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SUMMARY We present an analytical model describing solute transport subject to nonlinear solute adsorption and
demonstrate the exact correspondence of the model with water infiltration. The model Is applied 1o experimental data

trom a laboratory Ca-K exchange experiment in which a solution

containing Ca is passed through a column filled with

K-saturated soil. The model, which is based on the assumption of local equilibrium of the solute between the adsorbed
and liquid phases, fails 1o predict the spreading of the experimental breakthrough curve. Further analysis, however,

suggests that chemical kinetic non-equilibrium exchange is occurring, thus violating the model

equilibnum,
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NOTATION

i= 1, 2, 3, constants defined in (13), LT
i=1,2,3, arbitrary constants -

normalized solute concentration in the aqueous
phase

initial normalized solute concentration

normalized solute concentration in the influent
solution

soil water capacity, L1 |

cation exchange capacity, charge M-1

soil water diftusivity, L2T-1

diffusivity at the residual moisture content, L2T-1
dispersion coefficient, L2T

fundamental solution of the heat equation

unit vector in the direction of positive z

hydraulic conductivity, LT

Ca-K exchange selectivity coefficient at normality
N

saturated hydraulic conductivity, LT-1

column length, L

porosity

total normality in the liquid, charge L3

i = Ca or K, species liquid normality, charge L-3

i = Ca or K, normality in the solid, charge M-1
function defined by (11)

Peclet number

suriace fluid flux, LT

normalized solid phase concentration

time, T

total solute concentration (solid plus agueous
phases), ML-3

mean solute velocity, LT-1

i = Ca or K, ionic fraction of the solute

i = Ca or K, ionic fraction of the adsorbed solute
distance below surtace, L

constant defined by (16b), T-1/2
“location” variable in (10), TV2
boundary flux integral, T1/2
constant defined by (16c), T-1/2
moisture content

initial moisture content
boundary integral function
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assumption of local

v free parameter
pp  soil bulk density, ML-3
vy  moisture tension, L

1. INTRODUCTION

Solute transport processes in the environment involve
many complex phenomena. A solute may adsorb or ex-
change onto soil particles, or it may precipitate or react
with other solutes, besides being advected and dis-
persed. The task of quantifying the possible physico-
chemical transport and transformation mechanisms re-
quires substantial contributions from the basic sciences
of mathematics, chemistry, physics and biology.

Presently, there is a wide variety of models available for
predicting of solute movement. These range from sim-
ple, analytical models of single species transport under
steady flow conditions to multidimensional flow and
multicomponent solute transport. At best, the simple
models are useful for indicating the overall behaviour of
the system. On the other hand, extensive site
characterization and detailed knowledge of chemical
reactions are needed for application of the
multicomponent models. Furthermore, because each
component must be described by its own transpor
eguation, it might be necessary 1o have access 10
poweriul computers 1o obtain mode! predictions (e.g.,
Liu and Narasimhan, 1989a,b; Barry, 1980).

The density of models in the range from simple 1o com-
plex is not uniform. Indeed, there are gaps in the range,
particularly when the iransition from analytical 10
numerical models is considered. In the main, analytical
solutions rely on linearity of the governing transpon
equation (e.g., van Genuchten and Alves, 1982; Barry
and Sposito, 1888; Barry et al., 1989). There are se-
vere difficulties when one attempits 1o find solutions for
more realistic, nonlinear transport processes. One
purpose of this paper is 10 generate exacl anaiytical
solutions for solute transport with a2 realistic adsorption
or exchange isotherm. By deriving these resulls we
provide a2 useful extension of the available analytical
models. Alsp, because we account for nonlinearity, the
results provide realistic test cases against which both
numerical solutions and analytical approximations can
be evaluated.



