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Abstract—We present a new, robust, computational procedure
for tracking fluorescent markers in time-lapse microscopy. The al-
gorithm is optimized for finding the time-trajectory of single par-
ticles in very noisy dynamic (two- or three-dimensional) image se-
quences. It proceeds in three steps. First, the images are aligned
to compensate for the movement of the biological structure under
investigation. Second, the particle’s signature is enhanced by ap-
plying a Mexican hat filter, which we show to be the optimal de-
tector of a Gaussian-like spot in 1/w? noise. Finally, the optimal
trajectory of the particle is extracted by applying a dynamic pro-
gramming optimization procedure. We have used this software,
which is implemented as a Java plug-in for the public-domain Im-
ageJ software, to track the movement of chromosomal loci within
nuclei of budding yeast cells. Besides reducing trajectory analysis
time by several 100-fold, we achieve high reproducibility and ac-
curacy of tracking. The application of the method to yeast chro-
matin dynamics reveals different classes of constraints on mobility
of telomeres, reflecting differences in nuclear envelope association.
The generic nature of the software allows application to a variety
of similar biological imaging tasks that require the extraction and
quantitation of a moving particle’s trajectory.

Index Terms—Dynamic programming (DP), fluorescence mi-
croscopy, image sequence analysis, living cell, particle tracking.

1. INTRODUCTION

URING the past decade, two important technological in-

novations have helped reshape molecular and cell biolog-
ical research. One was the development of fluorescent proteins,
which allow researchers to selectively label single proteins or
DNA loci in vivo [1]. The second is high-resolution fluores-
cence imaging that was made possible by a new generation of
brightfield and confocal microscopes, sensitive CCD cameras,
and deconvolution algorithms [2]. Thanks to these new tools, bi-
ologists are able to observe gene expression and to study molec-
ular dynamics within the living cell at submicron resolutions [3].
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Static images can be acquired in two (X'Y') or three (XY Z) di-
mensions to localize the labeled structures of interest in a living
specimen. Dynamic sequences (time-lapse series) can also be
used to study the dynamic behavior of labeled molecules within
a living cell. While these methods offer an enormous potential
for increasing our understanding of biological events, they also
constitute a challenge for quantitative analysis, which requires
efficient techniques to evaluate this unprecedented flow of data.
Currently, a majority of data analysis and feature extraction is
done manually, which is both time consuming and susceptible to
personal bias. Some commercial image analysis tools are avail-
able, but their capabilities for automatic feature extraction are
limited. The analysis is complicated by the fact that the data
are typically very noisy due to the weakness of the fluorescence
signal and the need to work at the limit of resolution for light
microscopy.

In this work, we address the problem of extracting and
quantifying trajectories of moving particles. It is a generic
data analysis problem in biophysics. The most common ap-
proach involves decomposing the problem into two steps. First,
the particles are detected independently in each frame—this
constitutes the segmentation phase. Second, the individual
trajectories are extracted by linking the detected particles
in consecutives images based on the determination of the
best match in feature space, a process that we refer to as
“frame-to-frame tracking.” A recent study [4] compares the
performance of such algorithms. Much work has been devoted
to improving frame-to-frame tracking of multiple particles in
three-dimensional (3-D) sequences [5], [6], dealing with prob-
lems such as occlusions, split or merge of particles, achieving
real-time performance [7], or tracking out-of-focus particles
[8]-[10] using the point spread function (PSF) of the micro-
scope to obtain super-resolution. This frame-to-frame tracking
framework is the approach taken by most commercial software
packages, such as Volocity 2 from Improvision [11] or Meta-
morph from Universal Imaging Corporation [12]. The major
weakness of the frame-to-frame approach is that it is sensitive
to false detections due the ill-posed segmentation problem, the
restricted vision of frame-to-frame tracking, and the difficulty
of resolving partial occlusions. Because tracking is often done
offline in molecular biology, an algorithm can in principle take
into account the whole data set information and not only the
recent past and the present as in a real-time tracking system.

In this paper, we explore a robust alternative strategy to par-
ticle tracking, in which the detection and tracking are performed
simultaneously. Specifically, we show that this problem can be
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formulated as a global optimization process which we solve
using the dynamic programming (DP) method. This method is
inspired by an approach developed for the extraction of con-
tours in very noisy ultrasound images [13]. The advantage of
such an approach is that it can extract a particle’s trajectory re-
liably in a XY Z space, even when the data is extremely noisy,
by taking into account all the frames of the sequence (past + fu-
ture). Its only limitation is that it can track one particle at a time.
It is nonetheless adequate for single-molecule imaging, or for
multiple particles whose trajectories are sufficiently separated
in space. The described software speeds up the analysis process
considerably, allowing a reproducible exploitation of the avail-
able image data.

