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1. INTRODUCTION

Assigning a value to a variable and fetching a value from a variable are probably
the most common instructions of any program. When several programs cooperate
to achieve a common task, it is natural to provide them with means to perform
those instructions through shared variables.

The atomic read-write data structure allows concurrent processes, each possi-
bly running a different program, to share information through a common variable,
as if they were accessing this variable in a sequential manner. This abstraction,
usually called an atomic register [Lamport 1986] or simply a register, is fundamen-
tal in distributed computing and is at the heart of a large number of distributed
algorithms [Herlihy 1991; Attiya and Welch 1998].

We study distributed implementations of this abstraction in a message passing
system with no physical shared memory: a set of server processes provide the
illusion to a set of reader and writer processes (clients) that the abstraction is a
physical memory accessible to the clients.

We consider robust [Attiya et al. 1995], or wait-free [Herlihy 1991], implemen-
tations of this data structure where any read or write invocation by some client
process eventually returns, independently of the operational status of other clients:
all of them might have stopped their computation. The data structure itself is
replicated over several servers to tolerate the failure of some of these servers.

Ensuring both atomicity and robustness is not trivial. Informally, atomicity
requires that, even though each read or write operation may take an arbitrary period
of time to complete, they appear to execute at some instant during their respective
period of execution [Lamport 1986]. This requires ordering operations in a way
that respects their physical order as well as the expected sequential specification of

1Elements of this paper appeared in a preliminary form in a paper with the same title in the
proceedings of the ACM Symposium on Principles of Distributed Computing, 2004.
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a read-write data structure: namely, a read should return the last written value.
To illustrate how an implementation can be robust yet achieve atomicity and mo-

tivate our quest for efficient implementations, consider the classical implementation
from [Attiya et al. 1995] in the case of a single-writer multi-reader case, also called
an SWMR register [Lamport 1986]. In [Attiya et al. 1995], readers and servers are
the same set, the writer is one of the servers, and a minority of processes may fail
by crashing, i.e., halting all their activities.

This implementation maintains the required order among operations by asso-
ciating timestamps with every written value. To write some value v, the writer
increments its local timestamp, and sends v with the new timestamp ts to all
servers. Every server, on receiving such a message, stores v and ts and then sends
an acknowledgment (an ack) to the writer. On receiving acks from a majority,
the writer terminates the write. In a read operation, the reader first gathers value
and timestamp pairs from a majority of servers, and selects the value v with the
largest timestamp ts. Then the reader sends v and ts to all servers, and returns v
on receiving acks from a majority of processes. Unlike the writer2, a reader does
not know the latest timestamp in the system, and hence, needs to spend one com-
munication round-trip to discover the latest value, and then another round-trip to
propagate the value to a majority of servers. The second round-trip is “required”
because the latest value learned in the first round-trip might be present at only a
minority of servers. In a sense, every read includes, in its second communication
round-trip, a “write phase”, with the input parameter being the value selected in
the first round-trip.

It is easy to see how to reduce the time-complexity of a read by using a sim-
ple decentralization combined with a max-min technique. First, the reader sends
messages to all servers. Every server, on receiving such a message, broadcasts its
timestamp to all servers. On receiving timestamps from a majority of servers, every
server selects the maximum timestamp, adopts the timestamp and its associated
value, and sends the pair to the reader. On receiving such messages from a majority
of servers, the reader returns the value with the minimum timestamp. To see why
this ensures atomicity, observe that, when a write completes, its timestamp, say
ts, is stored at a majority of servers. In any subsequent read, every server sees a
timestamp that is higher than ts, before the server sends the message to the reader.
Hence, the read returns a value that is not older than the written value. On the
other hand, if a read returns a value with timestamp ts, then a majority of servers
have a timestamp not lower than ts, and no subsequent read returns an older value.

But can we do better? Is there a fast implementation where none of the opera-
tions (read or write) require more than one communication round-trip? This would
clearly be optimal in terms of time-complexity.

With a single reader, it is easy to modify the algorithm of [Attiya et al. 1995]
such that the read takes only one round-trip: the read can return the latest value
learned from the servers in the first round trip, provided it is not older than the

2Given the single-writer setting, and since only the writer introduces new timestamps in the
system, the writer always knows the latest timestamp. Thus, on invoking a write operation, the
writer just needs to increment its own timestamp to get a timestamp that is higher than any
existing timestamp in the system.
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value returned in the previous read. Otherwise, the reader returns the same value
as in the previous read. Since there is only one reader, this clearly orders the
reads in the desired fashion and ensures atomicity. To illustrate this case, suppose
the writer writes v with timestamp 7, and the write message is received only by
one server s. (The write is incomplete.) The first reader gets information from a
majority of servers that includes s. The read must return v because the reader does
not know whether the write of v is complete or not, and this reader has to return
the value of the last preceding write.

Consider now the situation with another reader. The second reader invokes a
read, queries a majority of servers, and misses s. Clearly, the second read returns a
value with a timestamp lower than 7, violating atomicity: the second read returns
an older value than the preceding read.

At first glance, it seems impossible to have a fast implementation with two readers
when t < S/2. But what if we tolerate fewer faulty servers?

We show in this paper that, interestingly, the existence of a fast SWMR imple-
mentation depends on the maximum number R of readers. We consider a general
model where t among the set S of server processes on which the data structure is
implemented can fail by crashing, or even deviate arbitrarily from their algorithm
and be malicious: we denote by b ≤ t the number of malicious server failures.

We show that there is a fast implementation of a SWMR register if and only if
the number of readers R is less than S+b

t+b
− 2.

For simplicity of presentation, we first prove our result for the crash-stop case.
(R < S

t
− 2), and later generalize it to arbitrary failures (i.e., assuming b 6= 0). We

first give an algorithm (i.e., a fast implementation) and then a lower bound (i.e.,
we prove the implementation is optimal).

—To get an intuition of our fast implementation, consider the algorithm sketched
above [Attiya et al. 1995] and the following observation: if a reader sees the
latest timestamp ts at x servers, then any subsequent reader sees ts or a higher
timestamp at x − t servers; this is because, in a fast implementation, the first
reader does not propagate ts, and the second reader might miss t servers seen by
the first reader. A generalization of this observation helps determine when some
reader can safely return the value associated with the latest timestamp. This is
not entirely trivial because the atomicity of a value can not be simply deduced
from the number of servers that has seen the value. To determine whether a
value is safe to return, we have every server maintain, besides the latest value,
the set of readers to which the server has sent that value.

—Given S and t, we prove by contradiction that there is no fast implementation
with R ≥ S

t
− 2. Given a fast implementation with R ≥ S

t
− 2, we consider

a partial run which contains a write(1) that misses t servers, and we append
it with a read that misses t other servers. Then we delete all the steps in the
partial run that are not “visible” to the reader (basically, the steps of the t servers
that the read missed). By atomicity, the read returns 1 in the resulting partial
run. Now we iteratively append reads by distinct readers, and delete the steps
in the partial run that are not visible to the last reader, until we exhaust all the
readers. To ensure atomicity, the last read of each partial run returns 1. In the
final partial run (obtained after exhausting all readers) the steps of write(1) are
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almost deleted. We modify this partial run to construct several additional partial
runs, one of which violates atomicity.

—Our algorithm and lower bound are then extended, after a careful analysis of the
impact of malicious servers, to the more general situation with arbitrary failures.
We assume that, out of the t servers than can fail, up to b ≤ t processes can be
malicious and we show that a fast implementation is possible if and only if the
number of readers is less than S+b

t+b
− 2.

—To complete the picture, we prove that it is impossible to have a one-round read
algorithm with multiple writers [Lynch and Shvartsman 1997] (MWMR atomic
register) even if only one server can fail and it can only do so by crashing.

The paper is organized as follows. Section 2 gives the system model and defines
fast atomic implementations. We present a fast implementation assuming R < S

t
−2

in Section 4. We prove a tight bound for R in Section 5. Section 6 extends the
previous results to the arbitrary failure model. Section 7 considers the multi-writer
case. Section 8 discusses the impact of our results on the folklore theorem that
every ”atomic read must write”. Section 9 summarizes the main results of the
paper.

2. MODEL AND DEFINITIONS

2.1 Basics

The distributed system we consider consists of three disjoint sets of processes: a set
servers of size S containing processes {s1, ..., sS}, a set writer containing a single
process {w},3 and a set readers of size R containing processes {r1, ..., rR}. Every
pair of processes communicate by message-passing using a bi-directional reliable
communication channel.

A distributed algorithm A is a collection of automata, where Ap is the automata
assigned to process p. Computation proceeds in steps of A. A step of algorithm
A is denoted by a pair of process id and a set of messages received in that step
< p, M > (M might be ∅). A run is an infinite sequence of steps of A. A partial
run is a finite prefix of some run. A (partial) run r extends some partial run pr if
pr is a prefix of r. At the end of a partial run, all messages that are sent but not
yet received are said to be in transit. In any given run, any number of readers, the
writer, and t out of S servers may crash.

