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Abstract—In this paper, we use polyharmonic B-splines to build
multidimensional wavelet bases. These functions are nonseparable,
multidimensional basis functions that are localized versions of ra-
dial basis functions. We show that Rabut’s elementary polyhar-
monic B-splines do not converge to a Gaussian as the order param-
eter increases, as opposed to their separable B-spline counterparts.
Therefore, we introduce a more isotropic localization operator that
guarantees this convergence, resulting into the isotropic polyhar-
monic B-splines. Next, we focus on the two-dimensional quincunx
subsampling scheme. This configuration is of particular interest
for image processing because it yields a finer scale progression than
the standard dyadic approach. However, up until now, the design of
appropriate filters for the quincunx scheme has mainly been done
using the McClellan transform. In our approach, we start from
the scaling functions, which are the polyharmonic B-splines and,
as such, explicitly known, and we derive a family of polyharmonic
spline wavelets corresponding to different flavors of the semi-or-
thogonal wavelet transform; e.g., orthonormal, B-spline, and dual.
The filters are automatically specified by the scaling relations sat-
isfied by these functions. We prove that the isotropic polyharmonic
B-spline wavelet converges to a combination of four Gabor atoms,
which are well separated in the frequency domain. We also show
that these wavelets are nearly isotropic and that they behave as an
iterated Laplacian operator at low frequencies. We describe an ef-
ficient fast Fourier transform-based implementation of the discrete
wavelet transform based on polyharmonic B-splines.

Index Terms—Gabor wavelets, isotropy, multiresolution anal-
ysis, polyharmonic B-splines, quincunx lattice, rotation invariance,
scaling functions, wavelets.

I. INTRODUCTION

MULTIRESOLUTION analysis has proved to be a pow-
erful framework for providing time-frequency localized

expansions with applications in many areas of signal processing.
The well-known one-dimensional (1-D) algorithm for the dis-
crete wavelet transform corresponds to a two-channel filterbank:
It splits the signal into two subsampled channels (at the anal-
ysis side), and it offers perfect reconstruction after upsampling
and filtering again at the synthesis side. The wavelet transform
can also be formulated in the continuous time domain, an ap-
proach that is often favored by mathematicians [1], [2]. Instead
of working directly with the filters, this representation considers
continuously defined basis functions, i.e., scaling functions and
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wavelets. Recently, it has been demonstrated that the scaling
function can always be expressed as a convolution of a B-spline
(its regular part) and a residual distribution without order nor
smoothness [3].

In the context of image processing, the most frequently used
two-dimensional (2-D) wavelet transforms are separable; their
basis functions and filters are simply tensor products of the 1-D
ones. Unfortunately, these decompositions introduce preferred
(vertical and horizontal) directions and create a “diagonal” cross
term that does not have a straightforward interpretation. This
has motivated researchers to design better nonseparable wavelet
transforms. One option is to privilege angular selectivity. Nu-
merous directional wavelet transforms, both frames (i.e., re-
dundant) and bases (i.e., nonredundant), have been proposed
[4]–[11]. Such representations can serve to sparsely represent
essential image features such as edges combined with their ori-
entation. Another interesting option, which has received less at-
tention, is to emphasize isotropy. A strong motivation for this
kind of design is that many standard image processing algo-
rithms exploit the rotation-invariant properties of filters such as
the Gaussian and Laplacian.

Our construction starts from radial basis functions (RBFs),
which are isotropic versions of power functions. Rabut has in-
troduced a scheme to produce basis functions that are local-
ized versions of these RBFs—the so-called “elementary poly-
harmonic B-splines.” These B-splines share many interesting
properties with their classical 1-D counterparts. While studying
these functions we discovered that, contrary to our expectations,
they fail to converge to a Gaussian as the order increases. Since
it is very desirable to have Gaussian-like basis functions, which
are isotropic and optimally localized in space frequency in the
sense specified by the uncertainty principle, we decided to fur-
ther investigate this issue. This led us to the construction of the
“isotropic polyharmonic B-splines,” which is presented in Sec-
tion II. Our scheme utilizes a more isotropic discretization of the
Laplacian operator, which guarantees the desired Gaussian con-
vergence property. The generalization remains valid in higher
dimensions as well.

The isotropic polyharmonic B-spline is an interesting candi-
date to be used as a scaling function for a wavelet decomposi-
tion. First, it has been shown that any multidimensional scaling
function of order can be represented as the convolution of
a polyharmonic B-spline of order and a distribution with a
bounded Fourier transform [12], [13]. It is the polyharmonic
B-spline that brings all the desirable mathematical properties.
Second, the isotropic polyharmonic B-spline satisfies a wide va-
riety of scaling relations; in fact, many more than the classical
dyadic ones. Here, we will focus on a particularly interesting
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one in two dimensions: the quincunx subsampling scheme. This
scheme provides a more progressive transition through scale
than the dyadic subsampling scheme [14]–[19]. For each iter-
ation, the number of samples is halved, so a single wavelet can
be used to characterize each bandpass subband. Up to now, most
research for quincunx subsampling has focused on filterbank de-
sign and it has been difficult to define general wavelet families,
as in one dimension, due to the lack of multivariate factorization
theorems. One popular option to circumvent this difficulty is to
use the McClellan transform that maps a 1-D design into a 2-D
one [20]–[22].

