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A Note on Cubic Convolution Interpolation ©(0) = 1 ande(k) = 0,VEk # 0. A well-known example of such a
kernel is the theoretically ideal, but computationally very unattractive
Erik Meijering and Michael Unser sinc function. Other examples are the computationally very attractive,
but theoretically far from ideal nearest-neighbor and linear interpola-
tion kernel.

Abstract—We establish a link between classical osculatory interpolation A iderably b deoffb . | d
and modern convolution-based interpolation and use it to show that two considerably better tradeoff between computational cost and accu-

well-known cubic convolution schemes are formally equivalent to two os- racy is provided by the family of cubic convolution kernels, an example
culatory interpolation schemes proposed in the actuarial literature abouta  of which was used first in 1973 by Rifman [7]. These kernels consist of
century ago. We also discuss computational differences and give examplespiecewise third-degree polynomials and are once continuously differ-
ic:;ggée‘r)rc(:)uctgé:;irrl]tgrpolatmn schemes not previously studied in signal and entiable. Of special interest are the kernels proposed in 1981 by Keys
' o ) ) ) [6], since they generally yield more accurate results than other kernels
Index Terms—Convolution interpolation, cubic convolution kemels, ot the family. The first has an approximation orderof= 3, which
osculatory interpolation. . . Lo . .
implies that the resulting interpolant converges to the original function
as fast as the third power of the intersample distance. It also implies
. INTRODUCTION that the kernel is capable of reproducing polynomials up to second de-

L . . , ree. This so-called third-order cubic convolution kernel—in computer
. Poly_nomlal _mterpolatl_on methods ha_lve t_)een studied quite exmggéphics also known as the Catmull-Rom spline [8]—is defined as

sively in the signal and image processing literature of the past three

decades [1]-[3]. An example of such methods is Lagrange central in- Haf = 2] + 1, if 0< |2 <1

terpolation of given, fixed degree, which is known to yield interpolants

that are not continuously differentiable [4], [5]. In order to obtain el <2 (2)

smoother interpolants, as may be required for some applications, 0, if 2.< |z

several alternative interpolation methods have been proposed. Popul . . . .

examples of these are the so-called cubic convolution interpolatig ﬂy extending the support of the kernel, while keeping the highest

n . .
. gree of the polynomial pieces to= 3, Keys [6] also obtained a
methods, of which the ones proposed by Keys [6] are the most Wgﬁbic convolution kernel with order of approximatidn = 4. This

AN
pcos(e) = —Laf 4 2o’ —4je] +2, 1<
<

x

known. . . . )

Itis probably less well known that methods for obtaining smooth iﬁ':,_o-called fourth-order cubic convolution kernel is defined as
terpolants have been developed in other areas of applied mathematics ol = Lla? + 1, if 0 <] <1
since the second half of the nineteenth century. In this brief note, we ST 4 B = Ble| 4+ 2, 1< o] <2
establish a link between classical osculatory interpolation and moderg., (x) = 12 oo 22 I )}
convolution-based interpolation and use it to show that both of Keys’ Sl = 22 4+ L - 2, if 2 < |z <3
cubic convolution schemes are formally equivalent to particular oscula- 0, if 3.< |2].

tory interpolation schemes proposed around the beginning of the twen-
tieth century. We also discuss their computational differences and give
explicit forms of the kernels that follow from other cubic osculatory I1l. OSCULATORY INTERPOLATION

interpolation schemes. . . . .
P Osculatory interpolation has been described as that form of interpo-

lation in which one employs in a sequence of interpolation intervals

a corresponding sequence of interpolation curves forming a composite
Convolution-based interpolation of uniformly sampled data impliegurve which, together with a specified number of its derivatives, is con-

the use of an interpolation kerngt R — R, which determines the tinuous throughout the range of interpolation [9]. Such interpolation

weights to be assigned to the sampfgs= f(k7") of an original func- schemes have been developed since the second half of the nineteenth

tion f: R — R in computing the value of the interpolafitat any ar- century, primarily in the actuarial literature, and an overview of many

bitrary = € R. For ease of notation, but without loss of generality, wef them was given as early as 1944 by Greville [9].

will use T = 1 in the remainder of this paper. In that case, the processA convenient form in which to express osculatory interpolation

