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Abstract. Due to the heterogeneity of natural groundwater systems, any quantitative description of aquifer hydraulic
properties is subject to uncertainty. Consequently, prediction of groundwater contaminant transport is also subject to
uncertainty. Stochastic approaches to transport simulation quantify this uncertainty in terms of random variables and
processes. An important practical consideration in the application of such methods is their large computational cost.
In recent years, the first-order reliability method (FORM) has been introduced as a possible technique for obtaining
stochastic results with low computational expense. Specifically, the implementation of FORM known as advanced FORM
(AFORM) has been shown to produce reasonably accurate results when applied to simple problems. However, recently
published results indicate that the computational burden of AFORM can equal, or even exceed, that of Monte Carlo
simulation when applied to groundwater contamination problems with a large number of variables. If FORM is to be
a viable alternative, the computational costs of the method must be lowered. In this work, we propose a more efficient
implementation of FORM. The primary numerical difficulty that arises in AFORM is locating the linearization point, a
procedure that requires the solution of a non-linearly constrained optimization problem. We reduce the number of variables
in the constraint by zoning the aquifer parameters during this stage of the calculations, resulting in an algorithm with
lower computational costs. The new approach is shown to produce results that are nearly identical to those obtained with
AFORM when applied to a one-dimensional transport problem. Future work will be aimed at generalizing the procedure
described herein.

1 INTRODUCTION

Contaminant transport simulation is an important tool for
managing groundwater resources. Transport modelling is
used to predict the effects that future management prac-
tices and remediation efforts will have on water quality.

The geohydraulic and geochemical properties of an
aquifer dictate how a contaminant will move in ground-
water. Geohydraulic properties, such as hydraulic con-
ductivity, are known to be spatially variable in natural
groundwater systems. Since an exact description of this
spatial heterogeneity is not possible, transport modelling
is always subject to some uncertainty. In stochastic ap-
proaches to transport simulation, this uncertainty is quan-
tified in terms of random processes and variables.

An important practical consideration in stochastic
transport modelling is the associated computational costs.
For many problems, the calculations are feasible only with
the use of supercomputers. In this paper, we review some
approaches to stochastic transport simulation and suggest
an alternative implementation of one method, the first-
order reliability method (FORM), that can lead to impor-
tant computational savings.

— 53

2 STOCHASTIC TRANSPORT SIMULATION

Most groundwater contaminant transport models are of
the form [McLaughlin and Wood, 1988]

% +a(ex,p) =0, 1)

where ¢ is the contaminant concentration, x is the spa-
tial coordinate, ¢ is time, and p is a vector of uncertain
parameters that characterize the hydraulic and chemical
properties of the aquifer and contaminant. The operator
a is constructed from the spatial derivatives of ¢ and pos-
sibly additional chemical reaction, sink, or source terms.

The uncertainty in p may arise from a number of
sources including imperfect field measurements and spa-
tially varying aquifer properties. So that the uncertainty
may be treated quantitatively, we regard p as a random
vector that is characterized by ‘the probability density
fe(p)-

Let G(p;x',t') be the concentration predicted by the
transport model at time ¢ and location x’. Since p is
random, G is also a random variable. The randomness of
G suggests that any prediction we make about concentra-
tions at ¢’ and x’ should be made in probablistic rather
than deterministic terms. This requires knowledge of not
only the mean value of G, but the higher moments as well.
Ideally one could compute the entire cumulative distribu-



tion function (cdf) of G. Formally this is defined by

PriG<g] = fe(p)dp, (2)

G<y

where the integration is defined over the region of p-space
where G < g. In general, the integral in (2) is difficult
if not impossible to compute because it is hard to make
explicit the area of integration and because of numerical
difficulties associated with multifold integrals.

One approach to evaluating the integral in (2) is Monte
Carlo simulation. In this method random samples are
drawn from fp(p) and for each realization G is computed.
The probability Pr(G < g] is simply the fraction of real-
izations that resulted in a computed concentration 7 less
than or equal to g. For a sufficiently large number of real-
izations, the computed probability converges to the true
solution. Although it is possible to construct an accurate
cdf in this way, the large computational cost of repeat-
edly computing G makes implementation of the approach
impractical without supercomputing facilities and, conse-
quently, Monte Carlo simulation is used solely as a re-
search tool and is not used for engineering or regulatory
purposes [Barry, 1990].