In Section III, we consider an alternative approach and intro-
duce new wavelet bases for the quincunx subsampling scheme
based on the 2-D isotropic polyharmonic B-splines. Specif-
ically, we present a semi-orthogonal design procedure that
yields a complete family of polynomial isotropic polyharmonic
B-spline wavelets. We demonstrate that these wavelets form
Riesz bases and that they qualitatively behave as a th-order
Laplacian operator for low frequencies, which is isotropic once
more. We also prove that one particular wavelet—the isotropic
polyharmonic B-spline wavelet—converges to the sum of four
Gabor atoms as the order increases. Additionally, it behaves
as (fractionally) iterated Laplacian (and, therefore, isotropic)
operator for low frequencies. Clearly, in our design, the con-
tinuously defined functions (scaling functions and wavelets)
play a central role. Nevertheless, the associated filters, which
are required to implement the transform, are automatically
defined. Explicit formulas are given in the Fourier domain. The
implementation of the discrete wavelet transforms is presented
in Section IV.

II. POLYHARMONIC B-SPLINES

A. Univariate Case: B-Spline Basis Functions and Signal
Spaces

The construction of the polyharmonic B-splines is best ex-
plained by using the analogy with the standard 1-D B-splines.
In particular, we consider the symmetric B-spline of odd degree

. Its Fourier transform is given by

(1)

We recognize the localization filter as the numerator and the
power function as the denominator. In the spatial domain, such a
B-spline can be regarded as a localized version of the two-sided
power function [23]. Consequently, the B-splines are
piecewise polynomials.

The B-splines span the integer-shift-invariant signal space

(2)

where are coefficients that are used as weights for the
shifted basis functions. The notation stands for the sum of

all . An essential property [24] of each spline signal
of is that they satisfy

(3)

In fact, the two-sided power function is the symmetric
Green function (or fundamental solution) of the differential op-
erator in (3), i.e., the solution of the differential operator that
gives . This implies, among other things, that the signal
space is also spanned by shifted versions of
[23]. Another important observation is that the localization filter
of the B-spline, represented by the numerator of (1), is the most
elementary discretization of the corresponding “ideal” differen-
tial operator ( th iterate of a second derivative).

B. Polyharmonic Case: From RBFs to B-Splines

Historically, the first extension of the univariate spline prin-
ciples to dimensions—next to tensor products—consists of
building splines that satisfy

(4)

where denotes the Laplacian operator. As in
the 1-D case, such splines can be represented as linear com-
binations of shifted Green functions of the -iterated Laplacian,
which are known to be

(5)

where and are some suitable constants ( is zero
when is even, while is zero otherwise). The func-
tions are better known as generalized thin plate splines, an
interesting class of RBFs) Each spline in the space spanned by
this type of RBFs can be written as

(6)

and will necessarily satisfy (4). Often a polynomial of degree
is added to the right-hand side of (6), however, on the

(infinite) Cartesian grid , this polynomial is automatically
included in the closure of the span of the RBFs. These splines
have been studied intensively for (finite) scattered data interpo-
lation [25]–[31] and also for the representation of signals on a
uniform grid [32]–[34]. Probably, the earliest example has been
given by Harder [25], which corresponds to and .

The direct application of RBFs to interpolation, as in (6),
poses various theoretical and practical difficulties. Therefore, it
is interesting to look for better conditioned basis functions, such
as B-splines, that span the same signal space but are essentially
localized. Rabut [35] defined “elementary -harmonic cardinal
B-splines”1 by choosing the localization filter as the most ele-
mentary discretization of the Laplacian.

1Rabut introduced this terminology: “elementary” to emphasize that they are
obtained by using the most elementary discretization of the Laplacian operator;
“m-harmonic” since they are in the span of the fundamental solution of� f =

� (see, also, [32] and [33]); “cardinal” due to the uniform grid; and “B-splines”
since they are “bell-shaped” and regularize the Dirac distribution.
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Fig. 1. (a) Filter coefficients for Rabut’s 2-D discretization of the Laplacian operator (m = 1;  = 2). (b) Filter coefficients for the isotropic 2-D discretization
of the Laplacian operator. (c) Filter coefficients for Rabut’s 3-D discretization of the Laplacian operator. (d) Filter coefficients for the isotropic 3-D discretization
of the Laplacian operator.

Definition 1 (Elementary -Harmonic Cardinal
B-Splines): Their definition in the Fourier domain is
remarkably similar to the univariate case

(7)

with . The parameter is an
integer with .

