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Abstract

Three-dimensional (3D) electron microscopy (3DEM) aims at the determination of the spatial distribution of the Coulomb

potential of macromolecular complexes. The 3D reconstruction of a macromolecule using single-particle techniques involves

thousands of 2D projections. One of the key parameters required to perform such a 3D reconstruction is the orientation of each

projection image as well as its in-plane orientation. This information is unknown experimentally and must be determined using

image-processing techniques. We propose the use of wavelets to match the experimental projections with those obtained from a

reference 3D model. The wavelet decomposition of the projection images provides a framework for a multiscale matching algorithm

in which speed and robustness to noise are gained. Furthermore, this multiresolution approach is combined with a novel orientation

selection strategy. Results obtained from computer simulations as well as experimental data encourage the use of this approach.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The spatial distribution of the Coulomb potential of

macromolecular complexes is crucial in structural

biology and provides key information about the way

macromolecules interact. It can be recovered by three-
dimensional (3D) electron microscopy (3DEM) which

addresses biological structures with sizes ranging from

100�A to 1 lm (Frank, 1996, 2002; Kuhlbrandt and

Williams, 1999; Unger, 2001).

The highest-resolution 3D models (3–10�A) are ob-

tained by electron crystallography (Kuhlbrandt and

Williams, 1999; Unger, 2001). However, this technique

is not suitable in case of large macromolecular com-
plexes that often resist crystallization or that can only be

partially crystallized, after removing their flexible parts

(Frank, 2002). In this case, single-particle techniques are
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commonly used. These techniques have resulted in re-

constructions with medium-to-high resolutions (5–15�A)

for a number of different specimens (van Heel et al.,

2000).

The 3D reconstruction of a macromolecule following

the single-particle approach is based on the information
provided by thousands of two-dimensional (2D) pro-

jections of objects that are nearly identical but that have

completely unknown and independent orientations.

However, the relative orientation of each particle is

needed by the reconstruction algorithm.

The orientation or pose (as also known in the Com-

puter Vision community) of a particle in the microscope

is specified by a projection direction and by an in-plane
pose, which, in turn, is given by an in-plane rotation and

translation. The projection direction as well as the in-

plane rotation are usually coded using three Euler angles

(two out-of-plane rotations defining the projection di-

rection, and the in-plane rotation).

The techniques used for determining the pose of

single-particle projections can be categorized in two

mail to: coss@cnb.uam.es
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main families: reference-free and reference-based. The
method of moments (Basu and Bresler, 2000a,b; Gelf-

and and Goncharov, 1990; Goncharov, 1990; Salzman,

1990) is reference-free and uses a known relationship

between the area moments of the 3D object and the

moments of its 2D projections. The common-line

method is another reference-free algorithm based on

the property that two projections of the same object

from different directions must share a common line in
Fourier space (Central-Slice Theorem). The search of

the common line can be done by comparing the pro-

jection sinograms in the image space (Goncharov,

1990; Penczek et al., 1994; van Heel, 1987) or in the

Fourier space (Goncharov, 1990; Lauren and Nand-

hakumar, 1997). The approach of Lauren and Nand-

hakumar (1997) is particularly interesting since shifts

and noise are explicitly considered during the common-
line search. However, these techniques remain very

sensitive to noise. When used in single-particle electron

microscopy, they are usually combined with classifica-

tion algorithms because of the noise reduction effect

observed in the class averages or representatives (van

Heel et al., 2000).

The second group of techniques relies on a reference

3D model. The underlying idea of this family of
methods is to match the projections of the reference

model with those obtained in the microscope. The two

reference-based methods most commonly used in sin-

gle-particle electron microscopy are the ones developed

by Penczek et al. (1994) and by Radermacher (1994).

The method proposed by Penczek et al. (1994) is based

on a library of projections of the reference volume

(from now on referred to as reference projections) that
are evenly distributed over the entire range of the two

out-of-plane angles. It computes one-dimensional

cross-correlation functions in polar coordinates be-

tween the experimental images and all the reference

projections. The two out-of-plane rotation angles are

determined by the largest cross-correlation coefficient

and the in-plane rotation angle is determined by the

position of the maximum in the corresponding cross-
correlation function. Notice that the reference images

and the experimental ones are considered to have been

previously translationally aligned. In this paper, we will

refer to this method as the real-space matching. The

method introduced by Radermacher (1994) computes a

five-dimensional (5D) cross-correlation function (func-

tion of five parameters: three angles and two transla-

tions) between the 2D Radon transform (RT) of each
experimental image and the 3D RT of the volume. The

parameters for which this function achieves its maxi-

mum define the pose of the particle image. This

method will be referred to as the Radon-based assign-

ment.

