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Abstract. Analytical approaches for the prediction of solute transport in layered porous media are 
investigated for the case of flow perpendicular to the direction of layering. One approach involves the 
use of averaging techniques to treat the profile as an equivalent homogeneous medium. The method 
is demonstrated on hypothetical and laboratory-measured data sets and a criterion for validity of the 
method is given. The second approach involves the use of time convolution to predict breakthrough 
curves for layered systems on the assumption that layer interactions have no significant effect on 
transport. Accuracy criteria are derived by comparing moments of the exact and approximate 
solutions and it is found that the convolution method has broader applicability than the equivalent 
single-layer analysis. An extension of the convolution method to include consideration of nonequili- 
brium transport due to the presence of mobile-immobile regions is presented and demonstrated by 
analysis of laboratory breakthrough data from a two-layer system exhibiting mobile-immobile regions. 

Key words. Moments, equivalent single layer, convolution approximation, mobile-immobile model, 
solute dispersion. 

1. Introduction 

Mass t ranspor t  in layered porous  media  occurs  in many  natural  geologic  situa- 

tions for which accura te  predict ions  of chemical  fluxes are necessary,  e.g., to 

quant i fy  hazardous  waste t ransport .  A l t h o u g h  phenomeno log ica l ly  based (Kreft,  

198 lb),  the convec t ion-d i spers ion  mode l  is c o m m o n l y  used in a predict ive role to 

describe the t ranspor t  and spreading of dissolved chemicals  in layered and 

nonlayered  hydrologic  systems, as well as in p rob lems  arising in fields of chemical  

and pe t ro leum engineer ing  (Moranvil le  et al.,  1977). 

In contras t  with the extensive body  of l i terature dealing with many  aspects of 

the convec t ion-d i spers ion  model  for s ingle-layer systems, not  m u c h  at tent ion has 

been  given to mult i layer porous  media,  part icular ly in terms of purely analytical 

methods .  In this paper  we consider  the analysis of chemical  t ranspor t  in systems 

with flow perpendicular  to layers which are each h o m o g e n e o u s  and well-defined. 
Fluid flow in the systems is cons idered  to be uniform and steady with a known 

flux. We  assume, for simplicity, that  the systems are c o m p o s e d  of two layers 

cor responding ,  for example,  to a l agoon  with a clay liner be tween the waste and 

the under lying profile. T h e  methods  used can be applied to more  than two layers, 
albeit with increasing algebraic and computa t iona l  complexity.  
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A number of papers (e.g., Brigham, 1974; Kreft and Zuber, 1978; Parker and 
van Genuchten, 1984; van Genuchten and Parker, 1984) have shown the 
necessity of distinguishing between flux and resident concentration detection 
modes when using the convection-dispersion model. For example, sectioning a 
soil core and measuring concentration over the soil volume corresponds to 
resident concentration. In practice, it often occurs that breakthrough curves at a 
fixed position are of primary concern and these are more properly analyzed in 
terms of flux concentrations (Parker, 1984). Thus we will consider flux concen- 
trations while noting that marked differences between model predictions of flux 
and resident concentrations will appear only when the dispersivity is relatively 
large, as demonstrated by Parker and van Genuchten (1984). 

Previous analytical approaches to this problem, most notably Shamir and 
Harleman (1967), follow the transfer function approach used in linear system 
analysis, e.g., as applied to electrical networks (LePage, 1961). Shamir and 
Harleman (1967) make the assumption that, with respect to solute transport, each 
layer acts independently. This allows each layer to be treated, mathematically, as 
if it were semi-infinite. The semi-infinite solution for the first layer is used to give 
the upper boundary condition for the second layer, and so on. As deduced by 
Shamir and Harleman (1967), this assumption implies that the order of the layers 
has no effect on predicted breakthrough curves and, thus, lengths of the layers in 
the profile with the same dispersivity can be summed and treated as a single layer. 
Shamir and Harleman (1966), as well as Selim et al. (1977), have presented 
experimental results indicating that layer ordering has little effect on measured 
effluent concentrations. However, on physical grounds, there is no reason to 
assume, a priori, that solute transport is unaffected by the order of the layers. 
This point will be considered in more detail subsequently. 

