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SUMMARY So-called mixing cell models have been used frequently to model solute transport coupled with reactions. The
main advantage of these models is their conceptual simplicity. This allows them to be solved sequentially with chemical spe-
ciation models to predict chemical concentrations in combined reaction/transport problems. Mixing cell models are actually
just explicit finite-difference solutions of the governing advection-dispersion equation. It can be shown that the inclusion of
reactions in the “standard” mixing cell model degrades its second-order accuracy. We propose, therefore, an improved model
which maintains second-order accuracy regardless of whether reactions are included. In addition, the improved model is un-
conditionally stable, unlike the standard scheme. We show that nonequilibrium reactions can also be included without diffi-
culty. Next, we show that different boundary conditions can be incorporated into the mixing cell models. In particular, a third-
type surface condition is considered. For this case, to maintain second-order accuracy of the improved model, it is necessary to
dispense with the explicit nature of the scheme on the boundary. At other locations the scheme is still explicit. Other condi-
tions, e.g., a finite mass of solute available at the surface, as would be the situation if a landfill was considered, can be handled
in the same way. The method can easily be extended to cater for the multilayered porous media as well Our results demon-

strate that nonlinear reactions and transport can be modelled very efficiently and quickly.

INTRODUCTION

The mixing cell concept has been used frequently to predict
migration of reactive and non-reactive solutes in soil and
groundwater (Schweich and Sardin, 1981; Van Ommen,
1985; Rao and Hathaway, 1989; Dudley et al., 1991).
Mixing cell models are easy to code and efficient to com-
pute. They can be linked with chemical speciation models
to simulate complex reactions coupled with transport.

Explicit finite-difference representations of the transport
equation underlie the mixing cell concept. For tracer so-
lutes, the standard model is second-order accurate in the
space and time discretization. It can be shown that the in-
clusion of adsorption in the transport equation reduces the
accuracy of the mixing cell model. We present an improved
mixing cell model which maintains second-order accuracy.
In addition, the improved model is unconditionally stable.

‘There are two types of predictive models used for analysing
transport of reacting solutes (Rubin, 1983). In one, the reac-

tion is sufficiently fast to be described by an equilibrium

model. In the other type, the reaction is relatively slow and
is quantified by a nonequilibrium model. We show that the
improved method can cater for both cases. Also, different
surface boundary conditions can be easily incorporated into
the improved mixing cell model.

In reality soils are never homogeneous. Soil heterogeneity
can be partially accounted for by considering mediums with
different layers. Such porous media have been considered
by a number of researchers (Shamir and Harleman, 1967,
Selim, et al., 1977; Kreft, 1981; Barry and Parker, 1987,
Barry et al., 1987). Here this problem is treated also using
improved mixing cell model.

Our main purposes in this paper are to:

(i) show that the improved mixing cell model can de-
scribe nonequilibrium reactions very efficiently;

(ii)) include different types of surface boundary condition
in the numerical scheme; and

(iii) show the use of the model in the case of a multilay-
ered porous medium,

In the following section the governing equations with vari-
ous surface and exit conditions and reactions are first de-
scribed followed by improved mixing cell model.

GOVERNING MODEL

The governing one-dimensional solute transport equation
with adsorption is given by (e.g., Yortsos, 1987):

2
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(symbols are defined in the notation list). This equation de-
scribes solute transport subject to adsorption under steady
flow conditions. The solid phase solute concentration, S, is
assumed to be given as an equivalent fluid phase concen-
tration. Initially, the normalised solute concentration in both
the solid and liquid phases is taken as:

C(z0) = $(z,0) =0, 2)

although the right-hand side can be non zero if necessary.

We consider next the different boundary conditions used to
solve eqn. (1).

Entrance Boundary Conditions

One type of boundary condition is a constant concentration
of solute at the soil surface,

C(U,t) = Cn . (33)

Equation (3a) is based on the assumption of a “well-mixed”
solute reservoir at the entrance and assumes that the con-
centration is continuous across the inlet boundary (van
Genuchten and Parker, 1984). Alternatively, eqn. (3a) is
appropriate for describing the solute flux at z = 0 (Kreft and
Zuber, 1978).
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The other commonly used surface condition is the mixed,
or flux boundary condition, given by (Brenner, 1962):

VC{D,[) - Ds a‘C(ﬂ,t]

= VCo. 3b
~ (3b)

Equation (3b) results in a macroscopic discontinuity in con-
centration at z = (.