All techniques exposed so far assume that the angu-

lar-assignment step is performed independently of the
reconstruction step. One advantage of doing so is that
any reconstruction algorithm can be used. However, the

two steps are sometimes performed simultaneously, as in

Provencher and Vogel (1988) and Vogel and Provencher

(1988).

Our algorithm is also independent of the recon-

struction step. It is based on a library of projections of

the input volume, like in the real-space matching

method. The correlation coefficient between each ex-
perimental image and all the reference projections is

computed in a coarse-to-fine fashion using a discrete

wavelet transform. This reduces the computation com-

plexity and increases robustness with respect to noise.

Furthermore, the selection of the pose is not based on

the sole correlation maximum, but also on a set of

highly correlated reference images. How to build this set

of reference images that correlate well with the experi-
mental image will be explained in more detail later. We

will refer to the proposed method as the wavelet-space

matching.

Saad and Chiu (2000) also proposed the use of

wavelets to compute the similarity between two images.

However, the wavelet decomposition was used in that

work to assign different weights to frequency compo-

nents. The reference projections were first classified into
classes. Any experimental image was first compared with

a representative of each class and, then, compared to all

the reference images within the three classes with highest

correlation.

In this paper, we introduce a wavelet-space matching

algorithm that is completely different from the approach

of Saad and Chiu (2000), and so is the comparison

strategy. We compare its performance with the real-
space matching and the Radon-based assignment as

implemented in the SPIDER package (Frank et al.,

1996). This comparison is performed using synthetic

data. The performance of our algorithm is also shown

on experimental data. Our method is available in

the Xmipp package (Marabini et al., 1996) (http://

www.cnb.uam.es/~bioinfo/).
2. Angular-assignment algorithm

The proposed algorithm is based on the alignment of

the experimental images to those in a library of simu-

lated projections computed using a reference model. The

alignment is done by comparing the correlation coeffi-

cient of the experimental image whose angles are to be
assigned with all the reference projections as in Penczek

et al. (1994). Here is a brief description of the algorithm:

1. For each reasonable in-plane pose of the

experimental image do:

1.1. Search the image in the library that

best matches (based on correlation)

the experimental image.

http://www.cnb.uam.es/~bioinfo/
http://www.cnb.uam.es/~bioinfo/


Fig. 1. The correlation between two continuous images is computed as

the sum of their sub-band discrete correlations. Sub-bands are typi-

cally arranged by the wavelet transform as depicted in this figure: each

of the squares represent a sub-band (low frequency sub-bands occupy

smaller areas). The figure shows two corresponding sub-bands in two

different images.
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2. Select the translational and angular pa-

rameters that correspond to the most

likely image pose.

The main departures from the approach of Penczek

et al. (1994) are:

• The reference projection that better matches a given

in-plane pose of the experimental image at hand (step

1.1 in the algorithm) is searched in a coarse-to-fine

fashion using a wavelet transform. The coarse-to-fine
strategy is used to compute partial approximations to

the correlation coefficient. The experimental image at

a given in-plane pose is compared with all the refer-

ence projections at the coarsest resolution. Only those

reference projections with a sufficiently high partial

correlation pass to the next stage. At the next stage,

the resolution is increased and another sub-band of

the images are compared at this resolution level.
Again, only those with a sufficiently high partial cor-

relation progress to the next stage. This process is it-

erated until all sub-bands within the same resolution

level have been included. At this point, the resolution

is increased again, and new sub-bands are considered.

When all sub-bands have been considered, we select

the reference projection with the highest correlation.

The advantages of this approach are twofold: first,
most of the computation burden is avoided since,

for most reference projections, the correlation is com-

puted only at low resolution; second, this strategy is

more robust to noise.

