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1. Introduction

The mixing cell concept has been used frequently in the prediction of migration of
reactive and non-reactive solutes in soil and groundwater (e.g., [1, 2, 3, 4, 5]). Mixing
cell models are easy to code and efficient to compute and can be easily coupled with
chemical speciation models to simulate complex reactions during transport. Mixing
cell schemes are basically explicit finite difference representations of the governing
transport equation. For tracer solutes, the mixing cell model is second-order accurate
in the space and time discretization. It has been shown that the inclusion of a
nonlinear adsorption isotherm in the transport equation reduces the accuracy of the
standard mixing cell model [6]. We use here an improved mixing cell model which
maintains second-order accuracy.

There are two types of predictive model used to analyse solute reaction rates during
transport [7]. In one, the reaction is sufficiently fast to be described by an equilibrium
model while for the other type, the reaction is relatively slow and is quantified by
a nonequilibrium model. The main purpose of this study is to show the use of the
improved mixing cell model in solving the transport of multispecies solutes undergoing
either equilibrium or nonequilibrium reactions. The applicability of the numerical
model is tested by simulating the field data of [8], corresponding to heterovalent
exchange reactions involving three species.

3. Governing Equations

The governing equations for the multispecies equilibrium and nonequilibrium mod-
els are described below.

2.1. Multispecies Equilibrium Model. If the only reaction taking place is ad-
sorption or ion exchange then, for a one-dimensional homogeneous soil column, the
basic equations describing the transport of n reacting species can be expressed as

(e.g., [9])

PSk

a[ +Ck- 320"-1!3—05 k=1,2,. (2.1)
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Parameter meanings are collected in the Notation list. To solve the n equations

in (2.1), an additional n equations defining the S; functions are required. These

equations are obtained from the chemical reaction laws describing the ion exchange

process or other surface reaction laws, depending upon the type of reactions consid-

ered. For example, if only ion exchange is considered, then among the n exchanging
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ions in the system, there are (n-1) independent equilibrium expressions of the form

(e.g., [8]):
Cy
Ku = (c,) (s.,t) ! (2.2)
where
S
S,,t:cgc k=1,2....n (2.3)

The additional equation provided by the cation exchange capacity (CEC) is

CEC =Y 5. (2.4)

k=1

Equations (2.2) and (2.4) when combined result in the n multispecies exchange
isotherms:

S.;=f..(Cl,C,,...,G,.), k=1,2,...,n. (2.5)

Equations (2.1) and (2.5) constitute the basic multispecies equilibrium transport
model.

2.2. Multispecies Nonequilibrium Model. When the reaction rates are not
sufficiently rapid, an additional nonequilibrium equation given by (e.g., [10, 11})

gﬂ-—nh[f;.(cncm “)_3,,], k=1,2,...,n (2.6)

is needed. Equations (2.1) and (2.6) constitute the nonequilibrium multispecies trans-
port model. Note that S; in this case is not the equilibrium concentration. Equation
(2.6) states that when a, is very large, the k** reaction approaches equilibrium and
when a; is 0, there is no reaction of that species at all.

We specify initial and boundary conditions that correspond to a step function input
at the boundary z = 0

Ck (3, 0) = Cf:ni z 20,
C (o, t) =Cy, t>0. (2.7)
The system of nonlinear equations (2.1) and (2.5) or (2.1) and (2.6) with initial and

boundary conditions (2.7) are here solved by improved mixing cell model, described
below.
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2.3. Mixing Cell Model. Upon dropping second derivative term in the advective
dispersive equation, (2.1), one gets the pure advective transport equation

Sk
-:E[p—— +Chl
6 ._.._V?&. k=1,2,...,n. (2.8)

ot 0z

Finite-difference solutions of (2.8) produce numerical dispersion which is controlled
to simulate solutions to (2.1).

2.4. Improved Mixing Cell Model. The standard mixing cell has a first-order

truncation error of O(Az?, At) [6] and the following more accurate, second-order
scheme is applied. The improved scheme is

(14 55)Caid + 1)+ B840, +1) = Calin ) + §Sa(i5)
+% [Ck(i -1,j+1)+C(i-1,5) - Ck(fwj)]t k=1,2,...,n, (2.9)

where Ci(z,t) = Ci(iAz, jAt) = Ci(i, j), and C, is the Courant number. At equilib-
rium, the solid phase concentration is:

Sali, j +1) =f;[01(i,j+1),01(i,j+ 1),...,Cali,j + 1)], k= 1,2,...,niz o

When (2.10) is used, (2.9) reduces to a set of n nonlinear equations in Cy(i, j + 1)
which can be solved numerically. Note that (2.9) is written in terms of only j and j+1
time levels, so that initial and boundary conditions, (2.7) can be imposed. Because
no exit condition can be imposed, it is evident that the solution will approximate
that for a semi-infinite medium. To obtain results below, the nonlinear system of
equations was solved by Newton’s method. The Jacobian was determined by the
finite difference method.

The truncation error of (2.9) is O(AzAt, Az?, At?) [6]. In this scheme the numerical
dispersion introduced is VAz/2. When the advective transport equations are to
be solved by equation (2.9), the relation D, = VAz/2 is imposed, thus fixing the
step length in the numerical scheme. The scheme is unconditionally stable. On
the other hand, the standard scheme is O(Az?, At) accurate and is conditionally
stable [6]. In addition, the spatial and temporal steps in the standard scheme cannot
be independently fixed as in the improved scheme. For the case of nonequilibrium
exchange, the finite difference form of equation (2.6) is

)Suti,i+1) = “"ft [£2(C163 +1),Calid + 1), Calii + 1))

+fl: (Cl(tlj)lcz(ltj)l .. rcﬂ(lrj)) - SE(‘!J)] + Sk(‘,}).k = llzl' SEERLE (211)

(l + apAt
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Equations (2.9) and (2.11) with initial and boundary conditions (2.7) constitute the
improved mixing cell solution of the multispecies nonequilibrium exchange reaction.
Upon elimination of Si(i,j + 1), the combination of (2.9) and (2.11) again reduces
the problem to that of n nonlinear equations unknown in Ci(i, j + 1).