As an alternative to Monte Carlo simulation, we may
attempt to find an approximate solution of the integral
in (2). To begin we assume that a hypersurface defined
by G = g divides the parameter space into two regions:
region £ where G < g and region ¢ where G > g. The hy-
persurface, referred to as the limit state surface, is again
difficult to make explicit. Now, to motivate an approxi-
mate solution methodology, consider a special case when
the solution of (2) is possible; namely, when fp(p) is the
multivariate standard normal distribution (p ~ IN(0,I))
and the limit state surface is a hyperplane. Under these
condtions Pr(G < g] is ®(8) [Madsen et al., 1986], where
g = aTp*, a is a unit vector normal to the hyperplane
limit state surface and directed toward region G, p* is the
point on the limit state surface closest to the origin, and
$(-) is the univariate standard normal cdf. This situation
is illustrated in Figure 1 for the case of p beinga 2 x 1
vector with elements p; and p; and fp(p) being the bivari-
ate standard normal distribution. The figure is a contour
plot of G with only the G = g contour being shown; for
the case of two parameters, the limit state ‘surface’ is this
contour. The point p* is referred to as the design point.
It is easy to show that |8| = (p*Tp*)'/?; that is, the abso-
lute value of 3 is the distance from the limit state surface
to the ongin.

Given the relative ease with which the integral in (2)
can be evaluated for p ~ N(0,I) and a hyperplane limit
state surface, a reasonable approach to more general prob-
lems is to transform (at least approximately) to this spe-
cial case. In other words, transform p to the space of
uncorrelated standard normal variables and then approx-
imate the limit state surface with a first-order series ex-
pansion.

The parameter transformation is accomplished with
the mapping

u = T(p), (3}
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Figure 1: Mlustration of a hyperplane limit state surface
for the case of two parameters. Here, the ‘surface’ is sim-
ply the G = g contour,

where the exact nature of T will depend on the distri-
bution fp(p) (for details, see Madsen et al. [1986]) and
u is a vector of uncorrelated standard normal variates.
This transformation also maps the limit state surface into
u-space, ___

G(T™!(u) =G(u) =g. (4)

Likewise, the regions £ and ¢ are mapped into £, and
G, respectively. In u-space, a first-order approximation
to the limit state surface is

G(uw)+ VG- (u-w) =g, (5)

where u, is the point where G is linearized (with cor-
responding point in p-space given by pg = T '(w)),
VG = [8G[Bu,,... ,0G [8uy] evaluated at ug, and [V is
the number of parameters. The gradient is evaluated as
- 71
-0,

VG =VG: ——, (6)
where VG = [8G/0p,,...,6G[8py] and 8T~ /8u is the
Jacobian of the inverse transformation. The point on the
linearized limit state surface closest to the origin (i.e., the

design point) is
u* = [VG - ug — G(uwo) + g)(VG - VGT)"'VGT. (7)

The probability Pr[G < g| is then computed as before,
ie. Pr[G < g] = 8(f) with # = aTu* and o directed
towards G,,.

The approximate method outlined above is known as
the first-order reliability method (FORM). It was first
used in structural engineering [e.g., Madsen et al., 1986]
and has more recently been applied to hydrologic prob-
lems [e.g., Sitar et al., 1987; Melching et al., 1990; Cawl-
field and Wu, 1993; Jang et al., 1994]. The accuracy of
FORM is dependent on the suitability of the first-order
approximation of the limit state surface.



There remains the question of choosing the lineariza-
tion point ug. One possibility is to linearize about the
mean value of the parameters, ug = T(p). This is referred
to as mean value FORM (MVFORM) and is expected to
produce accurate probabilities near G = G() but will be
less accurate near the tails of the distribution. Another
approach is to linearize at the point on the limit state
surface that is closest to the origin. This means that the
linearization and design points will coincide (uy = u*). A
nonlinear limit state surface in u-space and its first-order
approxdmation about the design point are shown Figure
2 for the case of N = 2. This approach is referred to

U,

\ G>g

Ii]

Figure 2: Lumt state surface {5 = g) in u-space and the
first-order approximation at uy = u”.

as advanced FORM (AFORM) and is known to be more
accurate than MVFORM over the entire distribution of
G. If the limit state surface is a hyperplane in u-space,
AFORM will produce exact results. However, this ap-
proach introduces additional computational requirements
because for each value of g the design point must be lo-
cated by solving the /N-variable, nonlinearly constrained
minimization problem

min uTu (8a)

subject to
G(u) = g. (8b)

Various iterative algorithms are available for solving such
problems, However, all gradient-baseéd algorithms require
calculating VG at each iteration and this is computation-
ally burdensome (this contrasts with MVFORM which re-
quires only a single calculation of VG). Recall from (6)
that calculating VG requires calculating of VG. The most
straightforward way to compute the elements of VG is
to perform repeated simulations while slightly perturbing
one parameter at a time. The results of the simulations

can then be used to compute finite difference approxima-
tions to the derivatives. If two-point difference quotients.