2.2 Details of the System Model

The state of communication channels is viewed as a set of messages mset containing
messages that are sent but not yet received. We assume that every message has
two tags which identify the sender and the receiver of the message. A distributed
algorithm A is a collection of automata, where Ap is the automata assigned to
process p. Computation proceeds in steps of A. A step of A is denoted by a pair of
process id and message set < p, M > (M might be ∅). In step < p, M >, process p
atomically does the following: (1) remove the messages in M from mset, (2) apply
M and its current state stp to Ap, which outputs a new state st′p and a set of

3We discuss the multi-writer case in Section 7.
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messages to be sent, and then (3) p adopts st′p as its new state and puts the output
messages in mset.

Given any algorithm A, a run of A is an infinite sequence of steps of A such
that the following properties hold for each process p: (1) initially, mset = ∅, (2)
the current state in the first step of p is a special state Init, (3) for each step
< p, M >, and for every message m ∈ M , p is the receiver of m and mset contains
m immediately before the step < p, M > is taken, and (4) if there is a step that
puts a message m in mset such that p is the receiver of m and p takes an infinite
number of steps, then there is a subsequent step < p, M > such that m ∈ M .

A partial run is a finite prefix of some run. We say that a process is correct in
a run if it takes an infinite number of steps in that run. Otherwise the process is
faulty. In a run of our model, any number of readers or the writer may be faulty,
and at most t ≤ S servers might be faulty. We say that a (faulty) process p crashes
at step sp in a run, if sp is the last step of p in that run.

For presentation simplicity, we do not explicitly model the initial state of a pro-
cess, nor the invocations and responses of operations. We assume that the algorithm
A initializes the processes, and schedules invocation/response of operations (i.e., A
modifies the states of the processes accordingly). However, we say that p invokes
op at step sp, if A modifies the state of a process p in step sp so as to invoke an
operation (and similarly for response).

3. ATOMICITY

A history of a partial run is a sequence of invocation and response steps of read or
write operations in the same order as they appear in the partial run. An incomplete
invocation step in a history is an invocation step without a matching response step
in that history. We say that a history H1 completes history H2 if H1 can be
obtained through the following modification of H2: for each incomplete invocation
step sp in H2, either sp is removed from H2, or any valid matching response for
that invocation is appended to the end of H2.

3.1 Atomic Register

A sequential register is a data structure accessed by a single process. It provides
two operations: write(v), which stores v in the register, and read(), which returns
the last value stored. An atomic register is a distributed data structure that may
be concurrently accessed by multiple processes and yet provides an “illusion” of a
sequential register to the accessing processes.

We refer the readers to [Lamport 1986; Lynch 1996; Herlihy 1991; Herlihy and
Wing 1990] for a formal definition of an atomic register, and we simply recall below
what is required to state and prove our results.

We assume that each process invokes at most one invocation at a time (i.e.,
does not invoke the next operation until it receives the response for the current
operation). Only readers invoke reads on the register and only the writer invokes
writes on the register. We further assume that the initial value of a register is a
special value ⊥, which is not a valid input value for a write. In any run, we say that
an operation op1 precedes operation op2 (or op2 succeeds op1) if the response step of
op1 precedes the invocation step of op2 in that run. If neither op1 nor op2 precedes
the other, the operations are said to be concurrent. We say that an operation is
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Fig. 1. Partial writes: wri

complete in a (partial) run if the run contains a response step for that operation.
An algorithm implements a register if every run of the algorithm satisfies ter-

mination and atomicity properties. Termination states that if a process invokes
an operation, then eventually, unless that process crashes, the operation completes
(even if all other client processes have crashed). Here we give a definition of atom-
icity for the single-writer registers.

In the single-writer setting, the writes in a run have a natural ordering which
corresponds to their physical order. Denote by wrk the kth write in a run (k ≥ 1),
and by valk the value written by the kth write. Let val0 = ⊥. We say that a partial
run satisfies atomicity if the following properties hold: (1) if a read returns x then
there is k such that valk = x, (2) if a read rd is complete and it succeeds some
write wrk (k ≥ 1), then rd returns vall such that l ≥ k, (3) if a read rd returns
valk (k ≥ 1), then wrk either precedes rd or is concurrent to rd, and (4) if some
read rd1 returns valk (k ≥ 0) and a read rd2 that succeeds rd1 returns vall, then
l ≥ k.

3.2 Fast Implementations

Basically, we say that a read or a write operation is fast if it completes in one
communication round-trip. In other words, in a fast read:

(1) The reader sends messages to a subset of processes in the system (possibly all
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processes).

(2) Processes on receiving such a message reply to the reader before receiving any
other messages. More precisely, any process p on receiving a message m in step
sp1 =< p, M > (m ∈ M), where m is sent by a reader on invoking a read,
replies to m either in step sp1 itself, or in a subsequent step sp2, such that
p does not receive any message in any step between sp1 and sp2 (including
sp2). Intuitively, this requirement forbids the processes to wait for some other
message before replying to m.

(3) the reader on receiving a sufficient number of such replies returns from the read.

Recall that implementations need to tolerate the crash of the writer, any reader,
and up to t servers. Hence, in order to ensure termination, the reader cannot wait
for replies from any other reader, or writer, or more than S−t servers. We similarly
say that a write operation is fast if it completes in one round-trip.

We say that an implementation has fast reads (or writes) if every complete read
(resp. complete write) operation in every run is fast. A fast implementation is an
implementation in which both reads and writes are fast. For an implementation
that has fast reads, we can say without ambiguity that the messages sent by a
reader, on invoking a read, are of type read, and the messages sent by a process
to the reader, on receiving a read message, of type readack. Similarly, we define
write and writeack messages for fast writes.

4. A FAST IMPLEMENTATION

We describe in this section a fast implementation assuming R < S
t
−2 (the pseudo

code of the implementation is given in Figure 2). For simplicity of presentation, we
assume that the writer writes timestamps, and the readers read back timestamps.
We ignore the value associated with the timestamp for now. Later we explain how
to trivially modify our algorithm such that the writer and the readers associate
some value with a timestamp.

The procedure for write is similar to that in [Attiya et al. 1995]. On invoking
a write, the writer increments its timestamp and sends a write message with the
timestamp to all servers. Servers on receiving the message store the timestamp,
and send writeack messages back to the writer. The writer returns ok once it
has received writeack messages from S − t servers.

Implementing a fast read is more involved. Recall that, to maintain atomicity,
a read needs to return a timestamp that is not lower than the timestamp of the
last completed write, and has to guarantee that no subsequent read returns a lower
timestamp.

Our read procedure collects timestamps from S − t servers (by sending read

messages and receiving readack messages from the servers), and selects the highest
timestamp, denoted by maxTS in Figure 2. Then the reader checks if maxTS has
been seen by a “sufficient” number of servers and readers. If so, the read returns
maxTS, else it returns maxTS− 1. The heart of the algorithm is the predicate for
checking whether the latest value has been seen by a sufficient number of processes:

(1) The predicate is true whenever the write with timestamp maxTS precedes the
current read.
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1: at the writer w

2: procedure initialization:
3: ts← 1, rCounter← 0
4: procedure write(v)
5: send(write, ts, rCounter) to all servers
6: wait until receive(writeack, ts, ∗, rCounter) from S − t servers
7: ts← ts + 1
8: return(ok)

9: at each reader ri

10: procedure initialization:
11: ts← 0; rCounter ← 0; maxTS ← 0
12: procedure read()
13: rCounter← rCounter + 1; ts← maxTS

14: send(read, ts, rCounter) to all servers
15: wait until receive(readack, ∗, ∗, rCounter) from S − t servers
16: rcvMsg← {m|ri received (readack, ∗, ∗, rCounter)}
17: maxTS ←Maximum{ts′| (readack, ts′, ∗, rCounter) ∈ rcvMsg}
18: maxTSmsg ← {m|m.ts = maxTS and m ∈ rcvMsg}
19: if there is a ∈ [1, R + 1] and there is MS ⊆ maxTSmsg s.t., (|MS| ≥ S − at) and

(| ∩
m∈MS

m.seen| ≥ a) then

20: return(maxTS)
21: else

22: return(maxTS − 1)

23: at each server pi

24: procedure initialization:
25: ts← 0; seen← ∅; counter[0...R]← [0...0]

26: upon receive(msgType, ts′, rCounter′) from q ∈ {w, r1, ..., rR} and rCounter′ ≥
counter[pid(q)] do

27: if ts′ > ts then

28: ts← ts′; seen← {q}
29: else

30: seen← seen ∪ {q}
31: counter[pid(q)]← rCounter′

32: if msgType = read then

33: send(readack, ts, seen, rCounter′) to q

34: else

35: send(writeack, ts, seen, rCounter′) to q

Fig. 2. Fast SWMR atomic register implementation with R < S
t
− 2

(2) If there is no write with a timestamp higher than maxTS, then if the predicate
is true for the current read, it is also true for all subsequent reads.

