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Abstract

Coupled solute transport and reaction models are computationally demanding when multispecies, multidi-

mensional simulations are considered. Split operator methods approximate solutions to the reactive solute transport
problem that are both relatively efficient to compute and to construct. The transport and reaction operators are split into
two separate computational steps. Split operator schemes are introduced in the context of sin gle species sorption to the
soil, with an emphasis on the splitting errors that are induced. For standard two step methods, the splitting error is pro-
portional to At, the temporal step size of the numerical scheme. The alternating split operator scheme, in which the order
of the operations is switched at succeeding time steps, apparently does not remove the splitting error for nonlinear reac-

tions, whereas it is removed for linear cases. An alternative to

the standard time discretisation approaches is presented.

The transport step is assumed to be solved by any available groundwater transport code, while the reaction model is for-

mulated as a system of coupled ordinary differential equatio

ns and solved using an ODE solver. Two variants of the

standard two step/ODE approach are presented. The efficiency of these latter schemes is compared with a standard split

operator approach.

1. INTRODUCTION

Operator splitting is an efficient decoupling technique
for solving porous media flow problems involving cou-
pled chemical transport and reaction. In general, most
approaches to the fully coupled model involve, in dis-
crete form, the solution of N X n nonlinear algebraic
equations at each time step, where N is the number of
chemical species (or components) and n is the number of
nodes in the spatial grid. The computational burden can
quickly become prohibitively large for multidimen-
sional, multispecies simulations.

The most straightforward implementation of operator
splitting is the two-step method, which consists of solv-
ing first the chemical transport, followed by the chemical
reactions. The decoupled problem consists of N linear
transport equations, each with n unknowns, and n non-
linear algebraic equations describing the chemical reac-
tions, each with N unknowns. Thus, N + n equations are
solved in all, N of them being linear systems. The split-
ting method is efficient also because existing computer
codes for reaction and transport can be combined rela-
tively easily, substantially reducing programmer time in
comparison to devising and implementing a numerical
solution to the fully coupled problem.

These efficiency gains come with a cost, however.
Because reactions involve temporal derivatives, there is
usually an O(At) splitting error introduced as a result of
the splitting, where At is the time step used in the numer-
ical scheme. Typically, numerical schemes are formu-
lated with O(At”) accuracy, this accuracy being sacrificed
for the convenience of operator splitting.

An error analysis of a typical operator splitting scheme as
applied to a nonlinear reaction model is performed. The
analysis applies to arbitrary spatial transport operators in
any number of dimensions, and with any boundary con-
ditions. This analysis extends and generalises previous
work based on the linear retardation model and radioac-
tive decay in one dimension with specified boundary
conditions. Further, the analysis is extended to transport
of two reactive species.

Another type of operator-splitting scheme is the alternat-
ing operator method, involving switching the order of the
transport and reaction steps every second time step in the
numerical solution. For linear reactions it has been
shown that this method is always O(At*) accurate so long
as the correct choice of initial condition is made in each
reaction step,
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There are many single ies (usually tracer) transport
codes available. Some simple ways to improve the cou-
pling between the transport and reaction steps, as well as
the computation of the reaction portion of calculations,
are considered. These methods are based on formulation
of the reaction step as a system of ODEs, so that any
publicly available solver can be used.

2. ERROR ANALYSIS

We first consider the error induced by operator splitting.
For simplicity the analysis will focus initially on a single
reactive species. The governing transport/reaction model
is (e.g., Bajracharya and Barry, 1994):

dc ods _
m"'m = L(c), (1)

where L is the n-dimensional advective/diffusive trans-
port operator, ¢ is the liquid phase concentration and s 1s
the solid phase concentration (i.e., a sorption reaction is
occurring) expressed in liquid phase concentration units.
Equation (1) is subjected to a spatial discretisation
scheme (e.g., finite differences) giving (e.g., Barry et al,,
1995)

E+§§ = Ac+b, (2)
dt dt

where ¢ is a vector (length n) of concentrations at each
node in the spatial grid, s is the corresponding vector of
sorbed solute concentrations, A is a sparse matrix (n X n)
resulting from the discretisation of the spatial operator,
L, and b is a vector resulting from the application of the
boundary conditions together with the spatial discretisa-
tion scheme.

