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INVERSE APPROXIMATION THEOREMS FOR
DIRICHLET SERIES IN AC(D)

BRIGITTE FORSTER

We consider functions f € AC(ﬁ) on a convex polygon D C C and
their Dirichlet expansion
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The order of convergence is related to the regularity of f with respect
to Tamrazov’s moduli of smoothness. We give an extension of the in-
verse approximation theorem by Mel’nik in [5] with respect to moduli
of arbitrary order k € N.
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1. Introduction

Let D C C be a closed convex polygon with vertices at the points
ai,...,ay € C, N > 3. Let 0D = ﬁ\D denote the boundary of D and
let D = D\ 8D be its open part, such that 0 € D.

By AC(D) we denote the Banach space of all functions f(z) regular on D
and continuous on D with finite norm of uniform convergence

||f||AC(5) := sup | f(z)].
2€D

The class AC?(D) contains all functions f holomorphic in D with fla) ¢
AC(D).

Consider the quasipolynomial

N
L(z) = Z die®?,
k=1
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where d, € C\ {0}, k = 1,..., N. We denote by A the set of zeros of the
quasipolynomial L. We shall need estimates for those zeros as well as for the
corresponding complex exponentials. The following results due to Leont’ev
are well-known [4, Ch. 1, §2], [6]:
a) The zeros )\;j) of I with |)\£Lj)| > C for sufficient large C have the form
/\53') = X%j) + (L(Lj), where
- Irni .
(1) PYC) L gje'Pi
dj+1 — dj

and |(5,(1j)| < e . Here 0 < a = const, j = 1,...,N, n > ng, and

an41 := ai. The parameters 3; and ¢; are given by
18 d]

= — ,  where dny1:=ds.
djt1

edi(ai41—aj)e

Hence, these zeros are simple. The set of zeros A can be represented in
the form

N
A= {)\n}nzl,...,ng U < U{)\g)}n:n(]),n(])+1,> .
7j=1

b) There are positive constants A; and ¢; such that for all n > n(j) and
all £ € [aj, ax] we have

e~ A (E—ar) _ 3P (e-an)| < Ay e,

Here [aj,ax] denotes the line between the vertices a; and ay in the
complex plane.

c) There is a constant ¢g > 0 such that there exists a positive constant A
with

36) (5
SE

e)\glj)z
‘ < Ae™ %" for all n > ng.

()

aj+1te;
- 2

Here all B; # 0 are constant, j = 1,..., N. This inequality is true for
all z € D.

The proof can be deduced from the results in [4, Ch. 1, §2]. For simplicity
reasons we assume that all these zeros are simple.

The family £(A) := {€**}1¢a of complex exponentials generated from the
zeros A of I is complete in the subspace of all f € AC(D) with Ei\le dpf(ar) =
0. To every such f we can assign the Dirichlet expansion

6)\2

2) 1)~ 3w N gy

AEA
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where

N ax
(3) ks () = 3 die™? / F(m)e™ dy
k=1 a;

a;—ay

1 & o a—a Ye=
— . J — %k - J21r
(4) = 5 kEZI dy, (ak CL]) A f (ak =+ o 9) e df

are the Leont’ev coefficients. In (3) the index j = 1,..., N is arbitrary,
but fixed. Dzjadyk showed in [1] that for those f the series (2) converges

absolutely for all z € D and uniformly to f, if f06 @ dt < oo is satisfied for
the first modulus of continuity of f and all § > 0. Dzjadyk proved this result
for dy = 1 for all k, but this is inessential. Many further deep results on
Dirichlet series are due to Leont’ev and can be found in his monograph [4].

We know [3] that the partial series, weighted with the Jackson kernel,
approximate f € AC(D) in the order of the modulus of continuity. The
question in this paper 1s, if the converse is also true: Let a Dirichlet series
approximate some function f € AC(D) in a certain order. What can be
deduced on the order of the modulus of continuity of f?

This question was first posed by Mel’nik in [5] and solved there for the
first moduli of continuity. In this paper we answer this question for moduli of
arbitrary order k£ € N.

In the following section we give the rate of approximation of the series (2)
weighted with the Jackson kernel with respect to the moduli of smoothness
defined by P. M. Tamrazov. The inverse theorem of Mel'nik for first moduli
is given in the next section. Then we shall extend his result to moduli of
arbitrary order. The last section contains the proofs.