In order to construct such a predicate however, the servers need to record more
information than just the latest timestamp, as we explain below.

Consider the case of a write with timestamp ts that is followed by a read:

—In the first partial run pr1, the write completes by writing ts at S − t servers,
say the set of servers be S1. Subsequently, a reader reads from a set S2 (of S − t
servers) that overlaps at S − 2t servers with S1, i.e., misses t servers in S1. By
atomicity, the read returns ts.

—In the second partial run pr2, the write is incomplete and the writer writes ts
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only to S−2t servers in S1∩S2. A subsequent reader that reads from S2 cannot
distinguish pr1 from pr2, and returns ts.

If we extend each partial run with another read by a distinct reader that misses t
servers from S1∩ S2, it is easy to see that the new read has to return ts, even if it
sees ts at S − 3t servers that have already replied to both the write and the first
read. Thus, we see that any reasonable predicate for fast reads must depend on
the number of servers, as well as the number of readers, that have seen the most
recent timestamp. Since any number of readers might crash, a reader cannot wait
for the replies from other readers, but rather indirectly collect information about
other readers from the servers.

Generalizing the above argument gives us the desired predicate. Along with the
latest timestamp ts, every server maintains the list of readers and writer to which
the server has replied after updating its timestamp to ts (including the reader or
the writer which updated the timestamp of the server to ts). This set is denoted
by seen in Figure 2. The predicate for the read procedure is as follows: if there is
a ≥ 1 such that the reader receives maxTS in at least S − at messages, and there
are at least a processes that are in the list seen of each of these S − at messages,
then the predicate is true.

In addition, every reader ri maintains a variable rCounter that counts the num-
ber of reads of ri. The servers maintain an array, counter, such that counter[i]
contains the latest value of rCounter that the server has received from ri. In the
algorithm, pid(q) is a function that maps the writer w to 0, and every reader ri to
i. This helps distinguish read and readack messages from different reads of the
same reader. At the writer, the variable rCounter is always 0; the messages from
different writes are distinguished by their respective timestamps.

This completes the brief description of the register implementation. We now de-
scribe how to modify the algorithm so as to associate values with timestamps. In
the modified algorithm, in each write, the writer attaches two tags with the times-
tamp, containing the current value to be written and the value of the immediately
preceding write. If the reader returns maxTS in the original algorithm, then it re-
turns the current value attached to maxTS in the modified algorithm. If the reader
returns maxTS − 1 in the original algorithm, it returns the other tag attached to
maxTS in the modified algorithm.

We now prove the correctness of the fast implementation in Figure 2. We do not
assume that the lines in Figure 2 are atomic: processes may crash in the middle
of a line or in between two lines. In particular, while sending messages to a set
of processes, the sending process may crash after sending messages to an arbitrary
subset. We assume that, if a process receives an incomplete message, the process
can detect that the message is incomplete, and ignores such a message.

It is obvious that read and write procedures complete in one round-trip. To show
atomicity, we recall that the write procedure directly writes the timestamp. Thus
the conditions in Section 3.1 reduce to the following:

(1) If a read returns, it returns a non-negative integer.

(2) If a read rd is complete and it succeeds some write(k), then rd returns l such
that l ≥ k.



10 ·

(3) If a read rd returns k (k ≥ 1), then write(k) either precedes rd or is concurrent
to rd.

(4) If some read rd1 returns k (k ≥ 0) and a read rd2 that succeeds rd1 returns l,
then l ≥ k.

The proofs of the first and the third conditions are trivial. Below, we show the
other two. In the proofs we refer to the global clock; however processes do not
access this global clock.

Lemma 1. If a server sets ts to x at time T , then the server never sets ts to a

value that is lower than x after time T .

Proof: obvious from line 27.

Lemma 2. If a read() sends read messages with ts = x, then the read does not

return a value smaller than x.

Proof: suppose read rd by ri sends a read message with ts = x. From line
27, every readack message received by rd is with ts ≥ x. Let z be the maximum
timestamp received by rd (i.e., maxTS computed in line 17). Notice that rd returns
either z or z − 1. There are the following two cases to consider. (1) If z > x, then
clearly, the return value is not smaller than x. (2) If z = x. then every readack

message received by rd has ts = x and has pi ∈ seen. Since rd receives S − t
readack messages, the predicate in line 19 of rd holds with a = 1. Hence, rd
returns x.

Lemma 3. If a read rd is complete and it succeeds some write(k), then rd returns

l such that l ≥ k.

Proof: suppose that write wr (by w) writes k and precedes read rd (by reader
rj). Let S1 be the set of S − t servers from which wr received writeack messages
in line 6, and let S2 be the set of S − t servers from which rd received readack

messages in line 15. Let S12 = S1 ∩ S2. Obviously, |S12| ≥ S − 2t. Let z be the
maximum timestamp received by rd from servers in S2. Observe that rd returns
either z or z − 1.
When a server in S1 replies to a write message from wr, its ts is k. The server’s ts
is not higher than k because, unless the writer receives writeack from all servers
in S1, it does not complete write(k), and hence, no timestamp higher than k is
present in the system until all servers in S1 reply to write(k). From Lemma 1,
servers in S1 (and hence, in S12) reply ts ≥ k to rd because write(k) precedes rd).
Thus, the highest timestamp received by rd, z ≥ k. There are the following two
cases to consider:

1. z > k
Since rd returns either z or z− 1, it follows that rd does not return a timestamp
lower than k.

2. z = k
We know that every server in S12 replies to rd with ts ≥ k, and z = k is the
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maximum timestamp received by rd from servers in S2 ⊇ S12. Thus every server
in S12 replies ts = k to rd. Let MS be the set of readack messages sent by
servers in S12 to rd. Since every server in S12 replies ts = k to wr before sending
ts = k to rd, for every message m in MS, w ∈ m.seen. Furthermore, from line
30, rj ∈ m.seen. Thus, {w, rj} ⊆ ∩

m∈MS
m.seen. As |S12| ≥ S − 2t, in rd, the

predicate in line 19 holds with a = 2. Consequently, rd returns z = k.

Lemma 4. If some read rd1 returns x (x ≥ 0) and a read rd2 that succeeds rd1

returns y, then y ≥ x.

Proof: suppose that read rd1 by process rj returns x, read rd2 by process rk

returns z, and rd1 precedes rd2. Suppose rj = rk. Then, in the read immediately
after rd1, rj sends a read message with ts ≥ x, and hence, from Lemma 2, the read
returns a value greater than or equal to x. Using Lemma 2 and a simple induction,
we can derive that any read by rj which follows rd1 (including rd2) returns ts ≥ x.
So in the rest of the proof we assume that rj 6= rk.
Let S1 and S2 be the set of servers (of size S − t) from which reads rd1 and rd2,
respectively, receive S − t readack messages in line 15. Let TS1 be the highest
timestamp received by rd1 from processes in S1 (i.e., the maxTS evaluated in line
17 of rd1). Similarly, let TS2 be the highest timestamp received by rd2 from the
processes in S2. There are the following two cases to consider:
〈1〉1. the predicate in line 17 does not hold in rd1.

It follows that x = TS1 − 1. Thus some servers have sent ts = TS1 = x + 1 to
rd1, and hence, write(x + 1) has started before rd1 is completed. Thus write(x)
has completed before rd1 is completed. Since rd1 precedes rd2, it follows that
write(x) precedes rd2. From Lemma 3, rd2 returns y ≥ x.

〈1〉2. the predicate in line 17 holds in rd1.
It follows that x = TS1, and there is some a ∈ [1, R + 1] such that there is a
set MS consisting of at least S − at messages received by rd1 with ts = x and
|∩

m∈MS
m.seen| ≥ a. Let S12 ⊆ S1 be the set of servers which sent the messages

that are in MS. Since a ∈ [1, R+1] and t < S/(R+2), |S12| = |MS| = S−at > t.
There are the following two cases to consider:
〈2〉1. y = TS2

y = TS2. Since, |S12| > t and |S2| = S − t, there is a server pi ∈ S2 ∩ S12.
Since rd1 precedes rd2, pi first replies ts = x to rd1 then replies to rd2. From
Lemma 1, it follows that pi replies to rd2 with ts ≥ x. Thus the highest ts in
S2 (i.e., TS2 = y) is greater than or equal to x.

〈2〉2. y = TS2− 1
There are the following two subcases to consider:
〈3〉1. y + 1 6= x

As in case 〈2〉1, we can show that there is a server pi ∈ S2 ∩ S12, and pi

replies to rd2 with ts ≥ x. Thus the highest ts in S2 (i.e., TS = y + 1) is
greater than or equal to x. Since y + 1 6= x, it follows that y + 1 > x, and
hence, y ≥ x.