In Fig. 1(a) and (c), we show the discretized Laplacian op-
erator for the 2-D and three-dimensional (3-D) case.
From now on, we prefer to denote the polyharmonic B-splines
by their order of approximation, which is given by (see
later). Therefore, we denote them also as . The
signal space generated by , which is the same as that spanned
by RBFs of degree , can be written as

(8)

The polyharmonic B-splines defined in this way satisfy most
of the properties of the conventional B-splines: close resem-
blance of their definition in the Fourier domain, convolution re-
lation , partition of unity, total positivity

. These splines are also reported to be “bell-shaped”
functions. Unfortunately, and despite the fact that they are gen-
erated by multiple convolutions, they do not converge toward a
Gaussian as the order increases.

Proposition 1: The elementary -harmonic cardinal
B-splines violate the conditions for the applicability of the
central limit theorem and do not converge toward a Gaussian as
the order increases.

Proof: The central limit theorem guarantees the conver-
gence of iterated convolutions to a Gaussian. However, it re-
quires a well-defined second-order moment. The second-order
moment can be identified in the Fourier domain by considering
the Taylor series development of for

(9)

The second term is not twice continuously differentiable at ,
which implies that the second-order moment does not exist.2

Following the outline of the proof of the central limit theorem,
we can find the limiting function, using (9), as

as

which, clearly, is not a Gaussian.
Rabut [36] also defined “ th level -harmonic cardinal

B-splines” that were primarily designed to be improved
quasi-interpolants, i.e., functions that interpolate polynomials
of higher degree than the elementary versions. The higher
level polyharmonic splines only converge toward a degenerated
Gaussian, namely a Dirac distribution.

C. Isotropic Polyharmonic B-Splines

The discretization of the Laplacian operator corresponding to
the numerator of (7) uses the least possible number of filter co-
efficients. The downside of this approach is the nonconvergence
to a Gaussian, which can be explained by a lack of isotropy
of the discrete approximation of the Laplacian. This motivates
us to introduce the “isotropic polyharmonic B-splines” using
a slightly different, but more isotropic, discretization of the
Laplacian operator. Strictly speaking, these B-splines are only
quasi-isotropic, but they do become more and more isotropic
as the order increases. Notationally, we usually specify a filter

, by its -transform as

where is a shortcut notation for . We obtain its fre-
quency response by putting , i.e., .

Definition 2 (Isotropic Polyharmonic B-Splines): For
and , the isotropic polyharmonic B-splines of order are

defined in the Fourier domain as

(10)

2For the 2-D case, it is instructive to switch to polar coordinates, which
amounts to replacing (! ; ! ) by (r cos(� ); r sin(� )) in (9).
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Fig. 2. Two-dimensional example of polyharmonic B-splines of fifth-order (N = 2;  = 5). (a) The elementary polyharmonic B-spline. (b) The isotropic
polyharmonic B-spline.

where and

(11)

The second term in is a slight change of the elemen-
tary localization operator, but is essential to ensure the Gaussian
convergence. Moreover, using standard trigonometric formulæ,
one checks that is positive for , because it can
be expressed as a sum of positive quantities

For , it would be necessary to include higher order terms
for the localization filter to be strictly positive—when ,
the present filter vanishes at which makes the
lower Riesz bound ill defined (see Section II-D2).

Proposition 2: The isotropic polyharmonic B-splines con-
verge to a Gaussian as the order increases.

Proof: Reconsider the development of the elementary
polyharmonic B-splines of (9). Clearly, for the second term to be
isotropic, its numerator should be proportional to .
This can be obtained by adding the missing crossterms to

. It can be verified that the new numerator proposed
in (10) results into

as (12)

The second-order moment is now a constant , irrespec-
tive of the direction. This property ensures that the isotropic
polyharmonic B-splines rapidly converge to a Gaussian as the
order increases.

We want to show the effect of the isotropic discretization of
the Laplacian (i.e., for ), as compared to the elementary

discretization. In the 2-D case, the adjustment term of the lo-
calization filter introduces new knots at the corners of the 3 3,
see Fig. 1(b). Interestingly, the proposed isotropic discretization
of the Laplacian can also be seen3 as the particular combination

where represents the elementary discretization along the
axes [i.e., the numerator of (7) for ]

and the elementary discretization along the diagonals

For the 3-D case, we notice that not all coefficients of the
3 3 3 cube are required, see Fig. 1(d).

From now on, we consider the definition of the isotropic poly-
harmonic B-splines for any fractional-order with

, since this extension does not present any theoretical diffi-
culty, as long as we work in the Fourier domain. In Fig. 2, we
show the 2-D elementary and isotropic polyharmonic B-spline
for , respectively. These functions are easy to evaluate nu-
merically, for any order , by resampling (10) with a sufficient
number of points and applying an inverse fast Fourier transform
(FFT).

D. Key Properties

We now present the key properties of the polyharmonic
B-splines (both the elementary and the isotropic ones). When
necessary, we make a distinction between both.

1) Partition of Unity: The partition of unity property guar-
antees that the polyharmonic B-splines reproduce the constant

(13)

This can be established directly by checking that the condition
on the righthand side is verified.