The work is motivated by an interesting application in molec-
ular biology, which is the study of the dynamics of chromosomal
loci within the eucaryotic nucleus [14]. It is now proven that
chromosomes are not positioned randomly within the nucleus,
but that they rather occupy specific territories [15]. Nonethe-
less, specific sites within chromatin are highly dynamic. The
combination of defined position and constrained motion may fa-
cilitate DNA transactions such as transcription, replication and
repair, and defining how DNA and proteins move in vivo is cru-
cial for understanding these complex biological processes. To
this end, one can label specific chromosomal loci (such as the
telomeres at the extremity of the chromosome) by integrating
arrays of high affinity protein binding sites and expressing the
binding protein fused to Green fluorescence protein (GFP) and
visualize them using live, dynamic microscopy. Having a pre-
cise trajectory of the DNA locus is important for making statis-
tical analyses, model fitting, and for comparing an array of test
conditions [15]. A manual analysis of these image sequences
requires that, for each frame, the biologist scores manually the
coordinates of the center of the nucleus and the coordinates of
the center of the GFP-tagged DNA spot by clicking on the corre-
sponding pixel. These coordinates are reported in a spreadsheet
for subsequent statistical analysis. It entails the entry of at least
600 mouse clicks per movie, which is quite tedious and suscep-
tible to operator-related differences. To speed up this process,
increase the reproducibility and to better exploit the image data
available, we, therefore, took up the challenge of developing a
reliable computational solution for extracting the time-trajec-
tory of these fluorescent markers automatically.

This paper is divided into three parts. In Section II, we present
our computational solution to the generic problem of tracking a
moving particle in very noisy image. In Section III, we evaluate
our algorithm and report some validation results. Finally, in Sec-
tion IV, we consider the application to the problem of telomere
localization and present some real experimental results.

II. AUTOMATED TRACKING OF A SINGLE PARTICLE

Our goal is to obtain a complete, reliable description of the
time trajectory of a particle from a sequence of noisy images.
This section is devoted to the description of our algorithm. The
processing is performed in three steps, as summarized in the
block diagram in Fig. 1. The first component is an alignment
module that compensates for the movement of the biological
structure under investigation. The second component is a
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Fig. 1. Overview of the image analysis procedure.

matched filter that is designed to enhance the signatures of the
fluorescent markers (spot-like particles) and to reduce the effect
of noise. The final component is a tracking algorithm that uses
DP to extract the optimal space-time trajectory (X,y,z,t) of a
particle in 3-D. The same scheme works for processing two-di-
mensional (2-D) or 3-D data sequences, but the computational
cost increases in proportion to the added degrees of freedom
(i.e., the z-component of the trajectory in 3-D) and the size of
the data set (images versus volumes).

A. Sequence Alignment

In practice, one is usually interested in characterizing the
movement of a fluorescent spot in relation to some reference
structure or background. The background is typically also
fluorescently labeled so that it remains visible throughout the
process, giving a reference position. The practical difficulty is
that the reference does not necessarily stay still during acquisi-
tion. We compensate for this effect by applying a realignment
algorithm in a preprocessing step. There are two possible
approaches at our disposal.

1) When the reference structure is well preserved from one
image to the next, we can select one image of the se-
quence as reference frame and use it to register the other
ones. A good registration method is described in the work
of Thévenaz [16]. The proposed algorithm is entirely au-
tomatic; it is pixel based and does not require any land-
marks. The algorithm is precise, reproducible and rea-
sonably fast, thanks to the use of an efficient multires-
olution optimization strategy, and it is freely available
as a plug-in for ImageJ at http://bigwww.epfl.ch/algo-
rithms.html. It can deal with both translational and ro-
tational alignments.

2) When the shape of the reference structure is somewhat
variable but is reasonably well described by a curve
within some parametric family (e.g., circle, ellipse, or
parametric snake), it may be appropriate to consider a
detector that is specifically designed for the extraction of
such shapes. The detector is then applied to each frame,
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Fig. 2. Estimation of the fractal exponent s of the noise. The radial power spectrum is estimated by averaging the square modulus of the Fourier transform of a
noise-only image (including background) over a series of concentric annuli indexed by w. The results are represented in a log-log plot and fitted with the theoretical
power law (straight line). The data points are the average square intensities within each annulus, while the error bars represent the standard deviation over the radial

annulus. The optimal fitis s = 1.8.

providing the center position of the reference structure;
the images are then realigned translationally with respect
to this position. We have chosen this approach for the
application in Section IV because the reference structure
(nucleus) is well represented by an ellipse.

B. Spot-Enhancing Filter

The practical difficulty in dynamic fluorescence microscopy
is that the data is extremely noisy, due to data acquisition at the
detection limit, which is performed to maximize the number of
frames while minimizing the destructive effect of laser-induced
damage or signal loss due to photo-bleaching. Moreover, one
has to take into account background fluorescence and the pres-
ence of other structures in the image with levels of intensity very
similar to the particles of interest. To improve the robustness of
the tracking algorithm, we include a prefilter that enhances the
pattern of interest (particles) while reducing the background and
the effect of noise.

In our case, we show that the optimal detector (whitened
matched filter) is well approximated by the Laplacian of a
Gaussian (LoG).

To this end, we assume that the input signal is given by:
y(x) = a - g(x — xg) + n(x) where « is an unknown intensity
factor, x = (x,y,z) is the spatial coordinate, g(x) is a refer-
ence model of the particle, and x¢ is the particle’s position that
needs to be determined; n(x) is an additive independent noise
component that also includes the background structures.