• Step 1 in our algorithm provides the best reference

projection for each one of the in-plane poses of the

experimental image explored. However, a decision

must be taken about which one of the in-plane poses
is the most likely. This is done in step 2. The best-

matching reference projection, and therefore the in-

plane pose of the experimental image, is selected

based on the angular information of several of the

best-matching reference projections, instead of simply

assigning the pose parameters of the best-matching

reference image. The underlying idea is to consider

the angular distribution of a few good-matching im-
ages instead of a single one.

The computation of the correlation coefficient in the

wavelet space is introduced in Section 2.1. The multi-

resolution properties of the wavelet transform are ex-

ploited in Section 2.2. Finally, the novel pose selection

strategy is presented in Section 2.3.

2.1. Correlation in the wavelet space

The goal of this section is to derive a formula that

allows the computation of the correlation between two

images in the wavelet space. It will be shown that under

some assumptions the correlation can be easily com-

puted in terms of the coefficients of the wavelet expan-

sion of the input images. For simplicity purposes, we
will consider one-dimensional signals here. The exten-
sion to higher dimensions is straightforward.

The correlation function between two signals f and g
is usually defined as Rf ;gðsÞ ¼

R1
�1 f ðtÞgðt þ sÞdt and is

interpreted as the correlation of the function f with

every shifted version of g. Without loss of generality we

will concentrate on computing the correlation function

at the origin

Rf ;gð0Þ ¼
Z 1

�1
f ðtÞgðtÞdt ¼ hf ; giL2 : ð1Þ

Given a wavelet function w, any signal f 2 L2 (L2 is

the space of functions with bounded square integral) can

be expressed as

f ðtÞ ¼
X
i;s2Z

df ;s½i�wi;sðtÞ; ð2Þ

where wi;sðtÞ ¼ 1ffiffiffi
2s

p wððt � 2siÞ=2sÞ and df ;s½i� ¼ hf ;wi;si
are the corresponding expansion coefficients of f Al-

droubi and Unser (1996). The parameter s is referred to

as the scale; it controls the resolution of the wavelet

function while i determines its position. The defining

property of an orthonormal wavelet basis is

hwi;s;wj;s0 i ¼ di�jds�s0 ;

where di ¼ 1� signðiÞj j is Kronecker�s delta.
Plugging Eq. (2) into Eq. (1) and using the orthogo-

nality property, it can be easily shown that

Rf ;gð0Þ ¼
X
s2Z

X
n2Z

df ;s½n�dg;s½n� ¼
X
s2Z

hdf ;s; dg;sil2 : ð3Þ

In other words, the correlation between the two con-

tinuous functions f and g can be computed as the sum
over all scales of the discrete correlation of their corre-

sponding wavelet expansion coefficients. In the case of

2D signals, with a proper indexing scheme (Aldroubi

and Unser, 1996) the proof is straightforward, the cor-

relation between two continuous images can also be

computed as the sum of the sub-band discrete correla-

tions (coefficients corresponding to a particular selection

of scale and orientation, see Fig. 1).
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Finally, the correlation between the images is com-
monly normalized by their respective energy. This nor-

malized correlation is referred to as the correlation

coefficient and is defined as

q ¼ Rf ;gð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rf ;f ð0ÞRg;gð0Þ

p : ð4Þ

We use the correlation coefficient to evaluate the simi-

larity between two images.

2.2. Multiresolution projection matching

At this point we have an alternative way to com-

pute the similarity between two images using their

wavelet representations. However, the possibilities of

the wavelet decomposition for multiresolution data

processing have not been fully exploited yet. Multi-

resolution can help us to discard the reference pro-

jections that do not match the experimental projection
at coarse data resolutions. Coarse resolutions provide

a rough representation of the particle shape. Thus, if

two projections do not match at these resolutions,

then the particle shapes in the two images are clearly

different. On the contrary, if they correlate well at

these resolutions, finer details are added to the com-

putation of the correlation (see Eq. (3)) in order to

check whether this match still holds at finer resolu-
tions.

Therefore, in our algorithm, Eq. (3) is not computed

at once for each reference image, but the different inner

products participating are summed sub-band by sub-

band. At each sub-band, the images with the worse

partial correlations are removed from the list of possible

candidates for the best-matching reference. This process

goes on until all sub-bands have been processed (see
Fig. 2). When the last sub-band has been considered,

there are typically only few reference projections sur-

viving. At this stage the one with the highest correlation
Fig. 2. In a first step, the coarsest sub-band of the experimental image is co

the library. Then, the reference images with lowest correlations are discard

comparison is updated using another sub-band. Again, those images with th

sub-bands are considered. In the last stage, the reference image with maximum

in-plane rotation of the experimental image.
coefficient is selected as the one that best matches a
specific in-plane pose of the experimental image. The

proportion of discarded images at each sub-band is

called the ‘‘discarding factor’’ and its effect on accuracy

and computing time will be explored in Section 3.1.3.

