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Optimization of Mutual Information for
Multiresolution Image Registration

Philippe ThévenazMember, IEEEand Michael Unserrellow, IEEE

Abstract—We propose a new method for the intermodal reg- mutual information—of corresponding voxel intensities in the
istration of images using a criterion known as mutual informa-  jmages to register. This information-theoretic criterion does not
tion. Our main contribution is an optimizer that we specifically de- depend on any assumption on the data (other than stationarity)
signed for this criterion. We show that this new optimizer is well i . . o 7
adapted to a multiresolution approach because it typically con- dpes not assu_me specific relatlon§ betyveen |nter_1§|t|e.s n
verges in fewer criterion evaluations than other optimizers. We different modalities and can be applied without modification
have built a multiresolution image pyramid, along with an interpo-  to any pair of modalities.
lation process, an optimizer, and the criterion itself, around the uni- The purpose of this paper is to present a new, highly-efficient
fying concept of spline-processing. This ensures coherence in thegtimizer for the maximization of mutual information. It is de-

way we model data and yields good performance. We have tested . dt . f iteri luati to the d
our approach in a variety of experimental conditions and report SIghed 1o COVEIGE In VEry TEW CTIterion evailations 1o e Ge-

excellent results. We claim an accuracy of about a hundredth of a Sired optimum when initialized with good starting conditions.
pixel under ideal conditions. We are also robust since the accuracy We formulate the mutual-information criterion as a continuous

is still about a tenth of a pixel under very noisy conditions. Inaddi-  and differentiable function of the registration parameters using
tion, a blind evaluation of our results compares very favorably to Parzen windows. The optimizer takes advantage of the differ-
the work of several other researchers. L L .
entiability of the criterion to get a global understanding of the
Index Terms—B-spline, intermodal volume alignment, Mar- pehavior of the criterion near the optimum. This is exploited
quardt-Levenberg, Parzen window, pyramid. in a Marquardt—Levenberg-type of iterative procedure and ex-
hibits superlinear convergence when close enough to the op-

|. INTRODUCTION timum [14].

MAGE reaistrati dd the followi blem: ai Another goal of this paper is to investigate the issue of accu-
I o= registration addresses the following probiem. g'V_eﬂacy. While the criterion alone more or less determines the accu-
two images (or volumes), find a geometric transformatio

N ) ) trllcy of registration on a one-pixel scale, the interpolation model
that maps the first image into the second one [1]. This probl ys an essential role when sub-pixel accuracy is desired. In the

often occursin biomedjcal app!ications [2], [3]._When the diffe' intramodal case, correlation methods allowed for high accuracy
ence between the two images is only the condition of the subjggi

. formi K Kof i en combined with high-order interpolation models [5]. Thus,
(e.g., res_tmg Versus performing a task), we speax ot mtramq guestion arises whether it is possible to reach a similar ac-
registration [4], [5]. Alternatively, when the subject is imaged in

tially two diff ¢ local tak uracy in a reasonable time for the intermodal case. Since the
essentially two different ways (e.g., ocal glucose uptake VErsysin grawback of high-order interpolation models is their com-
proton density), we speak of intermodal registration [6]. Th

d task i difficult than the first b £ utational cost, itis necessary to develop an optimizer that is fast
second task is more difficutt than the Tirst one because ot ithout compromising accuracy. Multiresolution is a natural so-

lack o;a (i'tllrlect relatlor? bet_ween the_lr;te?guef of the WO IMinn o this problem, but not all optimizers are equally suitable:
ages. Another area where Image registration piays an impor best candidates are those optimizers that converge in very

role is remote sensing [7]. There, intramodal registration is oft? criterion evaluations when initialized with good starting
applied to mosaicking applications [8], the registration of im-

. . . . conditions. This requirement rules out many optimizers, for ex-
ages with different ground resolutions [9], and the detection fn g y op

h in the land 101, while int dal reqistrati ple those that first need to explore around the initial condition
changes in the landscape [10], while in ermodal registrationasq e eventually becoming superlinear, or those that consider
necessary to correct for band-to-band misregistration [11].