Other investigations utilizing the same assumption as Shamir and Harleman 
(1967) include: for nonreactive transport, Bruch (1970), Moranville et  al. (1977), 
Ultman and Blatman (1977) and Pendse et al.  (1978); and for transport involving 
radionuclide decay, Gureghian and Jansen (1985). The analyses reported by all 
these authors were predominantly analytical. The results show clearly that the 
assumption of noninteracting layers is a useful one, given that the error involved 
is acceptably small. As well as quantifying this error, we formalize the approach 
so that it can easily be applied to other transport scenarios, e.g., diffusion of 
solute from mobile to immobile regions. 

In practice, it will often be convenient to treat the layered system as an 
equivalent single layer for purposes of making predictions of the system response 
to a certain input disturbance. In essence, the procedure is to cast the transport 
parameters for the simple single-layer convection-dispersion model in terms of 
the more complex model. As noted by Fried (1975), the "idea of replacing a 
complex problem by an elementary well-known equivalent problem is very 
natural and is the base of the philosophy of the scale change." 

This approach has been followed by a number of authors to simplify the 



TRANSPORT IN LAYERED MEDIA 67 

analysis of nonequilibrium transport associated with diffusional or chemical 
kinetics (Passioura, 1971; Baker, 1977; De Smedt and Wierenga, 1984; Valoc- 
chi, 1985; van Genuchten, 1985; Parker and Valocchi, 1986). Marle et al. (1967) 
considered an equivalent layer approach to stratified media for the case of flow 
parallel to the direction of layering. Here we follow the time moment analysis of 
Marle et al. (1967) and Valocchi (1985). Based on Aris (1958), this method 
consists of equating the moments calculated for the various transport models with 
the moments of the simple linear equilibrium model. Aris (1958) showed that 
moments can be calculated from solutions in the Laplace domain while noting 
that distributions can be conveniently and relatively accurately defined in terms 
of their first few moments. These properties have great practical use, especially 
when exact analytical solutions are not available, as is the case for solute 
transport in layered soils. 

Our purpose is to analyze breakthrough curves from a medium consisting of 
two distinct layers. The time moment method will be used to define the 
parameters of the two-layer system in terms of an equivalent single-layer model 
and give conditions under which the latter model will accurately simulate layered 
system breakthrough curves. Additionally, the approach of Shamir and Harleman 
(1967) is examined, checked for accuracy and applied to a more complex 
transport model. 

2. Mathematical Model 

The mathematical model for solute transport perpendicular to the stratification is 
given by the system of equations 

Oci a2 ci Oc~ i =  1, . ,  n. (1) 
R i  ~ = D i  i~X2 -- V i O~ ' " " 

The n equations given by (1) apply to n homogeneous soil layers, with each layer 
referred to by the subscript i. In the following analyses we take n = 2. Ri, ci, Di 
and v~ are the retardation factor (Lindstrom et al. ,  1967), solute flux concen- 
tration, hydrodynamic dispersion coefficient and mean pore-water velocity, res- 
pectively, for each layer. Distances in each layer are referenced to a common 
origin. Assuming a constant volumetric flow rate, q, for the entire system and 
taking the water contents, 0i, to be constant within each layer, the mean 
pore-water velocity for each layer is 

vi = q/Oi. (2) 

For convenience we rewrite (1) as 

Oc~ = D.  02 ci OCi 

Ot , Ox ~ - v i ~ x ,  i =  l . . . .  , n  (3) 

where the retarded mean pore-water velocity is defined as v~ = vi/R~ and the 
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retarded coefficient of dispersion is Di = D~/R~. In a multilayered soil, the mean 
retarded pore-water velocity between the origin and location x is 

qx (4) 
RlO1L1 +" �9 �9 + R.O,,(x - L . -1)  

where L~ denotes the thickness of the ith layer. 
The flux boundary conditions to be applied in the solution of (3) are (Kreft, 

1981b) 

CO(I) = Cl(0 +, t), (5) 

c , (L[ ,  t) = c,+~(L +, t), (6) 

Oc,(L[, t) 3ci+a(L 7, t) 
vi - vi+l (7) 

Ox Ox 

and 

lim ci(x, t )=  finite, (8) 

where Co(t) is the concentrat ion of the influent solution. Since we are considering 
a two-layer system, in the following we take the length of the first layer to be L, 
while the second layer is semi-infinite. We impose a uniform initial condition such 
that 

ci = 0, x > 0, t = 0 (9) 

while noting that there is no loss of generality in imposing (9) since superposition 
may be used to construct solutions for arbitrary initial conditions from the 
solution subject to (9) (e.g., see van Genuchten and Alves, 1982). 