We have found experimentally that the spectral power den-
sity of fluorescence microscopy images is isotropic and is well
represented by a power law S, (w) o ||w||~* where w is the ra-
dial spatial frequency. This corresponds to a multidimensional

fractional Brownian motion model [17], which is also typical
of a broad category of natural images [18]. In our case, we es-
timate the fractal exponent s = 1.8 which is not too different
from 2, as justified in Fig. 2. For our implementation, we have
selected the integer exponent value 2 because it leads to a fast
Laplacian-based algorithm using separable filters.

Our goal is to now to specify the filter that will produce a
maximum at x = X¢, while minimizing the effect of noise. As
is well known from estimation theory [19], the maximum SNR
detector is provided by the whitened matched filter. In our case,
this solution is obtained as follows.

1) First, one applies the prefilter H (&) = ||@||*/? that has
the effect of transforming the additive 1/w® noise com-
ponent into white noise that is completely uncorrelated.
We are then faced with the standard problem of the de-
tection of a known signal in white noise, which can be
solved by means of a standard correlation detector. The
frequency response of this matched filter is the complex
conjugate of the Fourier transform of signal to be de-
tected: ||@||*/2G*(@).

The prefilter and the optimal detector are combined into a
single filter (whitened matched filter), as illustrated in the block
diagram in Fig. 3. Going back to the spatial domain, this corre-
sponds to a correlation with a detector whose response is pro-
portional to A*/2g(x) where A%/ is the s/2-fractional iterate
of the Laplacian operator.

To obtain a practical implementation of this operator, we con-
sider the following 3-D Gaussian model of the particle:

2)
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Fig. 3. Block diagram of the whitened matched filter.

c)

Fig. 4. Typical results of the 2-D LoG filter on the ten first images of a sequence. a) Input image sequence (2D + T') of a tagged telomere in a nucleus
(47 * 38 pixels). b) Output of the LoG with ¢ = 0.75. ¢) Output of the LoG with & = 1.00. d) Output of the LoG with ¢ = 1.25.

where C = 1/((27)%/%(0,0,0.)) which is parameterized in
terms of the standard deviations (o, 0, 0,) for each axis to
allow for nonisotropic voxel sizes; typically, in microscopy, the
resolution along the Z axis is much coarser than along the XY
axes.

If we now assume that s = 2, which is still compatible with
our observations, we obtain an optimal detector that corresponds
to the LoG, also known as the “Mexican Hat.” The explicit
space-domain formula of this filter in 3-D is

LoG = Ag(z,y,2)
1.y
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The filter parameters (standard deviations) obviously need to
be tuned to the size of the fluorescent particles. Prefiltering the
images with this particular filter is optimal for detection pur-
poses; it has the desirable effect of enhancing the spots while at
the same time getting rid of some of the background structures
(see Fig. 4).

A final aspect that needs to be dealt with is computational
speed. Particularly relevant to the issue is the work of Huertas
and Medioni [20], who developed a separable version of the
LoG filter for the 2-D case which yields a fast algorithm based
on successive one-dimensional (1-D) convolutions along the

rows and columns of the image. For 3-D data, it is even more

advantageous to have a separable implementation to make the
computation time acceptable. Here, we extend the formulation
of Huertas to the 3-D case and express the LoG detector as a
sum of three separable filters

LoG =V2G(z,y, 2)
=hrpo,(2).hBo,(y).hB o (2)
+hpo, (7).hpo,(Y)-hpo. (2)
+hBo,(2).hBo,(Y)hFo.(2)

where hpq () = C((@%/od) — (1/02))e /27 and
hB,o-l- (."L’) — efx2/2ai2._

This new separable implementation of the 3-D LoG filter
speeds up computation time dramatically. For a (100x100%100)
volume data and a LoG detector with (o, = 3,0, = 3,0, = 3),
we decrease the time from 145 s (for a nonseparable implemen-
tation in the space domain) to 2.3 s for the separable algorithm

on an Apple PowerMac DP G5 2.0 GHz.

C. Single-Particle Tracking Using DP

The tracking specifications that are the basis for our formula-
tion are the following. 1) There is one single spot to track over
time; the difficulty is that it may be dim or even absent in some
parts of the sequence. 2) The movement of the spot is limited to
a few pixels from frame to frame. 3) The tracking takes place
off line when the whole data has been acquired.
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Although the data can be very noisy, in vivo movement is
generally sufficiently constrained to be formulated as a global
optimization problem. In particular, we take advantage of the
strong dependency of spot position in one image on the next
one (chaining property) and solve the problem using DP.

We are given a sequence f(x,t) of N preprocessed images.
The space x = (z,y, z) and time (¢) indices take integer values
withz =0,--- N, —1,y=0,---,Ny—1,2=0,---,N, -1
andt = 0,---, N—1, respectively. The task is to find an optimal
time trajectory { xt}tzo,...7 ~—1 that describes the displacement
of the particle. A key constraint is that the maximum excursion
from one frame to the next is limited; ||z; — z41|] < A,
lye — yer1ll < Ay, |12t — 2e41l] < AL Agy Ay, A, are some
user-specified parameters. Since we are considering a discrete
grid in space and time, it is possible, at least in principle, to
enumerate all possible trajectories and to attempt to select the
best possible one based on some objective criterion.