. : only one parameter at a time.

Recently, an elegant solution has been propose(_j In_Ol'apen(')uroptimizer works in conjunction with a high-quality mul-
dently by Violaet a!. [.12] gnd Colhgnongt .al' [13], which is tiresolution representation of the image based on cubic splines.
based on the maximization of the statistical deF)endeme_(9[5timization is first performed on a coarse scale with few data

and then refined at finer scales, gradually taking more data into
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We demonstrate the accuracy of the method on real-world datendow defined as above. Then, we define the joint discrete
from the Vanderbilt database, for which the correct registratidtarzen histogram as
solution is approximately known [2]. We also compare our op-

timizer to the method of Maest al. [15] using the standard  h(s, rx;p) = L Z w(v/er — fr(g(xi; w)/er)
Powell optimization algorithm and show an increase in perfor- ETER oy
mance with a factor of about 6 without loss of precision. ~w(k/er — fr(x:)/eR) 2

This paper is organized as follows: in Section I, we introduce
mutual information and we design a way to achieve its compwhere: € Ly andx € Lg, and wherer is related tacard (L)
tation. In Section Ill, we present a continuous model for the in@nder to card(Lr). Hence, the contribution to the joint his-
ages and we discuss the benefits of a multiresolution approaétgram of a single pair of pixels with intensitiégr, fr) which
In Section IV, we describe a new algorithm that optimizes thgan take values in a continuum, is distributed over several dis-
mutual information between the two images to register. In Segrete bing(t, «) at once by the window functiow. This joint
tion V, we perform several experiments and compare our resutistogram is proportional to the discrete Parzen probability (or
to those of other researchers. In Section VI, we relate this pafi@guency)p given by
to the work of other researchers. We conclude in Section VII.

p(e, 15 ) = a(p) h(e, K5 p) 3)
II. MUTUAL INFORMATION where we have introduced the normalization factor
. age 1
A. Definitions () = ' (4)
1) Parzen Window:Let w be a function with unit integral Z Z h(e, K5 p)
(f7, w(¢)d¢ = 1). Further, let{z;} be a set ofV samples €Ly wCLn

of a random variablé& with probability density functiop(z).

) . This normalization factor takes up the role of the fadta in
Then, the so-called Parzen estimatey @§

(1). Itis required because it may happen that w(§ + f) # 1
for some f, even though every admissible Parzen window
N o a . )

y 1 w((x — z;)/e(N satisfies w(¢) d¢ = 1. The marginal discrete probabilities and
pn(r) = + > { 5(]\?)/ &) (1) nhistograms are given by
i=1

pr(sw) =a@hr(;p) = > pl,rip),  (5)

wherez is a strictly positive scaling factor that controls the width

weL
of the Parzen window. From (1), it is easy to see thaft,) hy
takes a large value at some positigrwhere many samples Pr(K; p) = alp) he(r; p) = Z ple; 5 p)- - (6)
happen to cluster so tightly that their associated Parzen win- eLr

dowsw((t; — x;)/e)/= overlap often. In the contrary, at some  3) Mutual Information: The negatives of the mutual infor-

other positiort, where the samples happen to be not dense, feiation between the transformed test image and the reference
overlap takes place ant.) has a lower value. This process iISmage is

particularly easy to understand if we ask that the Parzen window

be positive(w(¢) > 0, ¥¢ € R). We shall satisfy this posi- Swy=—> > ple, r;w)

tivity constraint throughout this paper, even though this is not 1€L7 w€Ly

required to ensure thaty converges t@ when enough samples (e, Kk; @)