Il. CONVOLUTION-BASED INTERPOLATION

may be described mathematically as formulae is the so-called Everett form, since it involves only the
even-order central differences of the two given samples determining
Fla)y =" feple = k). (1) the interval in which to interpolate
kez

fx) = flk+€) = F(& 8) ferr + F(L =& 8)fe (4)
As can readily be observed from this equation, it is necessary that in , v
order for f to be an interpolant, the kernelmust satisfy the criteria With & = [2],0 < € < 1, andF(x, §) = Y ;=5* Fi(x)6* for some
imax, Where theF; are suitably chosen polynomial functionsirsuch
that the resulting interpolant satisfies prespecified criteria concerning
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Similar to third-order cubic convolution, it yields a continuously differterms of approximation order and regularity, this is a rather surprising
entiable third-degree piecewise polynomial interpolant and is capabésult. The same can be said about the equivalence of Henderson

of reproducing polynomials up to second degree. osculatory interpolation and Keys fourth-order cubic convolution
A second example is the formula proposed by Henderson [liB}erpolation.
in 1906, which is obtained from (4) by taking [9] Notwithstanding their formal equivalence, however, it will be clear

) ) . that the schemes are rather different from a computational perspective.
F(x, 8) = Fu(x, §) = o+ ta(2® = 1)8° — 5 2%(x = 1)6". (6) Comparison of (1) and (2) versus (4) and (5), for example, shows that
L ) . o ) for a single interpolation, Keys' third-order cubic convolution scheme
Similar to fourth-order cubic convolution, it yields a continuouslyeqjires the evaluation of four cubic polynomials, compared to two
differentiable third-degree piecewise polynomial interpolant and i§,hic and two linear polynomials in the case of Karup—King osculatory
capable of reproducing polynomials up to third degree. interpolation. Working out the details, it follows that for a separable
interpolation operation the former scheme requires a minimum of 23
IV. ESTABLISHING THE LINK floating-point operations (flops) per pixel per dimension, whereas the
In his 1946 landmark paper [14] on the approximation of equidistal@{ter requires only 13. In the more complex case of Keys' fourth-order
data by analytic functions, in which he introduced the special type 8¢bic convolution scheme and Henderson’s osculatory interpolation
osculatory interpolation known as spline interpolation, Schoenbe® heme it follows that the number of flops is 37 for the former versus
also studied previously given classical interpolation schemes for the latter. In the more general case of nonseparable operations,
pointed out that these interpolation schemes too may be written in {R€ 9ain can be made even higher if the central difference values are
form (1), where the hidden kernél reveals itself as the response tPreécomputed. This, however, requires more computer memory. It ap-
the discrete impulse function defined Ity = 1 andf, = 0, V% £ 0. Pears therefore that the osculatory equivalents of convolution-based in-
Using this approach, he obtained the Lagrange central interpolatf§iPolation schemes allow for faster though more memory demanding
kernels and also the kernel involved in an osculatory interpolatiGgorithms.
scheme due to Jenkins [9], [14]. Furthermore we note that the schemes of Karup—King and Hen-
By proceeding in a similar fashion, we may obtain a general exprérson are but two examples of the numerous osculatory interpolation
sion for the hidden kernels of osculatory interpolation schemes. To tfighemes discussed by Greville [9]. Although a full-fledged study of

end, we use the expansion these schemes i_s outs_ide the scope of the present corresponplence, it
may be worthwhile to give explicit forms and properties of other inter-
i 2 (o . esting cubic interpolation kernels that follow from them. To the best of
87 fr = Z m (=1)" femi (7). our knowledge, these kernels have not been investigated before in the
m=0

signal and image processing literature.

which holds for alli > 0 integer. Substituting this expansion into (4) As a first example we mention the scheme—apparently also due to
and using the general expression oz, &), we obtain Henderson—given by (x) = = andFi (x) = —6F(x) = =(a” —

1)/6. Applying (9) we find that its kernel is

fla)=f(k+¢)

imax 20 /o slel® = 3lel* = Flel + 1, ifO<lrl <1
12 - - 5 < e .
3y <> ooy = § TP RE = Tl LS <2
i=0 m= e 1013 1.2 13, 2 if
D) B frompiir + FoL = O facnsd. (8) selrh =gl gl =5 2 <l <3
0, if 3< al.