〈3〉2. y + 1 = x
Consider the set of servers S2∩S12. As |S12| = S − at and |S2| = S − t, so
|S2 ∩ S12| ≥ S − (a + 1)t ≥ 1. Since rd1 precedes rd2 and processes in S12
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replies ts = x to rd1, processes in S2 ∩ S12 reply to rd2 with ts ≥ x. Since
y +1 is the maximum ts in S2, every process in S2∩S12 replies to rd2 with
ts = x = y + 1. There are the following two cases to consider:
〈4〉1. a ≤ R

Then |S2 ∩ S12| ≥ S − (a + 1)t > t. Let MS1 be the set of readack

messages from processes in S2 ∩ S12 to rd1. From the definition of MS1
and MS, MS1 ⊆ MS.4 Thus, ∩

m∈MS1
m.seen ⊇ ∩

m∈MS
m.seen. Thus,

| ∩
m∈MS1

m.seen| ≥ a. There are two cases to consider:
〈5〉1. rk /∈ ∩

m∈MS1
m.seen

Let MS2 be the set of messages received by rd2 from processes in S2∩
S12. For any server pi ∈ S2∩S12, let m1i and m2i be the messages sent
by pi in MS1 and MS2 respectively. We know that m1i.ts = m2i.ts =
x. Since m1i is sent before m2i and the ts is the same in both messages,
m1i.seen ⊆ m2i.seen. Thus ∩

m∈MS1
m.seen ⊆ ∩

m∈MS2
m.seen. Since

every process which replies to rd2, first adds rk to its seen set, rk ∈
∩

m∈MS2
m.seen. Since rk /∈ ∩

m∈MS1
m.seen, it follows that | ∩

m∈MS2

m.seen| ≥ |∩
m∈MS1

m.seen|+1 ≥ a+1. Since |S2∩S12| ≥ S− (a+1)t,
the number of message in MS2 is at least S−(a+1)t. As a+1 ≤ R+1,
the predicate in line 19 in rd2 holds with a + 1. Thus, the timestamp
returned by rd2 is x = y + 1, a contradiction.

〈5〉2. rk ∈ ∩
m∈MS1

m.seen
Thus each server pi in S2∩S12 has sent at least one readack message
with ts = x to rk, before pi sent the MS1 message to rj . Since the
messages in MS1 are sent before the completion of rd1 (and hence,
before the invocation of rd2), rk has invoked at least one read before rd2.
Let rd2a be the last read of rk which precedes rd2. Since |S2 ∩ S12| ≥
S − (a + 1)t > t, there is at least one process pi in S2 ∩ S12 whose
readack message is received by rd2a, say message m. Now consider
the last readack message sent by pi to rk before rd2 is invoked, say
message m′. Since we know that pi sent a readack message with ts = x
to rk before sending a MS1 message (which was in turn sent before rd2
was invoked), from Lemma 1 it follows that m′ was sent with ts ≥ x.
We now claim that m = m′. By definition of m′, either m = m′ or
m′ is sent after m. Observe that pi checks counter[k] before replying
to rk . Thus, once m is sent by pi, counter[k] at pi is set such that pi

can only reply to those message of rk which are sent from rd2a or a
subsequent read of rk. Thus, if m′ is sent after m, then m′ is sent in
response to rd2a, or rd2, or a subsequent read of rk. This contradicts
the assumption that pi replies only once to rd2a (because channels do
not duplicate messages) and m′ is sent before rd2 is invoked. Thus rd2a
receives m = m′. We have already shown that m′ is sent with ts ≥ x.
Hence the highest ts received by rd2a is greater than or equal to x. It
follows that rd2 sends read messages with ts ≥ x. From Lemma 2, rd2
returns a timestamp greater than or equal to x. As x = y + 1, rd2 does

4See case 〈1〉2 for the definition of MS.
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not return y, a contradiction.
〈4〉2. a = R + 1

Since |{w, r1, ..., rR}| = R + 1 and | ∩
m∈MS

m.seen| ≥ a = R + 1, we have
rk ∈ ∩

m∈MS
m.seen. Observe that |S12| ≥ S − at > t. (Recall that S12 is

the set of processes which sent the messages that are in MS.) Substituting
MS1 by MS, and S2∩S12 by S12, in the argument for the previous case
(case 5〈2〉), we can show that rd2 returns a value greater than or equal to
x, a contradiction.

5. LOWER BOUND

The following proposition states that the resilience required by our fast implemen-
tation is indeed necessary.

Proposition 5. Let t ≥ 1 and R ≥ 2. If R ≥ S
t
−2, then there is no fast atomic

register implementation.

Preliminaries. Recall first that w denotes the writer, ri for 1 ≤ i ≤ R denote the
readers, and si for 1 ≤ i ≤ S denote the servers. Suppose by contradiction that
R ≥ S

t
− 2 and there is a fast implementation I of an atomic register. Given that

t ≥ S/(R + 2), we can partition the set of servers into R + 2 subsets (which we call
blocks), denoted by Bi (1 ≤ i ≤ R + 2), each of size less than or equal to t.5

Since the writer, any number of readers, and up to t servers might crash in our
model, the invoking process can only wait for reply messages from S − t servers.
Given that we assume a fast implementation, on receiving a read (or a write)
message, the servers cannot wait for messages from other processes, before replying
to the read (or the write) message. We can thus construct partial runs of a
fast implementation such that only read (or write) messages from the invoking
processes to the servers, and the replies from servers to the invoking processes, are
delivered in those partial runs. All other messages remain in transit. In particular,
no server receives any message from other servers, and no invoking process receives
any message from other invoking processes. In our proof, we only construct such
partial runs.

We say that an incomplete invocation inv skips a set of blocks BS in a partial
run, where BS ⊆ {B1, ..., BR+2}, if (1) no server in any block Bi ∈ BS receives any
read or write message from inv in that partial run, (2) all other servers receive
the read or the write message from inv and reply to that message, and (3) all
these reply messages are in transit. We say that a complete invocation inv skips a
block Bi in a partial run, if (1) no server in Bi receives any read or write message
from inv in that partial run, (2) all servers that are not in Bi receive the read or
write message from inv and reply to that message, and (3) the invoking process
receives all these reply messages and returns from the invocation.

5For instance, one such partition is: for 1 ≤ i ≤ R + 1, Bi = {sj | (b S
R+2
c(i − 1) + 1) ≤ j ≤

(b S
R+2
ci)}, and BR+2 = {sj | (b

S
R+2
c(R + 1)) ≤ j ≤ S}. However, if R > S − 2 then the above

partitioning is not possible. In that case we consider a system where, the number of readers is
S − 2 and the set readers is {r1, ..., rS−2}, and show the impossibility. The impossibility still
holds if we add more readers to this system (i.e., R > S − 2).
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Fig. 3. Partial runs: pri and 4pri

To show a contradiction, we construct a partial run of the fast implementation I
that violates atomicity: a partial run in which some read returns 1 and a subse-
quent read returns an older value, namely, the initial value of the register, ⊥.

Partial writes. Consider a partial run wr in which w completes write(1) on the
register. The invocation skips BR+2. We define a series of partial runs each of
which can be extended to wr. Let wrR+2 be the partial run in which w has invoked
the write and has sent the write message to all processes, and all write messages
are in transit. For 1 ≤ i ≤ R + 1, we define wri as the partial run which contains
an incomplete write(1) invocation that skips {BR+2} ∪ {Bj |1 ≤ j ≤ i − 1}. We
make the following simple observations: (1) for 1 ≤ i ≤ R, wri and wri+1 differ
only at servers in Bi, (2) wr is an extension of wr1, such that, in wr, w receives
the replies (that are in transit in wr1) and returns from the write invocation, and
hence, (3) wr and wr1 differ only at w.

Block diagrams. We illustrate a particular instance of the proof in Figure 3 and
Figure 4, where R = 3 and the set of servers are partitioned into five blocks, B1 to
B5. We depict an invocation inv through a set of rectangles, (generally) arranged
in a single column. In the column corresponding to some invocation inv, we draw a
rectangle in the ith row, if all servers in block Bi have received the read or write

message from inv and have sent reply messages, i.e., we draw a rectangle in the ith

row if inv does not skip Bi. (We present a slightly more detailed diagram of the
partial writes in Figure 1 in the optional appendix.)