The solute reaction may be time dependent (nonequilib-
rium) or effectively instantaneous (equilibrium). The dif-
ference between these two cases depends on the
Damkéhler number, alfv, where o is the characteristic
reaction rate, | is the typical macroscopic domain length
scale, and v is the characteristic advection rate through
the system. If the Damkd&hler number is much greater
than 1, then the reaction is in equilibrium relative to the
advection time characlteristic of the system (e.g., Barry
and Li, 1994). The mathematical description of the
former (nonequilibrium) case is

ds
:-'j-[ - f{ﬂ, 5}1 EE}

whereas in the latter (equilibrium) it is

s = g(c), (4)

where f and g are arbitrary functions. After taking into
account the spatial discretisation, (3) and (4) become,

respectively,

ds _

it f(c,s) (5)

and

s = g(c). (6)

2.1. Crank-Nicolson Temporal Differencing

Cmng-ﬂi:ntsun differencing of (2) yields the following
O(At") numerical scheme:

At
AL¢k+]+5k‘+l = Ek+ARﬂk+ [hk+]+hk] T. {?}

where X is the numerical solution at the k™ time step,
Ay =I- AAV2 and Ag =1+ AAU2. Similarly, (5) gives:

skt = sh%tf“'ﬂ*}, (8)

where f* = f(::k.sk). Equation (6) or (8) is solved in con-

junction with (7) at each time step to give the “exact”,

i.e., O(At%) numerical solution.
2.2. Two Step Solution

The Crank-Nicolson scheme is solved, approximately, in
two steps. First there is the transport step:

. Al
c “H‘”l —_ A'I:l {AREk+ [hk+l+hk13}, {9}

followed by the reaction step:

k+1 k+1

¢ +5 - Sk_l_c"‘['_k-l-l].

(10)

The advantage of (9) and (10) is that the transport and
reaction operations are completely separated. In large
scale problems, this separation is responsible for the sav-
ings in programmer time and computation that are the
main advantages of the two step scheme. As will be
shnwgn below, however, this scheme is O(At), rather than
O(At*). Observe that (9) and (10) would reproduce (7) if
(10) was replaced by

Akt skl = gk A o) (1)

2.3. Taylor Series Analysis

After eliminating ¢”®*!) between (9) and (10) a Taylor
series expansion in powers of At is performed about t =
(k + 1/2)At. For the purpose of illustration, we consider a
nonlinear equilibrium reaction, (4). Linear, nonequilib-

rium reactions were considered in detail by Barry et al.
(1995).

The difference between the usual Taylor series for ¢**'
and the corresponding Taylor series from (9) and (10) is,
to O(AL):

de At de
Hﬁ = Ac+h+ih {A:+h*m], (12)
where
H = I+9E, (13)
de

The term dg/dc indicates the n X n matrix derived by
computing dg/dc at each node in the spatial grid. Note
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that only the diagonal of this matrix contains nonzero
elements, reflecting the fact that the sorption reaction is
local. Elimination of the temporal derivative on the right
side of (12) yields, to O(At):

de At _,dg
HE-E = Ac+b+ ?AH dc{hc-ff-h}. (14)

Equation (14) differs from (2) by the O(At) term in the
former, i.e., the two step scheme (9) and (10) is first
order accurate in the time step.

Equation (14) is now put in the more familiar form of a
partial differential equation. The matrix A represents the
continuous differential operator L in discrete form. At
any node then, (14) corresponds to:

dg. dc At de

2y — = —_ 15

[]+dc]al Lic) + 2L dgL{t’:} : (15)
I+E

where L operates on all terms in its argument. Equation
(15) is a general result and applies for 1, 2 or 3 dimen-
sions. For g linear in c it reduces to an expression given
by Barry et al. (1995). In 1 dimension, L is given by:

2
LEDE%_”Q%* (16)
x

where D is the dispersion coefficient and v is the advec-
tion rate. In truncation error analysis the lowest order
derivative is assumed to dominate, so only the second
term of (16) is applied to (15), with the result:

dg, dc 3% e

(1 +a-6}m = Daxl -vax+E. (17)
where the error term, E, is given by
— -E —
, dg dg
At| dc 97 :
E = v de d% de (&c} s
2 |49 1 +98 2 ox
de ( dc i

For the case of linear retardation, (18) reduces to the
expression given by Herzer and Kinzelbach (1989). In
that case, numerical dispersion of constant magnitude is
induced. For nonlinear g, each term in (18) is expected
to vary with ¢, with the possibility that either term may
dominate. For example, for the Freundlich isotherm
(e.g., Barry, 1992), this term will dominate for small c,
unless the spatial gradient is sufficiently small.