are used, a single calculation of VG requires V + 1 runs of
the simulation model. Since a minimization algorithm will
take several iterations to converge, it is easy to see that for
large IV the solution of (8) will require many simulation
runs and will be computationally expensive. Jang et al.
[1994] analyzed a two-dimensional contaminant transport
problem with a large number of parameters and reported
that AFORM was at least as computationally expensive
as Monte Carlo simulation. Special sensitivity methods
can be used to improve the efficiency of computing VG
[Ahifeld et al., 1988; Skaggs and Barry, 1995, but even
then it is expected that AFORM will remain computation-
ally expensive. The utility of using AFORM for stochastic
analysis of moderate- to large-scale groundwater contam-

inant transport problems is questionable since it is not

significantly more efficient than Monte Carlo simulation.

3 AN ALTERNATIVE FORM IMPLEMENTA-
TION

The purpose of the present paper is to suggest an alter-
native implementation of FORM that aims to produce re-
sults that are comparable to those that are obtained with
AFORM, but at less computational cost. The basic idea
is to linearize about a point that is ‘close’ to the design
point but which can be located with less effort than is re-
quired to solve the minimization problem (8). The new
implementation is intended for problems that have a large
number of parameters that arise from discretizing aquifer
properties as part of a numerical scheme. When numer-
ical methods such as finite differences or finite elements

‘are used for transport simulation, the spatial domain is

discretized creating a number of ‘nodal’ or ‘elemental’ pa-
rameters that represent spatially variable aquifer proper-
ties. The discretization, and consequently the resulting
number of model parameters, is normally dictated by nu-
merical requirements for convergence and stability. The
implementation presented here is an AFORM-type algo-
rithm in which a linearization point is found after groups
of nodal and elemental variables have been collected to-

. gether and set equal to one another. In essence, this ‘zon-

ing’ allows us to find a linearization point using a much
coarser grid than is required for the transport simulation.
This leads to a minimization problem similar to (8), but
with a constraint that is a function of fewer variables and,
consequently, a constraint gradient that is easier to com-
pute.

Although it is not necessary, for simplicity we assume
in the discussion that follows all parameters in p originate
from discretization of the aquifer (i.e., any other model
parameters are assumed to be sure variables). We proceed
by dividing the aquifer into zones in which all nodal and
elemental variables in a given zone are taken to be equal
to one another. Again for simplicity, we assume that each
zone encompasses the same number of parameters (and
nodes), M = N/N,, where N, is the number of zones
and M is the number of parameters in each zone. Zoning
the aquifer in this way is equivalent to partitioning the
parameter vector such that

P = pa = [31]22]. .. IEH.ITr



where

B = [Php'h- .a 1P”]i
Z3 = [PM+1,PM+2:- -+ P2M]);

IN: = iP[H.—l]H*I-hP[H.—l]ﬂﬂI-Ir ‘o 1PH.H]1

and setting

Pir=P1= ... =PM,

PM+1 =PM+21 = --- = 1M,

P(N,-1)M+1 = P(N,-1)M+1 =+« = PN, M-

We can now define a linearization point in p-space as the
the solution of a minimization problem that is constrained
by a function of ps. Because this constraint is effectively
a function of N, variables, its gradient will be easier to
compute than that of a constraint that is a function of
N > N, variables. The linearization point pg is defined
as the solution of

min (p — )" C~'(p — B) (9a)
subject to

G(ps) =9, (9b)

where C is the parameter covariance matrix. The lin-
earization point in u-space is then given by us = T'(po),
the design point is computed from (7), and the probabil-
ity computed as before. Note that this is not the only
possible way to define a linearization point using the zon-
ing concept. For example, one could alternatively zone
the parameters in u-space and proceed from there. Addi-
tional work is required to determine which is the preferred
approach.

As N, = N, the zoning method outlined above be-
comes equivalent to AFORM. From a computational point
of view, the smaller IV, the better. How small N, can be
made without significantly changing the results will de-
pend on the problem. In the example presented below,
N, = 1 is used which reduces the number of variables in
the constraint gradient from 41 to 1. This means that if a
finite difference approximation is used as described above,
the constraint gradient in (9) can be computed from 2
simulation runs whereas the gradient in (8) requires 42
runs.