Finite source boundary conditions are typically imposed in
landfill modelling studies. It is assumed that the pollutant
concentration in the landfill is initially Cg, and that this
concentration decreases with time as leachate is transmitted
through the soil by advective and dispersive flow. If the
equivalent thickness of leachate in the landfill is hf, and ng
is the porosity, then the surface concentration at any time, t,
is given by (Rowe and Booker, 1985):

C(0,t) = Co - !LaJ vc(0,1) - Ds 0T 4o 3
0

dz

This entrance condition applies to a finite source of solute
at the entrance boundary. Note that setting hf— oo re-
covers eqn. (3a). In the 1illustrative examples given below,
boundary condition (3a) is used to solve the nonequilibrium
problem and surface conditions (3b) and (3c) are used to
solve the case of equilibrium reactions.

Exit Conditions

For a semi-infinite domain, we require that the solute con-
centration remains bounded throughout the soil profile, 1.e.
(van Genuchten and Parker, 1984):

dC = (. (4a)

az T —p ey

For a finite column, the commonly used exit condition is
given by (Brenner, 1962):

i€ _o (4b)
0z z=L

In other words, egn. (4b) assumes that the solute concentra-
tion is continuous across the exit boundary, although solute
dispersion is negligible outside the porous medium.
Another case of interest is the exit boundary condition for a
soil column that is freely draining (Barry and Sposito,
1988):

C(L,0)=0. (4c)

Equation (4¢) applies also in case of landfills, where base
concentrations can be assumed zero when the groundwater
velocity is quite large relative to the infiltrating solute
(Rowe and Booker, 1985). This becomes the case of infinite
dilution, and is a reasonable assumption given that flow
rates in the unsaturated zone are typically much lower than
those in the saturated zone. The incorporation of these
boundary conditions into the mixing cell model is discussed
below.

Adsorption

The relationship between solid and liquid phase solute con-
centration at equilibrium is given by the adsorption
isotherm and is of the form:

S = f(C). (5a)

A linear isotherm is given by
S=(R-1)C, (5b)

where R is the retardation factor. An S-curve isotherm is
(Barry, 1992)

S =ka{1-[1+ (k2 C)']°). (5¢)

The term dS/dt in the left hand side of egn. (1) describes the
reaction process. When the reaction is sufficiently fast, the
adsorption isotherm is written as an algebraic function of C,
(eqn. 5) and so is used to eliminate the adsorbed phase con-
centration, S (Rubin, 1983; Clancy and Jennings, 1988).
Such an operation gives rise to the equilibrium transport
model. When the reaction process is insufficiently rapid, an
additional differential rate equation must be used to solve
(1). This results in the nonequilibrium transport model. A
thorough discussion concerning classes of reactions can be
found in the paper by Rubin (1983). Adsorption kinetics
can be expressed mathematically as:

S _a[fO)-s]. ©)

ot

It should be noted that, at equilibrium, dS/dt =0 and S =
f(C). Equations (1) and (6), together with appropriate
boundary conditions, constitute a nonequilibrium transport
model.

Improved Mixing Cell Model

Upon dropping second derivative term in the advective-dis-
persive equation, (1), one gets a pure advective transport
equation given by:
dC+S)=_V@;
at 0z

Finite-difference solutions of (7) produce numerical disper-
sion which is controlled to simulate solutions to (1).

(M

In the standard mixing cell model, the temporal derivative
is approximated by forward differencing and the advective
term is approximated by backward differencing. The stan-
dard mixing cell solution has a truncation error of O(A 22,
At) and the following scheme is proposed which is still ex-
plicit but is more accurate than the standard model. In this
scheme the advective term is approximated by the average
of the backward difference approximations at the (i,j) and
(i,j+1) grid points as in the conventional Crank-Nicolson
scheme (e.g., Noye, 1982). After simplfication, the im-
proved scheme is given by

(2 + C) C(i,j+1) + 28 (i,j+1) =2 [C(i,j) + S(i,j)]
+ C[C(i-1,j) - C(i,j) + C(i-1,j+1)),

where we use the notation C(z,t) = C(iAz, jAt) = C(i,)),
while

(8)

Cr= %L 9)
Z

is the Courant number. At equilibrium, the solid phase con-
centration is given by:

S(i,j+1)=f[C(i,j+1)]. (10)
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By making use of (10), (8) reduces to an equation with
C(i,j+1) as the only unknown. In the case of nonequilibrium
adsorption, the finite-difference analog of (6) is given by:

QAL {£[CGj+1)] + £ [CG,j)])

S(ij+1) = —2
(11)
l _ M .
+( 5 )S(m)
1+ QAL
2

Equations (8) and (11), when combined, again result a sin-
gle equation with C(i,j+1) as the only unknown. Next we
show that eqns. (8) and (11), the improved mixing cell
model, are consistent.