It 15 wigely recogrized that mass fluxes of solute and
waler in porous media are related mathematically
(Barnes, 1986, 1988). There exists a large body of re-
search literature on water infiltration and movement in
soil under unsaturated conditions. The governing
model for unsaturated flow is a strongly nonlinear
Fokker-Plank equation (Richards, 1831). Because of
the relationship between fluxes o water and solute, the
diffusivity and conductivity functions of Richards' equa-
tion correspond to a paricular nonlinear adsorption

isotherm. It appears that the results derived for soil-
water movement can be applied to the transpor of a
solute undergoing transformation due to a nonlinear
adsorption isotherm (hereafter referred 10 as adsorptive
solute transponr).

In this paper we shall demonstrate the correspondence
between infiltration and adsorptive solute transport. By
using new solutions for Richards' equation derived from
application of the Lie-Backiund transform method, we
generate a fully analytical solution for adsorptive solute
transport. The isotherm for which the transformation is
applicable has enough free parameters to allow it to be
fitted to a sizable class of isotherms. We explore an
application of the results using data from a laboratory
experiment featuring K-Ca exchange.

2. THEORETICAL DEVELOPMENT
2.1 The Correspondence Between Water Infiltra-
tion and Solute Transport

The governing equation for a solute undergoing trans-
port in @ porous medium subject 10 an equilibrium ad-
sorption isotherm is (e.g., Bryant et al., 1986):

ou

== v (DsVe - vek), (1a)

where

U=c +5s(c). (1b)
The dispersion coefficient, Dg, and solute velocity, v, are
assumec 10 be scalar constants, as is the porosity, n,
and veriiczal advection only is permitted. The aqueous
phase concentration, ¢, in (1b) is assumed to be nor-
malizec, as is the adsorbed concentration, s. Observe
that (1a) can be rewritten as:

1+ du

Az ot

‘FJEE-{E: + A2A3)VIn(c + ApAa)- C + AzAg)
A2 ey

k.]. (2)

Richards' equation for water infiltration can be formu-
lated in terms of moisture tension, v, or water conteni. 6.
The y-formulation is (e.g., Huyakorn et al., 1984):

Gf?f = V]Ky)Vy - K], (3a)
where the soil water capacity, C, is defined by:
c=08 (3b)
Oy

Eaquations (1a) anc (3a) map onto each other by the
prescnption (cf. Lantz, 1870; Yonsos, 1987):

vy = Dg Infc + AzA3z), (4a)

AzKy) =vic + AzA3) (4b)

and

Aq + A6 =C + s{c). (4c)

Equation (4) generalizes the transformation used by

Barnes (1986). Equations (4a) and (4b) imply:
(40)

Richards' equation can be formulated with water con-

tent as the dependent variable instead of y, so long as

K and y are single-valued functions of 6 (Philip, 1968,

§2). In this case we have:

%ﬁ. = v[ple)ve - Ke)k]. (5a)
where the soil water diffusivity, D(8), is defined by
ple) = ko) Y. (5b)
de

Of course, the conductivity in (5) is a suitable transfor-
mation of that in (3a). We can map (1) directly onto (5) if

we wish. The required mapping consists of (4b) with

K(y) replaced by K(8), and (4¢) together with:

el

Backlund Transformation

(6)

D(e) = D;[1 +

2.2

For a class of diffusivity and conductivity functions, the
one-dimensional form of (5a) can be linearized as
shown by Fokas and Yortsos (1982) and Rogers et al.
(1983). This transformation was utilized for the case of
constant flux at the soil surface by Broadbridge et al.
(1988), Broadbridge and White (1988), Sander et al.
(1988) and Warrick et al. (1890). More recently, Barry
and Sander (1981) have extended these results to in-
clude the case of an arbitrary time dependence in the

suriace flux. A summary of these results is presented
below.