Appending reads. Partial run pr1 extends wr by appending a complete read
by r1 that skips block B1. By atomicity, the read returns 1. Observe that r1

cannot distinguish pr1 from some partial run 4pr1, that extends wr2 by appending
a complete read by r1 that skips B1. To see why, notice that wr and wr2 differ at
w and at block B1, and r1 does not receive any message from these processes in
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B1

B2

B3

B4
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blocks that reply to the first read of r1 and r1 receives the replies

block that replies to the first read of r1 but r1 does not receive the replies

blocks that reply to the second read of r1 and r1 receives the replies

r2   r3  r1   r1

Fig. 4. Partial runs: prA, prB, prC and prD

both runs. Thus r1’s read returns 1 in 4pr1.
Starting from 4pr1, we iteratively define the following partial runs for 2 ≤ i ≤ R.
Partial run pri extends 4pri−1 by appending a complete read by ri that skips Bi.
Partial run 4pri is constructed by deleting from pri, all steps of the servers in block
Bi. Since the last read in pri by reader ri skips block Bi, ri cannot distinguish
pri from 4pri. More precisely, partial run 4pri extends wri+1 by appending the
following i reads one after the other:6 for 1 ≤ h ≤ i, rh does a read that skips
{Bj |h ≤ j ≤ i}. Figure 3 depicts block diagrams of pri and 4pri with R = 3. (The
deletion of steps to obtain 4pri from pri is shown by crossing out the rectangles
corresponding to the deleted steps.)
Reader r1’s read in 4pr1 returns 1. Since pr2 extends 4pr1, by atomicity, r2’s
read in pr2 returns 1. However, as r2 cannot distinguish pr2 from 4pr2, r2’s read
in 4pr2 returns 1. In general, since pri extends 4pri−1, and ri cannot distinguish
pri from 4pri (for all i such that 2 ≤ i ≤ R), it follows from a trivial induction
that ri’s read in 4pri returns 1. In particular, rR reads 1 in 4prR.

6The first i− 1 reads are incomplete whereas the last one is complete.
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Partial run prA. Consider the partial run 4prR: wrR+1 extended by appending
R reads by each reader rh (1 ≤ h ≤ R) such that rh’s read skips {Bj |h ≤ j ≤ R}.
The read by r1 is incomplete in 4prR: only servers in BR+1 and BR+2 send replies
to r1, and those reply messages are in transit. Observe that, in 4prR, only the
servers in BR+1 receive the write message from the write(1) invocation. Consider
the following partial run prA which extends 4prR as follows. After 4prR, (1) r1

receives the replies of its read messages from BR+2 (that were in transit in 4prR),
(2) the servers in B1 to BR receive the read message from r1 (that were in transit
in 4prR) and reply to r1, (3) reader r1 receives these replies from servers in B1 to
BR, and then r1 returns from the read invocation. (Notice that, r1 received replies
from R+1 blocks, and so, must return from the read.) However, r1 does not receive
the replies from servers in BR+1 (that were in transit in 4prR). Figure 4 depicts
block diagrams for prA with R = 3.

Partial run prB. Consider another partial run prB with the same communication
pattern as prA, except that write(1) is not invoked at all, and hence, servers in
BR+1 do not receive any write message (Figure 4). Clearly, only servers in BR+1,
the writer, and the readers r2 to rR can distinguish prA from prB . Reader r1 can-
not distinguish the two partial runs because it does not receive any message from
the servers in BR+1, the writer, or other readers. By atomicity, r1’s read returns
(the initial value of the register) ⊥ in prB because there is no write(∗) invocation
in prB , and hence, r1’s read returns ⊥ in prA as well.

Partial runs prC and prD. Notice that, in prA, even though r1’s read returns
⊥ after rR’s read returns 1, prA does not violate atomicity, because the two reads
are concurrent. We construct two more partial runs: (1) prC is constructed by
extending prA with another complete read by r1, which skips BR+1, and (2) prD

is constructed by extending prB with another complete read by r1, which skips
BR+1 (Figure 4). Since r1 cannot distinguish prA from prB , and r1’s second read
skips BR+1 (i.e., the servers which can distinguish prA from prB), it follows that r1

cannot distinguish prC from prD as well. Since there is no write(∗) invocation in
prD , r1’s second read returns ⊥ in prD , and hence, r1’s second read in prC returns
⊥. Since prC is an extension of prA, rR’s read in prC returns 1. Thus, in prC , r1’s
second read returns ⊥ and succeeds rR’s read which returns 1. Clearly, partial run
prC violates atomicity.

6. ARBITRARY FAILURE MODEL

An arbitrary failure can either correspond to a crash or a malicious behavior. A
process is malicious if it deviates from the algorithm assigned to it in a way that is
different from simply stopping all activities (crashing). We distinguish two resilience
thresholds: b and t [Lamport 2003]. Just as in the crash-stop model, a maximum
number of t processes can crash. However, out of these t processes, up to b processes
can be malicious. We therefore always have b ≤ t.

In the literature, the special case where b = t is usually considered. There are
several advantages of distinguishing these two thresholds. First, we highlight the
influence on the lower bounds of (1) the malicious behavior of the processes and (2)
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1: at the writer w

2: procedure initialization:
3: ts← 1, rCounter← 0
4: procedure write(v)
5: send (write, tsσw , rCounter) to all servers
6: wait until receivevalid(writeack, tsσw, ∗, rCounter) from S − t servers
7: ts← ts + 1
8: return(ok)

9: at each reader ri

10: procedure initialization:
11: ts← 0; rCounter ← 0; maxTSsgn ← 0
12: procedure read()
13: rCounter← rCounter + 1; ts← maxTSsgn

14: send(read, ts, rCounter) to all servers
15: wait until receivevalid(readack, ts′σw, seen′, rCounter), ts′ ≥ ts, ri ∈ seen′ from S − t

servers
16: rcvMsg← {m|ri received (readack, ∗, ∗, rCounter)}
17: maxTSsgn ← ts1σw | ts1 = Maximum{ts′| (readack, 〈ts′〉σw , ∗, rCounter) ∈ rcvMsg}
18: maxTSmsg ← {m|m.ts = maxTSsgn and m ∈ rcvMsg}
19: if there is a ∈ [1, R + 1] and there is MS ⊆ maxTSmsg s.t., (|MS| ≥ S − at − (a − 1)b)

and (| ∩
m∈MS

m.seen| ≥ a) then

20: return(maxTS)
21: else

22: return(maxTS − 1)

23: at each server pi

24: procedure initialization:

25: tssgn, ts← 0; seen← ∅; counter[0...R]← [0...0]
26: upon receivevalid(msgType, ts′σw , rCounter′) from q ∈ {w, r1, ..., rR} and rCounter′ ≥

counter[pid(q)] do

27: if ts′ > ts then

28: ts← ts′; tssgn ← ts′σw; seen← {q}
29: else

30: seen← seen ∪ {q}
31: counter[pid(q)]← rCounter′

32: if msgType = read then

33: send(readack, tssgn, seen, rCounter′) to q

34: else

35: send(writeack, tssgn, seen, rCounter′) to q

Fig. 5. Fast SWMR atomic register implementation with S > (R + 2)t + (R + 1)b

the processes’ non-responsiveness. In the boundary case, where b = 0, the failure
model becomes non-arbitrary, i.e., the traditional crash failure model. Hence, the
bounds derived in this paper for the general case with parameters b and t bridge
the gap between arbitrary and crash failure models, by establishing a result that is
applicable to both.

6.1 A Fast Implementation

We describe in this section a fast implementation in the arbitrary failure model
assuming S > (R + 2)t + (R + 1)b which is equivalent to R < S+b

t+b
− 2 (Figure 5).
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The algorithm is similar to the one presented in Section 4 except for a few key
differences. First of all, the writer digitally signs each value [Rivest et al. 1978].
Digital signatures allow us to make the following assumptions:

Property 1. Authentication: readers can check that a value returned by a

server was in fact written by the writer.

Property 2. Unforgeability: it is impossible to forge the digital signature of

the writer.

Apart from the addition of digital signatures, the write mechanism is unchanged
and the writer waits for the response of S − t servers.

Our read procedure begins with servers issuing a read message containing the
highest signed timestamp encountered in the previous read invocation (lines 13-14).
In a way, the reader writes back this timestamp, signed by the writer (tsσw), to
all servers. During the first read invocation, the reader issues a read message with
the default timestamp 0, which is also the initial timestamp at servers and writer.
We assume that this initial value is not digitally signed by the writer. Then, the
reader collects responses from S− t servers containing the latest timestamps signed
by the writer encountered by the servers (including the one being written back by
the reader). The reader then selects the highest timestamp, denoted by maxTSsgn

in Figure 2 (that will be written back by the reader in its next read invocation).
The mechanism of the read procedure is also very similar, except for the predicate

which checks if the latest value has been seen by a sufficient number of processes.
Consider the case of a write with timestamp ts that is followed by a read. In the first
partial run pr1, the write completes by writing ts at S − t servers, out of which at
least S−t−b are non-malicious, let this set of servers be S1. Subsequently, a reader
reads from a set S2 (of S − t servers) that overlaps at S − 2t − b (non-malicious)
servers with S1, i.e., misses t servers in S1. By atomicity, the read returns ts. In
the second partial run pr2, with a failure pattern different from pr1, the write is
incomplete and the writer writes ts only to S − 2t − b servers (possibly malicious)
in S1 ∩ S2. A subsequent reader that reads from S2 cannot distinguish pr1 from
pr2, and returns ts. If we extend each partial run with another read by a distinct
reader that misses t servers from S1 ∩ S2, and accounting for the possibility that
another b servers are malicious, it is easy to see that the new read has to return
ts, even if it sees ts at S − 3t − 2b servers that have already replied to both the
write and the first read. Thus the predicate for the read procedure is as follows: if
there is a ≥ 1 such that the reader receives maxTSsgn in at least S − at− (a− 1)b
messages, and there are at least a processes that are in the list seen of each of these
S − at − (a − 1)b messages, then the predicate is true.