By making use of the third-order Taylor series expansion in
eqn. (8), we get:

AC+S) _ _VAz a’C _y9C

ot 2 02 oz |

i.e., the error is O(AzAt,Az2 At?). In this scheme the numer-
ical dispersion introduced is VAz/2, When the transport

equation (1) is to be solved by eqn. (8), the relation Dg =
VAz/2 is imposed, thus fixing the spatial step length.

+0(AzALAZRAC), (12)

Similarly, egn. (11) reduces to:
aa—s = o [f(C)-S]+0(ar®) (13)
t

and so eqns. (12) and (13) are consistent with respect to
truncation error.

Since a stability analysis is possible only for simple cases,
the scheme obtained by combining eqns. (8) and (11) was
checked for stability using numerical experiments. In all
cases the scheme was found to be unconditionally stable.
Unlike the standard scheme, this allows large time steps to
be used without the solution being corrupted by roundoff
errors. The improved mixing cell is unconditionally stable
when adsorption is not considered (Bajracharya and Barry,
1992).

Incorporation of Surface Boundary Conditions

The incorporation of eqn. (3a) is straightforward so only
conditions (3b) and (3c¢) are considered below. The entrance
condition (3b) is incorporated at z = 0 by the central differ-
ence approximation (Noye, 1982). This reduces to a system
of equations in two unknowns at the first two grid points.
‘The system of equations is:

(1 + Gy Cfvﬁz)(j (0,j+1)- QEC( 1,j+1)+ S(0,j+1) =
= E (14a)

1- G r"’ﬁz]c 0j)+ Cec(1) + 2E¥AZ ¢, + 5(0,)
5

and

] Qc({],j+1)+ (1 + Q) C(1,j+1)+S(1,j+1) =

2 c %: (14b)
S c(0i)+ 1-S (i) +5 (L)

Equations (10), (14a), and (14b) are used to compute the
concentration at z = (. At the rest of the locations, the
scheme reduces to a single equation in one unknown.

In the case of the finite source boundary condition, eqn.
(3¢) is first differentiated with respect to time to yield

aC(0,t Na aC(0,t
g o] s

Writing eqn. (15a) in finite-difference form with a forward
difference in time and a centred difference in space and
making use of eqn. (8), we get two sets of equations with
two unknowns as follows

[1+ Cey G (4bAz _ZVﬁz)] C(0,j+1)- Ce C(1,j+1)=
2 2 \naDsAt Ds 2 (15b)
[1,g+ Cyf 4htAz ZVQE]] C(UJ) QC{],j)
2  2\ndDAt  Ds 2

with (14b) representing the other equation of the set. Note
that no adsorption is assumed to take place at z = 0.
However adsorption proceeds at z = 0%. Equations (14b)
and (15b) are used to compute the concentration at z = 0.

Boundary Layer Correction

In the mixing cell model, no exit condition can be specified
and the solution obtained is that for a semi-infinite system.,
At the exit, the boundary condition is often taken as eqn.
(4b). Parlange and Starr (1975) have shown that the effect
of eqn. (4b) is to increase solute concentration in the profile
in the region z = L. Solutions found for semi-infinite col-
umn can be corrected to account for this small concentra-
tion increase. When P < 4, the relatively short column
length produces a significant increase in solute concentra-
tion throughout the soil profile and egn. (1) must be solved
directly using eqn. (4b). For P > 4 it is possible to approxi-
mate the effect of eqn. (4b) using a boundary layer correc-
tion. We find, following a similar procedure to that em-
ployed by Barry et al. (1986), that the corrected solution to
a finite column is, for P > 4

C'(z.t) = C(z) - E“F‘[B[;E’Lj ZSLL (16a)

where C is the solution obtained for a semi-infinite spatial
domain. The corrected solid phase concentration is

S" =f(C). (16b)

Since eqns. (16a) and (16b) must satisfy eqn. (1), the value
of B is closely approximated by

ST
where vy is,
’c| QE%
y = 0z? gLaC V 9z’ z=L (164)
0Z [z=L

This boundary layer correction is applied when condition
(4b) is imposed.