The  solution for the second layer in the Laplace domain, 62(x, s), is (Kreft, 
1981a) 

2Fo(s)q~(1 + q2) exp[vlL(1 - ql)/(2D1) + v2(x - L)(1 - qa)/(2D2)] 
6 ( x ,  s) = 

(1 + ql)(q2 + qO - (1 - q l ) (q2-  q~) e x p [ - q ~ V l L / D ~ ]  
(10) 

where qi = (1 + 4 s D i / v ~ )  u2, s is the Laplace transform variable and go(S) is the 
Laplace transform of co(t). Note that there is no difficulty in writing the solution 
for 61(x, s) which has a form similar to (10). However,  our interest is in 
breakthrough curves as affected by the layering and hence we consider only the 
second-layer flux concentration solution. 

'Exact '  solutions to (10) for c2(x, t) can be found by numerical inversion using 
readily available algorithms (e.g. Javendel et al., 1984). In common with any 
numerical solution, this method, which is undoubtedly useful in some ap- 
plications, gives little understanding of the behavior of the system under con- 
sideration. For a profile consisting of many layers, a Laplace domain solution is 
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not necessarily available. Furthermore, any numerical method may be subject to 
instability for certain combinations of the parameters, especially in the case of 
more complex systems. Later we consider a layered profile containing mobile- 
immobile regions for which numerical inversion gave inaccurate results. Thus, 
not only does the following analysis give insight into transport in layered profiles, 
the approximations may be more widely applicable and numerically stable than 
Laplace transform inversion. 

3. Analysis and Discussion 

3. l.  T I M E - M O M E N T  ANALYSIS 

Aris (1958) has shown that a finite quantity of material moving in a dispersive 
medium possesses a set of time moments, mi, defined by 

Io rnj = tic(x, t) dt, j =  0, 1, 2 , . . .  ( l l )  

where c(x, t) describes the concentration distribution in space and time. The 
moments given by (11) can be normalized with respect to m0, the total mass 
injected per unit area. For example ml/mo (-=/2), is the normalized mean 
residence time which we refer to subsequently simply as the mean. Higher-order 
moments are commonly expressed relative to the mean by the central moments 

1 f o  [ t -  ~]Jc(x, t) dt. (12) /1"1 m 0  

Thus /-to = 1 and ~1 = 0. The variance of the distribution is given by 

m2 -2 (13) ]&2-- ~[Z , 
m o  

and the skewness is 

m3 
/z3 = - -  - 3/2/xe - ]~3 (14) 

m 0  

which is also expressed as the coefficient of skewness (Skopp, 1984) 

S =/,.s -312. (15)  

Observe that c(x, t) need not be known explicitly to evaluate the moments since 
mj can be calculated from (Aris, 1958) 

m i = (-1) j lira [ djg(x' s)] (16) 
s-,O [ ds i 

which, in general, is a straightforward calculation. 
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3.2. AN EQUIVALENT SINGLE-LAYER 

Table I gives expressions for the mean, variance and skewness of the single- and 
two-layer system breakthrough curves obtained via (10) for a Dirac surface 
condition, i.e. (Kreft, 1981a) 

mo6( t) 
Co(t) - (17) 

q 

For the single-layer results, a subscript e has been used to denote 'equivalent' 
two-layer parameters. Equating single- and two-layer means yields 

x 
Ve L x - L "  (18a) 

F 
/31 /32 

Note, as we expect, ve = ~ in (4) when the latter equation is written for the 
two-layer case. Similarly, equating the variances in Table I gives an equation for 
the equivalent dispersion coefficient, De 

D e -  L x - -  - -  _LIB [ v3 v3 t- v~ ~2 2 [1-exp( -Pl ) )  

1 /32 

(18b) 

where P1 = VlL/D1.  We note that De and ve are functions of position. Although 
the entries in Table I were calculated for a Dirac (instantaneous) condition, the 
calculated equivalent single layer parameters are independent of the surface 
condition duration. However, differences between the equivalent single-layer and 
the exact two-layer breakthrough curves will decrease as the duration of the 