2.2.1 The Infiltration Model and Solution

Barry and Sander (1981) have considered the one-

- dimensional form of (5a):
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%taiz{p[a}g_i-rds]}z}n,uu

(7a)
subject 10
6(2,0) = 8i(z), z>0 (7b)
and
Q) = K@) - D{E}aaég'ﬂ, 1> 0. (7¢)
It D(8) and K(8) are defined by:
D{e) = —20_ (8)

{'i - vEII]‘?‘

and



KflE}- Mel(T - V) (9)

[1 - vE]
respectively, then (7) can be solved exactly. Applica-
wons of the solution for constant flux infiltration have
oeen presented by White and Broadbridge (1988). For
a time-dependent flux, the solution satistying (7)
-nrough (9) is (Barry and Sander, 1991):

_ 1 Kst-vipn [ ]
ve(zt)=1+ oo [ - } (10a)
with
(v - 1)Ksz(&.) = I p(L.H)Do. (108)
The function p is defined by:
p(L.Y) = J; K[ -n(t) - C'Hp(C',0) T
t .
. J' (S ‘2“3 O] e At (11a)
o 20-1)
wheré A(t) is given by the solution of
A
"= [ nt) + LP0 &8
t
+ j ak[“m'“m"'ﬂ?.u'] dt’, (11b)
. Ja

k(a,b) is the fundamental solution of the heat equation:

k(a,b) =

-a2

and p(L,0) is:

4y [6
p{ﬁ.ﬂ}-ex{%f [1-veiy)?! u;']. (11
0 v]

Last, n(t) is defined by the integral:

t L]
n() -J Kstv- 1) - vO(t) (11¢)

0 Y Do

2.3 Solution for One-Dimensional Adsorptive

Solute Transport

The one-dimensional form of (13) is:

(123)

Suitable boundary and initial conditions used in the so-
lution of (12) are (e.qg., Barry et al., 1883):

¢(z.0) = cj(z), z>0 (12b)
and
ve(0.) - D,ﬁ%‘;‘_ﬂ =veolt)h, t>0.  (12¢)
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As we have noted already, this model can be mapped
onto either the head or water content forms of Richards'
equation, together with appropriate boundary condi-
tions. I, for example, the water content form is used,
then the results in §2.2.1 can be used 1o derive an exact
solution for (12). The specific forms of the diffusivity and
conductivity functions in (8) and (9) restrict the adsorp-
tion isotherm for which exact results can be obtained.
This isotherm is (Barry and Sander, 1991):

}% aic
S = Aty - T : VA2vA3 - 3,C (13a)
where
ap = KsA1A2(v - 1) - vA2A3(A2 + VA4), (13b)
ay = KsA2(1 - v) + w(AzAa - Ay) - Aav  (130)
and
ap = Vv. (13d)

The flux boundary conditions, (12¢) and (7¢) are
equivalent under this mapping if:

A2Q(t) =v{c(t) - A2A3] (14a)
and
- Dav
Ds _D_Hsl':-vl* (14b)
3. APPLICATION

The theory contained in §2 has yet to be compared with
experimental data. A suitable experniment was carried
out by Schweich et al. (1983). These authors pre-
sented experimental results for Ca-K exchange during
soil column miscible displacement experiments. Typi-
cal of the data they report is the case of a column
initially filled with K-saturated soil. This column was
subjected to an influent solution containing Ca at a
fixed normality under the condition of steady flow.
Relevant soil and column data are presented in Table
1. Both physical and chemical parameters are needed
to obtain predictions using the model in §2. Both types
of data are provided by Schweich et al. (1983).

Although these data are derived from independent
experiments, we recognize that the parameter values
are possibly not truly independent.

Schweich et al. (1983) analyzed their experiment using
a simple mixing-cell model. In this model, the column is
divided into a group of batch cells in series. At each
time step, the contents of each cell are advected and
mixed to simulate the transport process in the column.
We shall refer to the results of this model in the
following.

3.1 Physical Parameters

Schweich et al. (1983, Figure 5) carried out a miscible
displacement experiment where Ca in the influent solu-
tion was exchanged on a Ca-saturated soil. The
breakthrough curve trom this expenment can be ana-
lyzed as for a tracer displacement expernment. The ap-
propriate analytical solution from van Genuchten and
Alves (1982, §A2) was fitted to the data with the result
as displayed in Figure 1. We obtain a good fit for P =
35.