This procedure reduces the computational complexity

since the sub-band correlations at coarser scales come

much cheaper than those at finer scales. Similar ap-

proaches have been shown to be more robust to noise in
other image-processing applications (Dengler, 1989;

Desco et al., 2001; Th�evenaz et al., 1998).

2.3. Pose selection strategy

The procedure described in the previous sections

identifies the best-matching reference projection in the

library for each reasonable in-plane pose of the experi-

mental image. The next step is to select the most likely of

all these poses. A common approach is to just select the

pose with maximum correlation. However, this may be

misleading because the correlation objective maximum

canbe very close to other correlation values. In this case, it
is not so clear which pose to select since the correlation

values are perturbed by the noise present in the experi-

mental images.

The solution adopted in this work is to produce an

angular assignment that is based on a few high-corre-

lation values rather than on the sole correlation maxi-

mum. Let us consider the list of in-plane poses with

highest correlations and their corresponding reference
projections. It is possible that, in this list, we have

clusters of reference projections with similar projection

directions. If this is the case, it is likely that the true pose

of the particle at hand is one that comes from the most

populated cluster, even if the correlation maximum is

not within this group.

To measure the similarity of the projection directions

of two different reference images we make use of their
corresponding Euler matrix. Given three Euler angles,
mpared with the coarsest sub-bands of all the reference projections in

ed (in this figure the discarding factor is 50%). In the next stage, the

e lowest correlations are discarded. This process goes on until all the

correlation is selected as the best matching for a given translation and



Fig. 3. The correlation coefficient as a function of the in-plane pose of

the experimental image. The maximum and minimum correlations, as

well as the threshold above which correlations are considered as high,

are marked in the plot.
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/, h, and w, representing rotations around z, y, and

z, respectively, the associated Euler matrix is defined in

Eq. (5)
E/;h;w ¼
cosw cos h cos/� sinw sin/ cosw cos h sin/þ sinw cos/ � cosw sin h
� sinw cos h cos/� cosw sin/ � sinw cos h sin/þ cosw cos/ sinw sin h

sin h cos/ sin h sin/ cos h

0
@

1
A ð5Þ
The third row of this matrix provides the projection

direction. The best-matching reference projections are

clustered according to the Euclidean distance between

their projection directions. In this way, image groups are

formed such that the distance between any two projec-

tion directions in the group does not exceed a certain

threshold. Once the most populated cluster has been

identified, we pick from it the projection direction and
in-plane rotation with the highest correlation coefficient.

We use the following procedure to build the list of

highest-correlated reference images. The correlation

range for an experimental image is defined as the dif-

ference between the maximum and minimum correla-

tions found in Section 2.2. A correlation coefficient is

said to be high if it is higher than 80% of the correlation

range (see Fig. 3).
3. Results

We evaluated the performance of our algorithm in a

fully controlled simulated environment using objective

measures of the quality of the assignment. We also tes-

ted its performance using electron-microscopy experi-

mental data. In particular, we used the cryo-negative

staining data of GroEL obtained by De Carlo et al.

(2002). This particle was selected because its atomic
model is available; therefore, the assignment quality can
also be established objectively.

3.1. Computer-simulated experiments

For the computer-simulated experiments, several

volumes known at atomic coordinates were taken from

the Macromolecular Structure Database (Protein

Quaternary Structure query, PQS, Boutselakis et al.,
2003). Thousand projection images were simulated with

random projection directions (/ and w were uniformly

distributed in ½0; 360�, and h was uniformly distributed

in ½0; 180�). The applied Euler angles were stored for

posterior comparison. The effect of the microscope

contrast transfer function (CTF) on the images was

also considered within the simulation (accelerating

voltage¼ 200 kV, defocus¼)27,700�A, spherical aber-
ration¼ 2mm, convergence cone¼ 0.21mrad) (Frank,

1996; Vel�azquez-Muriel et al., 2003). A signal-to-noise

ratio of 1/3 was simulated. These simulated projections

were input to the angular-assignment algorithm under

study.
3.1.1. Measure of the assignment quality

The assigned poses were compared with the true po-

ses. The shift parameters were compared measuring the

Euclidean distance of the assigned shift (x̂; ŷ) to the true

one (x; y),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx̂� xÞ2 þ ðŷ � yÞ2

q
. Notice that this accu-

racy is measured in pixels.