We now prove the correctness of the fast implementation depicted in Figure 5.
We do not assume that the lines in Figure 5 are atomic: processes may crash in
the middle of a line or in between two lines. In particular, while sending messages
to a set of processes, the sending process may crash after sending messages to an
arbitrary subset. We assume that, if a process receives an incomplete message, the
process can detect that the message is incomplete, and ignores such a message.
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It is obvious that read and write procedures complete in one round-trip. To
show atomicity, we recall that the write procedure directly writes the timestamp.
Thus the conditions in Section 3.1 reduce to the following: (1) if a read returns,
it returns a non-negative integer, (2) if a read rd is complete and it succeeds some
write(k), then rd returns l such that l ≥ k, (3) if a read rd returns k (k ≥ 1), then
write(k) either precedes rd or is concurrent to rd, and (4) if some read rd1 returns
k (k ≥ 0) and a read rd2 that succeeds rd1 returns l, then l ≥ k. The proofs of the
first condition is trivial and it is not difficult to see that the third property holds,
having in mind the unforgeability property of the writer’s digital signature. Below,
we show the other two. In the proofs we refer to the global clock; however processes
do not access this global clock.

Lemma 6. If a non-malicious server s sets ts to x at time T , then s never sets

ts to a value that is lower than x after time T .

Proof: obvious from line 33.

Lemma 7. If a read() sends read messages with ts = x, then the read does not

return a value smaller than x.

Proof: recall that a read should return a value only if at most t servers are faulty
(liveness). Suppose read rd by ri sends a read message with ts = x. From line 33,
every readack message received by rd from a non-malicious server is with ts ≥ x.
Reader awaits for S − t readack messages before returning a value. Moreover,
reader discards all readack messages that have a timestamp less than x, as those
readack messages are clearly from malicious servers. Eventually, if there are at
most t server failures, rd receives readack messages from S − t non-malicious
servers. Let z be the maximum of those timestamps (i.e., maxTSsgn computed
in line 20). Clearly, z ≥ x. Notice that rd returns either z or z − 1. There are
the following two cases to consider. (1) If z > x, then clearly, the return value
is not smaller than x. (2) If z = x, then every readack message received by rd
has ts = x (as all readack that are received, and not discarded, are from non-
malicious servers) and has ri ∈ seen. Since rd receives S − t readack messages
from non-malicious servers, the predicate in line 22 of rd holds with a = 1. Hence,
rd returns x.

Lemma 8. If a read rd is complete and it succeeds some write(k), then rd returns

l such that l ≥ k.

Proof: suppose that write wr (by w) writes k and precedes read rd (by reader
rj). Let S1 be the set of S − t servers from which wr received writeack messages
in line 7, and let S2 be the set of S − t servers from which rd received readack

messages in line 18. Let S12 = S1 ∩ S2 and S12nm a subset of S12 that contains
only non-malicious servers. Obviously, |S12nm| ≥ S−2t−b. Let z be the maximum
timestamp received by rd from servers in S2. Observe that rd returns either z or
z − 1.
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When a non-malicious server in S1 replies to a write message from wr, its ts is k.
The server’s ts is not higher than k because, unless the writer receives writeack

from all servers in S1, it does not complete write(k), and hence, no timestamp
higher than k is present in the system until all servers in S1 reply to write(k).
From Lemma 6, non-malicious servers in S1 (and hence, in S12nm) reply ts ≥ k
to rd because write(k) precedes rd). Thus, the highest timestamp received by rd,
z ≥ k. There are the following two cases to consider:

—z > k
Since rd returns either z or z− 1, it follows that rd does not return a timestamp
lower than k.

—z = k
We know that every (non-malicious) server in S12nm replies to rd with ts ≥ k,
and z = k is the maximum timestamp received by rd from servers in S2 ⊇
S12 ⊇ S12nm. Thus every server in S12nm replies ts = k to rd. Let MS
be the set of readack messages sent by servers in S12nm to rd. Since every
server in S12nm replies ts = k to wr before sending ts = k to rd, for every
message m in MS, w ∈ m.seen. Furthermore, from line 36, rj ∈ m.seen. Thus,
{w, rj} ⊆ ∩

m∈MS
m.seen. As |S12nm| ≥ S − 2t− b, in rd, the predicate in line 22

holds with a = 2. Consequently, rd returns z = k.

Lemma 9. If some read rd1 returns x (x ≥ 0) and a read rd2 that succeeds rd1

returns y, then y ≥ x.

Proof: suppose that read rd1 by process rj returns x, read rd2 by process rk

returns z, and rd1 precedes rd2. Suppose rj = rk. Then, in the read immediately
after rd1, rj sends a read message with ts ≥ x, and hence, from Lemma 7, the read
returns a value greater than or equal to x. Using Lemma 7 and a simple induction,
we can derive that any read by rj which follows rd1 (including rd2) returns ts ≥ x.
So in the rest of the proof we assume that rj 6= rk.
Let S1 and S2 be the set of servers (of size S − t) from which reads rd1 and rd2,
respectively, receive S − t readack messages in line 18. Let TS1 be the highest
timestamp received by rd1 from processes in S1 (i.e., the maxTSsgn evaluated in
line 20of rd1). Similarly, let TS2 be the highest timestamp received by rd2 from
the processes in S2. There are the following two cases to consider:
〈1〉1. the predicate in line 20 does not hold in rd1.

It follows that x = TS1 − 1. Thus some servers have sent ts = TS1 = x + 1 to
rd1, and hence, write(x + 1) has started before rd1 is completed. Thus write(x)
has completed before rd1 is completed. Since rd1 precedes rd2, it follows that
write(x) precedes rd2. From Lemma 8, rd2 returns y ≥ x.

〈1〉2. the predicate in line 20 holds in rd1.
It follows that x = TS1, and there is some a ∈ [1, R + 1] such that there is a
set MS consisting of at least S − at − (a − 1)b messages received by rd1 with
ts = x and | ∩

m∈MS
m.seen| ≥ a. Let S12 ⊆ S1 be the set of servers which sent

the messages that are in MS. Since a ∈ [1, R + 1] and S > (R + 2)t + (R + 1)b,
|S12| = |MS| = S − at − (a − 1)b > t + b. There are the following two cases to
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consider:
〈2〉1. y = TS2

y = TS2. Since, |S12| > t + b and |S2| = S − t, there is a non-malicious server
pi ∈ S2∩S12. Since rd1 precedes rd2, pi first replies ts = x to rd1 then replies
to rd2. From Lemma 6, it follows that pi replies to rd2 with ts ≥ x. Thus the
highest ts in S2 (i.e., TS2 = y) is greater than or equal to x.

〈2〉2. y = TS2− 1
There are the following two subcases to consider:
〈3〉1. y + 1 6= x

As in case 〈2〉1, we can show that there is a non-malicious server pi ∈
S2 ∩ S12, and pi replies to rd2 with ts ≥ x. Thus the highest ts in S2 (i.e.,
TS = y + 1) is greater than or equal to x. Since y + 1 6= x, it follows that
y + 1 > x, and hence, y ≥ x.

〈3〉2. y + 1 = x
Consider the set of servers S2 ∩ S12. As |S12| = S − at − (a − 1)b and
|S2| = S − t, so |S2 ∩ S12 ∩ Snm| ≥ S − (a + 1)t − ab ≥ 1, where Snm is
a set of non-malicious servers (|Snm| ≥ S − b). Since rd1 precedes rd2 and
non-malicious processes in S12 replies ts = x to rd1, non-malicious processes
in S2 ∩ S12 reply to rd2 with ts ≥ x. Since y + 1 is the maximum ts in S2,
every non-malicious process in S2 ∩ S12 replies to rd2 with ts = x = y + 1.
There are the following two cases to consider:
〈4〉1. a ≤ R

Then |S2 ∩ S12 ∩ Snm| ≥ S − (a + 1)t − ab > t + b. Let MS1 be
the set of readack messages from processes in S2 ∩ S12 ∩ Snm (non-
malicious processes from S1 ∩ S12) to rd1. From the definition of MS1
and MS, MS1 ⊆ MS.7 Thus, ∩

m∈MS1
m.seen ⊇ ∩

m∈MS
m.seen. Thus,

| ∩
m∈MS1

m.seen| ≥ a. There are two cases to consider:
〈5〉1. rk /∈ ∩

m∈MS1
m.seen

Let MS2 be the set of messages received by rd2 from processes in S2∩
S12 ∩ Snm. For any (non-malicious) server pi ∈ S2 ∩ S12 ∩ Snm, let
m1i and m2i be the messages sent by pi in MS1 and MS2 respectively.
We know that m1i.ts = m2i.ts = x. Since m1i is sent before m2i

and the ts is the same in both messages, m1i.seen ⊆ m2i.seen. Thus
∩

m∈MS1
m.seen ⊆ ∩

m∈MS2
m.seen. Since every process which replies

to rd2, first adds rk to its seen set, rk ∈ ∩
m∈MS2

m.seen. Since rk /∈
∩

m∈MS1
m.seen, it follows that |∩

m∈MS2
m.seen| ≥ |∩

m∈MS1
m.seen|+1 ≥

a+1. Since |S2∩S12∩Snm| ≥ S−(a+1)t−ab, the number of message
in MS2 is at least S − (a + 1)t− ab. As a + 1 ≤ R + 1, the predicate in
line 22 in rd2 holds with a + 1. Thus, the timestamp returned by rd2
is x = y + 1, a contradiction.