The cost function {(xp,X1, -+ Xy—1) to maximize must in-
corporate as much problem-specific information as possible. In
particular, we would like to favor positions where the intensity
is bright, or, alternatively, where the response to the spot-en-
hancing filter is strong and to favor small displacements; this
can be achieved by penalizing paths for which the average dis-
placement from one frame to the next is large. These various
constraints can be incorporated by defining the following cost
function:

N-1

€01, xv1) = O (1= W), 1)~ AP
t=1

(0

where M is an appropriate normalization factor and where
A(0 < A < 1) is a smoothness-controlling weight that can be
adjusted by the user (default value A = 0.25).

For each point on the path at time ¢, there is only a cost con-
tribution associated to its position x; and x;_;. The implication
is that the corresponding discrete optimization problem can be
solved most efficiently by DP.

The thrust of the algorithm is a main loop fort = 0, -- -, N—1
whereby all potential (z, y, z,t) candidates are examined once
only. At each position, the algorithm applies an iterative update
formula for computing the maximal cost for reaching the current
state. At the end of the process, the optimal solution is retrieved
by backtracking. To achieve subpixel accuracy, each detected
spot position is finally replaced by the center of gravity of a
small neighborhood (3 * 3) in a post-processing step.

When the spot is absent for a period, the trajectory is mainly
built using the contribution of the displacement penalization of
the cost function given a smooth trajectory.

Likewise, it is easy to introduce arbitrary hard constraints on
the path by subdividing it into segments. We have the option of
constraining the optimization further by specifying additional
nodes. In this case, the DP algorithm is applied independently
for each segment so as to satisfy the end constraints (nodes).
To run faster, the optimal trajectory is recomputed only on the
segments adjacent to the new node.

The DP algorithm provides a very attractive solution for the
single-particle tracking problem. It may eventually be applied
to the case of multiple particles by extracting them one by one,
keeping in mind that this approach is no more optimal globally.
Presently, we do not yet know of a fully satisfactory solution to
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the multiple particle tracking problem because of combinatory
explosion.

III. EXPERIMENTAL RESULTS

A. Implementation and Example

Both 2-D and 3-D versions of the algorithm were imple-
mented as plug-ins for ImageJ [21], [22], a public-domain
software package for image processing. The plug-ins, called
SpotTracker,! come with a user-friendly interface with provi-
sions for the interactive display of the results and the editing
of the trajectory. This allows for the validation and correction
of the automated analysis, which is particularly important in
cases of noisy data. An example of the output of a 3-D analysis
is shown Fig. 5.

B. Validation of the Tracking in Presence of Noise

For the validation of the tracking, we have processed simu-
lated data to evaluate the tracking performances in presence of
noise, as well as real data to compare automatic tracking with
manual tracking.

The evaluation was performed on simulated sequences of 240
images of 60 * 60 pixels organized in ten segments of 24 im-
ages each. The sequences contain a single moving particle ap-
proximated by a 2-D Gaussian function which moves along a
known trajectory. To evaluate the limits of the tracking algo-
rithm, we degraded the images of a sequence by increasing the
level of noise from one segment to the next (see Figs. 6 and
7). The level of Gaussian noise is characterized by the peak
signal-to-noise ratio (PSNR) PSNR;, = 20 log(A/oy) where
o, is the noise variance for segment k and A is the amplitude of
the Gaussian-shape particle.

The reference trajectory is compared to the manual one and to
the ones detected by the algorithm with and without prefiltering
(spot-enhancing filter). The results summarized in the Fig. 8
show that the automatic procedure consistently outperforms the
manual tracing. The human observer is unable to trace a particle
when the PSNR falls below 9 dB, while the automatic procedure
can handle noise levels down to 0 dB (resp., 6 dB) with (resp.,
without) prefiltering. Our spot-enhancing prefilter, LoG, clearly
improves the performances. Overall, the automatic procedure is
capable of reducing the estimation error by a factor of 2, irre-
spective of the noise level.

C. Comparison of the Manual and Automatic Results on
Real Data

We had four human observers (o = 1..4) manually trace a
particle on two biological sequences (s = 1 and s = 2) of
200 2-D images. They repeated the experiment three times (r =
1...3), producing a total of 24 trajectories Ts {X, .. (¢)}. For
each image t of the sequence s, we defined the interobserver and
intraobserver variabilities as

3 4 4
Vinter,s<t> = 11_8 Z Z Z ”XS,’LT(t) - XS,j,T(t)

r=1i=1 j=i+1

4 3 3
Vinena(®) = 75 305 3 ailt) = %o ()]

o=1i=1 j=i+1

I'The plug-in for ImagelJ, SpotTracker is freely available to the research com-
munity at http://bigwww.epfl.ch/spottracker/.
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V]