Similarly, for the case of zero concentration at the column
exit, another boundary layer correction can be obtained. In
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this case, the effect of eqn. (4¢) is to decrease the solute
concentration in the profile near z = L. We find that the
corrected solution to a finite column is, for P> 4

C'(zt)=C(zt) - exp[Bz-L)]C(Lt),  (17a)

where ' is given by

=—“i[1+«\/(
2D
Dsa;Tf‘ -vﬂ
1L L. 17
C(Lt) (170

This correction is applied when exit condition (4¢) is used.
Equations (16d) and (17c) are incorporated by using a cen-
tred finite-difference scheme for the first, second and third
spatial derivatives.

4y D)] (17b)

while v is

Layered Porous Media

The same advective-dispersive equation (1) is used to de-
scribe transport and reaction of chemical species in layered -

media. The case of a two-layered medium is treated here.
This problem can be easily solved by treating each layer to
be semi-infinite, in which case the mixing cell model can be
directly applied using the same equation for each layer. The
exit concentration in one layer gives the entrance concentra-
tion for the next, i.e., continuity of concentration. Shamir
and Harleman (1967) also used this approach. In the exact
solution, the additional constraint at the interface between
the two layers is the continuity of mass flux. The results of
the time-moment analysis given by Barry and Parker (1987)
and Barry et al. (1987) were used to obtain the following
condition for the mixing cell solution to be close to the ex-
act solution

didz - di [1 - exp(- P1)] - d3 [1 - exp(- P2)] | __ 1(18)
dily + dals

where dj = Dj/Vj?, 1; = Lj/Vj, Pj = ViLi/Dj, i=1, 2. The
condition used to obtain egn. (18) is that the ratio of the dif-
ference of the variances of the exact solution and the mix-
ing cell solution to the variance of the exact solution should
be small. Note that condition (18) is valid for nonreactive
and linearly adsorbing solutes only. However, our numeri-
cal checks demonstrate that it is reasonable for nonlinear
reactions as well.

COMPARISON WITH CRANK-NICOLSON
SCHEME

The results of kinetic nonequilibrium simulations are first
discussed followed by the results obtained by incorporating
the time-dependent surface boundary conditions. The two
layer problem is then discussed considering linear and non-
linear adsorption isotherms.

Kinetic Nonequilibrium

The problem solved by the improved mixing cell is eqn. (1)
with initial condition (2), the boundary conditions (3a), (4a)
and an S-curve isotherm given by (5¢). The reactive trans-
port problem was also solved by the Crank-Nicolson
method [error of O(Az2,At?)]. The Crank-Nicolson scheme

is a common way to solve (1) numerically. The set of non-
linear algebraic equations, obtained upon applying the
method, was solved by iteration. Note that the spatial do-
main used in the Crank-Nicolson scheme was large enough
so that the results were unaffected by the exit condition im-
posed.

Relative Concentration

Pore Volumes, (Vt/L)

Figure 1. Comparison of the predictions of the improved
mixing. cell model (dashes) with those of the Crank-
Nicolson scheme (line) for the S-curve eqn. (5¢) (P =
oL/V =16,k =3,ky =3.375k3 =-2, kg = 1.5299).

We considered a nonlinear S-curve isotherm to test the ac-
curacy of the mixing cell model. This 1sotherm represents
qualitatively the isotherms likely to be encountered in prac-
tice. The breakthrough curve predictions of the Crank-
Nicolson scheme and those obtained from the improved
mixing cell model are compared in Figure 1. It is clear that
the mixing cell model predictions are in excellent
agreement with the Crank-Nicolson scheme.

Time Dependent Boundary Conditions

We show, in Figures 2a and 2b, the mixing cell and the
Crank-Nicolson solutions for the transport equation (1),
with the S-curve isotherm (same as used in Figure 1) and
entrance boundary conditions (3b) and (3¢), and exit condi-
unns (4b) and (4c) respectively at a dimensionless time
V2¢Dg = 40. Note that, the boundary layer correction, eqn.
(16a), was applied to the mixing cell solution in Figure 2a
whereas eqn. (17a) was applied in the mixing cell solution
in Figure (2b).

1

Relative Concentration

0 10 20 30
Dimensionless Distance, (Vz/D 5)

Figure 2a. Concentration profiles simulated using the mix-
ing cell (solid circles) and Crank-Nicolson scheme (line)
considering boundary conditions (3b) and (4a) (P = 30,
V2¢Dg = 40).
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Relative Concentration

0 10 20 30
Dimensionless Distance, (Vz.ﬂi)s)

Figure 2b. Concentration profiles simulated using mixing
cell (solid circles) and Crank-Nicolson scheme (line) con-
sidering boun conditions (3c) and (4b) (P = 30, Vh{/Dg
=20, ng = 04, V4/Dg = 40).

