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ABSTRACT

Supercomputers can expand greatly the possibilities for modelling subsurface solute transport. The
theory relating to a specific application, viz. multicomponent solute transport, is presented. It is de-
monstrated that multidimensional realworld problems involving a series of chemical reactions requires
significant computational power. It is demonstrated, however, that obtaining true supercomputer per-
formance depends on algorithm selection. Other supercomputer applications are discussed, including
visualization and effects of scale-dependent aquifer heterogeneity.

INTRODUCTION

It might be said, somewhat facetiously, that groundwater modelling has provided a popular pastime for
computationally oriented hydrologists from the earliest days of computers. The theory of flow in po-
rous media is extremely broad, covering a wide spectrum of engineering and scientific disciplines. For
example, models developed for particular applications may draw upon fundamental results from phy-
sics, chemistry, mechanics and biology.

Models, and modelling approaches, can vary from simple to complex, but computer-based simulations
are necessary for most cases where processes are to be quantified. The more complicated models of
solute transport can involve literally scores of governing equations in the form of nonlinear partial diffe-
rential equations over domains in which the transport parameters are spatially and temporally variable,
sometimes to large magnitude. One result is that supercomputers will be called upon to handle bigger
and bigger problems. It is always possible to imagine a simulation that is beyond the capacity of the
largest available machine. Note that "bigger" problems can lead to important gains in knowledge. More
computing capacity allows for (requires, in fact) the reexamination of basic assumptions underlying
generally accepted models. As stated by Wallis [1987], "problems are being routinely defined that
could not even have been conceived without the existence of computers”. One example concerns the
effects of variability of hydraulic conductivity on solute dispersion in aquifers, an area of vigorous re-
search activity in past decade. Analytical theories have been developed for rather specialized conditi-
ons, so the question arises of situations that are not covered by the theory. Supercomputer simulati-
ons have provided insights that would probably not have been discovered as easily otherwise.

More routine problems which may push the capacity of less powerful computers are also very suited
to supercomputers. A particular simulation that usually takes two hours CPU-time might only take a
few minutes on a supercomputer. With a supercomputer, many more different scenarios can be ex-
amined in a very short time. If the hydraulic (or other) properties of a heterogeneous aquifer are as-
sumed to random, then a study of the aquifer could employ Monte-Carlo computer simulation me-
thods, meaning that many hundreds of simulations might be necessary to characterize the statistical
properties of the aquifer response. Again, with a three-dimensional flow domain, a supercomputer is
the most appropriate tool.
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A supercomputer is defined as one in the fastest class of available machines. These machines not
only have the fastest processor rates, but also convey information much faster than ordinary machi-
nes. In some machines the distances between sites within a computer are minimized, as demonstra-
ted by the circular configuration of CRAY machines. It has been suggested that superconductors
might be used to speed up transmission rates, since the hardware limitations of present technology
are now recognized [Seitz and Matisoo, 1984]. Fast processors alone do not guarantee that groups of
computations are performed faster. The efficient organization of information so that it can be proces-
sed effectively is an onerous task, particularly on multiprocessor machines.

If it is true that the technological limits of presently available computer hardware are in sight, then in-
creases in speed can occur through increasing the number of calculations carried out in a given time
by increasing the number of processors, either by operating on vectors rather than scalars, as in a
vector machine, or by increasing the number of processors available, as in a multiprocessor -machine.
This available processing power can only be utilized by increasing the concurrency [Sharp, 1987] of
the algorithms used. It is apparent that algorithms developed for scalar machines will not be effective
on supercomputers because these algorithms are inherently sequential. In fact, the early CRAY ma-
chines were reputedly popular because they had a vary fast scalar processing rate, even though this
rate was two orders of magnitude less than the maximum vector processing rate.

A good example of the effect of the lack of concurrency of an algorithm is contained in Amdahl's law
[Amdahl, 1967, Emmen, 1987]. Say it takes N, operations or, equivalently, a time of N, to complete a

given algorithm. The minimum possible time to complete the algorithm on P processes is Ny/P. The
speedup, S, is defined by:

time on sequential machine 4
~ time on concurrent machine (1)

S

so S = P in this case. This is true only if the individual calculations are independent. If they are not in-
dependent, then there exists a sequential path in the algorithm, taking time (or operation count) R.
The minimum time in which the algorithm can be executed on the P-processor machine is:
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Fig. 1.  Depiction of Amdahl's Law, showing the detrimental effect of bottlenecks on algorithm speedup on
multiprocessor machines.