are available. Note that other technical conditions.oand on log, <m> ’ ™

the dependence ef N) on V are required for this convergence
[16]. The underlying principle is as follows: whe¥ is large, The mutual-information registration criterion states that the
many samples are available ants made small, which leads totransformed test imaggr(g(x)) is correctly aligned with the
a scaled Parzen window(-/¢)/« that is Dirac-like. In turnp  reference image by the paramegefor which 5 is minimal.
can be captured in great details because the contribution of the
samples are very local. In the contrary, when only few sampl@s
are availables is made large. This corresponds to a widening of To give a concrete example of the objects defined above, we
the Parzen window such that the influence of any sample propose to simplify the situation as much as possible—in the
has a larger support, which tends to obliterate the detajis of context of the present illustrative section. First of all, we con-
2) Histogram Estimation:Let fr(x) be a test image we sider that the intensities of the test imageand that those of the
want to align to a reference imagk:(x). These images are reference imagé¢r consist of two levels only, given blyg, ¢; },
defined on a continuous domain € V¢ that may have any and{xo, 1}, respectively. To further simplify, we also assume
number of dimensions (e.g., surface, volume). The coordinateat Lr = {, ¢t1} and thatLg = {xo, x1}. Then, we as-
x; are samples of ¢; the discrete set of these samples is callesuime that these images are defined on an infinite domain, while
V. Let g(x; u1, p2, ---) be some geometric transformatiorthe discrete domai®” onto which we shall perform computa-
with associated parametefs = (p1, p2, ---). Let Ly and tions is limited to some finite aperture. Two arbitrary images
Ly be discrete sets of intensities associated to the test andgh#sfying these conditions are given on top of Fig. 1, where it
reference image, respectively. Let be a separable Parzenshould be obvious that they are misregistered by a translation of

Illustration
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L 4 criterion (which is the negative of the mutual information itself)
would reach its minimal value; in the case of this pair ofimages,
itis given byS = —0.865. To undertake this task, it is necessary
! to remember the relatiolim,, o, p logp = 0.

C. Partition of Unity

An unfortunate consequence of computpgas a marginal
probability is that it makes it depend explicitly on the trans-
formation parameter§u, 2, - - -), even if the discrete images

‘ ‘ were to be of infinite spatial extert. Although the reference
L image doesn’t change with a variation in these parametegrs,
(LK) is sensitive to them because of the coupling introduced by the
separable Parzen window. One way to avoid this effect is to
w2 5 introduce the partition of unity constraint

\
\

o 3] 4 dwE+f) =1, VfeR ®)

[ -
ez

> Note that this constraint should not be confounded with the
unit-integral constraint imposed upon every admissible Parzen
window. When the partition of unity is satisfied for any sample
Fig. 1. Determination of the joint histogram needed to compute the mutuglalue f, the marginal probability z becomes independent of
information criterion. the transformation parameteis,, 112, - - -). From (6), (3), and
(2), we determine that
1 pixel, both horizontally and vertically, and where we have that
card(V) = 36. Then, we select as Parzen window a centereg , (. ) — o(p) >3 wlifer — fr(g(xi; w)/er)

square pulse such thaft, <) = 1 for |¢], || < 1/2, and such ETER I LTV

thatw(e, k) = 0 elsewhere. In addition, we set = = = 1. w(k/er — fr(x:)/eR)

For this trivial choice of Parzen window, the joint histogram de- a(p)

fined in (2) is no different from a traditional one, where inten- =—— Z w(r/er — fr(xi)/eR)

sities would be first quantized and then would increment some FTER ey

discrete counter (this process is sometimes called binning). . Z w(v/er — frig(xi; mw)/er) (9)
The bottom-left part of Fig. 1 presents a pictorial description Ly