〈5〉2. rk ∈ ∩
m∈MS1

m.seen
Thus each server pi in S2 ∩ S12 ∩ Snm has sent at least one readack

message with ts = x to rk , before pi sent the MS1 message to rj .
Since the messages in MS1 are sent before the completion of rd1 (and

7See case 〈1〉2 for the definition of MS.
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hence, before the invocation of rd2), rk has invoked at least one read
before rd2. Let rd2a be the last read of rk which precedes rd2. Since
|S2 ∩ S12 ∩ Snm| ≥ S − (a + 1)t − ab > t + b, there is at least one
process pi in S2 ∩ S12 ∩ Snm whose readack message is received by
rd2a, say message m. Now consider the last readack message sent
by pi to rk before rd2 is invoked, say message m′. Since we know that
pi sent a readack message with ts = x to rk before sending a MS1
message (which was in turn sent before rd2 was invoked), from Lemma 6
it follows that m′ was sent with ts ≥ x. We now claim that m = m′.
By definition of m′, either m = m′ or m′ is sent after m. Observe that
pi checks counter[k] before replying to rk. Thus, once m is sent by pi,
counter[k] at pi is set such that pi can only reply to those message of rk

which are sent from rd2a or a subsequent read of rk. Thus, if m′ is sent
after m, then m′ is sent in response to rd2a, or rd2, or a subsequent
read of rk. This contradicts the assumption that pi replies only once to
rd2a (because channels do not duplicate messages) and m′ is sent before
rd2 is invoked. Thus rd2a receives m = m′. We have already shown
that m′ is sent with ts ≥ x. Hence the highest ts received by rd2a is
greater than or equal to x. It follows that rd2 sends read messages
with ts ≥ x. From Lemma 7, rd2 returns a timestamp greater than or
equal to x. As x = y + 1, rd2 does not return y, a contradiction.

〈4〉2. a = R + 1
Since |{w, r1, ..., rR}| = R + 1 and | ∩

m∈MS
m.seen| ≥ a = R + 1, we have

rk ∈ ∩
m∈MS

m.seen. Observe that |S12| ≥ S−at−(a−1)b > t+b. (Recall
that S12 is the set of processes which sent the messages that are in MS.)
Substituting MS1 by MS, and S2∩ S12 by S12, in the argument for the
previous case (case 5〈2〉), we can show that rd2 returns a value greater
than or equal to x, a contradiction.

6.2 Optimality

The following proposition states that the resilience required by our fast implemen-
tation is indeed necessary.

Proposition 10. Let t ≥ 1, b ≥ 0 and R ≥ 2. If (R + 2)t + (R + 1)b ≥ S, then

there is no fast atomic register implementation.

This proof is similar to the one in Section 5: we suppose by contradiction that
(R + 2)t + (R + 1)b ≥ S and that there is a fast implementation I of an atomic
register (even with public key cryptography). We construct a partial run of the
fast implementation I that violates atomicity: a partial run in which some read
returns 1 and a subsequent read returns an older value, namely, the initial value of
the register, ⊥. This run is different from the one in the previous proof.

Partial writes. Note that we assume that writer writes digitally signed informa-
tion to servers, and that arbitrarily faulty servers cannot forge the writers signature.
Consider a partial run wr in which w completes write(1) on the register. The invo-
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cation skips TR+2. We define a series of partial runs each of which can be extended
to wr. Let wrR+2 be the partial run in which w has invoked the write and has
sent the write message to all processes, and all write messages are in transit.
For 1 ≤ i ≤ R + 1, we define wri as the partial run which contains an incomplete
write(1) invocation that skips {TR+2} ∪ {Tj |1 ≤ j ≤ i − 1} ∪ {Bj |1 ≤ j ≤ i − 1}.
We make the following simple observations: (1) for 1 ≤ i ≤ R, wri and wri+1 differ
only at servers in Ti∪Bi, (2) wr is an extension of wr1, such that, in wr, w receives
the replies (that are in transit in wr1) and returns from the write invocation, and
hence, (3) wr and wr1 differ only at w.
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Fig. 6. Partial runs pri and 4pri

Block diagrams. We illustrate a particular instance of the proof in Figure 6
and Figure 4 (unchanged from Section 5), where R = 3 and the set of servers are
partitioned into nine blocks, T1 to T5 and B1 to B4. We depict an invocation inv
through a set of rectangles, (generally) arranged in a single column. In the column
corresponding to some invocation inv, we draw a rectangle in the ith row, if all
servers in block Bi have received the read or write message from inv and have
sent reply messages, i.e., we draw a rectangle in the ith row if inv does not skip Bi.
In partial run pri, we denote the failure of Bi by @ (Bi “looses its memory”).
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Appending reads. Partial run pr1 extends wr by having block B1 failing arbi-
trarily upon completion of write(1) and appending a complete read by r1 that skips
block T1. B1 fails in such a way that it behaves as if it never any message (i.e., a
message from invocation write(1)). We say that B1 fails and loses its memory. Ob-
serve that r1 cannot distinguish pr1 from some partial run 4pr1, that extends wr2

by appending a complete read by r1 that skips T1. To see why, notice that wr and
wr2 differ at w and at blocks T1 and B1, and r1 does not receive any message from
process w and block T1 in both runs and it received the same message from block
B1 in both runs. By liveness property, r1’s read in 4pr1 must return some value x
(as it cannot wait for the completion of the writer’s invocation, nor a message from
w). As r1 cannot distinguish 4pr1 from pr1, it returns the same value x in pr1 as
well, and by atomicity, in pr1 x must equal 1. Therefore, in 4pr1 r1 also returns 1.
Starting from 4pr1, we iteratively define the following partial runs for 2 ≤ i ≤ R.
Partial run pri extends 4pri−1 by: (1) block Bi failing arbitrarily in such a way that
it behaves as if it never received any message (loses memory) and (2) appending a
complete read by ri that skips Ti. Partial run 4pri is constructed by deleting from
pri, all steps of the servers in block Ti and all steps of servers in block Bi up to
the instant in which Bi lost its memory (including that particular step). Since the
last read in pri by reader ri skips block Ti, ri cannot distinguish pri from 4pri,
as in both runs ri receives the same messages from Bi. More precisely, partial run
4pri extends wri+1 by appending the following i reads one after the other:8 for
1 ≤ h ≤ i − 1, rh does a read that skips {Tj |h ≤ j ≤ i} ∪ {Bj |h + 1 ≤ j ≤ i}
and ri does a (complete) read that skips Ti. Figure 6 depicts block diagrams of pri

and 4pri with R = 3. (The deletion of steps to obtain 4pri from pri is shown by
crossing out the rectangles corresponding to the deleted steps.)
Reader r1’s read in 4pr1 returns 1. By liveness requirements in 4pr2 r2 must
return some value, say x2. However, as r2 cannot distinguish pr2 from 4pr2, so it
must return a value x2 in pr2, as well. Since pr2 extends 4pr1, by atomicity, r2’s
read in pr2 must return x2 = 1. Therefore, r2’s read in 4pr2 returns 1. In general,
since pri extends 4pri−1, and ri cannot distinguish pri from 4pri (for all i such
that 2 ≤ i ≤ R), in which it must return a value, it follows from a trivial induction
that ri’s read in 4pri returns 1. In particular, rR reads 1 in 4prR. Moreover, note
that in 4prR no server is faulty.

Partial run prA. Consider the partial run 4prR: wrR+1 extended by appending
R reads by each reader rh (1 ≤ h ≤ R − 1) such that rh’s read skips {Tj |h ≤
j ≤ R − 1} ∪ {Bj |h + 1 ≤ j ≤ R − 1} and a read by reader rR skips TR only.
The read by r1 is incomplete in 4prR: only servers in B1, TR+1, BR+1 and TR+2

send replies to r1, and those reply messages are in transit. Observe that, in 4prR,
only the servers in TR+1 and BR+1 receive the write message from the write(1)
invocation. Consider the following partial run prA which differs from the 4prR in
the following: (0) Upon reception of message from write(1) invocation, BR+1 fails
arbitrarily in such a way that, from that point on, it sends replies to all processes
but r1 as if it was not faulty, and to r1 as if it never received a write(1) message.