3We thank an anonymous reviewer for this remark.
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2) Riesz Basis: The polyharmonic B-splines
generate a Riesz basis, i.e., there exist two constants

such that

(14)

This condition is equivalent to

(15)

where is the Fourier transform of the autocorrelation
sequence , i.e.,

(16)

(17)

Using the convolution property of the polyharmonic B-spline,
we can rewrite the autocorrelation filter as

(18)

Given that and that the continuous func-
tion does not vanish inside , the existence
of a lowerbound is trivial. The existence of the upperbound is
also garanteed by the uniform convergence of the sum (18) as
shown in Appendix I. As a sidenote, we would like to point out
that there is a surprising connection between this autocorrela-
tion filter and the so-called Epstein Zeta function which finds
applications in crystallography (see [37]), in number theory (see
[38]), and in quantum field theory (see [39]).

3) Orthonormal and Dual Flavors: The polyharmonic
B-splines can be orthonormalized such that

(19)

The Fourier expression of is given by

(20)

Analogously, one can define the dual polyharmonic B-spline as
the unique function that is biorthonormal to .
In the Fourier domain, this yields

(21)

The dual splines are important since they allow us to specify
the orthogonal projection of an -function onto ;
that is, the function of that approximates “best.”
Specifically, the projection can be written equivalently
as

4) Spatial Decay: Unlike traditional B-splines (1-D or the
tensor product extension) of integer order, the polyharmonic
B-splines are not compactly supported. Rabut has
shown that the elementary polyharmonic B-splines decay like

as . The proof in [35, Th. 2] is quite
technical but can be extended. First, when is not an even in-
teger, the spatial decay becomes . Second,
for the isotropic polyharmonic B-splines, the new discretization
of the Laplacian operator improves the smoothness of
around by orders, which, in turn, increases the spa-
tial decay of by two orders, at least for sufficiently
large. Therefore, we obtain a decay. This
faster decay property is another indication that the isotropic
basis functions are better localized.

5) Asymptotic Convergence: As a result of the central limit
theorem and Proposition 2, we also know that the isotropic poly-
harmonic B-spline tend to the following isotropic Gaussian as

increases

(22)

whose standard deviation is . The normalized
squared difference between and its Gaussian limiting func-
tion is below 5% for . For the case of Fig. 2(b), the
difference barely reaches 3%.

Consequently, the order provides a tuning parameter for the
size of the support, allowing us to search for an optimal tradeoff
between spatial and spectral selectivity. Due to the convergence
to a Gaussian, the isotropic polyharmonic B-splines tend to be
asymptotically optimally localized in the sense of the Heisen-
berg uncertainty principle. More precisely, the product of their
spatial and spectral bandwidth, defined as

with (23)

reaches the minimum as increases.
6) Order of Approximation: Similar to classical B-splines,

polyharmonic B-splines can approximate a given (well-be-
haved) function to any required accuracy by projecting it
onto a rescaled spline space with step size . This property is
related to the rate of decrease when the sampling grid gets finer
of the approximation error between , where and its

th derivative are in , and the best polyharmonic B-spline
representation

(24)

where the constant depends on and , but not on . Given their
Fourier definition, it is easy to show that

for

(25)

which implies that the order of approximation for polyharmonic
B-splines corresponds to [40], [41], thus justifying our termi-
nology and notation for the th-order polyharmonic B-spline

.
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Fig. 3. Quincunx subsampling scheme for two iterations.

III. MULTIRESOLUTION ANALYSIS

In this section, we investigate the multiresolution properties
of the polyharmonic B-splines. Madych [42], [43] showed
already that certain polyharmonic splines are perfectly valid
scaling functions. Micchelli et al. [44] constructed pre-wavelets
from (elliptic) polyharmonic B-splines for dyadic subsampling
schemes. Here we will start from the isotropic polyharmonic
B-splines to build semi-orthogonal wavelet bases. First, we
briefly show that isotropic polyharmonic B-splines are admis-
sible scaling functions that satisfy a whole variety of scaling
relations. We then concentrate on the 2-D quincunx subsam-
pling scheme. When necessary, we will emphasize instances
where we encounter an important difference between the ele-
mentary polyharmonic B-splines and the isotropic ones.

A. Scaling Function and Scaling Relations

We want to define a dilation matrix that maps every point
to a subset of . Therefore, we introduce as a

matrix of size that contains only integer elements and
with . Another, more technical, requirement is that
all eigenvalues of should be strictly greater than 1, i.e.,
should be a dilation in all directions [45].

We now recall the approximation space spanned by the poly-
harmonic B-splines , as defined in (8). Similarly, we con-
sider the approximation space at a finer resolution as

(26)

where we will further elaborate on the admissible choices of
later on. The idea is to generate a sequence of embedded

subspaces of

(27)

Mallat [1] defined the minimal requirements that a scaling func-
tion needs to satisfy to generate an MRA. These requirements
are functionally equivalent to: 1) Riesz conditions to ensure that
we have shift-invariant subspaces, 2) Partition of unity to guar-
antee the convergence , and 3) Scaling rela-
tion for . The first two properties have already been proven
in the previous section. The scaling relation brings along the
space inclusion property, i.e., it expresses in the finer reso-
lution space

(28)

or, equivalently, in the Fourier domain

(29)

In order to obtain a valid scaling filter , the respective de-
nominators of and in (29) need to cancel each
other up to a scalar factor. Due to the isotropic denominator

of the polyharmonic B-splines, may correspond to any
similarity transform, i.e., any rotation or symmetry combined
with a dilation . In particular, in two dimensions,
the dilation matrix can be chosen

(30)

for and being integer and . It is interesting to men-
tion that an MRA using the traditional tensor-product B-splines
is much more restrictive, i.e., it requires the dilation matrix to
be separable (corresponding to an integer scaling along each di-
mension).

