time-dependence of the soil moisture
characteristic curve, (8). Of course, for real soils, both L and § are constants. Also, the functional form
of X means that (28) is no longer an explicit function of dl/ds, since (11) can be used to eliminate dA/dr
and A from X. We found, however that i and & are only slowly varying functions of time, and can be
replaced by average values. This point will be addressed below. However, we note that using average
values for these parameters is clearly a more stringent test of (28).

For the purpose of illustration, we used the following parameters to carry out the calculations: y,(0)
=10cm, y,=-1cm, K;=1 cm d! and A8 = 0.5. With these values we first computed the exact cumu-
lative infiltration using (7), (11), and (24). The exact results were used o compute J and 8 from (34)
and (35). The behaviour of these parameters, along with that of X, is shown in Fig. 2. Note that in this
example the surface ceases to be ponded at t ~ 5.56 d. Figure 2a shows that the u varies only margin-
ally, while the variation of & s more marked (Fig. 2b). The variation of X is in the range y,(0) 2 X > y,
(Fig. 2c). A suitable average X for the calculation of the average i and & is clearly X(2.28 d). However,
there s no reason that this ime would be known a priori. A more reasonable choice is to calculate p
and & using a fraction of y,{(0), rather than X, For the sake of simplicity we selected y,(0V2 = 5 cm.
Equations (34) and (35) then give (5 cm) = 0.03 and &5 cm) = 0.47. As can be seen from Fig. 2b, this
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0.037

0.033 ’

0.029 A .
0
Time (d)

Figure 2a. Variation of ) with time for the falling head infiltration example.

0.5

0.1
Time (d)

Figure 2b. Variation of & with time for the falling head infiltration example.
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L L

0 2 4 6
Time (d)
Figure 2c. Variation of X with time for the falling head infiltration example.
10
E 57
S
e
U -
0 2 4 6

Time (d)

Figure 3. Comparison of exact (thick, upper) and approximate (thin, lower) cumulative infilration
curves for falling head infilration
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Is not a particularly judicious choice for §, as It corresponds to 1 =~ 0.6 d.

Equation (28) was solved numerically using the Runge-Kutta method, with the parameter values
discussed above. The prediction from (28), and the exact falling head solution (calculated following
the discussion in section 3.2), is plotted for comparison in Fig. 3. The predicted infiltration is slightly
less than the exact value, with a maximum relative error of approximately 2% occurring at the conclu-
sion of the infiltration event. Given the artificial nature of the ‘soil’ used in this comparison, this result
suggests that (28) is a robust approximation.

3.3.2. Application to a time-dependent surface condition. As asecond example, we take the following
condition:

Y, =y +7+Pexp(-€r) (36)

with the same conductivity function as above. In addition, ¥ and P were taken as 6 and 5 cm, respec-
tively, withe = 1 d°, Again, there Is nothing particularly significant about this surface condition. As
above, it was found from the exact solution that p and & varied little. Thus, X was approximated by w,.
The calculations were performed as already described. The cumulative infiltration is shown in Fig. 4.

The error, like that in Fig. 3, grows with time at a small rate. The maximum relative error in the figure
is less than 2%.

I (cm)

0 ! P A . .
0 2 4 6 8 10

Time (d)

Figure 4. Comparison of exact (thick, upper) and approximate (thin, lower) cumulative infiltration
curves for the ime-dependent surface condition (36).

3.4 Drainage from a Soil Profile

We consider the saturated-unsaturated soil profile shown in Fig. S. Initially, the external reservoir,
which controls the head at the profile base, is located such that the air-water interface is z; above the
base. The z-axis has its origin at the profile and, as above, is oriented so that positive z is downwards.
Within the soil profile, the soil is saturated from z = 0 up to z = \, - z;. Dagan and Kroszynski (1973)
and Dagan (1989) consider the drainage that will occur from the soil profile if the external reservoir is
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suddenly dropped so that the phreatic surface in the reservoir is aligned with the bottom of the profile,
ie,z=0.

The drainage of the column is governed by Richards’ equation (1). The initial time, ¢ = 0, is taken as
the instant the external reservoir is lowered. Then, the initial pressure head gradient is

W _ 2
-E-l =y t=0. (37)

The solution to (1) is given by (3) with y, = 0. Equations (3) and (37) show that

Zy
A(0) = I_W_' (38)

a

4

Figure 5.  Initial configuration of the drainage problem: Due to the external fluid reservoir, the soil
profile Is saturated as shown to depth z; - y,. At 1 =0, the external reservoir is lowered so
that the phreatic surface of the reservoir fluid is aligned with the base of the soil profile.