Observe that the mixing cell predictions are close to the
Crank-Nicolson solution. It is also found that the mixing

cell solution was faster by at least an order of magnitude as

compared with the time taken by the Crank-Nicolson
scheme.

Two Layered Porous Media

Equation (1) is solved with the initial condition (2) and with
a pulse type of surface boundary condition (3a) for the ad-
sorption isotherm given by eqn. (5). For the linear isotherm
it was found that the expression on the left hand side of the
inequality of eqn. (18) had to be less than 0.0312 in order to
get the accurate solutions using mixing cell models. This
corresponds approximately to a layer Peclet number of 16.
For the nonlinear isotherm followed by linear adsorption
isotherm, the layer Peclet number of 16 also gave results
close to that obtained from the exact solution using Crank-
Nicolson scheme. Note that, at the interface, continuity of
concentration as well as mass flux were assumed in the
Crank-Nicolson solution where as only continuity of con-
centration was considered in the mixing cell solution.

=
=
2
o
E -
Q)
4
=
=
7
0
0 2 4 6
Pore Volumes, (VUVL)

Figure 3. Breakthrough curves simulated using the mixing
cell (dashes) and Crank-Nicolson scheme (line) considering
boundary conditions (3a) and (4b) (P = 50, R = 1.145).

The results for a two layered porous medium are shown in
Figure 3 for the nonlinear S-curve followed by linear

isotherm. The constants of the S-curve used were the same
as those shown in the figure caption of Figure 1. A retarda-
tion factor, R = 1.145 was used for a linear 1sotherm and
ViL1/Dy = V,L2/D2 = 16. The input considered was a
pulse type with a duration of 2.4 pore volumes. The case of
two layers is presented here but the scheme can be applied
for any number of layers.

CONCLUSIONS

It has been demonstrated that the improved mixing cell
model is second-order accurate even when reactions are in-
cluded. Because the improved mixing cell is uncondition-
ally stable, it allows a larger time step to be used than the
standard mixing cell model, with a commensurate reduction
in computation time. Not surprisingly, it was found that the
Crank-Nicolson scheme requires at least an order of magni-
tude more time than the mixing cell computation.

The boundary conditions (3b) and (3¢) when incorporated
in the improved mixing cell model remove the explicit na-
ture of the scheme at the entrance boundary. At the rest of
the locations the scheme 1s still explicit.

Mixing cell models have been used to simulate finite col-
umn miscible displacement experimental results without
boundary layer correction. We have demonstrated that mix-
ing cell models can be used to simulate finite columns with
different exit conditions by making use of boundary layer
corrections. We have shown also that different surface
conditions can be incorporated without difficulty and that
the case of finite source boundary condition, which is often
used in the landfill modelling studies, can be successfully
simulated by the mixing cell model. The improved mixing
cell can be successfully applied for the case of a multilay-
ered porous medium. For mixing cell models to give accu-
rate results, the layer Peclet number should each be > 16.

At lower Peclet numbers, differences between the more ac-
curate Crank-Nicolson scheme and the mixing cell results
are generally less than the experimental errors (Villermaux,
1981). Since mixing cell models are simple to code and fast
to compute, they are, hence, very attractive tools for simu-
lating reactive transport of solutes. However, since the spa-
tial step size should be close to 2Dg/V, the method fails
when V is very small or Dg is very large.
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NOTATION

Cr  Courant number, VAUAz.
C normalised liquid phase concentration.

c* boundary layer corrected normalized liquid phase
concentration.

Co  normalised influent liquid concentration.

di Di/V 12

Dg  dispersion coefficient, L2T1-1,

f(C) function of C (adsorption isotherm).

hf equivalent leachate thickness in the landfill, L.

ki isotherm fitting parameter used in (39) and (40)
(i=1234).

lj Li/Vjforlayeri=1, 2.

Ny porosity of the landfill liner.

Pj column Peclet number for layeri=1, 2, V;Li/D;.
R retardation factor.

S normalised solid phase concentration (equivalent
liquid phase).

S*  corrected normalised solid phase concentration
(equivalent liquid phase).

t time, T.

\% mean pore water velocity, LT-1,

Z distance below soil surface, L.

o rate constant, T-1,

B constant given by eqn. (16¢), L-1,

Y constant given by eqn. (16d), L-L.

' constant given by egn. (17b), L-1,

Y constant given by eqn. (17c), T-1.

At time step, T.

Az  spatial step, L.
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