2. Approximation with Jackson weights

2.1. Moduli of smoothness and classes of regularity

To estimate the regularity of functions in AC’(E) we consider appropriate
moduli of smoothness, which were introduced in [10] by Tamrazov. We state
the definition for more general compacta than convex polygons, since we shall
use this later in our proofs.

Let K C C be a connected compactum with rectifiable boundary such
that the open interior of K is a Jordan domain or the empty set. Let ¢ € K,
reN,d>0and A>0. Let U(&,8) :={z € C : |z—=£| <&} be the closed
ball with center ¢ and radius §. We denote by T'(K, €, 7,4, A) the set of all
vectors z = (z1,...,2,) € C" with
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(i) z€ KNU(¢,8) foralli=1,...,r, and
(1) |z —zj| > Adforalli#j,i,j=1,...,r.

If there is no vector satisfying these conditions we define T(F, &,r 0, A) =
. Nevertheless, for A = 277 there is a § > 0 with T(K,&,r,8,A) # 0
[7]. Therefore, let Ty = T(K,&,r+1,8,277). Let L(z, f,z1,...,2:) be the
polynomial in z of degree at most » — 1 which interpolates f at the points
z1,...,2p. The r—th modulus of f is defined by

wr(fit) =w, % (f,t)oo := sup sup  sup  [f(z0) = L(z0, f,21,..., 2 )|
0<d<t ¢e K z€T
2=(20-2r)
Here the supremum over the empty set is defined as zero. This modulus is
normal [8] [9, Thm.1], i.e.,

w7 ([116)o0 < C 17w, 1 (f,8)co,

where C' > 0 depends on 7 and the compactum K only.

Using this modulus we define classes of regularity: Consider normal ma-
jorants ¢, i.e., bounded non-decreasing functions ¢ : 10,00 [ — ]0, 00 [ such
that for fixed ¢ > 1 and an exponent y > 0 the normality condition ¢(tJ) <
ot?p(8) holds for all § > 0,¢ > 1 [11, §1]. By AH?(K) we denote the class of
all functions f € AC(K) with wryf(f,t) < const - ¢(t), and by AW?H? (K)
the class of all f € ACY(K) with f(9 € AH?(K). For compacta K with
empty open interior we just write H¢(K) and WIH? (K) respectively.

2.2. Direct approximation theorem

Mel’'nik proved in [5] a direct approximation theorem for Dirichlet series
weighted with the Jackson kernel similar to the approximation theorems for
Fourier series. He used there first moduli of continuity. In [3] we gave the
following extension to moduli of arbitrary order for his result.

Let n = (ny,...,nx) € NV be a multi-index. Consider the partial Dirich-
let series of order n € N of f, weighted with the generalized Jackson kernel’s
coefficients:

no e)\mz
Pune(DE) = 3w O) s
m=1 m
N 7 Az
+1 j
+z; z:(')(l_x%j,r,m)"{f()‘%))[/()\(j))'
J=1m=n(j m
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Here n;j ”
Enyrm =1 z<_1)p( )Jm

p=0 p

are given by the Fourier expansion of the generalized Jackson kernel

; sin Mt/2\*" . d
I\/l,r (t) = >\l,r < t/2/ ) = 122’0 -+ Z Jl,r,k CcOS kt,
k=1

leN,r>2, M =|;]|+1and A, such that

L
r

1 2w
— K (t)dt =1.
o ), T (t)

Let 1 < j < N be fixed and r € N. Let f € AC(D) have r — 1 existing
derivatives at the vertices ag, & = 1,..., N, of the polygon. Consider for
k # j + 1 the polynomial P;; of degree at most r that interpolates f at
the vertices a; and ax, and f,. ., U1 at the vertex a,. For k = j+ 1
let P; ;41 denote the polynomial of degree at most 2r — 1 that interpolates

3+
£, f, ..., f"=1 at both points a; and a;41. We define

0 u

& (f. h) = i { /h ‘f (ak + aj;waku) — P (ak 4 sz u)‘ .

k=1
k#j

r o f (ak + aj2_7rak u) a Pjyk (CLk + aj2_7rak u) ‘
+ h /h e du}.

It can be shown that this function is a modified version of another class of
Tamrazov’s moduli given in [10] which — in contrary to the modulus w, defined
above — allow multiple nodes. In general w, and §, are not equivalent, i.e.,
there are no constants ¢, C' > 0 such that cw,(f, h) < 6,(f, h) < Cw,(f, h) for
all h > 0 [3].