Equation (2) is based on the assumption that all the other operations in the algorithm can be perfor-
med independently. Even if P — o, S is bounded from below by Ny/R. In other words, the minimum

real time to complete the algorithm is R. Clearly, the longest sequential path in the algorithm is a se-
rious bottleneck. In Fig. 1 some examples of (2) are displayed. If R/N, = 0 then the full speedup is

achieved. The full impact of Amdahl's Law can be seen in that a rapid decline from this maximum is
apparent. If one considers that for an algorithm of N, operations it is reasonable to take R as roughly

Ny/2, then it is not possible to utilize fully the available processors.

Now suppose a different algorithm taking Ng operations is used to perform the same task. The diffe-

rence in this case is that the longest sequential part of the algorithm is reduced to, say, R/10. On a
machine with a large number of processors, this second algorithm will perform much quicker in real
time because the bottleneck has been removed. An algorithm that would be discounted immediately
on a scalar machine suddenly becomes preferable on a multiprocessor machine. Denning [1988]
discusses Amdahl's Law as it applies to parallel machines in more detail.

This same discussion also applies to vector machines, the only difference being that one considers

the percentage of the code that is vectorizable, and the percentage that must be performed at the
machine's scalar speed [Barry, 1990)]. The scalar speed of the machine becomes the bottleneck which

adversely affects the completion time of the algorithm. Although Amdahl's Law over-simplifies algo-
rithm timing, it serves to illustrate that one needs to consider carefully algorithms used when using

different machines.
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MULTICOMPONENT SOLUTE TRANSPORT

Isothermal transport of a single solute species in groundwater is modelled by two governing equations,
one for the solute - the transport equation - and one for the fluid - the flow equation. In many cases
these equations are treated independently, even though they are coupled through concentra-
tion-dependent density changes. This approximation is appropriate for dilute solutes.

The situation is more involved for modelling the transport of reactive solutes, where several different
chemical species may need be considered. For simplicity we assume isothermal conditions, ignore
precipitation and dissolution of minerals, and instantaneous reactions, i.e. reaction kinetics need not
be considered. The first step in the model development is to determine the chemical reactions and
compose a set of components in which the reactions can be written. In other words, the set of compo-
nents spans the chemical species space [Brown and Page, 1970, §3.1]. From the chemical reaction
equations the law of mass action [ Tan, 1982, §3.5] is used to quantify the equilibrium concentration of
each species and component in each reaction via the equilibrium reaction constant. In this step a non-
linear algebraic system of equations results, the solution of which gives the equilibrium speciation of
the system [Coves and Sposito, 1986, §1]. Many geochemical codes have been written to calculate
the equilibrium speciation of natural waters [e.g. Morel and Morgan, 1972; Truesdell and Jones, 1974,
van Gaans, 1989; Wolery, 1983]. The main distinguishing elements between various codes are the
thermodynamic data bases that quantify individual reactions and the numerical techniques used to
solve the nonlinear algebraic systems of equations. Transport of several solute species requires a
transport equation for each chemical component. The basic equations governing the flow of N chemi-

cal components in a flowing system are [Bear, 1972; Bryant et al., 1986]:

o(6c])
ot

#LU)=0, i=1,..Ng (3)

where c;r is the total concentration of the ith component in any form whatsoever in the system and u; is

the concentration of the same component in the flowing (aqueous) solution. The right side of (3) is
nonzero if production terms need be included, or if irreversible dissolution or precipitation occurs. The
operator L is defined by [Kirkner and Reeves, 1988:

L(y;) = V.(u,g - 6D.Vy,). (4)

Now, the total concentration of the it" component in the system is, by definition,

NI
c - ¢ - 3 + 3 A (5)
j=1
Total Component Sorbed Complexed
Concentration Concentration Concentration Concentration

The latter two terms on the right side of (5) have not yet been discussed. The summation term refers
to soluble complexation, so that the chemical reactions are of the generic form:
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where K; is the equilibrium constant for the reaction and the circumflex indicates a chemical formula,
not a concentration. Upon using the law of mass action, one obtains from (6):

NE
x = &[] M, i=1,..N,. (7)
j=1

If the concentrations in (6) are not dilute, then each concentration variable must be replaced by the
species activity. The total soluble concentration of the i component, u;, is defined by:

N, Ne
y=c+ Y AK[Tehx,  i=1..N (8)
j=1 k=1

Equation (8) shows that the soluble concentration can be specified as a nonlinear function of the com-
ponent concentration variables alone. Observe that (8) defines N, unknowns, u;, in terms of N

(presumed) known variables, c;. In principle then, (8) can be inverted to give each c; as a function of
the set of N, u, variables, i.e. [Kirkner and Reeves, 1988]:

¢ = £ (uy,-.uy )y i=1,.,Ne. (9)

c

We now consider the sorbed concentration term in (5). Sorption consists of surface adsorption and
solute absorption within the soil grains. Unlike precipitation/dissolution reactions the medium porosity

is unchanged by sorption. The main point to note here is that it is always possible to write the adsor-
bed concentration, s, in terms of the fluid phase solute concentration, i.e.

s; = ;5C (1O X1reemi XN, ) (10)

Equation (10) becomes a function of the component concentrations, ¢, if the complexed concentrati-

ons are eliminated using (7).

Using (5) through (8), (3) can be written in terms of, say, the component concentrations, C;. The resul-
ting N, partial differential equations are then coupled. To complete the model of the system an addi-

tional governing equation is needed to describe the water flow. There are many forms of the flow
equation, but they all are derived from [Bear, 1972, §6.2.1]:

d(po
V.(pq) +—{5tu= 0. (11)

Equation (11) is coupled to the transport equations since both the density, p, and the flux, q, vary with
changes in concentration in the fluid.
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This brief derivation of a governing model of multicomponent solute transport demonstrates the pos-
sible magnitude of a realistic chemical modelling effort. In such a case, not only are there numerous
governing equations, but these equations must be solved simultaneously. The number of
(more-or-less) general purpose models developed is low. In the main, the existing codes are for uni-
dimensional flow and transport, and most are, in fact, the result of combining existing flow and geo-
chemical codes.

An example of a "big" computer implementation of a multicomponent transport model is the multidi-
mensional code called DYNAMIX that has been developed by Narasimhan et al. [1986]. DYNAMIX,
which has been the subject of continued development, [Liv and Narasimhan, 1989a] couples
PHREEQE [Parkhurst et al., 1980) with the multidimensional transport code TRUMP [Edwards, 1972).
It has now been extended to include acid-base reactions, aqueous complexation, redox reactions and
precipitation/dissolution reactions.

DYNAMIX uses a two-step solution approach. As the numerical solution steps through time, the
transport model is solved by explicit finite differences. Then, the chemical submodel computes the
chemical distribution under dynamic partial equilibrium conditions. Example problems solved by DY-
NAMIX are given by Liu and Narasimhan [1989b]. After favorable comparison of DYNAMIX to the
one-dimensional codes of Walsh et al. [1984] and Carnahan [1986), Liu and Narasimhan [1989b]
performed a 30-year simulation of solute transport from a contamination site. The two-dimensional
contamination problem involved selenium and arsenic, but included also 16 aqueous components, 26
minerals and over 76 aqueous complexes. They found that arsenic was strongly retarded by precipita-
tion as As,S,. On the other hand, selenium was relatively more mobile, being transported in the
aqueous phase. Not surprisingly, a Cray XMP/14 supercomputer was used to perform the calculati-
ons. The reactive trace elements selenium and arsenic were included. The total CPU time needed
was 3.4 hours on a CRAY X-MP/14. The code does not take advantage of the CRAY's vector speed
capabilities. Rewriting computationally intensive portions of the code to allow vectorization would likely
lead to substantial improvements in the CPU time used.

HETEROGENEITY OF THE SUBSURFACE ENVIRONMENT

Natural porous media are characterized by variability. This variability is reflected in the transport and
hydraulic properties measured in the field. The effect of this variability on water and solute movement
is a topic of significant theoretical and practical interest.

There are different ways in which variability can be modelled. For example, Wheatcraft and Tyler
[1988] explain scale-dependent dispersion of a solute plume in groundwater using concepts from
fractal theory. Thus, they model the medium as being self-similar, at least over a range scales. In the
absence of an upper scale bounding the self-similar description of the medium, the solute plume di-
spersivity will increase without bound.