The quality of the angular assignment was evaluated

using the following measure: given any three Euler

angles ð/; h;wÞ, the rows (e1; e2; e3) of their corre-

sponding Euler matrix define a coordinate system at-

tached to the rotated particle before projection (see Eq.
(5)). We computed the average angular error between

the axes determined by the true (e1; e2; e3) and assigned

(ê1; ê2; ê3) angles as 1
3

P3
i¼1 arc coshei; êii. Notice that

this accuracy is measured in degrees. A perfect as-

signment should produce a zero-average angular error

among axes.

A third indicator of the quality of an assignment is

given by its robustness, that is, the proportion of par-
ticles that are reasonably assigned. A particle is rea-

sonably assigned if its average angular error does not

exceed a certain threshold. The 95% confidence interval

of the proportion of reasonably assigned particles is

reported for each experiment (Vardeman, 1994). The

reported accuracy measures correspond to the average

angular and translational errors for only the reasonably

assigned particles.
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3.1.2. Comparison experiments

We compared the performance of the proposed

method with the performance of two angular-assignment

algorithms commonly used in single-particle electron

microscopy: projection-matching in real-space (Penczek

et al., 1994) and angular assignment via Radon space

(Radermacher, 1994). We performed four different ex-

periments to show the properties of our assignment

method.
For each experiment, a library of reference projec-

tions was built from a reference volume with an angular

step of 5�. This library was used at the same time for the

real-space projection-matching algorithm and for the

proposed algorithm. The Radon transform was also

sampled every 5�. The angular search was extended to

the whole projection sphere (complete search) and the

search for the particle center was restricted to a radius of
2 pixels around its ideal position (the shift step is 1

pixel). Since the angular sampling step was D ¼ 5�, we
considered that the particles with an average angular

error within 3D were reasonably assigned. For the se-

lection of the most likely pose of the experimental image

(Section 2.3), reference projections were considered to

form a cluster if the distance between any two projection

directions in the cluster was smaller than 3D. For the
wavelet transform, we used Daubechies-12 wavelets as

implemented in Press et al. (1992).

The Halobacterium halobium bacteriorhodopsin (PQS

entry: 1BRD, Henderson et al., 1986) was used for the

first experiment. The same volume was used for the

simulation of the experimental images as well as a ref-

erence for the three algorithms being compared. The

robustness of the algorithms and their accuracy are
shown in Table 1.

To explore the influence of the quality of the refer-

ence model on the assignment accuracy, the following

experiment was designed: the experimental images were

simulated from the extracellular segment of Homo sa-

piens integrin Avb3 (PQS entry: 1L5G, Xiong et al.,

2002). The projection library was built upon a filtered
Table 1

Accuracy of the reasonably assigned particles and its proportion for the bac

Method Accuracy (�)

Radon-based assignment 5.05� 3.09

Real-space matching 3.99� 2.77

Wavelet-space matching 5.47� 2.95

Table 2

Accuracy of the reasonably assigned particles and its proportion for the extrac

the reference model

Method Accuracy (�)

Radon-based assignment 5.09� 2.66

Real-space matching 4.36� 2.90

Wavelet-space matching 4.79� 2.87
version of the phantom (low-pass filtered to 0.025�A�1).
Table 2 shows the corresponding results.

To illustrate the performance of the algorithm on

less-cooperative data, we simulated the experimental

images using the human adenovirus type-5 hexon (PQS

entry: 1RUX, Rux and Burnett, 2000, see Fig. 4). The

results of the assignments are shown in Table 3. Fig. 5

shows the angular error vs. the correlation for each of

the 1000 images and for the three compared algorithms.
Finally, we show an experiment in which the refer-

ence model does not correspond to the particle being

imaged. Three extra masses were added to the bacte-

riorhodopsin (see Fig. 6) to simulate the experimental

projections. These masses emulate the presence of ad-

ditional features like antibodies. The bacteriorhodopsin

without extra masses was used as reference volume for

the assignment process. Table 4 summarizes the re-
sulting assignment for each of the three methods.