3. Comparison with a Crank-Nicolson scheme

The Crank-Nicolson scheme, which is second-order accurate, is a common way to
solve transport equation (2.1) numerically. The set of nonlinear equations resulting
from the application of the method is solved by iteration. Examples of both equilib-
rium and nonequilibrium reactions are considered here.

3.1. Equilibrium Reaction. The problem considered here is equation (2.1) with
initial and boundary conditions equation (2.7) with the exchange isotherm given by
equation (2.2). We consider bisolute homovalent exchange where the total sum of
exchangeable ions in the feed and the native solutions are different. Observe that
when the total sum of exchangeable ions in the feed and native solutions are equal,
the problem reduces to a single species exchange problem. In the example shown in
Figure 1, the total feed concentration was 10 meq [~! and that in the native solution
was 100 megl~!. The concentration of species one in the feed concentration was
assumed to be 9.5 meg ! and that in the native solution to be 20 meg{~'. The bulk
density and porosity of the medium was assumed to be respectively 2 g -1 and 0.33
(e.g., [8]). The selectivity coefficient, k12 was taken to be unity. The concentration
profiles for species one was generated at the dimensionless time of Vt/D, = 49.33
by both mixing cell and Crank-Nicolson methods. The simulations were for a column
Peclet number of 106.96. It is observed that mixing cell solutions are in excellent
agreement with the Crank-Nicolson scheme.

3.2. Nonequilibrium Reaction. We next consider the case of a nonequilibrium
situation for a bisolute homovalent exchange. As an illustrative example, the same
constants as above were used with the rate parameter, a, set to 0.01 hr~*. The profiles
were generated at a dimensionless time of 49.33 as above by using both methods.
Observe in Figure 2 that the mixing cell solutions again are in excellent agreement
with the Crank-Nicolson.

4. Application to a field experiment

The field experiment reported by [8] consisted of injection of treated municipal
wastewater effluent into an aquifer with known initial water composition. The species
monitored were Ca, Mg and Na. The flow was radially outward from the injection
well. The main chemical mechanism assumed to affect transport is ion exchange
between the three species. The initial composition of groundwater at the injection
point and the observation point are shown in Table 1. Also shown in the table is
the composition of the injection water. The aquifer thickness, the bulk density of the
soil matrix, the cation exchange capacity and the porosity were, respectively, 2 m,
1875 g1~', 0.1 meq g~ ", and 0.25. The selectivity coefficients ks and k3; were 1.7 and
3.0 eql~!, respectively. Although the flow was radial, a constant average velocity was



Improved Mixing Cell 107

assumed. The average pore water velocity as obtained from the chloride breakthrough
curve of (8] is 1.12 mhr~!. A dispersivity of 1.6 m was used in the simulation. The
spatial step required by the improved mixing cell model is 3.2 m. The simulations
are shown in Figure 3 and 4 for Mg*? and Ca'? respectively. We observe that the
mixing cell predictions are in excellent agreement with the experimental field results.

5. Summary and Conclusions

In ion exchange experiments, breakthrough curves or concentration profiles within
the soil depict complex shapes characterised by plateaus and depressions. Since the
soil and chemical properties are fixed, these features are dependent simply on the
native and feed solute concentrations. A simple efficient improved mixing cell model
has been applied to describe the concentration profiles. It is found that the results
are in excellent agreement with those of a standard Crank-Nicolson scheme and, at
the same time, the improved method is much easier to code and is faster to compute.
The case of ternary heterovalent exchange of Na by Mg and Ca in a field experiment
has been efficiently described by this method with simple assumptions like constant
velocity and constant dispersivity.
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Notation

Ck liquid phase concentration of species k, ML™°

Cis  feed liquid phase concentration of species k, M L3
C.n  native liquid phase concentration of species k, M L3
C, Courant number, VAt/Az

D, dispersion coefficient, L*T~!

fe(C) function of C

K selectivity coefficient

Sk solid phase concentration of species k
t time, T

v mean pore water velocity, LT~

2 distance below soil surface, L

6 porosity

Vi constant used in equation 2

p bulk density, ML~

ok rate constant, 7"~!

At time step, T'
Az spatial step, L
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FIGURE 1. Comparison of mixing cell (circle is species 1 and triangle is
species 2) and Crank-Nicolson (line is species 1 and dashes are species
2) solutions for nonlinear equilibrium transport.
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FIGURE 2. Comparison of mixing cell (circle is species 1 and triangle is
species 2) and Crank-Nicolson (line is species 1 and dashes are species
2) solutions for nonlinear nonequilibrium transport.
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TABLE 1. Composition of Feed and Native Water (All units are in mgl~")

Injection Water Native Groundwater
Species Feed water Injection Well Observation Well
Na* 216 1200 1990
Mg*? 12 310 436
Cat? 85 262 444
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FIGURE 3. Mixing cell prediction (line) and observed (circle) concen-
tration profiles of Mg.
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FIGURE 4. Mixing cell prediction (line) and observed (circle) concen-
tration profiles of Ca.
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