Now, we can define the wavelet space uniquely as the
orthogonal complement of in

. Finally, it is well-known that there exist
wavelets , that span the residual spaces

(31)

Many desirable mathematical properties of the wavelets, for
instance, the number of vanishing moments, are directly related
to the order of the polyharmonic scaling function [12], [13].

B. Quincunx Multiresolution Analysis

For the remaining part of this paper, we focus on the 2-D
quincunx dilation matrix, which is an interesting configuration
for image processing (for which the traditional tensor product
B-splines cannot be applied). As already mentioned in the in-
troduction, the quincunx scheme provides a slower progression
through scale than the traditional dyadic subsampling scheme.
In addition, the wavelet space is spanned by only one wavelet,
which simplifies its design and application.

The quincunx subsampling scheme, depicted in Fig. 3, can
be represented by several possible dilation matrices [45]–[47].
For image processing, the most interesting one is based on a
symmetry [17], [18], [48], [49] and is given by

(32)

For an even number of iterations, the subsampled grid exactly
coincides with the original cartesian grid at a twice coarser reso-
lution, i.e., two subsequent scale reductions correspond to

. As expected, the wavelet space is spanned by
wavelet.
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Fig. 4. Analysis-synthesis filterbank for the 2-D quincunx wavelet transform.

Fig. 5. Scaling filter B (e )=2 associated with the quincunx dilation matrix for  = 5. (a) Elementary polyharmonic B-splines. (b) Isotropic polyharmonic
B-splines.

In Fig. 4, we show the wavelet transform algorithm for
one iteration. We introduce the following notation:

and for the synthesis and analysis basis
functions, respectively; and
for the wavelets. The approximation of a function at scale

can be written as

(33)

For an efficient filterbank implementation, one directly works
with the coefficients and

and computes the coefficients at the next coarser scale
by filtering and downsampling. The scaling and wavelet filters
are and on the analysis side, and and on the synthesis
side, respectively. The conditions for perfect reconstruction
that need to be satisfied by these filters are

(34)

(35)

C. Polynomial Polyharmonic B-Spline Wavelets

In this section, we will follow the design procedure of
[50], where the wavelet is selected orthogonal to all the in-

teger-shifted versions of the scaling function. This leads to a
wavelet transform that is usually refered to as “semi-orthog-
onal.” A direct consequence of this strategy is that the wavelet
spaces are orthogonal to each other: , for .

Since we will derive all our scaling functions and wavelets
from the isotropic polyharmonic B-splines, we first show the
scaling relation satisfied by these splines for the quincunx di-
lation matrix. By using (29) with the quincunx dilation matrix
(32), we obtain (36), shown at the bottom of the page. Fig. 5(b)
shows the frequency response of this filter for order .
Also shown is the scaling filter for the elementary polyharmonic
B-splines, which exhibits a much less favorable “cross-like”
structure and this for any order . This is in contrast with the
isotropic filter which becomes more and more Gaussian-like as

increases.
1) Polyharmonic B-Spline Wavelet Transform: As the first

example, we select the isotropic polyharmonic B-spline as
scaling function . We look for the associated wavelet , in-
cluded in the function space at a finer scale

(37)

that also satisfies the orthogonality condition. Indeed, a necesary
condition for is

(36)
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This condition can be expressed equivalently in the -domain as

(38)
It can be shown that the general solution of this equation is

(39)

where is an arbitrary polynomial in . Here, is a
shortcut notation for ; the Fourier transform of

corresponds to . The most obvious choice is
, which gives us

(40)

with , where we
used the property . This wavelet is referred
to as the “isotropic polyharmonic B-spline wavelet.”

Of course, the polynomial needs to satisfy certain prop-
erties to obtain suitable wavelets that form a Riesz basis. This
is expressed by the following theorem, which is valid for any
scaling function and the quincunx subsampling scheme.

Theorem 1: Let be a valid scaling function for the quin-
cunx subsampling scheme. Specifically, it has a scaling filter

and it forms a Riesz basis, i.e., the autocorrelation filter
is bounded by two constants
. Then, the wavelet given by

(41)

with
forms a Riesz basis as well, as long as is also bounded
by two constants .

Proof: We compute the autocorrelation filter of the
wavelet

(42)

Consequently, the wavelet forms a Riesz basis if we have
.

