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1. INTRODUCTION

The solution of complete dynamic wave models is computationally extensive [1). To simplify the
problem, inertial forces may be neglected since they are negligible for most flood waves. On the other hand,
pressure forces are quite important [2]. The diffusion models so obtained are then solved by computationally
efficient schemes. Further simplification is obtained when both inertial and pressure forces are neglected,
giving the kinematic model. The finite-difference solution of the latter model induces numerical dispersion.
Solutions of the full diffusion wave model can be simulated by controlling the numerical dispersion. This is
the basis of the Muskingum-Cunge (M-C) method [3], a well known flood routing model. Since the method
is conceptually simple, computationally efficient and relatively accurate, it has been widely used in practice.

In the M-C model, the physical parameters are dependent on grid characteristics, particularly the
spatial and temporal step sizes. The question of how to choose the optimal spatial and temporal steps in the
numerical scheme then arises. Ponce and Theurer [4] state that the effect of the spatial step size on the
accuracy of the M-C model is not completely understood. Indeed. there is still continuing controversy
regarding this approach [5]. The main purpose of this study is to show that solutions of the kinematic wave
equation following the M-C approach always give accurate results once a straightforward condition is
imposed. For this purpose, the kinematic wave problem is analysed starting from a general scheme.
Additionally, the problem is reanalysed to confirm whether the general scheme can attain third-order
dccuracy. We show that the Courant number is the only determining criterion in fixing the accuracy of the
results. There is one Courant number for which the solution is optimal. Given this Courant number and a
value for the physical diffusion coefficient, the optimal spatial and temporal step sizes are fixed. This puts an

end 1o the controversy regarding the selection of size of the spatial and lemporal steps in the solution of the
diffusive wave equation.

2. THEORY
21 M odels

We briefly describe the complete dynamic routing model and the various approximations applied to it.
The Continuity equation which describes the conservation of fluid mass in a gradually varied, unsteady open
channe] flow (with no lateral inflow) is [1]
B 0y 4 ﬂ[.A ¥) =
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where A, B, V and y are, respectively, the cross-sectional area of flow, surface width of flow, velocity and
depth of flow, x is the distance along the channel and t the time. The momentum equation is given by [1]:
é%—f+%%+g—i+sf-su=ﬂ. (2)
where g, S¢f and Sy are the magnitude of the acceleration due to gravity, friction slope and bed slope,
respectively. The continuity equation (1) and the momentum equation (2) constitute the Saint-Venant
equations for gradually varied, unsteady open channel flow. By neglecting the inertial term it is possible to

combine equations (1) and (2) to give an advection-dispersion equation [1]:
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where ¢ = (dQ/dy)/B and D = Q/2BS,, for regular channels. Often, both ¢ and D are linearised about some
selected value of Q, in which case equation (3) becomes linear.

When both inertial and pressure forces are neglected then the equations (1) and (2) reduce to the
kinematic wave equation [6]:
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When the celerity, c, is constant, equation (4) becomes linear else it is nonlinear. It is intended here to study
the solution of equation (3), the approximate dynamic model, using the general scheme described in next
section. Diffusive waves apply to a wider range of practical problems than kinematic waves because most
flood waves have a small amount of physical diffusion [3]. The initial and boundary conditions used in this
study are:
Case 1: Q(x,0) =0, Q,t) = Qu: Case 2: Q(x.()) = Qo Q(O,t) = Q(1). (3)

We address two issues here; (i) the order of accuracy of the general scheme used to solve equation (4) and
(ii) the optimal temporal and spatial steps used in the numerical solution of equation (3) derived making use
of (i). Like other comparable analyses [7], the present study is limited to the linear case.
2.2 Finite difference solution

We seek the solution for equation (3) using the kinematic wave equation (4). Equation (4) is
hyperbolic and when solved numerically by finite ditferencing, numerical dispersion is induced. This
numerical dispersion is equated to the physical diffusion D in equation (3). Space-weighted forward
differencing for the temporal derivative and time-weighted backward differencing for the spatial derivative
reduces equation (4) to:

QU+ = 128Gl o0 0C-8 iy + LHGA-O) o6y 5 (6)
1-0+wC, 1-0+wC; 1-0+wC;

where i and j are the spatial and temporal coordinates (x = iAx, t = jAt), 8 is the spatial weighting factor, W is
the temporal weighting factor, C¢ ( = cAUAx) is the Courant number, and At and Ax are the temporal and
spatial steps in the finite difference grid. The scheme is stable subject to the condition 1 - 20 + C, Qw - 1) 2
0 [8]. The M-C method is a special case of equation (6) for @ = 1/2. We next present relevant relations to
arrive at optimal values of the spatial and temporal steps.
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2.3 Consistency analysis
Taylor series expansions about the (i,j) grid point where the mixed derivatives are expanded in terms
of spatial derivatives [9], give the following third-order accurate equm.inn
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Note that cross-derivative terms arising in the Taylor series expansion in equation (6) were eliminated using
the approximated equation itself rather than the original exact equation (4) [9]. Two other third-order error
analyses of equation (6) have been reported [3,7]. neither of which agree with equation (7). Ponce [3]
reported that for C; =1, and 8 = @ = 1/2, the scheme given by equation (6) is third-order accurate. We note
that the truncation error reported in [7] does not comply with that of [3]. In [7], for any value of 6 and w, the
scheme is third-order accurate if C; = 1. However, from above, the scheme is third-order accurate if C; = |
and 0 = . Under these conditions there is no numerical dispersion and the solution coincides with equation
(4). We are interested in the solution of equation (3) and hence the scheme for equation (4) must include
numerical dispersion. Clearly, there is great freedom in choosing the parameters Cy, 6 and ® so as to ensure
the O(Ax2) term in equation (7) is removed.

It is evident from equation (7) that numerical dispersion is induced by the scheme in equation (6). To
approximate the solution to equation (3), the numerical dispersion coefficient (of the second-order spatial
derivative) is equated to the physical diffusion coelficient in equation (3). Third-order accuracy can be
obtained by equating the coefficient of the third-order spatial derivative to zero, i.e., if

_ G+ N(1-C2)/3 +26 - L
2C. (8)

Note that, by imposing equation (8), one of the three parameters Cr, 8 and @ in equation (7) can be removed.
2.4 Additional constraint

An additional relation can be obtained from the concept of column holdup as often used in solute
transport [10]. This concept is equally applicable to this problem. The holdup or storage is calculated for a
constant step input of discharge Qg at the inlet with Q(x,0) = (), as the initial condition. This 1s the most

critical boundary condition because it imposes a discontinuity at the entrance. For a semi-infinite spatial
domain, the holdup, H, at a distance Ax is given by [11]

H = —ﬂ—f I - Q(Ax,t)/Q, dt = 1. 9)
Ax J,

We shall force all solutions based on equation (6) 1o honour equation (9). It is in this sense that our scheme

1s optimal, To this end, equation (6) is rewritten in the form of a summation. Then, making use of Simpson’s

rule, the numerically computed holdup is

(2 - 3w)CE + (20 - 3)(3w- 1)C, +3(2-0)(O - i)
3[20- 1)+ (1 - 20) C,)

Huum = (10)
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Note that the above relation was obtained using Q(0.0) = Qo/2, so as to account for the discontinuity in Q at
the x,t origin [12]. This numerical holdup is equated to the exact holdup to obtain the following relationship
between 0 and ®:
0 =C; w (1D

For the M-C method, @ = 1/2 so from equation (11) we predict that optimal results will be obtained for 0 =
C/2. Equation (11) reduces equation (6) to the simple explicit scheme,

QG.j+1) = (1 - CHQ(,)) + C; Q(i-1,)). (12)
Equation (12) has quite often been used and is popularly known as a mixing cell model [13). Also, when
equation (11) is used in equation (8), the latter equation becomes independent of both ® and . For the
special cases of Cy = 1/2 or 1, the scheme given by equation (6) is third-order accurate. Observe from
equation (7) that, with equation (11), the numerical dispersion coefficient reduces to Dpum = ¢ Ax (1 - C/2.
Since C; = 1 does not permit numerical dispersion in equation (7) it is not of interest here. Thus, to maintain
third-order accuracy we set C; = 1/2 in which case the spatial step size is Ax = 4D/c. This relation, if used

L]

and the definition of C; set both the spatial and temporal steps. There is no flexibility, for example, to adjust
Ax to equal the reach length for reasons of computational simplicity. Other step sizes can be selected but

only second-order accuracy will be maintained.

