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A Note on Cubic Convolution Interpolation

Erik Meijering and Michael Unser

Abstract—We establish a link between classical osculatory interpolation
and modern convolution-based interpolation and use it to show that two
well-known cubic convolution schemes are formally equivalent to two os-
culatory interpolation schemes proposed in the actuarial literature about a
century ago. We also discuss computational differences and give examples
of other cubic interpolation schemes not previously studied in signal and
image processing.

Index Terms—Convolution interpolation, cubic convolution kernels,
osculatory interpolation.

I. INTRODUCTION

Polynomial interpolation methods have been studied quite exten-
sively in the signal and image processing literature of the past three
decades [1]–[3]. An example of such methods is Lagrange central in-
terpolation of given, fixed degree, which is known to yield interpolants
that are not continuously differentiable [4], [5]. In order to obtain
smoother interpolants, as may be required for some applications,
several alternative interpolation methods have been proposed. Popular
examples of these are the so-called cubic convolution interpolation
methods, of which the ones proposed by Keys [6] are the most well
known.

It is probably less well known that methods for obtaining smooth in-
terpolants have been developed in other areas of applied mathematics
since the second half of the nineteenth century. In this brief note, we
establish a link between classical osculatory interpolation and modern
convolution-based interpolation and use it to show that both of Keys’
cubic convolution schemes are formally equivalent to particular oscula-
tory interpolation schemes proposed around the beginning of the twen-
tieth century. We also discuss their computational differences and give
explicit forms of the kernels that follow from other cubic osculatory
interpolation schemes.

II. CONVOLUTION-BASED INTERPOLATION

Convolution-based interpolation of uniformly sampled data implies
the use of an interpolation kernel': ! , which determines the
weights to be assigned to the samplesfk = f(kT ) of an original func-
tion f : ! in computing the value of the interpolant~f at any ar-
bitraryx 2 . For ease of notation, but without loss of generality, we
will useT = 1 in the remainder of this paper. In that case, the process
may be described mathematically as

~f(x) =
k2

fk'(x� k): (1)

As can readily be observed from this equation, it is necessary that in
order for ~f to be an interpolant, the kernel' must satisfy the criteria
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'(0) = 1 and'(k) = 0, 8 k 6= 0. A well-known example of such a
kernel is the theoretically ideal, but computationally very unattractive
sinc function. Other examples are the computationally very attractive,
but theoretically far from ideal nearest-neighbor and linear interpola-
tion kernel.

A considerably better tradeoff between computational cost and accu-
racy is provided by the family of cubic convolution kernels, an example
of which was used first in 1973 by Rifman [7]. These kernels consist of
piecewise third-degree polynomials and are once continuously differ-
entiable. Of special interest are the kernels proposed in 1981 by Keys
[6], since they generally yield more accurate results than other kernels
of the family. The first has an approximation order ofL = 3, which
implies that the resulting interpolant converges to the original function
as fast as the third power of the intersample distance. It also implies
that the kernel is capable of reproducing polynomials up to second de-
gree. This so-called third-order cubic convolution kernel—in computer
graphics also known as the Catmull–Rom spline [8]—is defined as

'CC3(x) =

3

2
jxj3 � 5

2
jxj2 + 1; if 0 jxj 1

� 1

2
jxj3 + 5

2
jxj2 � 4jxj + 2; if 1 jxj 2

0; if 2 jxj.

(2)

By extending the support of the kernel, while keeping the highest
degree of the polynomial pieces ton = 3, Keys [6] also obtained a
cubic convolution kernel with order of approximationL = 4. This
so-called fourth-order cubic convolution kernel is defined as

'CC4(x) =

4

3
jxj3 � 7

3
jxj2 + 1; if 0 jxj 1

� 7

12
jxj3 + 3jxj2 � 59

12
jxj + 5

2
; if 1 jxj 2

1

12
jxj3 � 2

3
jxj2 + 7

4
jxj � 3

2
; if 2 jxj 3

0; if 3 jxj.

(3)

III. OSCULATORY INTERPOLATION

Osculatory interpolation has been described as that form of interpo-
lation in which one employs in a sequence of interpolation intervals
a corresponding sequence of interpolation curves forming a composite
curve which, together with a specified number of its derivatives, is con-
tinuous throughout the range of interpolation [9]. Such interpolation
schemes have been developed since the second half of the nineteenth
century, primarily in the actuarial literature, and an overview of many
of them was given as early as 1944 by Greville [9].