Screenshot of the plug-in for ImageJ. On the left side, there are the three orthogonal sections XY, X' Z, ZY at frame t = 30. On the right side, there are

three kymograph sections x(t), y(t), and z(t). The detected trajectory is overlaid in white. The intensity is inverted to facilitate the visualization.

k=0 k=1 k=2 k=3: k=4 ; k=5 k=6 : k=7 ; k=8 | k=9

Fig. 6. Result of tracking when the PSNR is degraded by increasing the level
of noise in ten segments of 24 images. The trajectories, which were detected
automatically with our program SpotTracker, are overlaid in black on the
maximum intensity projection images on y(t). A: Reference sequence. B: Test
sequence. C: Test sequence and trajectory. D: Test sequence and trajectory after
spot-enhancing prefiltering with the above presented LoG filter. The intensity
is inverted to facilitate the visualization.

The corresponding statistics are reported in Table 1.
Due to the high interobserver variability, we restricted the
comparison of the automatic tracings with the mean of the

manual trajectories to the set of time frames for which the four
observers were in reasonable agreement; i.e., Vipter,s(t) < 2
(see Table II).

Here, we compare two automatic tracking programs: a stan-
dard approach (correlation + frame-to-frame tracking) taken by
the commercial software MetaMorph of Universal Imaging Cor-
poration [12] and the one proposed in this paper; i.e., Spot-
Tracker. This benchmark is clearly in favor of our tracking al-
gorithm that yields a RMSE at least inferior by a factor of 2
when compared to the correlation approach. This is not overly
surprising because the detection mechanism in MetaMorph is
local, as opposed to being global in our approach. These re-
sults indicate that the automatic tracings are quite consistent
with the manual tracings when there is agreement among ob-
servers. They are obviously also more reproducible than manual
tracking.

D. Computational Aspects of the Tracking

Even though DP is a systematic approach that evaluates all
allowable trajectories, it gives the answer quite rapidly for ap-
plications with small images. The most time-consuming part of
the algorithm is the large number of evaluations (Ngvar) of
the cost function for every transition. For n; volumes of size
[Pz, ny,n.] and a movement constraint vector (A, Ay, A.)
the number of evaluations is

Nevar = [(n. — 2+ AL [(ny — ARy + AZ]
. [(nz — AZ)RZ + Az] Any —1), where Ry = 2A4+ 1.

In Table III, we report examples of computation timings.
From this experiment, we can compute the unitary time to



1378 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 9, SEPTEMBER 2005

k=0 k=3 k=4 k=5 k=6 Ry k=8 T

Fig. 7. Images taken in segment k of the test sequence. Even though the spot starts being imperceptible for k& > 6, the algorithm is able to track it nonetheless.
The intensity is inverted to facilitate the visualization.
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Fig. 8. Root mean-squared error (RMSE) on the trajectories when the PSNR is degraded by increasing the level of noise.

TABLE I
VARIABILITY OF THE MANUAL TRACINGS OF THE TWO TEST SEQUENCES
Sequence 1 Sequence 2
Number of images in the sequence 200 200
Maximum 35.05 43.46
Variability interobserver Mean 3.06 4.81
Standard deviation 8.11 12.09
Maximum 2.81 6.07
Variability intraobserver Mean 0.85 0.95
Standard deviation 0.43 0.66

TABLE 1I
RMSE OF MANUAL TRACINGS AND AUTOMATIC TRACINGS IN THE AGREEMENT REGION. THE MANUAL TRACINGS ARE OBTAINED WITH FOUR HUMAN
OBSERVERS. THE AUTOMATIC TRACINGS ARE OBTAINED WITH METAMORPH AND WITH OUR ALGORITHM (SPOTTRACKER)

Sequence 1 Sequence 2
Number of images in the agreement region 111 120
RMSE manual vs. automatic X y X y
in pixels (Metamorph) 1.88 3.23 1.22 1.00
RMSE manual vs. automatic X y X y
in pixels (SpotTracker) 0.42 0.60 0.52 0.53

evaluate one transition: this gives 0.025 ps in 2-D and 0.037 us IV. APPLICATION: THE STUDY OF THE CHROMOSOME
in 3-D on an Apple PowerMac DP G5 2.0 GHz. DYNAMICS IN BUDDING YEAST

In 2-D, the method is fast enough to give an almost immediate
feedback. The response time increases significantly in 3-D, but
it is still manageable, and certainly a few orders of magnitude

faster than a manual tracing.