Table I. One- and two-layer measures of central tendency calculated for a Dirac surface condition 

12 One layer Two layer (exact) Two layer (convolution) 

x L x - L  L x - L  

De I)1 D2 1)1 "02 

/x2 v~ v 2 [vl kv2 2 v~] 1 - e x p  4 v 3 v~ + v 3 

( ~ l L )  ] 12LD~ 12D~(x -L )  12xD 2 12D1 [/)22 4 D1D2 2 D ~ ] [ l _ e x  p + § 
m v~s v~ tv~ v ~ v ~  v ~ l t  v~ v~ 

12LD2 l + e x p  4 

12LD1D2 [ - V l L \  
exp ~-G-~J 
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surface condition increases as has been observed in other cases where a similar 
approach was used (Valocchi, 1985; Parker and Valocchi, 1986). 

By definition, breakthrough curves calculated assuming an equivalent single 
layer will have the same mean and variance as the two-layer system. An error 
criterion for breakthrough curves calculated using this procedure can be derived 
by requiring the relative difference between the exact and equivalent normalized 
skewness coefficients, calculated using Table I and (15), to be small. Note that 
the t-q of Table I are normalized to dimensionless time (Nauman and Buffham, 
1983), T = tO~x, by dividing by (x/~) i. Alternatively, the following empirical 
condition is extremely simple and thus may be more useful in practice. The P6clet 
number of the equivalent single layer (Pe = vex~De) will be equal to the sum of 
the layer P6clet numbers [P1 = oiL/D1 and P2 = v2(x - L)/D2] for two layers with 
the same dispersivities, i.e., D1/01 = D2/1)2. In this case the ratio of the equivalent 
layer P6clet number to the sum of the P6clet numbers of the individual layers is 
unity. In practice, the greater the difference of this ratio from unity, the less 
accurate the equivalent single layer approximation becomes. We find that the 
equivalent single layer approximation is reasonably accurate if 

ee 1 
> (19) 

191+192 2" 

Figures 1 and 2, which give breakthrough curves for continuous solute injection, 

1.0 

Equivolent Single Loy~r 
Equivolont SingIQ Loyor 8 ~  

0 Exoct BTC 

~OcL PIp2 == I0 / /  

PQ = 8.8 0 C0.5 0 U 

> 
4J ~ Condition 0 
@ 

0.0 , , 

o I 2 
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Fig. 1. Equivalent single-layer predictions when condition (19) is satisfied. Note that x/L = 1.5. 
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Fig. 2. Equivalent single-layer predictions when condition (19) is not satisfied. Note that x/L = 1.5. 

demonstrate  the use of condition (19). In Figure 1, condition (19) is satisfied, 

while in Figure 2 it is not. 

3.3. EFFECT OF LAYER ORDERING 

The effect of switching the layer order in a profile may be quantified using the 
variance calculated for the two-layer system as given in Table  I. Because the 

model assumes a finite first layer and a semi-infinite second layer, we expect that 
switching layers will generally result in different calculated variances. Note that 
the mean  is unaffected by the layer order. It is of interest to determine when the 

layer ordering has a noticeable effect on breakthrough curves  or, conversely, 
when it has little effect. Layer  ordering may be presumed to have negligible 
effect on breakthrough curves if, for each ordering, the absolute difference 

between the variances is much less than the sum of the variances,  i.e. if 

[ D1] D2 D2 
o22 ~ ~ [1-exp(-e2)] ~>2~ 

D1L D2(x-  L) 41 ,  D~v22> + 
(20a). 
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or, 

I D2] Dx 
Dlv 2 ~ ~2 2 [1 -exp ( -P1) ]  

D x L  D2(x - L) + 

D21) 2 
1, - - <  1 (20b) D,v  2 

hold. Qualitatively, we observe that condition (20) is satisfied if D2o21/(Dll) 2) ~- 1, 
or if one layer is relatively long compared with the other. 