TABLE 1
SOIL AND EXPERIMENTAL APPARATUS DETAILS

Pb 1.48 g ml1
n
L 20 cm

column diameter 2.6cm

Ce 25 x 10-3 meq g-'1

P 35

N 28 meq gm-?

KN expl2.1 - 2.1x¢a)

From the data contained in Figure 5 of Schweich et al.
(19B3) we estimate the pore space in the column to be
67.5 mi, as opposed to the value of 69 ml reported.
Also, Schweich et al. (1983) applied their mixing-cell
model 1o these data and arrived at the estimate P = 22.
The solution of van Genuchten and Alves (1982, §A2)
for P = 22 is shown in Figure 1 as well. It is apparent
that this value for P does not yield an adequate
description of the experimental data. Part of the
difference between our results and the results of
Schweich et al. (1983) may be due to inaccurate
digitizing of the original data, but errors in digitizing can
only account for a small portion of the difierence.

1

c
.2
E
T
o
c
5 - Experimental Dolo
— P = 35
— P = 22
0 . .
0 1 2

Pore Volumes
Figure 1. Breakthrough curve used to determine P.

3.2 The Adsorption Isotherm

Sl:hrwafch et al. (1983) report that the equilibrium parti-
tioning of the solute between the adsorbed and aque-
Ous phases can be described by:

XeaXe
Kn = 227K, (15a)
X&XCa
where
- N
X =J
K Ce (15b)
and
Nk
Xy = —
K= (15¢)

Similar definitions apply to Ca. All results will be pre-
sented in terms of the normalized agueous phase con-
centration, as given by (15¢). The information in Table
j and (13) can be used 1o derive the adsorption
Isotherm for the soil and solution normality used in the
expenment, as displayed in Figure 2. In this figure the
adsorped phase concentration has been converted 1o
the normalized solution phase concentration scale.
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The 1sotherm, (13), 10r which we can obtain exact ana-
lytical results was fitted 10 the expenmental isotherm.
This fit is plotted also in Figure 2. It was obtained with

the parameters: v= 279 cmhrl, Kg=1.10cm hrl v =
0.0270, Ay = 0.191, A2 = 0.215 and A3 = 0.178.

Solution Concentrotion

Figure 2. Adsorption isotherm for the experiment of
Schweich et al. (1983), together with a fit of
(13).

3.3 Predictions of the Model

Schweich et al. (1983) used a constant flux of solute as
the surface boundary condition for their experiment.
Thus we take the right side of (12c) as being constant,
i.e., cp = 1. The initial condition was a uniform concen-
tration in the soil column, so ¢; = 0 in (12a). Under
these conditions, (11) yields, for p:

p[;lﬂ '%‘ Exd{h’ -C+ ﬂ]ed{m ;r_z;" Trl)

. ;— Expﬂ'r + 1_‘1'}{17 + E)}Eﬁc{m+ C+ lﬁ)

Y4t
L1 = (L+m g 'ﬁ)]

> {exp(t’,n}eﬂc{ = )-4- erf = (16a)

where

Kel1 - v)
= (16b
Y -velvog ’
and
ﬁ= KS{"I-' :1_}" 1'|-'D- hec}
YDp

The value of Q is known from (14a). We use (4¢), (7B),

(12b) and (13) to compute 6; = 0.459, with this value
used in (16b).

Predictions for the fitted isotherm in Figure 2 can now
be calculated using (10) and (16). In Figure 3 we pre-
sent the predictions of this model and the experimental
data collectec by Schweich et al. (1983, Figure 4). The
prediction for P = 35, given by the solid line in Figure 3,
does no! replicate the spreading of the breakthrough
curve, glthough the mean oreakthrough position is pre-
d:icted accuraiely. Breakthrough curves for P = 22 and
15 are displayed as well. We note that the initial por-
tion of the experimental breakthrough data is predicied
quite well for P = 22. On the other hand, the latter por-
tion is fited well by the curve produced using P = 15,
We point out that our prediction for P = 22 is reasonably
close to the result produced by the numerical scheme



cf Schweich el al. (1983), although the latter curve 1s
nct reprogduced here.
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Figure 3. Experimental and predicted breakthrough
curves for Ca-K exchange during a miscible
displacement,