The biological application that motivated the development of
the algorithm presented above is the study of the chromosome
dynamics. Here, we provide some biological background on
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TABLE III
TYPICAL COMPUTATION TIMINGS FOR DIFFERENT IMAGE SIZES AND SETTINGS OF THE SPOTTRACKER PROGRAM. 1, 1,,, AND 7. ARE THE SIZE OF THE VOLUME
(IF n., = 1,17 1S ONLY 2-D SEQUENCE). 14 IS THE NUMBER OF IMAGES (OR VOLUMES) OF THE SEQUENCE. A, A, A, ARE THE MOVEMENT CONSTRAINT
GIVEN IN PIXELS. n,, IS THE NUMBER OF NODES IMPOSED BY THE USER. THESE EXPERIMENTS ARE DONE ON AN APPLE POWERMAC DP G5 2.0 GHz

ne ny n, ng A= A=A, n, time
[pixel] Number of [pixel] Number of [sec.]
frames nodes
Manual 50x50x1 1000 - - 1500.00
tracing 50x50x1 200 - - 300.00
50x50x 1 200 1 1 0.15
50x50x 1 200 3 1 0.55
o 50x50x 1 200 5 1 1.15
£ o 100x 100 x 1 200 3 1 2.07
g% 50x50x 1 1000 3 1 2.53
'é g 50x50x 1 200 3 10 0.30
g §_ 50x50x 10 100 1 1 2.89
zZ> 50x50x 10 100 3 1 22.55
50x50x 10 100 5 1 69.84
50x50x 10 200 3 1 47.74
50 x 50 x 20 100 3 1 52.75

the imaging of chromosomal markers, discuss the microscopy
setup and the customized version of the tracking algorithm, and
present biological results that were obtained with our software.

A. Telomere Localization

Recently, increasing evidence suggests that the nucleus is
highly organized into various subcompartments, probably to
regulate nuclear functions [14]. The visualization of specific
DNA sequences in living cells, achieved through the integration
of lac operator arrays (lac°?) and expression of a GFP-lac
repressor fusion, has provided new tools to examine how the
nucleus is organized and how basic events like sister chromatid
separation occur [3], [23]. The genetic information of a haploid
budding yeast cell is encoded on 16 linear chromosomes.
The interphase nucleus is organized into functional subcom-
partments, one of which results from the clustering at the
nuclear periphery of the genome’s 32 telomeres into groups
of 4-5 telomeres. This particular organization creates high
local concentrations of silencing factors that bind telomeres
and promote transcriptional silencing. Despite this positioning,
individual yeast telomeres show fairly high rates of mobility
within constrained volumes. These characteristics raised many
questions about the dynamics of telomeres that could not be
answered by classical immuno-microscopy of fixed cells, and
has led to the use of live microscopy to analyze the mobility
of specific telomeres in a dividing cell, their relationship to the
nuclear periphery, to other nuclear landmarks, and to each other.
The example discussed below is the tracking of the telomere of
the right arm of yeast chromosome 6 [17], keeping in mind that
the algorithm is applicable to any marked chromosomal locus
(see Fig. 9).

B. Image Acquisition Protocol

The strains used in this study contain multimerised lac®®
arrays (usually 256 copies or ~10 kb) integrated at the ends
of chromosomes by standard transformation using a linearised
construct that integrates by homologous recombination. The

telomere
nuclear envelope

bud

Fig. 9. Image of a yeast cell expressing Nup49-GFP (nuclear envelope) in
which Tel VI-R has been tagged. This cell is in a synthesis stage characterized
by a small bud. Bar is 2 pm.

array was visualized by expression of a LacR-GFP protein fu-
sion. The nuclear envelope is visualized through expression of
a nuclear pore protein fused to GFP, which was also created by
integrative transformation with a linear plasmid (Nup49-GFP
[15], [24]). Alternatively, cells can carry a fusion of the bac-
terial tet repressor fused to GFP, which, in the absence of
tet operator sites creates a diffuse nucleoplasmic signal. This
allows determination of the nuclear center, which can be used
as reference structure for tracking with the described algorithm.
All yeast strains were cultured identically and preferably to an
early exponential phase of growth (< 0.5 x 107 cells/ml)in
synthetic or YPD medium, starting from a fresh overnight
culture. Cells were mounted on a depression slide (Milian SA)
upon 1.4% agarose containing SD medium with 4% glucose
(Fluka). Alternatively, cells were immobilised on an 18-mm
coverslip.

Confocal microscopy was performed on a Zeiss LSM510 Ax-
iovert 200M, equipped with a Zeiss Plan-Apochromat 100 x
/NA = 1.4 oil immersion or a Plan-Fluar 100 x /NA = 1.45
oil immersion objective. The stage was equipped with a hyper-
fine motor HRZ 200. Temperature was stabilised using a tem-
perature regulated box surrounding the microscope (The Box,
Life Imaging Services). To follow rapid chromatin dynamics in
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individual cells while maintaining maximal sensitivity and re-
ducing the risk of damage by illumination, a minimal region of
interest has to be chosen; scanning speeds, pinhole aperture have
to be adjusted; and laser intensities have to be reduced to very
low levels. Two-dimensional time-lapse images were acquired,
taking one frame every 1.5 s. The focus was adjusted manu-
ally by an experienced microscopist for best visualization of the
spot. As position and mobility of a chromosomal locus can vary
with stages of the cell cycle, it is crucial to determine precisely
what stage each imaged cell is in. This is done by monitoring
bud presence, bud size, as well as the shape and position of the
nucleus, as visualised by the Nup49-GFP fusion and a transmis-
sion or phase image [25].