A more thoroughly investigated model of variability is based on statistical models of the variability of
the hydraulic properties of the medium. The most common approach has been to model hydraulic
conductivity as being random. In the most complete theories the hydraulic conductivity is assumed to
be lognormally distributed, with an exponential decay in the spatial correlation. The statistical beha-
viour of the fluid movement can then be determined from the governing flow equation, which has be-
come a stochastic differential equation due to the random conductivity term.
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It has been demonstrated that variability in the groundwater flow has a much greater effect on solute
spread than local-scale diffusion or dispersion. The cumulative effect on the spread of solute due to
variability of the groundwater flow field has been termed the macrodispersivity. Since the low-order
statistics of the groundwater flow field can be calculated, this information can be used to calculate the
macrodispersivity of a solute plume in the case of a dilute solute. Expositions of the analytical results
provided by this theory have been presented by Dagan [1986], Gelhar [1986] and Sposito and Barry
[1987].

The analytical results are based on fairly simple conditions, viz. infinite spatial domain, second-order
statistical stationarity of the hydraulic conductivity field, uncoupled governing equations of steady
groundwater flow and solute transport and constant mean flow direction. Even so, these analytical
predictions have had some success when compared with data from field experiments [ Freyberg,
1986; Barry et al., 1988; Barry and Sposito, 1990].

There is a limit, of course, to the results that can be obtained analytically. Researchers have also
performed numerical studies into heterogeneity. There are two major approaches used, particle trac-
king and continuum models. In common with the purely analytical investigations, one of the aims of
the numerical analyses is to identify the governing equations for flow and transport at macroscales,
based on parameter variability at local scales. One problem encountered with the numerical ap-
proaches is that a large number of nodes might be needed to account for detail in the flow domain. At

the sub-grid scale variability cannot be represented.
Particle Tracking

This technique is used to overcome some of the perceived difficulties in using continuum models pba-
sed on partial differential equations. The theoretical basis of the method is the Langevin equation
[Gardiner, 1985]:

% = A(X,t) + B(X,t).E(1), (12)

where X denotes the position of the particle, A represents the sure changes upon the particle, &(t) is
stochastic forcing function idealized as white noise and B gives directional characteristics of the ran-
dom component of motion. As it stands, (12) has no meaning because white noise is delta-function

correlated [van Kampen, 1981, Chap. VIII], and infinite variances are physically impossible. If, howe-

ver, we follow the Ito interpretation, then, over a time span of At, (12) is equivalent to:

t+At
X(t+At) - X(t) = A[X(t).]At + B[X(1).1]. f E(t) dt. (13)
t

Since A is smooth it can be approximated in the time interval, At. The integrand of the second term

varies rapidly so it cannot be treated in the same manner. In deed, (13) has already incorporated the
to assumption that B is nonanticipating, allowing it to be removed from the integrand. This assumption
is useful since it means that B and the integral of £ are uncorrelated, and so B can be calculated from
knowledge of X(t) [Haken, 1983). Clearly, different realizations of &(t) will influence the location of the
particle under consideration. Under suitahle conditions, (13) is equivalent to a Fokker-Plank, or Kol-
mogorov forward equation [Cox and Miller, 1965, Chap. 5). The analogy to solute transport is com-
plete when we recognize that the governing equation for solute transport is also a Fokker-Plank equa-
tion.
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To complete the analogy, a mass is assigned to each particle. The movement of many (an infinite
number) particles will then explore all possible realizations of the stochastic process. If the total mass
is normalized to unity, then the distribution of the particles will approximate the probability density
function of particle movement. This, in turn, is proportional to solute concentration. The Fokker-Plank

equation corresponding (12) is [Tompson et al., 1987]:

E%tﬂ’_ﬂl . V. {[A - %?*(B_BT)}mH }: 2V.[(B.BT).9(pwt)]. (14)

where p is the solute density and o is the solute mass fraction. For diffusive transport in a saturated
domain and a constant velocity we would take:

v(X,t) = A(X 1), (153)
and
B =+/2DL. (15b)
The combination of (14) and (15) yields: h
2(po) + V.(vpw) = DV2(pw), (16)

ot

which is the usual transport equation.

Solutions to (14) can be obtained by using a Monte-Carlo approach applied to the Langevin equation.
Each particle in the simulations moves independently, so the computation is well suited to evaluation
by a supercomputer. Indeed, the degree of parallelism can be at least the number of particles in the
simulation. Computationally, particle tracking is algebraically uncomplicated and extremely repetitive
making for an easily vectorized code.