3.4. COMPARISON OF SEMI-INFINITE AND FINITE SOLUTIONS 

In laboratory tracer experiments, breakthrough curves are obtained from the 
soil-column effluent. Some uncertainty arises in the proper  selection of the lower 
boundary condition in such experiments. When dispersion is predominantly 
hydrodynamic in nature and effluent is removed as it exits the column, experi- 
mental and theoretical analyses suggest a semi-infinite lower boundary may most 
adequately represent the system (Parker, 1984; Parker and Valocchi, 1986). 
However,  when diffusion is the dominant component  of the dispersion coefficient 
and the column is free-draining or an exit line exists in which dispersion is 
negligible, the boundary conditon to be applied at x = L, where L is the column 
length, is Oc/Ox = 0 (e.g., Wehner  and Wilhelm, 1956). Even  in this latter case, it 
is generally more convenient  computationally to analyze effluent data using the 
solution for a semi-infinite system (Parlange and Start, 1975). 

If we interpret the boundary condition, Oc/Ox = 0, to result from a vanishing 
dispersion coefficient beyond x = L, then the moments of Table 1 can be used to 
derive a condition for which the assumption of a semi-infinite system can be Used 
without sacrificing accuracy. Putting D2 = 0 and setting x = L we again note 
from Table I that the semi-infinite and two-layer assumptions give identical 
means. By comparison of the normalized variances for each case we see that the 
semi-infinite solution will closely approximate breakthrough curve predictions 
obtained from the solution for a finite column if 

[1 - exp( -  P1)]/ Pl "~ 1. (21) 

In agreement  with Parlange and Starr (1978), we find that the assumption of a 
semi-infinite layer is justified for P1 > 16. This comparison also predicts that the 
column P6clet number, P1, can be obtained from the apparent P6clet number, 
Pap, where the latter has been derived from breakthrough curve data analyzed 
using the solution for a semi-infinite column, via 

l - 1 { 1 - ~ l [ 1 - e x p ( - P 1 ) ] }  (22) 
Pap PI 
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3.5. SEMI-INFINITE MEDIA APPROXIMATION: THE CONVOLUTION INTEGRAL 

If we approximate a 'spike' of solute having mass per unit area mo injected at the 
soil surface (x = 0), as a Dirac condition, then its distribution is given by 

/1"/o 
cS(x, t)=Ox 6a(x' t) (23) 

where 6a is a transfer function representing the Dirac solution normalized to unit 
injected mass per pore volume. Convolution of (23) gives the solution for 
continuous injection as 

I0' c(x, t) = #to(,r)ea(x, t -  r)/(Ox) dr. (24) 

In (23), mo has been replaced by #to(T) d~- where #to is the mass flux density of 
material at x = 0. For influent concentration Co(t) at hydraulic flux q we have 

#to = qco (25) 

and so, for v =- q/O, 

r/t0 
- - =  Coy. (26) 
0 

Equation (24) then becomes 

v l /  
c(x, t) = x co(r)6 ~ (x, t -  r) dq'. (27) 

Generalizing to n soil layers gives 

= v .  f t  
C(Xn, t) "~ Jo C(Xn-1, ~-)ea(L,, t -  I-) d r  (28) 

where xl, for i < n, is the distance from the surface to the end of the ith layer, x, 
is the distance to the measurement point, L ,  = x , -  x.-1, and v .  = q/O.. We will 
refer to (28) as the convolution approximation. 

For Co(t) = 1, the solution for c(x, t) in a semi-infinite homogeneous medium is 
well known (Lapidus and Amundson, 1952) 

-21' r x - v t l  [vx] r x + v t l , _ _ D  c(x, t)= /erfc[ l +exp erfc[ l). (29) 

For this case 6~(x, t) is calculated by equating (27) and (29) and differentiating 
with respect to time, 

x 2 f - ( x  - vt) 21 
g~(x, t) = vt(4crDt),/2 exp[- 4 D t  ]" (30) 

We wish to investigate when the convolution approximation will accurately 
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predict breakthrough curves from two soil layers. To do this using the moment 
method, we observe that the Laplace solution corresponding to (28) for two 
layers with integrand defined by (29) and (30) is equal to the exponential term in 
the numerator of (10) multiplied by 60(s). Note that this approximation of (ld) 
may be obtained by taking a first-order Taylor series expansion of the nonex- 
ponential terms in (10) which will be accurate when sDi/v~ ~ 1. Again we assume 
a Dirac condition and calculate moments for this approximation from the Laplace 
domain solution. These results have been included in Table I. The convolution 
approximation has the same mean as the exact two-layer mean. The ap- 
proximation will yield accurate predictions if there is little difference between the 
exact and approximate variances, or 

/92 _ [1 - exp(-P1)] D1 iol 

D1L D2(X - L) 
1 (31) 

Although not identical, condition (31) and condition (20) are very similar and will 
hold under the same general physical criteria. In the majority of cases then, 
where it is found that the layer ordering has little effect on the breakthrough 
curve, we expect that the convolution approximation will be accurate (and vice 
versa). 