4 EXAMPLE

To illustrate the new approach (referred to hereafter as
ZFORM) and test whether it produces results that are
consistent with AFORM, we consider the following one-
dimensional problem in which non-reactive chemical trans-
port is described by

Bc &e dc

D

5 = Pz ~ @5 (10)

subject to

e(z,0)=0, z€(0,1], (11a)
¢(0,t) = 1, t>0, (11b)
‘f‘:{;; Y _o, (11¢)

where ¢ is the concentration [ML™3], D is the effective
dispersion coefficient [L?*T~!] (assumed to be a known
constant), and v is the pore-water velocity [LT~"]. The
velocity is taken to be a lognormally distributed station-
ary random process with mean (of the log process) u and
covariance o2 R, where R = exp(—h/A) is the correlation
coefficient, ) is the correlation length (A << 1), and h is
the separation distance between any two points.

Equation 10 is evaluated numerically using a fully im-
plicit finite difference scheme with spatial and temporal
discretizations of Az = 0.025 and At = 0.001, respec-
tively. The discretized nodal velocities make up the ele-
ments of the parameter vector p with N = 1/Az+1 = 41.
The distribution fp(p) is the multivariate lognormal dis-
tribution with mean g = [y,...,u] and covariance matrix
C = ¢?R, where R is the correlation matrix for p con-
structed using the negative exponential correlation coeffi-
cient R. Using D = 0.02, p = 1.0, ¢* = 0.09, and A = 0.1
we compute the concentration cdf at z = z' = 0.7 and
time t = ¢ = 0.2. In the notation used above, G(p;z’,t')
is ¢(0.7,0.2).

As noted above, in implementing ZFORM we use N, =
1. This means that the constraint (9b) is effectively a func-
tion of only one variable and will be satisfied at only one
point. Thus, the ‘minimization’ problem (9) is reduced to

simply solving
G(p) =g, (12)

where p = py = p2 = ... = pn. Equation (12) can be
solved using Newton-Raphson iteration. In this problem,
the key computational difference between ZFORM and
AFORM is that ZFORM requires repeated calculation of
the derivative 8G/8p to solve (12), whereas AFORM re-
quires repeated calculation of the 1 x 41 gradient vector
VG to solve (8).

In Figure 3, the computed concentration cdf using MV-
FORM, AFORM, and ZFORM are shown along with the
results of 10,000 Monte Carlo simulations (which may be
considered the true solution for this problem). For refer-
ence, the computed concentration using the mean velocity
at each node is G(p) = 0.075. For small g, the AFORM
and ZFORM results are in good agreement with the Monte
Carlo results whereas MVFORM predicts a higher prob-
ability. Near g = 0.06, all four methods are in agreement.
Between g = 0.06 and g = 0.1, the three FORM meth-
ods are in agreement but their computed probability is
somewhat lower than the Monte Carlo results. Beyond
this, MVFORM deviates from AFORM and ZFORM and
approaches the asymptotic Pr[G < g| = 1 much faster.
The curvature of the AFORM and ZFORM results be-
yond g = 0.1 is similar to the Monte Carlo results, but the
AFORM and ZFORM computed probabilities are consis-
tently lower than those of the Monte Carlo simulations.
Most important to the present study is the very close
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Figure 3: Computed concentration cdf using Monte Carlo
simulation and three FORM implementations

agreement of the AFORM and ZFORM results across the
distribution. This suggests that ZFORM may be a com-
putationally efficient alternative to AFORM.

5 SUMMARY AND FUTURE DIRECTIONS

An important practical issue in stochastic modelling of
groundwater contaminant transport is the high computa-
tional costs. For example, the high cost of Monte Carlo
simulation makes its use impractical for many applica-
tions. This paper has reviewed some approaches to sto-
chastic simulation and described a new computationally
efficient implementation of one method, the first-order re-
liability method (FORM). The new approach involves zon-
ing aquifer parameters during the first stage of the FORM
calculations, creating a significant computational advan-
tage over the standard FORM implementation (AFORM)
when there is a large number of model parameters. In a
simple example transport problem, the new method was
shown to produce results that are nearly identical to those
obtained with AFORM. This suggests the improved com-
putational efficiency does not come at the expense of ac-
curacy.

Further work remains to be done in generalizing the
new method described herein. The results for the sim-
ple one-dimensional example are encouraging, but clearly
more rigorous testing needs to be done, including two- and
three-dimensional simulations. Additionally, we assumed
zones that contain an equal number of aquifer parameters,

suggesting an arbitrary zoning process where the only con-
sideration was the number nodes in each zone. This seems
appropriate for problems where water flow is uniform in
the average, but for problems with complicated geome-
tries and flow fields, it may be that an alternative zoning
is preferred. These issues are the subject of our ongoing
research,
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