A common problem with particle tracking methods is the noisy solute distributions resulting from the
simulations involving too few particles. Distributions are derived by using the assigned mass of each
particle and averaging over a specified domain size. The noise is proportional to 11\/5‘, where N'is the
number of particles. The most straightforward way to reduce noise is to increase N', although
smoothing or filtering of the concentration predictions may be more economical computationally.

A recent study using particle tracking is that reported by Tompson et al. [1987]. These authors review
in detail the theory outlined above, including the forms of the functions A and B in (14) which are ap-
propriate for simulations of solute transport for both saturated and variably saturated flows. The simu-
lations of Tompson et al. [1987] were aimed at evaluating stochastic theories. To that end, flow in a
heterogeneous domain was generated using the large-scale flow simulator of Ababou et al. [1988],
developed for the CRAY-2 supercomputer. Ababou et al. [1988] used the strongly implicit procedure, a
less efficient forerunner of the preconditioned conjugate gradient method, to solve their linear systems
of equations [Meyer et al., 1989]. Tompson et al. [1988] did not discuss the specific algorithm design
or computer used in their simulations. Their code, however, is designed to track many thousands of
particles on grids of up to 107 nodes. Simulations of this kind are practicable only on supercomputers.
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Continuum Model Solutions

Conventional solutions based on the governing equations of flow and solute transport are more com-
mon. Most applications use the assumption of a dilute solute, so that the governing equations may be

treated separately.

A model that makes use of supercomputer characteristics in algorithm selection was developed by
Chiang et al. [1989]. The code was developed to model pumping-induced flow and contaminant trans-
port in a two-dimensional heterogeneous domain. Example simulations included transport in domains
having a random hydraulic conductivity field, realizations of which were developed using the turning
bands method [Mantoglou and Wilson, 1982]. Chiang et al. [1989] selected the preconditioned conju-
gate gradient algorithm to provide the necessary numerical solution to the linear system of equations.
It was concluded that the code developed was efficient, accurate, and capable of modeling transport

in systems with rapidly varying hydraulic conductivity fields.

Frind et al. [1989] report a three-dimensional simulation of transport of organic solutes undergoing
aerobic biodegradation. They model a saturated groundwater system in which the solute transport
process is described by a nonlinear, coupled set of equations, one for the contaminant and one for
dissolved oxygen. The dual-Monod equation [Borden and Bedient, 1986] is used to model the growth
of the microbial population. By formulating the numerical model to produce a symmetric coefficient
matrix, the preconditioned conjugate gradient solution method could be used effectively. A 24 x 103
node simulation over 155 time steps (300 days) took about 2-h CPU time on a CRAY X-MP/24. The
authors concluded that comparable two-dimensional simulations were to be avoided as oxygen avai-
lability was markedly affected by problem dimensionality.

Sudicky [19894] considered the transport of a dilute solute in a steady, nonuniform, two-dimensional
flow field. The spatial derivatives were discretized using the Galerkin finite element procedure. Instead
of using a finite difference procedure for the temporal derivative, Laplace transforms were used. The
Laplace-transformed problem was shown to not suffer from the numerical dispersion problems asso-
ciated with other methods. The Crump [1976] algorithm for numerical inversion of the La-
place-transformed solution can be used to calculate the solution time-domain solution from a single

set of Laplace-domain solution values.

Sudicky [1989b] extended the application of the method to the case of fractured porous formations. In
the case of the traditional finite-difference approximation of the temporal derivative, numerical difficul-
ties arise due to the large differences between the rapid advection-dominated transport in the fractu-
res and much slower diffusional flux into the porous matrix. Sudicky [1989b] combined the La-
place-transform method with ORTHOMIN [Behie and Vinsome, 1982] acceleration for the rapid solu-
tion of the algebraic system of equations derived from application of the Galerkin procedure. The
combined procedure was shown to be very efficient and accurate. A 30,651-node simulation of down-
ward seepage of solute in a medium containing several thousand fractures took 72 seconds on a
CRAY X-MP/24 to obtain solute distributions valid for all times of interest. By using algorithms espe-
cially suited to vector supercomputers, Sudicky has developed a code capable of simulating very
large, field scale transport problems.