As an example of nonlinear equilibrium transport we
consider the exact analytical solution of Barry and
Sander (1991). Their one dimensional, exact solution is
valid for the isotherm:

(19)

where the a;s are functions of the A;s, and are given by
Barry and Sander (1991).

In Figure 1, breakthrough curves computed at a position
5 cm along the one-dimensional transport domain are
plotted for the isotherm in (19). Initially, no solute is in
the soil, and influent at unit concentration is added
(third-type boundary condition). The isotherm used to
obtain the results in Figure | corresponds to a real soil
(Barry et al., 1991).

1.0 .

0.5

Concentration (mg/1)

Time (d)

Figure 1. Exact (solid line) and standard two step break-
through curves for a nonlinear equilibrium problem.
Sloping dashes (At = 0.2 d) and vertical dashes (At =
0.01 d) are the standard two step solutions. Parameter

values used are: D =3.3524 cm*“/d, v =5.8677 cm/d, x =
2.1257, A =0.2594, A, =0.3295, A3 =0.3124, v =

0.0473.

For the parameter values used in the present problem,
the results clearly indicate that numerical dispersion is
induced when larger time steps are used. By using
smaller time steps, numerical dispersion can be elimi-
nated. However, the position of the numerically com-
puted fronts do not exactly coincide with the exact
breakthrough curve. The front is always ahead of the
exact breakthrough curve, although the difference
reduces with At,

The error (E) computed at a distance of 5 cm is plotted in
Figure 2. The purpose of this figure is to show the varia-
tion in E with ¢, An examination of the magnitude of
each of the terms on the right side of (18) reveals that the
first term usually dominates the error. Clearly, the non-
linear nature of (18) precludes the option of correcting
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the error induced by the operator splitting. On the other
hand, if g is linear in c, then E becomes constant, as
already mentioned. In this case the numerical dispersion
induced by the splitting is easily corrected in the numen-
cal solution.

0.08

0.03

Error (E)

-0.02

-0.07
0

Time (d)

Figure 2. Equation (18) error term plotied as a function

of time for the example in Figure 1. The sohd line corre-

sponds to the time step of 0.2 d and the broken line cor-
responds to the time step of 0.01 d.

2.4. Alternating Split Operator Scheme

This scheme was introduced by Strang (1968), who con-
sidered splitting of spatial operators. Miller and Rabi-
deau (1993) implemented a version of the scheme for
reactive transport problems. Essentially, their scheme
consists of (9) over a step of At/2, then performing (10)
over At, followed by another half time step of (9). A the-
oretical analysis of the scheme for linear reactions was
given by Barry et al. (1995). T;le:-.r showed that the alter-
nating scheme is always O(At®) accurate, i.e., the O(At)
splitting error is removed. However, the numerical
results of Miller and Rabideau (1993) suggest that for
nonlinear reactions the scheme is still O{At). Thus, it
appears that the O(At“) accuracy reported by Barry et al.
(1995) does not extend to nonlinear 1sotherms. Further
work is underway to examine this point.

2.5. Two Species Transport

The above analysis can be extended to more than one
solute species. The two species case will be considered
here. For detailed derivations of the governing multispe-
cies transport/reaction models see, e.g., Kirkner and
Reeves (1988), Yeh and Tripathi (1989, 1991) or Zysset
et al. (1994).