With these preliminaries we can formulate the following direct approxi-
mation theorem.

Theorem 2.1. Let f € AWIH#(D), q € N, r > 2, wherew, is a normal
magjorant with exponent r satisfying the Stechkin condition

B 21
(5) A@dt—i—h”/h ) < crwr(fih)

7fr+1

for all 0 < h < 2% and a positive constant c. Let

r

N
def(s)(ak)zo, 0<s<r—1+4q.
k=1
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Let n = (ny,...,ny) € NV be a multi-indez.
Then the approximation by the quasipolynomial Py, ,(f), weighted with
the generalized Jackson kernel, satisfies

1f = Pomr(Pllacco <const2 ( )

where £, s a normal majorant with exponent r and
Q,(h) < const - {w, (h) + 6-(f, h)}.

The proof is given in [3].
In the following sections, we give Mel’nik’s approach to the question on a
inverse theorem and an extension of his result to moduli of arbitrary order.

3. Mel’nik’s inverse approximation theorem

Now we consider the inverse question, namely, if the rate of approximation
of a Dirichlet series gives information on the regularity of the limit function f.
For the first modulus of continuity Mel’nik proved in [5] the following inverse
approximation theorem.

Theorem 3.1. [5, Thm. 2]. Let f € AC(D) and let w denote a normal
majorant with exponent 1 which satisfies the Zygmund condition

/Oh/t”wg;“) dudt:/o (f;’ Va4 h /h (f’ Ul gy < oo, h)

for all 0 < h < 27 and a positive constant c.
Let {Pntnecrenn+r, n = (no,...,nn), be a sequence of quasipolynomials
of the form

)\(J)z

(AR

Zyan/ +Z Z y]nj,m

j=1m=m(j

such that

1f = Pallacc <const2 ()

for an appropriate q € Ny.
Then f € AWIH¥(D) and

def (ax) =0 forall0<o<yq.

For the proof see [5].
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4. Extension to moduli of higher order

Mel'nik’s result can be extended to moduli of arbitrary order r € N as
follows.

Theorem 4.1. Let f € AC(D) and w,(f,-) be a normal majorant with
exponent r which satisfies the r—th Stechkin condition (5). Let f be r—1-times
continuously differentiable at the vertices ay, k=1,...,N.

Furthermore, let there exist a sequence of quasipolynomials {Py}ner,
I C NV n = (ng,...,ny), of the form

A(J)z

(6) Zyan, +Z Z y] nj;,m )

j=1m= m ( )
such that

1

7 P < const - wr | — .
) I = Pallacco Z (=)
Then f € AH“" (D) and
(8) Edkf (ag) =0 forall0 <o <r.

Furthermore, we can deduce from the order of approximation, how often
the function f is continuously differentiable in D.

Corollary 4.2. Let f € AC’(E) and w, be a normal majorant with expo-
nent r which satisfies the r—th Stechkin condition (5).

Let f be r 4+ q — 1-times continuously differentiable at the vertices ay,
k=1,...,N.

Furthermore, let there be a sequence of quasipolynomials of the form (6)

such that
1
ng '

(9) If = Pullaco

Then f € AWIH% (D) and

(10) def (ax) =0 forall 0<o<r+q.



8 INVERSE APPROXIMATION THEOREMS

Thus, we can deduce the order of differentiability and the behavior of
wy(f,h) for h = 0 from the order of approximation of the Dirichlet series
of f.

5. Proofs

In this section we give the proofs of Theorem 4.1 and Corollary 4.2. First
we formulate a result by P. M. Tamrazov, which we shall use in the proofs.

5.1. Preliminaries

We shall make use of a relation between modulus on the boundary 9K of
a compactum K and the modulus defined on the whole of K. The following
theorem is due to P. M. Tamrazov.

Theorem 5.1. [8] Let K C C be a simply connected conver compactum,
K its open interior and 9K the rectifiable Jordan boundary in C. Let
f € AC(K), ¢ be a a normal majorant and k € N.

(i) If a modulus of continuity satisfies w, ax (f,8) < @(8) for all 6 > 0,
then also wryf(f, d) < const - p(d) for all 6 > 0. Here the constant is

independent of f, § and K. It depends only on .
(ii) If wr o (f,6) = 0(¢(d)) for§ — 0, then ‘-"r,?(fa d) = o(p(8)) ford — 0.

This result enables us to estimate the modulus for the boundary d K and
deduce the estimate for the whole of K.