4. DISCUSSION

The model we presented in §2 is based on the as-
sumption of local equilibrium between the solute in the
liquid and in the exchanger. This means, of course,
that the rate of transfer between the solution and ex-
changer phases is very rapid. The results of the model,
as shown in Figure 3, do not agree very well with the
experimental data for P = 35. On the condition that our
analysis of the experiment is correct, we are led to con-
clude that the model assumptions are not appropriate.

It has peointed out by numerous authors (e.g., Parker

and van Genuchten, 1984, §4) that there are models of
non-equilibrium adsorption that are mathematically
equivalent to models of physical non-equilibrium due to
widely varying pore water velocities. For example, the
“two-site” adsorption model (Cameron and Klute, 1977)
comprises both equilibrium adsorption and first-order
kinetic non-equilibrium adsorption. This chemical non-
equilibrium model is identical with the model for the
transport of solute in 2 medium with mobile and immo-
bile zones, with a linear transfer rate between each
zZone.

By itself, the fact that our equilibrium model does not
predict the data well is not sufficient 1o indicate that the

local equilibrium assumption is invalid. We must also

consider the effect of deviation from local equilibrium.

The main effect is an enhanced spreading of the
breakthrough curve. Barry and Sposito (1988, §1.2)
showed that the enhanced breakthrough curve
spreading of the mobile-immobile solute transport
model is exactly reproduced by a tracer-type
convection-dispersion equation with a time-dependent
dispersion coefficient. This result suggests that we
examine the experimental breakthrough curve for
evidence of time-dependence in the dispersion
coefficient required to model the data.

We have already seen in Figure 3 that the data could
be reasonable well modelled by P changing from P =
22 (around 1 pore volume) to P = 15 (around 2.5 pore
volumes). However, the tracer data in Figure 1 showed
that P = 35 for this experiment. Since P is inversely
proportional to the dispersion coefficient, and pore vol-
umes are proportional to time, it is clear that the experi-
mental data contained in Figure 3 reveal a non-equilib-
rium process is operational. The tracer experiment
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(Figure 1) rules out physical non-equilibnum. We sug-
gest, therefcre, that Ca-K ion exchange kinetics are the
cause of the enhanced spreading of the breakthrough
curve plotted in Figure 3.

Apart from the local equilibrium assumption, we have
assumed that is is permissible 1o use an approximation
10 the true adsorption isotherm, rather than the experi-
mental isotherm presented by Schweich et al. (1983).
Although the fit of the approximate isotherm is accept-
able, the effect of the dewviations should be ascertained,
Penturbations of the approximate isotherm in Figure 2
produced only minor changes in predicted break-
through curves. Cenainly, the enhanced spreading
exhibited by the data was not observed. However, we
recognise that a numerical solution of (12) with s(c)
given by (15) will demonstrate conclusively whether the
approximate isotherm in Figure 2 is adequate. We
leave this step to a future analysis.

5. CONCLUSIONS

The main purpose of this research was to show the cor-
respondence between the models for infiltration and
nonlinear adsorption and 10 use this correspondence to
predict adsorptive solute transport. The transport
model is based on the assumption of local equilibnum
between solute in the aqueous phase and the ex-
changer. We used the model to reanalyze data from
the Ca-K exchange experiments of Schweich et al.

(1983). In contrast to the original analysis, which was
based on a simple numerical model, the present results
indicate that the Ca-K exchange in this experiment
does not conform to the assumption of local equilib-
num. There is no evidence of physical non-equilibrium,
and the breakthrough curve data reveal that a local
equilibrium model with a time-dependent dispersivity is
sufficient to simulate the data. This behaviour is char-
acteristic of kinetic non-equilibrium in the exchange
process.
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