C. Image Analysis Software

A version of the SpotTracker (described in Section II) was
customized for the application working on the 2-D time-lapse
sequence. Here, we describe the specificities of the three mod-
ules which has essentially the same components as the generic
program.

1) Nucleus alignment: The reference structure for our appli-
cation is the nuclear membrane visualized due to Nup49-
GFP, and whose outline on an image is well approxi-
mated by an ellipse. We first smooth the image and apply
a global threshold to detect the fluorescent structures that
are predominantly located in the nuclear membrane. We
then fit the thresholded data with an ellipse, using the
least-squares method of Fitzgibbon which works well for
scattered data [26]. The images are then translationally
realigned with respect to the center of these ellipses and
also cropped to the largest radius. Note that this center de-
tection is almost insensitive to the choice of the threshold.

2) Spot-enhancing filter: We use the LoG filter (Mexican
Hat) described in Section II-B. The standard deviation pa-
rameter of the filter is tuned to the size of the fluorescent
spots (e.g., 0, = 0y = L.1).

3) Tracking using DP: One difficulty that we had to cope
with is the labeling of envelope proteins which creates a
bright halo at the periphery of the nucleus which can de-
tract the algorithm from tracking the particle which has
a similar intensity. To deal with this issue, we modified
the cost function (1) by adding a third term which penal-
izes spot positions &, that are too far from the center of
the nucleus z... Specifically, we used the augmented cost

function

N—-1

§(x0, X1, XN_1) = Z(l — A1 — A2) f(x4,1)
t=1
[Ix¢ — %41 ] [Ix¢ — Xl
—A1 A — A2 YA

where My and M5 are suitable normalization factors and
where A1 and As with 0 < A + Ay < 1 are adjustable
weights. We note that the outcome of the algorithm is
not overly sensitive to the setting of these parameters;
typical values are A = 3, \; = 25%, and A\ = 10%.
Increasing A1 makes the trajectory smoother while A5 is
merely a fallback parameter which is only relevant when
the algorithm tends to get hooked on nuclear proteins.
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In its standard formulation, the DP approach requires the
specification of an initial point (xg) for the path, which can be
located at any t. In our implementation, we have specified this
initial point automatically by detecting the strongest response
to the matched filter across all images in the sequence; this
corresponds to the most likely position of the particle overall.
The DP algorithm is then run twice from this initial point
to the beginning and end of the sequence, respectively. This
initialization procedure was used in all our experiments and
was found to give good and reproducible results. It is obviously
also possible to define this initial point manually, but this
was not found to be necessary. The program has a graphical
user-interface which allows the placement of additional nodes.
Thanks to this interactive mode, the biologist expert can control
the trajectory and work hand-in-hand with the algorithm when
the quality of data is poor.

We have successfully applied the algorithm to a large variety
of real data sets. The center of the nucleus was well located in
all cases, and the detected trajectories were judged to be satis-
factory, even when the images were extremely noisy. When the
spot disappears completely for a short period—e.g., when it is
out of focus—the algorithm is able to follow it nonetheless using
the displacement constraint. On the other hand, it fails when no
spot is recognized for extended periods of time; this can happen
when the particle is out of focus or inside the nucleus membrane.
In this case, the user can easily enter new node points to further
constrain the trajectory.

D. Analysis of the Mobility of the Telomeres

The accuracy and speed of the tracking analysis has permitted
a calculation of the absolute dynamics of a given locus by sub-
tracting background nuclear and/or cellular movement from
movement of the locus. This is in contrast to previous studies
of in vivo chromatin dynamics. Movement in the past was
either determined as the difference in position of two tagged
loci [27]-[29] or as movement of a single spot in relation to
a nuclear reference point, usually chosen as the closest point
on the nuclear envelope [15], [24]. For measurements relative
to the nuclear envelope, one can take the complement of the
distance between a spot and the nuclear envelope, which is its
distance from the nuclear center. The changes in this distance
reflect the dynamics of a given locus relative to the nuclear
periphery [measurement definitions shown in Fig. 10(a)].

To make a robust comparison of different telomeres and
the effects of ablating genes implicated in telomere tethering
at the nuclear envelope, the degree of movement must be
averaged over many time-lapse series captured under iden-
tical conditions from different cells of identical genotype.
In practical terms, the mean of distance traveled (or dis-
placement) is calculated from these pooled time-lapse series,
and its square is plotted against increasing time intervals
MSD(At) = E{(d(to) — d(to + At))?}. When d is calculated
as differences in radial position, a particle positioned near the
nuclear periphery will always yield low MSD. Therefore, this
so-called radial MSD (radMSD) is useful primarily to compare
the extent of displacement from the nuclear periphery. By
using the SpotTracker software to efficiently extract absolute
movements of a locus [Fig. 10(a)], we can detect more subtle
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Fig. 10. A: Schematic representation of distances measured for mean-squared displacement (MSD) analysis. For radial analysis, distances are measured for
each time point from the center of the spot to the nearest site at the nuclear periphery. For absolute analysis, distance traversed by the chromatin between two
time points is measured for each time interval. Bar is 2 pm. B: The position of the indicated telomere focus was marked for each time point for a typical time
lapse (200 frames at 1.5-s intervals) of G1 phase cells. The compiled trajectory over 5 min is indicated in red on an idealized section of the nucleus for telomeres
14L (GA1985), 6R (GA1459), 8L (GA1986), and 6R Aku70 (GA1489). C: absMSD analysis was performed by first correcting cellular/nuclear shift (absolute
coordinates of the spot are obtained by subtracting the center coordinates from the measured spot coordinates). Distances between positions at different time points
are then calculated for each time interval (1.5-150 s, example is shown in A for 1.5 s) and the mean square is plotted against time interval (e.g., At = 1.5