The data base from the Borden [Roberts and Mackay, 1986] aquifer transport experiment has been

used to evaluate the predictions of stochastic solute transport theory. Both Freyberg [1986] and Naff
et al. [1988] compared theoretical predictions of the vertically averaged tracer plume dispersivity with
those estimated from experimental data and found excellent agreement. Following the success of the
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swo-dimensional Dagan [1984] model in predicting the spread of the vertically averaged tracer plume
at the Borden site, Barry et al. [1988] checked whether the actual plume concentrations conformed
with ensemble-mean concentrations. The theory was used to predict solute plumes using the measu-
red plume from a number of different samplings as initial conditions, then comparing the predicted and
measured plume at later times. The data analysis and generation of the predicted plumes, which in-
volved integrating the initial condition numerically, were carried out using a vectorized code on a
CRAY X-MP/48. It was found that the model predicted the measured plume quite accurately on relati-
vely short time scales, becoming progressively worse with increasing elapsed time. However, the as-
sumptions necessary in the data analysis made equivocal any comparisons of model-predicted and
measured plumes.

The ensemble approach has led to elegant analytical results but, as discussed by Dagan [1987], they
cannot be applied unless certain conditions are met. A demonstration of the possible differences bet-
ween separate plume realizations is given by Frind et al. [1 987]. These authors use a two-dimensional
vertical-slice model of an aquifer with a hydraulic conductivity field that reproduced the estimated low-
order statistics of the Borden aquifer. Two simulations were performed; one of which used a spatial
grid of 106 elements. It was clearly demonstrated that local variations in the hydraulic conductivity
dominate plume movement, particularly at early times. The short term behavior can have persistent,
long-term effects. The simulation of Frind et al. [1987], which used 10-h of CPU time on a CRAY
X-MP/48, revealed the formation of two subplumes due to the initial placement of the solute source in
a region of rapidly varying conductivity. Other, similar simulations reported by Sudicky et al. [1990]
demonstrate that in many cases less dramatic results are obtained. For example, Sudicky et al. [1990]
discuss simulations in which the solute plume approaches a Gaussian distribution, as predicted by

stochastic theory.

Sudicky et al. [1990] go on to consider the transport of a biodegradable solute in a heterogeneous po-
rous medium. In this case there are three nonlinear governing equations, one each for the solute,
available oxygen, and the microbial population [MacQuarrie et al., 1990]. The behavior of the plume is
quite different. If the biodegradation rate is large enough, then the plume will tend in decrease in size.
For this reason, the plume will encounter, and be influenced by, only a small portion of the groundwa-
ter velocity field. Under these conditions, plumes resulting from different realizations will not necessa-
rily converge very rapidly to those predicted by ensemble averaging of the governing equations. More
comprehensive simulations presented by MacQuarrie and Sudicky [1990] show in detail that biode-
gradable solute plumes evolve differently than plumes composed of nonreactive solutes. In particular,
it is suggested that the scale dependence of the plume dispersivity, that is well documented for field
scale transport of tracer solutes [Gelhar, 1986, Fig. 12], does not apply in the case of biodegradable,

organic solute plumes.

VISUALIZATION

Improvements in data visualization have kept pace with developments in computing hardware. Plot-
ters and associated software are standard equipment. Much specialized hardware and software is
available also. A powerful combination for real-time simulation is the combination of supercomputer
computational rates and a dedicated graphics workstation. An example utilizing this technology was
undertaken as part of a more general study on solute transport. Three-dimensional visualizations of
the bromide tracer plume from the Borden site experiment [Roberts and Mackay, 1986] were genera-
ted using facilities at the National Center for Supercomputing Applications (NCSA). Briefly, the raw
data, consisting of solute concentration measurements at given spatial locations for the 14 plume
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samplings, were fitted to an interpolation function using the NCSA's CRAY X-MP/48 computer fol-
lowing a cross-validation procedure. Full details can be found in Barry and Sposito [1989]. Dense (4 -
8 x 104 points), regular grids of interpolated concentration data were produced and surface contours -
three-dimensional versions of contour lines - were computed using the "marching cubes" algorithm
[Lorensen and Cline, 1987]. The contour surfaces are allowed to be semi-transparent, and so allow
the passage of light. Since contours are formed at regular concentration increments, domains of hig-
her concentration are surrounded by more surfaces than areas of lower concentrations. When
(mathematical) light rays are passed through the surfaces they are diffused. Domains containing rela-
tively higher concentrations appear as being relatively more opaque. There is complete freedom in
how the final images are viewed due to variations in the light source and observation positions. Solute
plume images resulting from this procedure can be found in Plate 1 of Barry [1990].