Equation (6) is the solution for A(f). Because v, is constant, C(f), which is calculated from (7). is a con-
stant independent of 1. Denote this constant value by C.. Now, the relationship between the cumulative
drainage, D, and A is just (11), with [ replaced by D,. Integration of (11) yields

D, = ABwy [A(r) - A(0)]. (39)

With (39) and (6), D, can be expressed as

D, D,
+ = = U.
ﬂlﬂwa n‘(l :&Bzf)+cff 0 (40)

An explicit solution for D, is available using the W function:

D v z 4
r a ! !
— = —-FW — —— — B =

abz, | + 2 F[ ‘1’:#{ m‘l'ﬂ ﬂ.:’]] (41)
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Dagan (1989) derived an expression which, under suitable notation changes, is identical to (40). The
predictions of the formula were compared with the extensive experimental data set of Vachaud (1968)
with reasonably good results. However, to derive his result, Dagan (1989) assumed that the capillary
fringe remains fixed during the entire drainage process. The derivation given here relies not on this
assumption, but rather on the relationship (8). Clearly, the results could be extended to account for a
time-dependent bottom boundary condition, along the lines of the analysis of the previous sections.

3.5 Application to Solute Transport

Barry et al. (1991) showed that if K is defined as (Gardner, 1958)

T
K = HEIF{ ﬂ]. (42)
then with the mapping
ve
and
. c+s5(c)
8= 3 (44)
(1) becomes
Ac+s(e)] e ac
5 = ﬂg—vﬁ, (45)

which is the governing equation for solute transport with the nonlinear sorption isotherm, s (e.g., Bajra-
charya and Barry, 1993). Barry et al. (1993b) have presented a new solution for (45) based on (3) for y,

constant. Here, this solution is extended to the case of a time-dependent v,.
The soil profile Is considered to be initially solute free, i.e.
c(z0)=0, z>0, (46)
while at the profile surface the solute concentration is a known function of tine:
c(0,1) = colt), t>0. 47)

The solution to (45)-(47) is, from (3) and (43)

54
Cgexp (m) 2> 2

¢ (48)
Cp < IJr
where cg() is an isotherm fitting parameter defined by
vy
g = c.rp{-ﬁ-i} (49)

and zris the position in the profile locating the solute front position where ¢ = ¢,

AD ("-’n]
If= —_—inl — |.
¥ CB
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The surface concentration, ¢, is related to the air-entry pressure head via

vy,
cg = exp( )

). (51)

Because cg is a time dependent, s0 to is Wy, in (51). We note that this presents no difficulties in obtain-
ing the solution from (43) as this time dependence enters in the calculation of C(1), as given by (7).
Equations (48)-(51) relate various quantities needed in the solution for (45)-(47) to the solution already
obtained for Richards’ equation (1). The isotherm, s, for which (48) is an exact solution is then

dcﬂ‘
o '3

Eilln(<) -

Cg

dA
s(c) +¢ k. ‘8 gr

s (cg) *¢g Y dcg”
¢\ Aar
Ei In( )- 1
Cg ‘:BE

, - (52)

where Ei Is the exponential integral (Spanier and Oldham, 1987). Note that, to derive (52), we used the
reladonships:

B dcg
¢ A
8(c) = -Ei In{c—ﬂ}-c d_“:‘_ ; (53)
L B dr
and
—-[5(cy) +¢pl
B *:f : (54)
Eﬂ"
1. (e *ar
Ei I"(EBJ_ 7A
L ‘871 |

Since ¢y is defined by the boundary condition (47), the isotherm given by (52) has cg as a fiting
parameter, as already noted. Barry et al. (1993b) have shown that this isotherm, for cg constant, is sim-
ilar to the lower portion of the S-curve isotherm (Sposito, 1989; Barry, 1992). Such isotherms occur,
e.g., in cation exchange processes (Schweich et al., 1983). [n addition, Barrow (1989) has pointed out
that time-dependence of solute sorption in soils is much more common than equilibrium sorption.
Thus, it appears that the time dependence of the adsorption isotherm, (52), allows for more realistic
modelling of solute sorption behaviour. Finally, the total amount of solute, /., that has entered the soil
at any time is found by integrating the solution (48) over the spatial domain. The result is

AD
I, = colzp==>). (55)
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4. Conclusions

There are very few exact solutions for Richards’ equation, the governing equation for unsarurated water
flow. Recently, some recent exact solutions have been derived using specific forms of the diffusivity and
conductivity functions (Rogers et al., 1983: Broadbridge and White, 1988; Sander et al., 1988: Barry
and Sander, 1991; Warrick et al., 1990, 1991). The solution presented here, and that of Barry et al.
(1993b), do not depend on specific soil hydraulic functions, but on a relationship between the soil mois-
ture characteristic curve, the hydraulic conductivity, and the surface pressure head. Of course, this rela-
tonship is constraining, and the soil to which the solution applies is, consequently, of an artificial nature.
On the other hand, the solution obtained is reladvely simple. Hence, it should be of use in checking nu-
merical schemes, where no other checks are possible due to the lack of analytical solutions for nonlinear
forms of Richards’ equation. For the draining soil profile, a particularly simple drainage formula can be
derived. Finally, the solution foc Infiltration has been used to derive an exact solution for nonlinear SOrp-

tion of a solute moving in a soll profile. The sorption isotherm depends on time through the surface con-
dition, as well as through a fitting parameter. Again, this solution is one of a very few exact solutions for
nonlinear solute adsorption and transport.
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