-

of the paired element§(co, o), (to, #1), (t1, ko), (b1, K1)}
that contribute to the joint histogram computed according to
(2). To help focus the attention, some specific entry with sp@heree ander have been chosen such thgt, € Z and
tial location(z;, ¥;) and with intensitiego, x1) is shownwith x/ep € Z for . € Ly andx € Ly, respectively. Hence, we
a black dot. The bottom-right part of the same figure gives thigally have that

resulting joint histogram itself. After application of (3)—(7), the

v
1

configuration shown in Fig. 1 results in the negated mutual in- _ o(p) _ )
formation value Pr(K) P XZC:V w(r/er — [r(xi)/eR),
G O, 0536 4 436 22 Y (pr,s pig; ) (10)
T 736 %2927.97 36 %2 9.9 36 _ _ | -
29.36 5 5.36 This happens irrespectively of the extent1of be it infinite

— 10

- log, 77 T 36 =~ —0.045. or finite. Another advantage is that the normalization factor

a(p) now takes a constant value that doesn’t depend on
We leave to the reader the verification that, should the two i1, g2, - - -) as shown in (11) at the bottom of the page, where
ages be aligned without misregistration, the mutual-informatieard(V') denotes the number of sampbesin V.

82 979

- 1 - ETER (11)
“= 1 i 1 ~ card(V)
Yo — Y wlfer — fr(g(xis w)/er) — Y w(k/er — fr(xi)/er)
x; €V £ :EL’T' € iELu

v v
1 1
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D. Partial Overlap be useful, animage model must satisfy several constraints. First,
In practice, the imagegr and fx are defined over the con- it must allow one to interpolate an image, which links the sam-

tinuous but finite domain&& and V&, respectively. It follows PI€s fi and their locationx; to the continuous functioff(x).
naturally that the domain on which it is possible to deternsine THiS Property is typically needed when performing the geo-
is limited to their intersection metric transformatiorf — f(g(x;)). Second, given some con-

tinuous functiony(x), there must exist a procedure to recover
Ve=vVing HVi p) (12) a set of sampleg; at locationsx; such that the model based
on this set would reconstruct a close approximation(to). A
the extent of which will vary during the course of optimizationtypical application of this requirement arises when one com-
and s at most as large &§. To implement (2), these continuousputes a resolution pyramid, for in this case the procedure can be
domains are then sampled to yield the discretd/setith size sketched by f;, x;) — f(x) — f(2x) = y(x) — (i, ;).
card(V'). Although (12) seems to imply that there exist a depen- We base our image model on the B-spline functions of degree
dence betweel and some componeptof g, it is necessary r introduced in Section II-E. Specifically, we have that
to understand that, due to the discrete natur® pthis depen-
dence is not continuous: an infinitesimal variatidm does not f(x) = Z c(x;) A7 (x — x;) (16)
result in an infinitesimal variatioV'. Rathercard(V') varies %€V
in an incremental way. Being discrete and finite, the i8eis
necessarily countable; thus, the radiig/dy. is zero almost ev- Where 3(x) is a separable convolution kernel given by the
erywhere (a.e.). Therefore, we shall ignore this last contributigoduct3™ (x1) - 3" (x2) - - - -, and where the expansion B-spline
in the calculus of the gradient &f with respect tqu. coefficientse; = ¢(x;) are computed from the sample values
Nevertheless, even if the infinitesimal variation is zero a.ef; by recursive digital filtering [18]. This model is continuous,
the incremental variation cannot be ignored. We acknowledggéferentiable a.e. fon > 0, and differentiable fom > 1.
that fact by taking into account the actual value of the geometticserves three purposes. First, its rescaled versions yield the
parameteg: while recomputing the volume of overldp each image pyramid that we use for our multiresolution approach
time p is modified. Then, we recompute., »; p), p(¢, x; ), [19]. Second, it allows us to resample the transformed image
pr(e; m), pr(r; p), andS(u) accordingly. f(g(x;)). Finally, it is used in computing the image gradient
needed during optimization.
E. B-Splines
B-spline functions3™(z) have many interesting propertiesB- Model Degree
[17], [18]. Of particular relevance for this paper is the fact that The model degree determines the quality of the approach.
they satisfy the constraint for the partition of unity (8), whileThe lowest-possible degree = 0 is called nearest-neighbor.
remaining positive, thus being admissible Parzen windows. Ursed to compute the resolution pyramid, it results in aliasing.
addition, they have the advantage of being smooth functionsed to computg(g(x)), it results in blocking artifacts. Used
with explicit derivatives and a finite support. They are piecewise computes, it results in a discontinuous criterion, which is
polynomials of degrea > 0 and can be recursively defined ashard to optimize. Also, the optimum is generally not uniquely