3. NUMERICAL RESULTS

We discuss two examples of M-C method here. The first is the case of a step input of constant
discharge at the reach entrance. Second, we consider the physically realistic case of a time-dependent
entrance condition. The first example was simulated using the parameter values ¢ = 1 m d-! and D = 40
m2 d-1, The breakthrough curve was generated takin g Ax as the reach length while maintaining third-order
accuracy i.e., Cr = 1/2. For the M-C model, @ = 1/2 and hence 8 = 1/4. The spatial and temporal steps are
160 m and 80 d, respectively. Recall that for @ = 26, equation (6) reduces to equation (12). To see how the
results are affected if condition (11) is not maintained, the problem was solved again using Cy = 1/10. For
= 1/2 and 6 = 1/4, the spatial step remains 160 m while the time step is reduced to 16 d, i.e., At is reduced by
a factor of 5. Both sets of results were compared with the exact solution [14]. The breakthrough curves and
the relative error (%) versus time are shown in Figure 1. The relative error is defined as the ratio of absolute
value of the difference between the exact and the numerically computed value to the exact value. Clearly,
the errors are quite significant initially when condition (11) is not satisfied (shown by dashes in Figure 1b).
Discharge can attain negative values if condition (11) is not met. We observe that the errors are minimal
when condition (11) is satisfied. Also, the column holdup is 0.902 for the case where equation (11) is not
satisfied, whereas it is unity, by definition, for the optimal scheme.

For the second example the following variable boundary condition was used [15)

Q.0 =125-75 Cos(BL). 0 <196 Q(O.) =50, > 9. (13)

In this case, the values of ¢ and D were assumed to be 1 m d-! and 2 m? d-! respectively. We consider only
second-order accuracy and hence any value of Cr can be taken. For @ = 1/2 and C, = 4/5, we have 8 = 2/5 to
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maintain condition (11). For this case Ax = 20 m and At = 16 d. Similarly, the solution was calculated by
reducing At, i.e., equation (11) was not satisfied. The time step, At, was reduced to 1 d, so that C; = 1/20.
Both solutions were compared with an “exact” numerical solution computed using a standard Crank-
Nicolson scheme. Figure 2b shows the relative error versus time for this case. It is seen that most of the time
the errors are minimal when equation (11) is satisfied. We note that the difference in the breakthrough curve
is significant in the first example (Figure la) because of the more critical boundary condition. In the second
example, equation (13) is continuous and the difference is less severe (Figure 2a). However, the reduced
relative error in each case underlines the robustness of equation (11). Note that the discharge values are
below the base flow of 50 m3 d-! initially when equation (11) was not satisfied.
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Figure la. Figure 1b.
Discharge versus time computed by maintaining (C, ~ Relauve error (%) versus time for a step input of
= 1/2, solid circles), and without maintaining (C; = discharge maintaining (Cr = 1/2, line) and without

1/10, open circles) equation (11). Line shows the  maintaining (C; = 1/10, dashes) equation (11).
exact solution.
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Figure 2a Figure 2b.
Discharge versus time computed by maintaining (C; ~ Relative error (%) versus time for continuous
= 4/5. solid circles), and without maintaining (C; =  time dependent input equation (13) maintaining
1/20, open circles) equation (11). Line shows the (C; = 4/5, line) and without maintaining (Cy =
Crank-Nicolson solution. 1/20), dashes) equation (11).
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4. CONCLUSIONS

The truncation error of a widely used hydraulic routing numerical scheme has been calculated to third
order. The scheme, which depends on three parameters, 8, @ and Cr, will be third-order accurate if condition

(8) is imposed. Furthermore, forcing the numerical solution to produce the correct holdup leads to condition
(11), relating these parameters. With condition (11), it has been shown that equation (6) is third-order
accurate only for Cr = 1/2 and 1. When C; = 1, there is no numerical dispersion and hence equation (3)
cannot be satisfied. In that case Cr = 1/2 is the optimal Courant number, giving the numerical dispersion of
cAx/4. These conditions thus fix both the spatial and temporal steps. The consequence of maintaining

equation (11) is that the only determining factor controlling the accuracy of solutions for equation (3)
(solved with equation 6) is the Courant number, Cr. In other words, the simple explicit equation (12) is the
best scheme to solve equation (3). In flood routing calculations, engineers routinely fix the reach length, Ax.

In that case the results are second-order accurate unless Cr happens to be 1/2.
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