5.2. Proof of Theorem 4.1

The proof is divided into four steps. First we decompose P, into appropri-
ate partial quasipolynomials and deduce some fundamental properties. In the
second step we shall show that these quasipolynomials form Cauchy series.
Then we prove that f € AH*"(D). Finally, in the fourth step we show that
the equalities (8) are true.
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5.2.1. Decomposition of P,,

Let n = (n1,...,nn). Using property c) of the set of zeros A we decompose
the quasipolynomial P,, (see (6)) in the following terms
Pal(z)

B iﬂ: 6)\mz
= ] Ymn L/(/\m)
N N X0) (5 it1ta)
+ Z Z yjynjym <€7 — (—1)mBje>\m ( 2 )) }

(11) i=1m=n(j)

N
= pal2) +ijynj(z),
j=1
where n;
- XG) (5 2itait
P =B Y () e )
m=n(j)
and
Pn(2)
)\mz
a2 20w
N nj )\(]) . aidta;
m A%)(z_ i 2J+1)}
n —— = (-1)"B; )
z::;yﬂj,{ (A()) (=1)™Bje
Consider
E y]n],mw
Then
= 2nmi L8 (,_ cititay
pinm;(2) = B Z yj,nj,m(—l)me(“ﬁl—“j*‘q] )( 2 )
(13) m=n(j)
= Bjeqjelﬁj(z_aj)e_q] S Z Yjnjmé€ J2+”1mla (z—a;)

m=n(j)

) 1—a; 2mi _
= Bjeqjelﬂ](z_aj)e_qjel i I n; (6 Ty 2 aj)) )
3
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Now we consider the coefficients y; »; m and ym ». They can be calculated
by (3) via the equations

N ax
) NG,

(14) Yjmsm = ) die™n / Pn(n)e™ " dn
k=1 aj

and
N ax

(15) = S et [P ()
k=1 a;

We show that the sequence {y;n; m}tm>n(;) is bounded. For {ym n}m=1, . n,
this is obvious. P, is bounded since by (7) and the triangle inequality we

have
ul 1
1Pall = 1711 < const Y w, <a> |
k=1

and therefore

N
1
[Pl < const ", (—) +IFl < Al

k=1

for a positive constant independent of n and f.
To estimate the exponentials in (14) and (15) we use that for k # j + 1

L a;—a
Re <2J7k) > 0.
@j+1 — dj

Re <z ﬂ) >0 forall z €[aj,ax].

aj+1 — aj

Therefore

Hence, by (1),

_ 2rmi _
o Tpiaay (2T ok)

‘e—)\gi)(z—ak)

. ‘e—qje’ﬂj (2= ax)

. |e—6£:;><z—ak)

< const

for all z € [a;,ax] and all m > n(j). Thus {Yjn;m}m>n() is a bounded
sequence.
Since there are only finitely many ymn, m = 1,...,ng, there exists a
positive constant A > 0 such that
(16) { |Yjn;m| <A for all m > n(j) and
[ymn| < A forallm=1,...,ng.
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Let g = (p1,..., tn) be another multi-index and let, as usual, n 4+ p :=
(n1 4+ p1,...,nn + pn) define the addition for multi-indices. Then (7) and
(14) yield

|i‘/j,nj+uj,m - yj,njﬂﬂ|

al *k ()
< Zd’“/, [Patu(m) = Pa(n)] - e 17| |dn|
(17) =

< const Yo d [ (Pasaln) = £+ Palo) = FO0)) Ldn
k=1 aj;
ul 1

< constZwr <n_) ,

k

k=1
and by similar arguments, with (7) and (15),
N

1
(18) s = | < const 3 r (1)
k=1
for positive constants independent of n and m.
For later use we finally estimate the series
w27 and > w27, Kel
=0 I=K+1
We have
5—1+1 5—1+41 o—l41
- 1 2
wr (u) du > wr(Z_l)/ —du = wr(2_l)ln< ; )
91 u 91 u 2-
= wr(Z_l)ln@).
Hence
S [ )
In(2 (27 < ——d
@Y e < 3 [
(19) =0 =0

2
= / wr () du < const - w, (2)
0

u

using the Stechkin condition (5). By the same arguments,

—i41

@) Y w27 3 / “:5“) du

I=K+1 I=K+172

IA

-K

2
= / wr_(u) du < const - w, (27K).
0

u
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5.2.2. Cauchy sequences of quasipolynomials