Substitutingé = 2 —k = g'(l1—2z+ k) andl — ¢ =1 -2+
k = 3'(x — k), where3'(z) is the linear interpolation kernel, or This kernel shares the property with the Keys—Henderson fourth-order
first-degree B-spline [2], [3], [14] and using the facts that—x) = kernel (3) thatits support [s-3, 3] and its order of approximatioh =
B'(x),Vz €R, 3 (x) = 0,V|x| > 1, andFi(0) = 0, Vi, we find 4. lts regularity, however, is onlg°, similar to the cubic Lagrange
that the two terms between square brackets in (8) may be combine§gtral interpolation kernel [4], [S]. o

Sz B (8*(x = k = 1)) frm+i+1, SO that we obtain the following A second scheme mentioned by Greville is glvenéwx) =z,
expression for the impulse response, i.e., the kernel Fi(e) =a(x = 1) (20 +1/2)2 — o), andF2(z) = az”(x — 1)/2.
Because of its free parameter, it constitutes a whole family of cubic
interpolation kernels, the general form of which follows from (9) as

tmax 21

=Y 3 (if)(—nmﬂ- (F'e—m+). (9

i=0 m=0 (a+2)|2f = (a4 3) |2]* + 1, if0<|z| <1
By takingimax = 1, Fo(z) = z, andF (z) = 22(x — 1)/2, it now sla =Dl = (3a = 3) |2?
easily follows from (9) that the kernel involved in the Karup—King type ¢(x) = + (5 a—4)|z] - (Ba—2), if 1< ]z] <2
of osgulatoryinterpolation Ls precisely (2). Similarly, t{))ytaki]prgX = — L afef® + dale|? - % ale] +9a, iF2< ¢ <3
2, Fo(z) = 2, Fi(z) = 2(2® = 1)/6,andFz(z) = —2*(z — 1) /12, - .
we find that the kernel involved in Henderson’s type of osculatory in- 0. if 3 < | 11
terpolation is precisely (3). (11)

Analyzing (11), we observe that the family includes both Keys’ third-
order kernel (2) and his fourth-order kernel (3), respectively, corre-
sponding toow = 0 anda = —1/6. For anya € R, the resulting
From our analysis in the previous section, it follows that Karup—Kinkernel has at least regulariéy' and approximation ordel = 3.

osculatory interpolation is formally equivalent to Keys third-order Finally we mention the even more general, two-parameter scheme
cubic convolution interpolation. Since the third-order cubic convagiven byFy(z) = z, Fi(z) = z(z—1) ((2a 4+ 1/2)z — a), Fa(2) =
lution kernel defined by Keys is a special case of an infinitely large ((a/2 4+ 23)2” — (a/2 + 33)x + 3), andFs(x) = fa”(x—1)/2.
family of cubic interpolation kernels having the same properties ifihe general form of the family of kernels following from this scheme is

V. DiscussION
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(a=28+3) |2 — (=384 2) |z +1 if0<|z| <1
sla=B=Df —Ba—328-3) 2"+ (5 a—103—4)|x| - (Ba—63—2) if1<|x| <2

ple) =9 =La=38)|z + (4a = 2 8) [2|* = (3 a — 3483) |2| + (9a — 303) if2<]z] <3 (12)
=182 + & Bl — 2083|x| + 243 if3< |z <4
0 if 4 < |x|.
given in (12) as shown at the top of the page. Similar to the previously REFERENCES

mentioned kernel, (11), which corresponds to the special g¢ased,

. , L [1
this kernel has at least regularify’ and approximation ordet = 3.
[2
VI. CONCLUSION
3]

In this correspondence, we have derived a general expression for
the kernels implicitly involved in classical osculatory interpolation
schemes. Using this formula we have shown that the still popular
cubic convolution kernels described by Keys [6] twenty years ago are[s)
precisely the kernels involved in the osculatory interpolation schemes
proposed by Karup and King [10], [11] and Henderson [13] around [6]
1900. We have also discussed their computational differences, from
which we conclude that the osculatory versions are computationally[7
cheaper, but require additional memory. Finally, we have given the
explicit forms and properties of other cubic convolution interpolation
kernels implicitly used in the actuarial literature for a long time now, 8
but which to the best of our knowledge have not been investigated[ ]
before in the context of signal and image processing. Further study
will be required to reveal the suitability of these kernels and the [9]
optimal values of their free parameters for specific applications. (10]
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