The construction of the wavelet that leads to (40) describes
the synthesis side of the wavelet transform. The complete trans-
form, as indicated by (33), also requires the analysis scaling
function and wavelet. To obtain the corresponding analysis fun-
tions, we compute the dual scaling function that is given by

(43)

and we automatically obtain the associated dual scaling filter

(44)

In a way similar to (42), we find the autocorrelation of the poly-
harmonic B-spline wavelet . Then, the dual wavelet can
be concisely defined as

(45)

The corresponding dual wavelet relation

(46)

is obtained from (40) with

In practice, an efficient filterbank implementation will di-
rectly rely on the scaling and wavelet filters to process the coef-
ficients. Table I lists all the filters and functions involved for the
isotropic polyharmonic B-spline wavelet transform. Fig. 7 de-
picts the respective scaling functions and wavelets in the spatial
domain.

The dual isotropic polyharmonic B-spline wavelet transform
can be found by interchanging the functions and filters between
the analysis and synthesis part. Depending on the application, it
might be desirable to put the B-spline either on the analysis or
the synthesis side. The main feature of this wavelet decomposi-
tion is the excellent space-frequency localization of the B-spline
scaling function and its wavelet. We already indicated that the
isotropic polyharmonic B-splines tend to a Gaussian function as
the order increases. Similarly, the associated wavelets tend to
modulated Gaussians, also known as Gabor functions. In Ap-
pendix II, we give a proof of this convergence. In Fig. 6, we
show the tiling of these wavelets in the frequency domain for
eight consecutive iterations.

Indeed, Gabor wavelet-like decompositions have been found
to be useful in many applications, as shown by the vast liter-
ature dealing with these functions [51]–[57]. Some examples
include edge detection [58], [59], segmentation, texture anal-
ysis [60], modeling of primate’s visual systems [61]–[63], sta-
tistical analysis of time-series (e.g., as in fMRI [64]), image
analysis [65]–[67], hierarchical reconstruction [68], and so on.
So, the refinement filters of the isotropic polyharmonic B-spline
wavelet transform might be good candidates to build a proper
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TABLE I
OVERVIEW OF ISOTROPIC POLYHARMONIC B-SPLINE WAVELET TRANSFORM

Fig. 6. Illustration of the tiling of the frequency domain for the polyharmonic
B-spline wavelets of order  = 5 up to the eighth iteration. All contours shows
their corresponding iteration number.

scale-space decomposition with a continuously tunable order
parameter.

2) Orthonormal Polyharmonic B-Spline Wavelet Trans-
form: Another important wavelet transform is the orthonormal
one, in which the scaling function and wavelets are orthonormal
with regard to their own shifts. Note that for this transform,
there will be no difference between the isotropic polyharmonic
B-splines and the elementary ones: Since both span the same
space, their orthonormalized forms are equivalent. We note,
however, that we have not yet seen these functions applied in
the quincunx case, not to mention their fractional extensions.

The orthonormal polyharmonic B-spline is given by (20) and
its corresponding scaling filter is

(47)

Similarly, the orthonormal polyharmonic B-spline wavelet reads

(48)

with corresponding wavelet filter

(49)

Some examples of such functions are shown in Fig. 7(c)–(d).
In Appendix III, we prove the convergence of the orthonormal

polyharmonic B-spline to the sinc function.

As for every linear orthonormal transform, the -norm is
conserved and white noise will remain white after transforma-
tion—a useful property for image denoising.

3) Generalized Polyharmonic B-Spline Wavelet Trans-
forms: The B-spline, dual, and orthonormal flavor of the
polyharmonic wavelet transforms are probably the most inter-
esting candidates for applications. The design procedure for
semi-orthogonal wavelet can also lead to other wavelets. In
particular, the choice of in (39) is a degree of freedom
that can be further explored. For example, we could select the
interpolating polyharmonic B-spline at the synthesis side. This
would eliminate the need of the initialization procedure that is
needed to compute the initial values of the coefficients.

An interesting property of every polyharmonic wavelet is the
behavior for low frequencies.

Proposition 3: The polyharmonic wavelets, obtained for any
admissible choice of , behave as the th iterate of the
Laplacian operator for low frequencies.

Proof: We consider (39) and (40) for . The only
term that tends to zero, and as such dominates the behavior
of for , is . Using (36), we can con-
clude that for low frequencies.

This proposition shows how the operator that is related to
the fundamental property of the polyharmonic B-splines gets
transplanted to the wavelet functions.

In Fig. 8(b), we show an example wavelet decomposition
of the “zoneplate” imageof (a). The subbands are organized in
a way that is standard for the quincunx subsampling scheme,
i.e., for odd iterations the odd lines are shifted by one pixel
and then odd columns are subsampled (see, also, Section IV).
The intensity values within each subband of Fig. 8(b) have
been rescaled to improve visualization. In the first subband, we
only capture high frequency components at the corners of the
frequency sweep. In fact, the local spatial frequency at these
corners is close to the center frequency of the corresponding
Gabor atoms depicted in Fig. 6. As we progress through scale,
the “sensitive” regions detected by the wavelet have lower
spatial frequencies. Interestingly, at some juncture, we switch
from “Gabor regime” to “Laplacian regime.”