Assume that two exchangeable cations are being trans-
ported through a porous medium. Equation (2) applies to
each species, with the concentration variables sub-
scripted by a 1 or 2 to denote species | or species 2.
Assume that the operator L remains unchanged for each

species. The total exchange capacity of the soil is the
CEC, in which case

s; +s, = CEC. (20)

For equilibrium ion exchange, characterised by the
selectivity coefficient, K, the equilibrium exchange iso-
therms are:

Ke,CEC
=81 (21)

5 — N —
|
Kcl +c,
and

¢,CEC

= —— =g, 22

Equations (21) and (22) are based on a homovalent, het-
erogeneous fast cation exchange reaction of form:

cp+cX X+, (23)
where X is the exchanging solid medium. Barry and
Bajracharya (1994) offer a generalisation of the homova-
lent model presented here. A more general case is where
(21) and (22) are replaced by the arbitrary expressions:

s; = gi(c,a), i = 1,2, (24)

80

Concentration (mg/1)
.Y
o

0 5 10
Distance (cm)

Figure 3. Crank-Nicolson (solid lines) and standard two
step solutions (crosses and circles) for a multispecies ion
Bxchan%r, problem. Parameters used are v= 1 cm/d, D =
0.1 em*/d, K = 1, CEC = 36mg/l. The profiles were gen-
erated at t = 5 d. Spatial and time steps used in the two-
step solution were 0.1 cm and 0.05 d, respectively. Initial
and boundary conditions used were: ¢,(0,t) = 9.5 mg/l,
c9(0,1) = 0.5 mg/l, ¢y(x,0) = 20 mg/l, c,(x,0) = 8O mg/l.

A similar splitting error analysis to that in §2.3 is per-
formed; the details are unimportant and are omitted. The
corresponding expression to (15) is, for species 1:
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©1 B Lo + A 25
ST TE (cy) 5 (E)) (25)
where
dE; dgg
L{Cl)d—ﬂl—L(C.l)d—cz
E, = . (26)
dg, dg,
l+——+—
dcl dcz

Similar expressions to (15) and (26) can be written for
species 2. Equation (26) reduces to the corresponding
portion of (15) when the second species is not
exchanged, i.e., g, =0.

The sign difference in (26) may act to improve two spe-
cies transport simulations compared with the numerical
errors arising in single species simulation, as shown by
(15). In Figure 3, a one-dimensional two-species exam-
ple is displayed. The chemical reaction equations are
given by (20) - (22), with parameter values shown in the
caption. The two-step solution is compared with an
“exact” Crank-Nicolson solution (Barry et al., 1983,
1987). Note that grid independent Crank-Nicolson
results are plotted. The two step method results are
excellent in this case perhaps because K = | and so dg,/
dc| = dgy/dc,y. Doubling the time step in the two step
method gave virtually the same results.

3. STABILITY ANALYSIS

Standard stability analyses of the two step method for
single species transport are straightforward so long as
the governing reaction equations are linear in ¢. Two
cases were considered. The first was that of linear retar-
dation, i.e., (4) is written as

s=(R- 1), (27)

where R is the retardation factor. The second case con-
sidered was radioactive decay:

ds
S = he. (28)

where [ is the decay rate. For both these cases, a von
Neumann stability analysis (Noye, 1982) was per-
formed. The analyses showed the two step method to be
unconditionally stable.

4 ALTERNATIVE NUMERICAL SOLUTION

We shall consider schemes that maintain separation of
the reaction and transport components of the solution. In
particular, the Method of Lines (Brenan et al., 1989)
approach will be adopted. This method has recently been
shown to provide efficient and accurate solutions for the
strongly nonlinear Richards’ equations describing single
pgggt;: unsaturated flow in porous media (Tocci et al.,
1 .

The Method of Lines (MoL) can be applied directly to
(2) and (5), or their generalisations. The unknown varia-
bles are collected in a vector u = [¢,s]". The ds/dt term in
(2) is replaced using (5) and the MoL is invoked in a

straightforward fashion. In the case of equilibrium reac-
tions, (6), the system of first order ODEs becomes a dif-
ferential/algebraic system of equations. Again, the MoL
can be used to obtain such solutions efficiently. A disad-
vantage is that the use of (2) precludes usage of the
available computer codes for water flow and tracer trans-
port as the first step of a two step solution strategy.
Below we examine methods that maintain the separation
of solute transport and reaction steps, but make use of
ODE solvers for the reaction step.