Fig. 7 shows the angular error vs. the correlation for

each of the 1000 images and for the three compared

algorithms.

3.1.3. Effect of the discarding factor

Let us explore the effect of the discarding factor

introduced in Section 2.2. The first experiment of the
preceding section (bacteriorhodopsin with a perfect

reference volume) was repeated varying the discarding

factor. The angular accuracy of the assignment as

well as the computing time is shown in Table 5. For

speed reasons, the translational parameters were as-

sumed to be known. The angular accuracy has ap-

proximately an L-shaped curve while the computing

time reduces slowly as the number of discarded im-
ages is increased.

3.2. Separate effect of the two proposed improvements

Finally, we were interested in recognizing which of

the two novel features (multiresolution projection

matching (see Section 2.2) or the pose selection strategy
teriorhodopsin

Accuracy (pixel) Robustness

0.50� 0.53 [56.8%,63.0%]

0.36� 0.22 [92.2%,95.3%]

0.58� 0.56 [97.8%,99.3%]

ellular segment of integrin Avb3 showing the influence of the quality of

Accuracy (pixel) Robustness

0.83� 0.75 [99.0%,99.8%]

0.95� 0.80 [90.7%,94.1%]

0.71� 0.61 [97.2%,98.9%]



Fig. 4. Isosurface representation of the adenovirus type-5 hexon.

Table 3

Accuracy of the reasonably assigned particles and its proportion for less-cooperative data (adenovirus type-5 hexon)

Method Accuracy (�) Accuracy (pixel) Robustness

Radon-based assignment 11.06� 2.83 1.44� 0.65 [1.3%,3.2%]

Real-space matching 3.37� 2.50 0.62� 0.46 [73.6%,79.0%]

Wavelet-space matching 4.88� 2.63 0.63� 0.55 [90.7%,94.1%]

Fig. 6. Top (upper part) and side views (lower part) of the isosurfaces of the bacteriorhodopsin and of the bacteriorhodopsin with extra masses.
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(see Section 2.3)) was more important for the increased

robustness observed. For this task the adenovirus type-5

hexon was reassigned using different combinations of

the two proposed modifications. The case real-space

matching with selection of the maximum corresponds to

what in this paper has been referred to as space-
matching method and was run through Spider. This

algorithm performs a 2D+3D search of the pose pa-

rameters. In order to avoid a possible suboptimal result

with respect to a full 5D search, the translational pa-

rameters were provided in all the assignments. There-

fore, all the assignments are performing a simple 3D



Table 4

Accuracy of the reasonably assigned particles and its proportion for the bacteriorhodopsin with extra masses showing the influence of a reference

model that does not correspond to the particle being imaged

Method Accuracy (�) Accuracy (pixel) Robustness

Radon-based assignment 5.29� 2.99 0.98� 0.77 [30.2%,36.1%]

Real-space matching 5.31� 3.44 1.22� 0.84 [51.4%,57.7%]

Wavelet-space matching 5.80� 3.02 0.98� 0.62 [62.6%,68.5%]

Fig. 5. Angular error vs. correlation for the pose assignment of the adenovirus type-5 hexon. From top to bottom: Radon-based assignment, real-

space assignment, and wavelet-space assignment.
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search. The discarding factor used in the multiresolution

approach of the correlation was 40%. Table 6 shows the

corresponding results.

3.3. Results on experimental data

In order to test the applicability of the proposed al-

gorithm to experimental electron-microscopy data, we
have used the cryo-negative micrographs of GroEL

taken by De Carlo et al. (2002). Cryo-negative staining

is a novel technique that preserves well the native state

of the sample while providing high contrast. The re-

construction published by De Carlo et al. (2002) with

these data had a resolution of 14�A. The angular as-

signment in that case was performed using the projec-

tion-matching algorithm building the library of
reference projections every 3�.
In this experiment, we performed a pose assignment

based on the reference model used in the last iteration of

De Carlo et al. (2002). Our reference library was built

every 10�. The average angular difference between Euler

axes of the original pose assignment and the one per-

formed with the proposed algorithm is smaller than 3�
for 35% of the particles and smaller than 10� for the 64%.