IV. IMPLEMENTATION OF THE POLYHARMONIC

B-SPLINE WAVELET TRANSFORM

All filters encountered in our construction are nonseparable
and infinitely supported. Therefore, a spatial implementation
based on truncation turns out to be difficult and costly. How-
ever, the proposed polyharmonic wavelet transform can be ad-
vantageously implemented in the Fourier domain using FFTs,
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Fig. 7. Various brands of scaling functions and wavelets based on isotropic polyharmonic B-splines of order  = 5:0. (a) Isotropic polyharmonic B-spline.
(b) Isotropic polyharmonic B-spline wavelet. (c) Orthonormalized polyharmonic B-spline. (d) Orthonormalized polyharmonic B-spline wavelet. (e) Dual isotropic
polyharmonic B-spline. (f) Dual isotropic polyharmonic B-spline wavelet.

using the knowledge of the frequency response of the filters.
Our Fourier-based implementation will also automatically take
care of the boundaries by imposing periodic boundary condi-
tions. Fourier-based implementations of the wavelet transform
have been proposed before [22], [48], [49]. Using the same prin-

ciple, we propose a slightly simplified version that is straight-
forward to implement and still performs very well.

To obtain the scaling and wavelet filters in the frequency do-
main, we need to compute the autocorrelation filter .
This can be done in two dimensions by evaluating the sum of
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Fig. 8. (a) Test image “zoneplate.” (b) Decomposition of “zoneplate” for eight iterations and order  = 5, B-splines at analysis. (c) Test image “Matteo.”
(d) Decomposition of “Matteo” after six iterations and order  = 5, orthonormal flavor.

(18) for a sufficient number of terms. Another approach is to
use a numerical algorithm in the spatial domain (for example,
see [69]). It is also possible to use a fastly converging method
in the Fourier domain, as proposed in [70].

A. Fast Fourier-Based Discrete Wavelet Transform

The filterbank implementation of the wavelet transform di-
rectly deals with the coefficients and , as defined
before. However, all filters involved with the polyharmonic
wavelet transform are infinitely supported. Because of this,
and also because our filters are characterized in the frequency
domain, we propose the use of a Fourier-based implementation,
ensuring perfect reconstruction for any choice of the order .

1) Initialization: At initialization, the signal is character-
ized by the coefficients , for a given sup-
port . Under the assumption
that we only have access to the sample values , the data
needs to be prefiltered such that the interpolating condition is
satisfied, i.e.,

(50)

The proper interpolation prefilter is given by

(51)

The same iterative numerical algorithm as used for the compu-
tation of the autocorrelation filter can be deployed to calculate
this filter.

In practice, we first compute the Fourier coefficients
of the data samples, for which we introduce the notation

.
Note that the use of such a sampled Fourier representation
corresponds to a periodic extension of the data in the spatial
domain. The initial coefficients after prefiltering are

(52)

2) Analysis: An efficient implementation of the wavelet
transform in the Fourier domain for the quincunx subsampling
scheme can be obtained by pooling together two levels of the
decomposition tree. Fig. 9 shows a flowchart illustrating this
approach. The indications and mark where the data is,
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Fig. 9. Two levels of the quincunx wavelet decomposition stacked together.
The symbols F and F show where, respectively, the Fourier transform and
the inverse Fourier transform is computed.

respectively, converted to and from the Fourier domain. The
main steps of the algorithms are as follows.

1) The Fourier coefficients are filtered and then
down- and upsampled, introducing redundancy in the
Fourier domain. Taken together, such an operation results
into

where the index for the lowpass filter can be limited to
. The

easiest way to generate the highpass output is
by computing the inverse Fourier transform of
and performing the subsampling in the spatial domain.4

2) Next, the lowpass Fourier coefficients are
processed for the next iteration by the rotated filters,
defined as

. So, we get

where .
The outputs and are now directly
obtained by applying the inverse Fourier transform to

and . Depending on the number of
iterations, the remaining lowpass signal can be kept in
the Fourier domain and further decomposed. A conve-
nient way to arrange the coefficients is shown in Fig. 8(b)
and (d).

4It is also possible to exploit the redundancy of D [k] in the Fourier do-
main (see [22]).

The filters , and their rotated versions are pre-
computed at the size of the original data and subsampled after
each other iteration. We also silently assumed that the analysis
filters are reversed, i.e., their discrete Fourier transform corre-
sponds to .

3) Synthesis: Using the same principles, one can obtain the
synthesis algorithm as the flow graph transpose of the analysis
algorithm. Again, all filters are precomputed.

B. Benchmark

The proposed algorithm can be translated seemlessly into a
Matlab implementation. We compared the speed of our Fourier-
based implementation in Matlab against the classical wavelet
transform implementation which is available in the latest Matlab
Wavelet Toolbox [71]. For this purpose, the image size is taken

where varies from 128 to 1024 in steps of 16. This
step size ensures a decomposition depth of 16 quincunx itera-
tions or eight separable iterations. In Fig. 10, we show timings
obtained on an 2 GHz PowerPC processor (Apple G5). The fluc-
tuations of the Fourier-based method are due to the specific im-
plementation of the FFT [72] as used by Matlab. However, the
general trend shows that the Fourier-based implementation ap-
pears to be competitive for image sizes up to about 512 512.