A convenient form in which to express osculatory interpolation
formulae is the so-called Everett form, since it involves only the
even-order central differences of the two given samples determining
the interval in which to interpolate

~f(x) = ~f(k + �) = F (�; �)fk+1 + F (1� �; �)fk (4)

with k = bxc, 0 � 1, andF (x; �) = i

i=0
Fi(x)�

2i for some
imax, where theFi are suitably chosen polynomial functions inx such
that the resulting interpolant satisfies prespecified criteria concerning
its order of approximation and smoothness in terms of continuous dif-
ferentiability. Here, thepth-order central difference�p of any function
g is defined as�pg(x) = �p�1g(x + 1=2) � �p�1g(x � 1=2), with
�g(x) = g(x + 1=2)� g(x � 1=2).

An example of an osculatory interpolation formula is the one de-
scribed by Karup [10] in 1899 and independently by King [11] in 1907,
which is obtained from (4) by taking [9], [12]

F (x; �) = FKK(x; �) = x + 1

2
x2(x� 1)�2: (5)
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Similar to third-order cubic convolution, it yields a continuously differ-
entiable third-degree piecewise polynomial interpolant and is capable
of reproducing polynomials up to second degree.

A second example is the formula proposed by Henderson [13]
in 1906, which is obtained from (4) by taking [9]

F (x; �) = FH(x; �) = x+ 1

6
x(x2 � 1)�2 � 1

12
x2(x� 1)�4: (6)

Similar to fourth-order cubic convolution, it yields a continuously
differentiable third-degree piecewise polynomial interpolant and is
capable of reproducing polynomials up to third degree.

IV. ESTABLISHING THE LINK

In his 1946 landmark paper [14] on the approximation of equidistant
data by analytic functions, in which he introduced the special type of
osculatory interpolation known as spline interpolation, Schoenberg
also studied previously given classical interpolation schemes and
pointed out that these interpolation schemes too may be written in the
form (1), where the hidden kernelh reveals itself as the response to
the discrete impulse function defined byf0 = 1 andfk = 0, 8 k 6= 0.
Using this approach, he obtained the Lagrange central interpolation
kernels and also the kernel involved in an osculatory interpolation
scheme due to Jenkins [9], [14].

By proceeding in a similar fashion, we may obtain a general expres-
sion for the hidden kernels of osculatory interpolation schemes. To this
end, we use the expansion

�2ifk =

2i

m=0

2i

m
(�1)mfk�m+i (7)

which holds for alli 0 integer. Substituting this expansion into (4)
and using the general expression forF (x; �), we obtain

~f(x) = ~f(k + �)

=

i

i=0

2i

m=0

2i

m

� (�1)m [Fi(�)fk�m+i+1 + Fi(1� �)fk�m+i] : (8)

Substituting� = x � k = �1(1 � x + k) and1 � � = 1 � x +
k = �1(x � k), where�1(x) is the linear interpolation kernel, or
first-degree B-spline [2], [3], [14] and using the facts that�1(�x) =
�1(x), 8x 2 , �1(x) = 0, 8 jxj 1, andFi(0) = 0, 8 i, we find
that the two terms between square brackets in (8) may be combined to

l2
Fi �1(x� k � l) fk�m+i+l, so that we obtain the following

expression for the impulse response, i.e., the kernel

'(x) =

i

i=0

2i

m=0

2i

m
(�1)mFi �1(x�m+ i) : (9)

By takingimax = 1,F0(x) = x, andF1(x) = x2(x� 1)=2, it now
easily follows from (9) that the kernel involved in the Karup–King type
of osculatory interpolation is precisely (2). Similarly, by takingimax =
2, F0(x) = x, F1(x) = x(x2 � 1)=6, andF2(x) = �x2(x� 1)=12,
we find that the kernel involved in Henderson’s type of osculatory in-
terpolation is precisely (3).

V. DISCUSSION

From our analysis in the previous section, it follows that Karup–King
osculatory interpolation is formally equivalent to Keys third-order
cubic convolution interpolation. Since the third-order cubic convo-
lution kernel defined by Keys is a special case of an infinitely large
family of cubic interpolation kernels having the same properties in

terms of approximation order and regularity, this is a rather surprising
result. The same can be said about the equivalence of Henderson
osculatory interpolation and Keys fourth-order cubic convolution
interpolation.

Notwithstanding their formal equivalence, however, it will be clear
that the schemes are rather different from a computational perspective.
Comparison of (1) and (2) versus (4) and (5), for example, shows that
for a single interpolation, Keys’ third-order cubic convolution scheme
requires the evaluation of four cubic polynomials, compared to two
cubic and two linear polynomials in the case of Karup–King osculatory
interpolation. Working out the details, it follows that for a separable
interpolation operation the former scheme requires a minimum of 23
floating-point operations (flops) per pixel per dimension, whereas the
latter requires only 13. In the more complex case of Keys’ fourth-order
cubic convolution scheme and Henderson’s osculatory interpolation
scheme it follows that the number of flops is 37 for the former versus
30 for the latter. In the more general case of nonseparable operations,
the gain can be made even higher if the central difference values are
precomputed. This, however, requires more computer memory. It ap-
pears therefore that the osculatory equivalents of convolution-based in-
terpolation schemes allow for faster though more memory demanding
algorithms.