LINEAR ALGEBRA: THE PRECONDITIONED CONJUGATE GRADIENT METHOD

The key computational element of many transport related algorithms is the solution of linear systems
of equations. One of the fastest methods for supercomputer use is the preconditioned conjugate gra-
dient (PCG) algorithm. The conjugate gradient (CG) method is based on the fact that the solution, y,
of Cy = b minimizes the quadratic functional y"Cy - 2bTy if C is symmetric and positive definite
[Hager, 1988, §7-5] and the superscript T indicates transpaosition. It is this functional which is minimi-
zed to obtain the unknown vector y. In the absence of rounding error, the method converges to the
exact solution for y in dim(C) steps. It has been observed that, for some matrix types, a reasonable
approximation to the solution is obtained after relatively few steps, leading to the use of the method as
an acceleration technique. The convergence rate of CG depends on the condition number of A. Pre-
conditioning is therefore used to increase the convergence rate [Hager, 1988, §7-5]. Concus et al.
[1976] note the following advantages of the method: (i) not all of C needs to be stored in memory at
one time, (ii) parameters used by the algorithm are automatically determined, and (iif) some restricti-
ons on C required by other methods can be relaxed. A vectorized PCG algorithm was given by
Kershaw [1982]. If C is not symmetric and positive definite but is invertible, then premultiplying the
equation Cy = b by CT gives a system in the required form. The PCG algorithm then involves more
computations, however. An alternative is the ORTHOMIN algorithm [Behie and Vinsome, 1982].

- Meyer et al. [1989] consider linear systems of equations encountered in subsurface flow problems.
The choice of preconditioner is related to the type of computer used. A number of preconditioning
schemes implemented on the CRAY X-MP/48, a vector machine, and the Alliant FX/8, an
eight-processor vector-parallel machine were compared. Overall, low-order polynomial preconditioning
was found to give the best results. The largest problem solved by Meyer et al. [1989] involved 980,000
unknowns and took approximately one hour CPU time on the Alliant, with a factor 15 speedup ex-
pected for the CRAY. Ababou et al. [1988] used a CRAY-2 to perform a large-scale three-dimensional
flow simulation, but did not use the PCG method. For this case, Meyer et al. [1989] estimated that
using polynomial preconditioning with CG would have reduced the computation time Dy an order of
magnitude. This example highlights the importance of algorithm selection for large-scale problems.
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CONCLUSION

Although supercomputers give the opportunity to explore new computational territories, it is fitting to
conclude on a cautionary note. Each increase in computational power, gives rise to the possibility that
using supercomputers wholly to carry out larger and larger magnitude simulations, and so becoming
the raison d'étre of scientific endeavour. This point was discussed by Cushman and Wobber [1986]
who "argue that the understanding of complex chemical and physical interactions in the subsurface
and the ability to estimate parameters is so poor that the large supercomputer models may in fact be
totally incorrect. In this instance, supercomputer modelling efforts may turn out to be a greater
obstacle to real progress than no model at all*. This argument may be elaborated upon to include the
evolution of transport theory. Simulation of the effect of scale changes on plume evolution in a hetero-
geneous domain, for example, necessarily involves assumptions concerning the nature of hetero-
geneity, i.e. a model of scale-dependent heterogeneity must be invoked. The derivation of such mo-
dels is certainly not a new question, but having supercomputers available adds emphasis to lack of
knowledge of scale effects on solute transport, amongst other things.
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NOTATION

A.  stoichiometric coefficient
A  deterministic portion of the particle motion, LT -1

b vector

B second-order tensor representing the directional coefficient of the random portion of the particle
motion, LT-172

¢! total concentration of the i!" component, ML-3

C  matrix
D diffusion coefficient, L2T
D  hydrodynamic dispersion tensor, L2T"

I identity tensor

equilibrium constant
L second-order spatial differential operator, T~

N,  number of arithmetic operations to complete an algorithm

N number of chemical components
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number of chemical complexes

number of particles

number of processors

Darcy flux, LT-1

number of operations in the longest sequential path in an algorithm
speedup

sorbed concentration, L3

time, T

total concentration of the i!" component in the aqueous phase, ML=

mean solute velocity, LT
concentration of the jth complex, ML
particle position, L

vector

porosity

stochastic forcing function, T-172
density, ML-3

mass fraction

chemical formula of -

transpose of -
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