For validating our assignment we performed a 3D re-
construction. Since the X-ray model of GroEL is avail-

able in PDB (Berman et al., 2000, PDB entry: 1GRL,

Braig et al., 1994, 1995), we computed the Fourier Shell

Correlation (Frank, 1996) between the X-ray model and

the reconstruction using ART+blobs (Marabini et al.,

1998) with our pose assignment. Fig. 8 shows the Fourier

Shell Correlation obtained by the assignment for the last

iteration produced in De Carlo et al., 2002 (this recon-
struction was also done with ART+blobs) and the one



Fig. 7. Angular error vs. correlation for the pose assignment of the bacteriorhodopsin with extra masses. From top to bottom: Radon-based

assignment, real-space assignment, and wavelet-space assignment.

Table 5

Computing time of the proposed algorithm and angular accuracy as a

function of the discarding factor

Discarding factor (%) Time (min) Accuracy (�)

40 24.57 4.68

45 22.07 4.68

50 20.05 4.68

55 18.58 4.68

60 17.50 4.70

65 16.80 4.77

70 16.23 4.85
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by the proposed algorithm. The frequencies at which

each of the curves fall below 0.5 are 0.038�A�1 (26�A) and

0.040�A�1 (25�A), respectively.

As is usually done in single-particle electron micros-

copy, the set of projections was randomly split in two

halves for each of the assignments. Four different
Table 6

Assignment accuracy and proportion of reasonably assigned particles for

proposed features

Selection strategy Space A

Maximum Real space 3

Maximum DWT 4

Most populated Real space 4

Most populated DWT 4
reconstructions were produced (two for the previous

assignment and two for the proposed assignment). The

Fourier Shell Correlation corresponding to each pair of

volumes is shown in Fig. 9.
4. Discussion

In the experiments carried out, we have compared the

performance of the proposed algorithm with two wide-

spread angular-assignment algorithms as they are

implemented in Spider (Frank et al., 1996). We find that,
for some proteins, all algorithms exhibit similar perfor-

mances in terms of accuracy and robustness (see Table

2). It is interesting to notice that, for non-pathological

cases, the angular accuracy is close to the angular

sampling step for the three algorithms (see Tables 1, 2,

and 4).
the adenovirus type-5 hexon using different combinations of the two

ccuracy (�) Proportion

.48� 2.59 [72.8%,78.2%]

.17� 2.09 [78.4%,83.4%]

.33� 2.22 [86.1%,90.2%]

.32� 2.18 [90.3%,93.7%]



Fig. 9. Fourier Shell Correlation of two reconstructions of GroEL using experimental cryo-microscopy data and two different assignment algorithms

when the data set is split in two halves.

Fig. 8. Fourier Shell Correlation of two reconstructions of GroEL using experimental cryo-microscopy data and two different assignment algorithms

with the X-ray model of GroEL.

390 C.O.S. Sorzano et al. / Journal of Structural Biology 146 (2004) 381–392
However, there are some ‘‘more difficult’’ proteins for

which the angular-assignment process is more likely to

be mislead (see, for instance, the proportion of the

reasonably assigned particles for the bacteriorhodopsin

and the adenovirus type-5 hexon, Tables 1 and 3, re-

spectively). This extra difficulty mainly translates into a

reduced robustness while the accuracy of reasonably

assigned particles is maintained. This effect may take
dramatic dimensions as is the case for the Radon-based

assignment of the adenovirus type-5 hexon. Our

algorithm also shows a smaller number of reasonably

assigned particles in this case, although it is more robust

than the other two approaches.
The experiment with extra masses (Table 4) is par-

ticularly interesting since it simulates a common situa-

tion in which the reference model does not match the

macromolecule being studied. As should be expected,

the robustness drastically decreases for all angular-as-

signment methods.

The correlation coefficient used by the pose-assign-

ment algorithm for comparing a single experimental
image with a set of reference projections is commonly

used as a measure of the quality of the assignment. In

this way, the correlation coefficients of different experi-

mental images are compared and those experimental

images with low correlation coefficient are excluded



C.O.S. Sorzano et al. / Journal of Structural Biology 146 (2004) 381–392 391
from the reconstruction process. However, as shown in
Figs. 5 and 7, for none of the three algorithms studied in

this paper is there a clear relationship between the cor-

relation among different experimental images and their

assignment accuracy. These graphs point out a topic in

which more research must be carried out: how to iden-

tify the wrongly assigned images when the ground truth

is unknown.