absMSD = mean = (d}_,,d3_;,...), At = 3 s : absMSD = mean(d}_;,d3_,,...). absMSD are calculated over multiple time lapse series for the
indicated telomeres, notably Tell14L, Tel6R Tel8L and Tel6R in a Aku70 strain. The height of the MSD plateau is proportional to the radius of constraint and
the diffusion coefficient D can be calculated from the initial slope D = E{d?}/4At. Tel 14L moves within a larger radius of constraint than the other telomeres
and does not reach a plateau within the time scale monitored. It is not as mobile as the Tel 6R that has lost its perinuclear association due to the absence of yKu70
protein [24]. D: radMSD analysis was performed by calculating for each time interval the square average of radial dlstances Adz = (d(t) — d(t + At))%, e.g.,
At = 1.5 s : radMSD= mean((d> — dy)?, (ds — d2)?,...); At = 3 s : radMSD = mean((ds — dy)?,(ds — d2)?,...). For time intervals 1.5— 150 S,
mean square of all possible Ad is calculated and plotted agamst tlme interval for the same tagged telomeres Tel 14L, Tel 6R, Tel 8L, and Tel 6R in the AkuT70

background. The radMSD shows that Tel14L remains tightly perinuclear despite the large degree of mobility monitored in C.

differences in the dynamics of telomeres, and from this calcu-
late a true or absolute MSD (absMSD).

We have performed these two analyses on multiple time-lapse
sequences of three different telomeres (Tel 6R, 8L, and 14L). We
have also analyzed Tel 6R movement in a strain lacking one of
the proteins that mediates association with the nuclear envelope
(Tel 6R ykuT70A). From the radial MSD curve in Fig. 10(d), we
can observe that all three telomeres have a plateau at the same
height, except in the strain lacking the telomeric anchoring pro-
tein yKu (yku70A), for which the deviation is much higher. As
the MSD plateau is proportional to the volume of confinement,
these curves argue that these three telomeres are constrained
to the same extent relative to the nuclear periphery and that
elimination of yKu70 releases Tel 6R from this constraint. This
nicely correlates with subnuclear position analysis, in which

telomere position is determined in stacks of many cells at a
single time point [24]. The calculation of the absMSD, on the
other hand, shows that some telomeres, such as Tel 14L, move
significantly but remain near the nuclear envelope. Tel 14L mo-
bility is nonetheless lower than that monitored for Tel 6R in the
absence of the telomere anchor, yKu70 [Fig. 10(b)—(d)]. These
differences convincingly indicate that anchorage at the nuclear
periphery can vary among telomeres, yet can be manipulated
by eliminating the telomere-bound protein (yKu) which medi-
ates interaction with the nuclear envelope [24].

This represents but one example of the biological information
that can be gathered from this type of analysis. To date, we have
processed hundreds of such image sequences in a wide range of
mutant cells and have performed a relatively detailed analysis
of the results (to be presented elsewhere). A highly precise anal-
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ysis of the dynamics of telomeres demonstrates that different an-
choring mechanisms constrain individual telomeres to different
degrees, and that this constraint requires protein-protein interac-
tions at the nuclear envelope. These variations in telomere dy-
namics may correlate with different propensities for recombina-
tion or silencing efficiency.

V. CONCLUSION

We have presented a new algorithm for tracking the move-
ment of a particle in a sequence of noisy images. The key fea-
ture that makes the method robust is that the detection task is
formulated as a global optimization problem. The optimal so-
lution is computed most efficiently by DP. The algorithm has
been successfully applied to the analysis of the movement of
chromosomal loci within the nucleus of a yeast cell. The re-
sults obtained are highly satisfactory, suggesting that the DP ap-
proach has good potential for similar biological imaging prob-
lems. While the particle trajectories are usually extracted com-
pletely automatically, the software can accept hints or correc-
tions provided by the biology expert. Its response time is suffi-
ciently fast for it to operate in a semi-interactive mode with the
priority given to the user input. In its present configuration, the
system can track a spot over a sequence of 300-500 images in
just a few seconds.

We believe that this software should be quite useful in prac-
tice, as it facilitates the extraction of quantitative data for com-
plete and reproducible trajectory with minimal input from the
biologist. In our case, we have been able to demonstrate differ-
ences in dynamics among telomeres, which reflects differences
in the type of interaction with the nuclear envelope. These are
only a few of many potential conclusions to be drawn from the
application of a robust spot tracking algorithm to the question
of chromatin dynamics.
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