4.1. Two Step ODE Solution

We presume in general that a multispecies reaction/
transport problem is under consideration. As discussed
above, the transport step is left untouched, i.e., transport
of each species is handled independently by a given
transport code. However, for the reaction step we must
deal with a system of nonlinear algebraic equations, i.e.,
in the standard two step method we must solve N cou-
pled nonlinear algebraic equations of the form given by
(10). Alternatively, the “exact” solution to the original
Crank-Nicolson formulation of the problem involves
solving N equations of the form (11).

Concentration (mg/l)

0.0 0.5 1.0
Distance (cm)

Figure 4. Exact (line), standard two step (open circles),
modified two step [with one additional term in the Taylor
series expansion] (crosses) and modified two step [with
two extra terms in the Taylor series expansion, (30)]
(solid circles) solutions for a first order decay problem
(L=4/d, v =1 cm/d, D = 0.1 cm?/d). The spatial and
time steps used in the two step solutions were, respec-
tively, 0.1 cm and 0.04 d. The profiles were generated at
time = 10 d.

We seek to formulate the problem as a system of ODEs,
so as to make use of an ODE solver. The reaction equa-
tions themselves are often stiff (Miller and Rabideau,
1993). Thus, publicly available stiff ODE solvers such as
LSODE (Hindmarsh, 1983) can be employed. Note that
the mass balance statement, (10), is obtained from (11)
by setting A = L. The latter equation can be thought of
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as a discretised version of:
de ds
o = e—— . 2
ALdt dt,m-::-::(kmm (29)

Equations (5) and (29) may be solved using available
ODE solvers. Such codes are easily obtainable on the
World Wide Web (using, in Australia, the following
URL as a starting point: http://www.cs.uow.edu.au/
netlib/master/readme.html).

Two cases of (29) will be compared below. First, let A;
= I; this is a version of the standard two step method.
Second, replace Ay by an approximation to its inverse
on the right side of (29):

(30)

Keeping one term in the Taylor series expansion in (30)
is, of course, the two step method; we also ran cases
where two or three terms were kept. In all cases reported
here an order 4 Runge-Kutta ODE solver was used.

Concentration (mg/])

0 5 10
Distance (cm)

Figure 5. Exact (line), standard two step (open circles),
modified two step [with one additional term in the Taylor
series expansion] (solid circles) and modified two step
[with two additional terms in the Taylor series expan-
sion] (crosses) solutions for a first-order decay problem
(L =9/d, v =2 cm/d, D =0.1 cm*/d, & = 0.01/d). The
spatial and time steps used in the two step solutions
were, respectively, 0.1 cm and 0.08 d. The profiles were
generated att =4 d.

In Figure 4, results of a one-dimensional radioactive
decay problem, modelled by (28), are shown. An ini-
tially solute free soil profile was considered, with a unit
concentration, first-type boundary condition applied as
the influent condition. The present example shows the
advantage of the modified scheme. For the same time

step of 0.04 d, the modified solution gives better results
than the standard two step method. With smaller time
steps, however, all the solutions merge to the exact solu-
tion (results not shown). The improved results obtained
with the coarser time steps come at the cost of slightly
increased computation time (discussed further below).
The standard two step method is more efficient but less
accurate than the modified scheme. Also, at larger time
steps, the modified solutions show some signs of insta-
bility, in that oscillations were observed at the influent
boundary. The solution in which two terms of the Taylor
series expansion are included tends to be more unstable
than the solution in which only one term is included. The
standard two step method, however, is stable for all time
step sizes.

The next example is that of a kinetic reaction, with a

reaction term given by (e.g., Parker and van Genuchten,
1984: Rinaldo, 1988):

— =oa[(R-1)c-5s] (31)

The exact solution to (1), (16) and (31) was calculated
using the CXTFIT code (Parker and van Genuchten,
1984). Results for two different time step sizes are dis-
played. In Figure 5, all three methods based on (30) per-
form well (standard two step, as well as two and three
term approximations). In Figure 6, which differs from
Figure 5 in the temporal step size only, all methods per-
form equally poorly. Note the minor oscillation near the
influent boundary in Figure 6, as well as the flaltening of
concentration profile at the top of the front.