Let zi; = (0,...,45,...,0) be the multi-index with entry p; at the j-th
position and zero everywhere else. Let us set n; := n + gi; . Then, by (11)
and (12) we have

||pj,nj+uj - pj,nj”

(20) < Ps; =Pall + s, —pall
7o 6)\""
< Pr; =l + NIf=Pall + Z(ymﬁj—ym,n)mH
m=1 m
+ H Z (yj,nj,m_yj,nj-}-pj,m)
m=n(j)
6>\£’{)A X(j)<A_aj+aj+1)
x{i._<_1)m3jem S }H
')
nj+p; A0, - aita;
erm m A(J)(A__J J+1)
|52 {2 (o)
m:zn;H (A
al 1
21 < const wr |l — 1,
) s oty (=)

where in addition we used (7), (16), (18), (18) and property c) of the set of
zeros A. The constant in (21) is positive and independent of n. For n; — oo,
k # j, we obtain

1
(22) i s = P llac < const-r ().
j
Hence {p;n,}n, is a Cauchy sequence for n; — co. Since AC(D) is complete

as being a Banach space, there is a function ®; € AC(D) with

lim [|®; _Pj,njHAc(ﬁ) =0.

nj—r o0
From (22) we obtain for y; — co
< 1
(23) H(I)J' - Pj,njHAc(E) < const - wy )
j

By (20) and (21) the same argument gives the existence of a function

® ¢ AC(D) such that

N
1
(24) [|®— anAc(ﬁ) < const Zwr <—) :

7j=1
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We have
(25) f(2) =) ®i(2) +@(z) € AC(D),

because, in view of (7), (11), (23) and (24),

N
e
j=1
N
< M =Pall + HPH—Z@—@H
j=1
N
<N =Pall 4 Do lpin; =@l + llpa—2l = 0
j=1

as n — 00.

5.2.3. Conclusion on the properties of f

In this part we show that f € AH" (D). We first consider the transfor-
mation
aj41 — a5 0
2 ’
as in (4). If z runs through the straight-line interval [a;, a;j41], then

z=a;+ 0<6<2m,

Py p——
w==e G+17%G = e

if
describes a torus. From equations (14) and (22) we deduce that for all y; € N

and B := {w||w| < 1} the estimate

1

T 405 = Wl a ey < const -wr <n_) ~
i

holds.  Since AC(B) is a Banach space, there are functions Fj(w),
j=1,...,N, such that

: 1
(26) ||F] - Hjx”jHAC(E) S const - W —_— .

nj

Equation (14), (23) and the estimates (26) yield, for all z € D,

. ajyq—a; 2mi .
Q;(z2) = Bjeqjelﬁj (z=aj) g—aje'™ 5= F; (€”j+1—0j (= a])) .

With these results we now can prove that ®,®,,..., &y € AH

p— r

“r(D). Then
(25) gives f € AHZ (D). We begin with the proof of ® € AH¥~(D). By (12)
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and (24) we have

®(z)
(27): p1, 71(2:) =+ Z(py’ 721(2)—p~)l—1’ ’21—1(2‘))
=1
o 6‘)"“2
= ym,(1,...,1)(2’)
> )
N 1 AL 4 a.ta
e . Am(z_M)}
+ Yilm : - (_1)
Zmz<> ’ {L'uﬁfﬂ) '
(e} no erm 7o eAmz
—1—2 ZyMV(Zl""’2)L’()\ ) - Zym,(2l L I)L“()\ )
=1 m=1 m=1
N 2! AU 4 a;+ta
et mp A0 (s M)}
+ y,2l,m = ( )
Zmzu ’ {L'uﬁ#) ’
2!-1 NOF aita
etm m )\(J)(Z 3 J+1)}}
- y 21— ———— — (=1)"Bje
Am2
0o 6‘)"“2
+Z Z ym — Ym (21 1 21 1))Ll()\m)
=1 m=1
A2 () (5_ 2itaigr
+Z Z Yin, { ()\( )) ( )mBJ A ( )
j=1m=n(

- oo N 2! 6,\53)2 i X(j)(z_a,ﬂv 1)

=1 j=1 m=21"141

The termwise z-derivatives of the first, third and fifth series can be estimated
for all z € D by an appropriate positive constant using (16) and property c)
of the set of zeros A.