Furthermore we note that the schemes of Karup–King and Hen-
derson are but two examples of the numerous osculatory interpolation
schemes discussed by Greville [9]. Although a full-fledged study of
these schemes is outside the scope of the present correspondence, it
may be worthwhile to give explicit forms and properties of other inter-
esting cubic interpolation kernels that follow from them. To the best of
our knowledge, these kernels have not been investigated before in the
signal and image processing literature.

As a first example we mention the scheme—apparently also due to
Henderson—given byF0(x) = x andF1(x) = �6F2(x) = x(x2 �
1)=6. Applying (9) we find that its kernel is

'(x) =

7

9
jxj3 � 3

2
jxj2 � 5

18
jxj + 1; if 0 jxj 1

� 11

36
jxj3 + 7

4
jxj2 � 28

9
jxj + 5

3
; if 1 jxj 2

1

36
jxj3 � 1

4
jxj2 + 13

18
jxj � 2

3
; if 2 jxj 3

0; if 3 jxj.

(10)

This kernel shares the property with the Keys–Henderson fourth-order
kernel (3) that its support is[�3; 3] and its order of approximationL =
4. Its regularity, however, is onlyC0, similar to the cubic Lagrange
central interpolation kernel [4], [5].

A second scheme mentioned by Greville is given byF0(x) = x,
F1(x) = x(x� 1) ((2�+ 1=2)x� �), andF2(x) = �x2(x� 1)=2.
Because of its free parameter,�, it constitutes a whole family of cubic
interpolation kernels, the general form of which follows from (9) as

'(x) =

�+ 3

2
jxj3 � �+ 5

2
jxj2 + 1; if 0 jxj 1

1

2
(�� 1)jxj3 � 3�� 5

2
jxj2

+ 11

2
�� 4 jxj � (3�� 2); if 1 jxj 2

� 1

2
�jxj3 + 4�jxj2 � 21

2
�jxj + 9�; if 2 jxj 3

0; if 3 jxj.
(11)

Analyzing (11), we observe that the family includes both Keys’ third-
order kernel (2) and his fourth-order kernel (3), respectively, corre-
sponding to� = 0 and� = �1=6. For any� 2 , the resulting
kernel has at least regularityC1 and approximation orderL = 3.

Finally we mention the even more general, two-parameter scheme
given byF0(x) = x,F1(x) = x(x�1) ((2�+ 1=2)x� �),F2(x) =
x (�=2 + 2�)x2 � (�=2 + 3�)x+ � , andF3(x) = �x2(x�1)=2.
The general form of the family of kernels following from this scheme is
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'(x) =

�� 5

2
� + 3

2
jxj3 � �� 5

2
� + 5

2
jxj2 + 1 if 0 jxj 1

1

2
(�� � � 1)jxj3 � 3�� 9

2
� � 5

2
jxj2 + 11

2
�� 10� � 4 jxj � (3�� 6� � 2) if 1 jxj 2

� 1

2
(�� 3�)jxj3 + 4�� 25

2
� jxj2 � 21

2
�� 34� jxj + (9�� 30�) if 2 jxj 3

� 1

2
�jxj3 + 11

2
�jxj2 � 20�jxj+ 24� if 3 jxj 4

0 if 4 jxj.

(12)

given in (12) as shown at the top of the page. Similar to the previously
mentioned kernel, (11), which corresponds to the special case� = 0,
this kernel has at least regularityC1 and approximation orderL = 3.

VI. CONCLUSION

In this correspondence, we have derived a general expression for
the kernels implicitly involved in classical osculatory interpolation
schemes. Using this formula we have shown that the still popular
cubic convolution kernels described by Keys [6] twenty years ago are
precisely the kernels involved in the osculatory interpolation schemes
proposed by Karup and King [10], [11] and Henderson [13] around
1900. We have also discussed their computational differences, from
which we conclude that the osculatory versions are computationally
cheaper, but require additional memory. Finally, we have given the
explicit forms and properties of other cubic convolution interpolation
kernels implicitly used in the actuarial literature for a long time now,
but which to the best of our knowledge have not been investigated
before in the context of signal and image processing. Further study
will be required to reveal the suitability of these kernels and the
optimal values of their free parameters for specific applications.
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