To obtain the transfer function for the equilibrium convection-dispersion 
equation given by (30) we equated (27) and (29) and differentiated with respect 
to time as noted above. This method can be applied easily to any single-layer 
model. For example, consider the nonequilibrium convection-dispersion model 
for a soil with mobile-immobile zones (De Smedt and Wierenga, 1979) 

RmOm Oc~ + RimOim OCim __ OmDm 02cm OCm (32) 
Ot Ot Ox 2 q Ox 

and 

O C i m  
RimOi,. - a(cm - cim) (33) 

Ot 

where the subscripts m and im refer to the mobile and immobile zones, 
respectively, and a is the mass transfer coefficient. For a continuous injection of 
solution applied at x = 0, the solution to (32) and (33) is 

c.,(x,  t) v c(x,  r )J  o~.~ ~ - -  " d"l"  
X R-~m' Ri,.Oim J 

(34) 

where c(x,  T) is given by (30) written for the mobile region parameters, D = 
Dm/Rm and v = vm = q/(OmRm), and J(a,  b) is the Goldstein J-function (Gold- 
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stein, 1953): 

io ~ J(a, b) = 1 - exp(-b) exp(-~-)Io[2(b@/2] d~-, (35) 

where Ii denotes an ith order modified Bessel function. For this case the transfer 
function is 

I0 [ - -  • 
C6m(X, t) "~- (emOrn~irnOim)l/2 C(X, "C) exp RmO,. RimOim ] [ t -  "rJ 

.1 . ,  [ r ( t -~-)  1/2} exp[ R 2 l C ( X , t ) .  (36) X I  1 Z a  

When computing the integral on the right-hand side of (36), it is useful to note 
that as ~---~ 0 and t, the integrand--~ 0 and 

c(x, t) exp[-~t/(R,.O,.)]oa/(R,.O.,RimOim) 1/2, 

respectively. 

4. Application to Experimental Data 

4.1. S H A M I R  AND H A R L E M A N  (1967) 

We now apply the above methods to data from experiments reported by Shamir 
and Harleman (1967) involving continuous injection of NaC1 into a medium 
consisting of several alternating 3.175 cm thick layers of two different granular 
silica sands. The condition of no retardation is assumed. Shamir and Harleman 
(1967) give the dispersion coefficients for the two materials as 0.0115 cmZ h --1 
and 0.0465 cm 2 h -1, for a pore water velocity of 0.154 cm h -1. We note that for 
these parameters, conditions (19), (20) and (31) are all satisfied. Because layer 
ordering does not affect the breakthrough curve, the lengths of the alternating 
layers can be summed, and the system analyzed as if it consisted of two layers 
with lengths of, for layer 1, 41.6 cm and, for layer 2, 41.3 cm. The results of the 
convolution approximation, via (28), with c(x,-1, t) given by (29), and the 
transfer function by (30), previously given by Shamir and Harleman (1967), is 
shown as the solid line in Figure 3. This prediction was checked by comparison 
with a numerical solution which yielded an identical breakthrough curve. 

For a finite-duration input signal, it is of interest to note that although the 
equivalent single layer has the same mean and variance as the exact two-layer 
model, its predictions are less accurate than the convolution approximation 
(Figure 3), which has the same mean but different variance. (This statement is 
meaningless in the case of a continuous input although, as already noted, the 
equivalent layer parameters remain unaffected.) The reason for this is that the 
calculated moments of second order and higher can be affected noticeably by the 