Finally, we note that the current algorithm can be somewhat
further improved at the cost of a slightly more complicated im-
plementation. In particular, the analysis phase can be made as
fast as the synthesis one by reducing the size of the high-pass
inverse FFT at odd iterations [22].

V. CONCLUSION

In this paper, we have proposed to use isotropic polyhar-
monic B-splines to build a new family of wavelet bases. These
B-splines are nonseparable basis functions that are localized
versions of generalized thin plate splines, and that converge to-
ward a Gaussian as the order increases due to an improved local-
ization operator that we have introduced. In the second part of
the paper, we focused on the 2-D quincunx subsampling scheme
to construct wavelet decompositions. Based on the function de-
sign in the continuous domain, we derived the suitable scaling
and wavelet filters that we need for a fast discrete wavelet trans-
form. Three flavors of semi-orthogonal designs were presented:
orthonormal, B-spline, and dual. The B-spline-type wavelets
converge to a sum of four Gabor atoms as the order increases.
We also highlighted a fast implementation using FFTs.

APPENDIX I
UPPER RIESZ BOUND

We want to evaluate an upper bound over for the
the autocorrelation (18). First, we can restrict the values of
to since the autocorrelation is -periodic in every
component of . Second, we easily check from (10) that

which means that .
Moreover, when , the inequality

is valid for all . This implies that

(53)
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Fig. 10. Execution times in seconds corresponding to the Fourier-based wavelet transform algorithm (blue lines) for the polyharmonic B-spline wavelet transform
and Matlab’s Wavelet Toolbox (red lines) for the Daubechies 9/7 (JPEG2000) wavelet transform. The size of the test image isM �M and varies from 128 to
1024 with a step of 16. The fluctuations of the Fourier-based algorithm are due to the specific implementation of the FFT algorithm.

and, finally

which is known to be bounded whenever . Note that this
bound is not sharp as it tends to increase when increases.

APPENDIX II
CONVERGENCE OF THE ISOTROPIC POLYHARMONIC

B-SPLINE WAVELET TO GABOR WAVELET

In this Appendix, we derive the asymptotic form of the
bidimensional (i.e., ) isotropic polyharmonic B-spline
wavelet. Before showing that it converges to the sum of four
Gabor atoms, symmetrically placed in the frequency domain,
we introduce the following lemma.

Lemma 1: For , the autocorrelation filter of
the bidimensional isotropic polyharmonic B-spline is bounded
over , as follows:

(54)

where tends to zero exponentially fast as
.
The notation stands for the unique 2-D vector in

such that for some 2-D integer .
Proof: We first observe that we can restrict the range of

values of to because the autocorrelation filter is
-periodic. Since the lower bound is trivial we concentrate

on the upper bound. We use (53) over the autocorrelation sum
restricted to , and find

We, thus, have to evaluate the quantity . We
denote by the number of (signed) integer solutions to the
Diophantine equation: . Obviously,
because is necessarily in and is uniquely
determined by up to a sign. Then, we find

which is convergent because . Now, it is well known
(see [73]) that the remainder of the Riemann zeta function is
bounded according to . Ap-
plying this formula with and , and taking
into account that , we find

which proves the lemma.
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Armed with this lemma, we can now proceed to the proof of
our convergence theorem. The isotropic polyharmonic B-spline
wavelet has been defined as

(55)
Thanks to Lemma 1, the autocorrelation filter can be replaced
by a finite sum when , i.e.,

By inspection, we observe that

for
for
for

which shows that, as dominates the other
terms, i.e.,

(56)

As one can readily observe, has a fourfold symmetry:
.

By inspection again, reaches its maximum
at , and at its other three symmetric po-
sitions , and , where

. This means that reaches its maximum
at and .

In the neighborhood of , we consider the Taylor
development

(57)

with

(58)

Using the central limit theorem, we obtain

(59)

with

(60)

Finally, we state that the inverse Fourier transform of both sides
is equivalent for large , providing

(61)

APPENDIX III
CONVERGENCE OF THE ORTHONORMAL POLYHARMONIC

B-SPLINE TO THE SINC FUNCTION

We want to show that tends to the function
indicator of the square

. Assume that belongs to
where is some small positive quantity. Then, according to the
definition (20) and Lemma 1, we have

Moreover, using the obvious inequality and
the hypothesis that , we find

whenever

This means that

Since this is true for all , we have

for all

Thanks to the orthonormality relation

we also find that in every square

with

Finally, because of the inequality (see
Lemma 1) we also have that
which implies that
when . Since this expression tends to 0 as ,
we can now conclude that tends to zero when
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Fig. 11. Frequency responses j�̂ j for (a)  = 4 and (b)  = 10.

, which proves the convergence of
to . Fig. 11 illustrates the
convergence.
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