Concentration (mg/1)

Distance (cm)
Figure 6. Same as Figure 5 except that At =0.2 d.

To compare the methods, a measure of the error of the
numerical solutions was computed. The error is defined
by:
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n
Error = % 2 [c(iAx,t) ~Cpy (x,t)]2, (32)

where c,, Is the exact solution. This error was computed
for the standard two step method, as well as for the two

term modified two step model, based on (30). The results
are shown in Figure 7.

At larger time steps (shorter CPU time), the standard two
step method shows slightly less error. At smaller time
steps (intermediate values), the modified two step
method gives results that are an order of magnitude bet-
ter for similar computational times. At very small time
steps (greatest CPU time), both methods result in larger
errors. The standard two step method again gives less
errors in comparison to the modified two step method.

IU BELLAALLL BELERLLLL LR L B lullllr'"_

X
O

CPU Time (s)

X o)
X 0

0 _uauull_l_uuud_l_l_lmul_l_m
1007 10 10° 10% 103
Error

Figure 7. Plot of CPU time (for a Sun Sparc 1) versus
accuracy of the standard two step method (open circles)
and the modified two step method (crosses).

5. SUMMARY AND CONCLUSIONS

From the point of view of programmer efficiency, split
operator solutions to transport/reaction problems offer
the advantage that existing, independent transport and
reaction modules can be coupled together with relatively
little effort. The main disadvantage is that an O(At) split-
ting error is introduced, necessitating small time step
sizes for accurate results. Computational efficiency is
reduced, therefore.

We have analysed the splitting error that arises for non-
linear equilibrium, single species transport, in an arbi-
trary spatial domain. Unlike the case of linear
equilibrium, the numerical dispersion induced by the
splitting cannot be removed as it depends on the depend-
ent variable, c. This analysis was extended to two com-
peting species with a similar result, i.e., the splitting
error is again proportional to At. However, unlike the
single species case, the two species error expression con-

tains terms that may approximately cancel under some
circumstances. This deduction was supported by an
example that revealed that very accurate results could be
obtained using the standard two step approach.

Finally, we briefly investigated an alternative approach
to solving the reaction portion of the two step scheme.
This step can be formulated as a system of ODEs, or as a
system of differential/algebraic equations (only the
former case was considered here). In either case, pub-
licly available software can be used to obtain solutions.
Although we have not done so here, equations of the
form of (29) can be solved directly using, for example,
the LSODI code (Hindmarsh, 1983). Rather, we focused
directly on the errors inherent in the two step scheme, for
example, setting A =1 in (29), or using as well the sec-
+::nndl and third terms in the Taylor series expansion of
A, ". A CPU time check (Figure 7) suggests that keep-
ing a single additional term in the Taylor series expan-
sion is computationally efficient.

6. NOTATION

a; parameters in sorption isotherm, i = 0,2
A, parameters in sorption isotherm, i = 1,2,3
A spatial discretisation matrix, /T

A T-AAU2

Ap T+ AAR2

b boundary value vector, M/LAT

C liquid phase solute concentration, M/L?

¢ liquid phase solute r:ﬂncemratt?n vector, M/L*
CEC cation exchange capaciljs, M/L

D dispersion coefficient, L°/T

E O(At) error term defined by (18)

f arbitrary function, M/L

f  vector of f at each node in the spatial grid, M/L3T
g arbitrary function, M/L?

g vector of g at each node in the spatial grid, M/L>
H matrix defined by (13)

| identity matrix

k time step number

| characteristic macroscopic length scale, L
L advection/dispersion operator, 1/T

n number of nodes in the numerical solution
n number of dimensions

MoL. Method of Lines

N number of chemical species

ODE ordinary differential equation

R retardation factor

s solid phase solute concentration, M/L>

5 solid phase solute concentration vector, M/L?
| time, T

u contains ¢ and s, M/L>

v advection rate, L/T

X position, L

X soil exchanger, M/L?

6.1. Greek

o reaction rate, 1/T

At time discretisation, T

K parameter in sorption isotherm

il decay rate, I/T

' parameter in sorption isotherm

6.2. Other

‘sx  exact solution

| the i' chemical species, i = 1, 2

T

transpose of the vector
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intermediate value of
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