TRANSPORT IN LAYERED MEDIA 77 

E x p e r  i m e n t o  1 [ 3 o t o  o n d  P r e d i c t  i o n s  

C 
0 

4J 
0 
L 

C 
0 
0 
C 
0 
U 

0 
> 

",4 

-i-) 
0 

o 
oc 

1.0 

0.5 

0.0 
0.8 

@ 

$ /  C o n v  .'~ 1 tat l 
/ 

~ q u i v o l ~ n t  Sln glm Lm, ~ 

e?~Nthrough Oato Potr ' l tm 

1.0 1.2 

P o r e  V o l u m e s  

Fig. 3. Approximations compared with experimental data from Shamir and Harleman (1967). 

tail of the distribution, in which case the distribution's skewness should be 
considered explicitly in the calculation of the equivalent parameters. An alter- 
native approach is to calculate the equivalent parameters using weighted 
moments,  which weight the main body of the signal at the expense of the 
less-important tail. The  most useful weighting function is exp (-Xt),  where X is 
the weighting factor. Equation (11) becomes 

wj = fo  tj exp(-xt)c(x' t) dt, j = 0, 1, 2 . . . .  (37) 

where the wj are the exponentially weighted moments. Unweighted moments 
given by (11) are calculated using X = 0. Nauman and Buffham (1983) suggest 
the mean as a reasonable weighting factor. 

4.2. PANIGATTI (1970) 

Panigatti (1970) measured CI breakthrough curves from homogeneous and 
two-layered soil columns. Evidence of mobile-immobile soil regions was obser- 
ved. The breakthrough curves used here are for Norge loam, from Perkins, 
Oklahoma, and Stratford I soil, from Stratford, Oklahoma. The porosities of 
these soils were 0.345 and 0.243, respectively, and the experimental hydraulic 
flux was fixed at 1.78 cm h -~. The columns in the study were 30 cm long (layers 
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of 15 cm were used for the layered experiments) with a diameter of 7.5 cm. Solute 
was applied as a pulse in each experiment. We found that the mass of C1 
calculated by integrating under the given breakthrough curves differed slightly 
from the input quantities given by Panigatti (1970). We assume that no irrever- 
sible reactions of C1 take place and so the durations of the applied solute pulses 
were adjusted to conserve mass of C1. 

Figures 4 and 5 show the measured and fitted breakthrough curves for the 
Stratford I and Norge soils, respectively, obtained using the parameters listed in 
each figure assuming retardation factors of unity. In this case we make use of the 
convolution approximation, substituting (34) and (36) into (28). To ascertain the 
numerical precision of the convolution calculation, results for the homogeneous 
Stratford I soil, treated computationally as two identical 15 cm layers, were 
checked against the exact, single-layer solution given by (34). No discernible 
difference between the one- and two-layer curves was observed. 

Panigatti (1970) found no significant difference between breakthrough curves 
for the Norge-Stratford I layering or the reverse order. In Figure 6 we show the 
approximation's accurate predictions for the., Norge-Stratford I ordering. 
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Fig. 6. Convolution approximation prediction of the breakthrough curve compared with experimen- 
tal data from Panigatti (1970) for two 15 cm layers consisting of Norge overlaying Stratford I. 



80  D .A.  BARRY AND J. C. PARKER 

5. Conclusions 

Analytical approaches to transport in layered media may employ averaging 
techniques to treat the profile as a homogeneous single layer, or treat each layer 
independently as if there were no interactions between layers and make use of the 
convolution integral. We have analyzed the feasibility and validity of these 
approximations with particular reference to predictions of breakthrough curves 
from two layers. The results of this study can be very useful in practice. For 
example, Monte Carlo simulations of field solute transport generally require large 
numbers of realizations of the random process to be generated, and hence 
substantial computer time, for reasonable estimates of population means and 
variances (e.g., Persaud et al., 1985). This problem is compounded for layered 
systems. Thus, if accuracy criteria are satisfied, analytical approximations such as 
those given here can markedly reduce computational costs without loss of 
precision in the results. 

It is apparent that the simplest and most straightforward way to predict 
breakthrough curves from a two-layer system is to use the equivalent single-layer 
approximation. Transport parameters for the equivalent layer are easily found by 
equating means and variances for the one- and two-layer systems. 

A more accurate approximation is given by the convolution integral which 
assumes that layer interactions have no significant effect on solute transport. 
Again by comparing the moments of the approximation with the exact moments, 
a criterion for the validity of this approach was obtained. The approximation was 
also applied to experimental data using a tlransport model incorporating the 
assumption of mobile-immobile zones within the soil. 
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