For the derivatives of order ¢ € Ny of the second term the estimates (18)
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and (19) yield

o0 Am 2
e o
Z Ym ey = Ym, (201 2’_1)) L/()\ ) ()\m)
=1 m=1 m
o« nog N 1 eAmZ
S Z Zw’" 21—1) LI()\m) ()‘m)a
=1 m=1k=1

For the derivative of the fourth term, by (18) and property c) of the set of
zeros A,

gi-1 6}\%)2 -
Z Yiotm yj,2l—1,m){m(>\f%))o
= 1] lm n(]

— (=)™ By (W) X (- #>}

<> Z Zm(zl 1) (0)e™™ < const.

=1 j=1m=n(j) k

Hence, the series (28) allows term by term differentiation of arbitrary order

o € Ngforall z€ D. Thus ® € AH% (D) and
&) () = pl7) | +Z (b3 () =P sny(), 2€D, o€ N

We now show that ®; € AH# (D) for all 1 < j < N. By (26) we have

. . 1
|Fj(e”®) — 10, ,,,(¢"")] < const -w,(—) forall 6 ¢[0,2r].
s
J
Thus, the application of Bernstein’s inverse approximation theorem for Fourier

series yields F; € HYr(T). Besides, by Tamrazov’s Theorem 5.1, F; €
AH#(B) and thus ®; € AHY (D). Hence, by (25), f € AH“ (D).

5.2.4. Vertex conditions

Similarly to (27), the inequality (7) yields the convergent telescope expan-
sion

f(2) =Pa,. 1y(2) + 2(7)(21,...,21)(2) - 77(21—1,...,21—1)(2))

=1
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for all z € D. By (6)

' N ; B no L()\m )\%)) B
(29) ; kpn((lk)—n;ym,nL,(Am + Z y]n],m % =0

()
for all n = (ny,...,ny) € NV, since )\m,/\%) € A are the zeros of the
quasipolynomial . Hence
N
def(ak)
k=1
N N %]
= dep(l,...,l)(ak) + Edk Z (Pear,... 2ty (ar) = Prai=1 -1y (ak))
k=1 k=1 =1
= 0.

By the assumptions of the theorem, f is (r — 1)-times continuously differ-
entiable at the vertices ag, &k = 1,...,N. Hence, for ¥k = 1,..., N and
c=1,...,r—1,

I a) =P e+ 0 (PG ) = PRl (@),
=1
and thus,
N no (4)
LA L(A)
(o) — m) —
depn ([lk) - Z:l()\ ) ym TLL, )\m + Z:( y] n;,m L/()\(J)) - 0
m= 7) m

by arguments similar to those yielding (29). This gives (8).

5.3. Proof of Corollary 4.2

We proceed as in the proof of Theorem 4.1. We start with the estimate
of the quasipolynomial using (9) as in the first step 5.2.1. The estimates (17)
and (18) yield

1 1
il s 35 (1)

k= 1

and

z

1
|ym ntu ym n| < const Z ) - Wy <E> .

k= 1
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Thus, we can show in the second step that

1 1
IPjins+u; — Pimsllacmy < COHS'JW ‘W (E)

fornk%ooandk7éj
Hence {pjn;}n,;>n(;) forms a Cauchy sequence as n; — oo (see (20), (21)

and (22)). Thus, there is a function ®; € AC(D D) such that
n}floo 195 = Pjn;llacmy = 0-

The limit g; — oo yields

1 1
[|®; — pj, nJHAC B) < constw - Wy <—) .

nj

In the same way we deduce the existence of a function ® € AC’(E) with

1
[|®— anAC <constz < )

nj

(see (24)). We have f(z) = Z;V 1 ®,(2) + ®(2) € AC(D).
In the third step we show that f € AW?H“r(D). First, consider ®: We
decompose @ as in (28) and deduce as in the proof of Theorem 4.1 that

® ¢ AWIH4(D), as well as
@(U)( ) = p 1 1) —|—Z ( _pE;l)—l 91—1)(z)) s z e E7 o E NO.

Now we consider ®;. As in (26) we find

, 1 1
F.(e'? —10; 5, i) < F; —1I, , < const - Wy (—)
() = 11, ()] < N5 = Ty s o
for all § € [0, 27]. Bernstein’s inverse approximation theorem for Fourier se-
ries yields F; € W9H%r(T). Tamrazov’s Theorem 5.1 gives F; € AW?H"(B).
Altogether we deduce f € AWIHE (D).
The properties (10) at the vertices of D can be shown as in the step 5.2.4.
of the proof of Theorem 4.1.
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