8The first i− 1 reads are incomplete whereas the last one is complete.
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Moreover, after completion of read by rR, (1) r1 receives the replies of its read

messages from TR+2 and B1 (that were in transit in 4prR) and BR+1 (the faulty
ones), (2) the servers in T1 to TR and B2 to BR receive the read message from r1

(that were in transit in 4prR) and reply to r1, (3) reader r1 receives these replies
from servers in T1 to TR and B2 to BR, and then r1 returns from the read in-
vocation. (Notice that, r1 received replies from all blocks but TR+1, and so, must
return from the read. However, r1 does not receive the replies from servers in TR+1.

Partial run prB. Consider another partial run prB with the same communica-
tion pattern as prA, except that write(1) is not invoked at all and block BR+1 is
not faulty. Hence, servers in TR+1 do not receive any write message (Figure 4).
Clearly, only servers in TR+1, BR+1, the writer, and the readers r2 to rR can dis-
tinguish prA from prB . Reader r1 cannot distinguish the two partial runs because
it does not receive any message from the servers in TR+1, the writer, or other
readers and it receives the same message from the servers in BR+1 in both runs.
By atomicity, r1’s read returns (the initial value of the register) ⊥ in prB because
there is no write(∗) invocation in prB , and hence, r1’s read returns ⊥ in prA as well.

Partial runs prC and prD. Notice that, in prA, even though r1’s read returns
⊥ after rR’s read returns 1, prA does not violate atomicity, because the two reads
are concurrent. We construct two more partial runs: (1) prC is constructed by
extending prA with another complete read by r1, which skips TR+1, and (2) prD

is constructed by extending prB with another complete read by r1, which skips
TR+1 (Figure 4). Since r1 cannot distinguish prA from prB , and r1’s second read
skips TR+1 (i.e., the servers which can distinguish prA from prB), it follows that r1

cannot distinguish prC from prD as well. Since there is no write(∗) invocation in
prD , r1’s second read returns ⊥ in prD , and hence, r1’s second read in prC returns
⊥. Since prC is an extension of prA, rR’s read in prC returns 1. Thus, in prC , r1’s
second read returns ⊥ and succeeds rR’s read which returns 1. Clearly, partial run
prC violates atomicity.

7. MULTIPLE WRITERS

The atomicity definition presented in Section 3 extends to multi-writer multi-reader
(MWMR) registers as well. In the impossibility proof below, we use two simple
properties of MWMR atomic register which can be easily deduced from atomicity.
In any partial run (property P1) if a write wr that writes v, precedes some read
rd, and all other writes precede wr, then if rd returns, it returns v, and (property
P2) if there are two reads such that all writes precede both reads, then the reads
do not return different values.

The proposition below states that there cannot exist a fast multi-writer atomic
register implementation. The proof is written for the crash-stop model. But by
extension the impossibility directly applies to the malicious failure model.

Proposition 11. Let t ≥ 1, W ≥ 2, R ≥ 2. Any atomic register implementa-

tion has a run in which some complete read or write is not fast.
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Proof: it is sufficient to show the impossibility in a system where W = R = 2,
and t = 1. Let the writers be w1 and w2, and the readers be r1 and r2. Let s1 to
sS be the servers. Suppose by contradiction that there is a fast implementation of
an atomic register in this system. To show the desired contradiction, we construct
a series of runs, each consisting of two writes followed by a read.
Since the writer, any number of readers, and up to t servers might crash in our
model, the invoking process can only wait for reply messages from S − t servers.
Given that we assume a fast implementation, on receiving a read (or a write)
message, the servers cannot wait for messages from other processes, before replying
to the read (or the write) message. We can thus construct partial runs of a
fast implementation such that only read (or write) messages from the invoking
processes to the servers, and the replies from servers to the invoking processes, are
delivered in those partial runs. All other messages remain in transit. In particular,
no server receives any message from other servers, and no invoking process receives
any message from other invoking processes. In our proof, we only construct such
partial runs.
We say that a complete invocation inv skips a server si in a partial run if every
server distinct from si receives the read or the write message from inv and replies
to that message, inv receives those replies and returns, and all other messages are in
transit. In other words, only si does not receive read or write message from inv.
Since t = 1, any complete invocation may skip at most one server. If a complete
invocation does not skip any servers, we say that the invocation is skip-free.
Consider a partial run run1 constructed with the following three non-overlapping
invocations: (1) a skip-free write(2) by w2, that precedes (2) a skip-free write(1)
by w1, that in turn precedes (3) a skip-free read() by r1. From property P1, the
read returns 1.
We now construct a similar partial run run2 in which the order of the two writes are
interchanged: (1) a skip-free write(1) by w1, that precedes (2) a skip-free write(2)
by w2, that in turn precedes (3) a skip-free read() by r1. From property P1, the
read returns 2.
Consider a series of partial runs runi, where i varies from 1 to S+1. We define run1

to be run1. We iteratively define the remaining partial runs. We define runi+1 to
be identical to runi except in the following: si receives the write message (and
replies to that message) from w1 before the message from w2 (i.e., the replies of si

are sent in the opposite order in ri+1 from that in run1). Since servers do not receive
any message from other servers in the partial runs we construct, the only server
that can distinguish runi from runi+1 is si. Also w1, w2 and r1 can distinguish the
two partial runs. It is easy to see that no server can distinguish runS+1 from run2,
and hence, r1 can not distinguish between the two runs as well. Thus r1 returns 2
in runS+1, and runS+1 and run2 differ only at w1 and w2. Since r1 returns 1 in
run1, 2 in rS+1, and either 1 or 2 in runi (2 ≤ i ≤ S), there are two partial runs,
runi1 and runi1+1, such that 1 ≤ i1 ≤ S and the read by r1 returns 1 in runi1 and
returns 2 in runi1+1.
Consider a partial run run′ which extends runi1 with a read by r2 that skips si1.
From property P2, it follows that r2 returns 1. Similarly we construct a partial run
run′′ which extends runi1+1 with a read by r2 that skips si1. Recall that, only w1,
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w2, r1 and si1 can distinguish runi1 from runi1+1. Since r2 skips si1 in both run′

and run′′, r2 cannot distinguish the two partial runs. Thus r2 returns 1 in run′′.
However, r1 returns 2 in runi1+1, and hence, in returns 2 in run′′ as well. Clearly,
runi1+1 violates property P2.

To see why the above proof does not apply to the single writer case, observe that
in most partial runs in the above proof, the two writes are concurrent. However,
in our system model, a process can invoke at most one invocation at a time. Thus
we cannot construct partial runs with concurrent writes in the single-writer case.

8. WHEN “ATOMIC READS MUST WRITE”

Our results revisit, in a message passing context, the folklore theorem that “atomic
reads must write”, borrowed from the shared-memory context [Lamport 1986; At-
tiya and Welch 1998]. In particular, a result from [Attiya and Welch 1998] states
that, to simulate a multi-reader atomic register from single-reader atomic registers,
at least one of the readers must write into some single-reader register. Along the
same lines, when implementing atomic registers over weaker regular 9 ones [Lam-
port 1986], a process that reads a value v also needs to write it, in order to make
sure that no other process will subsequently read an older value v′: with a regular
register, even if a value v′ is written before a value v, v might be read before v′,
which is impossible with an atomic register.

Recently, [Fan and Lynch 2003] has shown that, in a message-passing system,

9A regular register is like an atomic register except when there is concurrency: a a reader might

not return the last value written.
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every atomic read must modify the state of at least t servers, which might be in-
terpreted as a need for a second communication round-trip. However, in such a
system, any message received by a server can potentially modify the server’s state.
Hence, a read can modify at least S − t > t servers (assuming a majority of correct
servers) in one round-trip. In fact, processes (servers) are smarter than basic (reg-
ular or single-reader) registers and might intuitively do a lot in one communication
round-trip.

Our results also draw a sharp line between the time-complexity of regular [Lam-
port 1978] and atomic register implementations. For instance, in the crash-only
model, there is a fast implementation of an SWMR regular register if and only if
t < S/2, irrespective of the number of readers (as long as this number is finite). In
this model, we show that a fast implementation of a SWMR atomic register exists
if and only if t < S

R+2
. However, since fast atomic registers have exactly the same

time-complexity as regular registers they are clearly the most interesting option
where only a few readers are necessary. In an application where a high number of
readers (or writers) are required a trade-off needs to be made. A regular register
will provide speed at the expense of consistency and an atomic register will provide
better consistency guarantees at the expense of speed.

9. SUMMARY

This paper establishes the exact conditions required for a fast implementation of
an atomic read-write data structure, also called a register.

In the case of multiple writers, we proved that a fast implementation is impossible
even if only one server can fail, and it can only do by crashing.

In the case of a single-writer where t out of S servers can fail by crashing, the
number of readers must be smaller than S/t − 2. In the general arbitrary failure
model, this number must be smaller than (S + b)/(t + b) − 2 where up to b out of
t servers can be malicious.
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