The discarding factor is a free parameter of our
algorithm. When the discarding factor is varied, the

average angular error shows a flat region until 55% (see

Table 5). This means that, for the experiment carried

out, we could have safely dropped up to the 55% of the

images with lower sub-band correlation. Beyond this

discarding factor, we are sometimes dropping the best-

matching reference projection. The computing time

reduces with increasing discarding factors, but this re-
duction is smaller for high discarding factors than for

low ones. This can be explained by the fact that the

experimental image is compared with all reference im-

ages at least at coarse resolution, even if the discarding

factor is high.

The experiment carried out in Section 3.2 is quite

informative since it reveals the relative importance of

the individual contributions of each of the modifica-
tions proposed to the increase of robustness. For the

experiment carried out, the most important contribu-

tion is that of the pose selection strategy. However,

the multiresolution computation of the correlation

accounts for an important improvement of the ro-

bustness even with a simple pose selection strategy.

Finally, the combination of both techniques reveals a

positive interaction yielding a robustness that cannot
be achieved by any of the modifications indepen-

dently.

The computing time for the complete-search exper-

iments performed in this work varies from one algo-

rithm to another. Projection matching in the space

domain is clearly the fastest algorithm (about 20min).

The main reason is that the translational search (2D)

and the angular search (3D) are performed indepen-
dently; thus, the problem complexity is highly reduced

(2D+3D). Projection matching in the wavelet domain

took about 8 h. However, it must be taken into account

that the proposed algorithm performs a full 5D search

and has to make a wavelet transform for every con-

sidered in-plane pose of the experimental image since

the wavelet transform lacks a shift property similar to

the one of the Fourier transform (Simoncelli et al.,
1992). Finally, the Radon-based assignment took about

50 h for the complete search. The Radon-based as-

signment also performs a 5D search, but the Radon

transforms of the images and the volume can be pre-

computed. The previous time measures were performed

on a single processor of a Cluster Alpha Server (5

nodes ES 45) with 1GHz Alpha EV68 microprocessors
and 8GB of RAM memory per node. The operating
system is Tru64 5.1.

The proposed algorithm has been tested on experi-

mental electron-microscopy data. In particular, the

GroEL has been used since its atomic model is avail-

able and, therefore, allows the comparison of the re-

constructions with a volume very close to the ground

truth. The results of our algorithm are similar to those

obtained in previous works (De Carlo et al., 2002) with
a much-finer reference library. The resolution achieved

in each case was around 25�A, although the Fourier

Shell Correlation at most of the lower frequencies was

slightly higher for the reconstruction obtained using

the newly proposed algorithm (see Fig. 8). We also

computed the standard self-consistency measure in

single-particle electron microscopy by computing the

Fourier Shell Correlation between two volumes that
were reconstructed from two random halves of the

particle set. For the experiment carried out, the self-

consistency of the previous assignment is slightly better

than the one of the proposed algorithm (see Fig. 9), as

was expected since the assignment using wavelet-space

matching was performed upon a much-coarser refer-

ence library.
5. Conclusions

A new algorithm for assigning the pose of single-

particle electron-microscopy images has been intro-

duced. It requires a reference 3D model. It is robust with

respect to noise since it uses a multiresolution strategy to

compute the correlation between the experimental im-
ages and the library of projections of the reference vol-

ume. The final decision about the pose of the particle is

taken considering a set of the highly correlated reference

projections instead of simply the most correlated one.

The resulting algorithm appears to be more robust than

the current standards in the field in a number of simu-

lated experiments. The algorithm has been shown to

work with electron-microscopy experimental data as
well.

The algorithm presented in this paper discretizes the

angular and translational space (parameter space). This

allows us to perform a complete exhaustive search on

the parameter space in a finite time. However, there exist

approaches (Joni�c et al., 2003; Provencher and Vogel,

1988; Vogel and Provencher, 1988) that perform a

continuous search in the parameter space, thus provid-
ing a higher assignment accuracy. The main drawback

of these continuous alternatives is that they need a

reasonable initial guess for the particle pose. We are

currently developing a continuous parameter algorithm

for angular assignment that uses the assignment pro-

duced by the algorithm proposed in this paper as ini-

tialization.
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