the convolution of the B-spline of degrée — 1) with 3° defined. The next degree = 1 corresponds to linear inter-
. Lo polation. It results in less aliasing, and oversmoothing substi-
A (x) = (/300 *37) () tutes for blocking. Meanwhile, the criterion is better-behaved.
_ / ) B0« — t) dt, n>0 (13 N these two cases, the computation of the B-spline coefficients
oo cis trivial. For higher degrees, this computation is slightly more

involved, but aliasing is reduced substantially. Blocking and

. :
where/” is a unit square pulse smoothing are gradually replaced by ringing. At the extreme,

0/ _ 1 (ue 1\ v 1 whenn — oo, aliasing disappears altogether but ringing is
Ale) =3 (Slgn (x + 5) Beh (x B 5)) (14) strongly present (sinc, or Shannon interpolation [20]). A good
and where theign function is defined by compromise between all these issues is to select a cubic B-spline
33 as model kernel.
] -1, 2<0 There are three major reasons why the choice of a
sign(z) = {(1)’ x ig (15) high-quality model is essential to the proper behavior of a
s x .

multiresolution registration method. First, consider performing

Not only will these B-splines be used as Parzen window, but theptimization at a coarse level of the pyramid. The steps made
will also provide the basis functions for representing continuo®y the optimizer at this level correspond to big strides at the

images given by a set of samples. finest level. It follows that precision is of utmost importance at
this coarse level, and subpixel interpolation must be faithful.
. M ULTIRESOLUTION This calls for a degree that is higher than what is traditionally

selected. Second, consider having found the optimal parameter
A. Image Model fu at some level. The optimal parameter at the next finer level
Let us assume that an imagiex) is known from a set of sam- 7 + 1 is not identical because data are more detailed, and the
plesf; = f(x;) that are regularly spaced on a Cartesian grid. Teded details call for some corrective action. It is however
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desired that the corrections be as small as possible, whicHaBons related to the Strang—Fix theory of approximation [21].
achieved by minimizing the amount of detail distinguishin@hose are as follows:
level I from levell 4+ 1. Thus, it is best to limit the aliasing

inherent in the size-reduction operation, which again calls for S —x) =2 (7)
a high model degree. We shall see in Section IV that our ¢ez
optimizer requires a differentiable kernel. We prefer to avoid Z Ep3e—2)= T+ 22 (18)
having to sample a derivative where it is discontinuous, which cez
could sometimes arise with linear interpolation. This is one 3 23 3
. 3°(& —x) = . 19
more reason to select a high model degree fez; EAE-z) =2t (19)
C. Grey Cone It is trivial to derive from these relations the fact that the em-

irical average computed over the bips= ¢ - 3. ., {p(¢)
identical to the empirical average computed over the data
(1/card(V))->_, <y f(xi), no matter how bad the choice

e setL is; in particular, this shows that the presence of the

tual inf i ted. A tbe f db rey cone has no influence on the data average. Moreover, it
ual information is compute compromise must be foun an also be shown that the-based variance is simply a bi-

tween, on one hand, too few data and too many grey-levels | fth | oh v if the f
(L7, Lr), and on the other hand, an abundance of data bu led versmh%t € ?mplrlc)a;po@;M;rrlz F:]retﬁseig;’t;rt I; ormer
f&L v

coarse grey-level quantization. For these reasons, we feel @7 d_ (f(x:) — )2, then we have that? —
x eV ? vV =

appropriate to extend the concept of geometric multiresoluti L 2/3 Furthermore the third moments are exactly equal,
(image pyramid) to the concept of grey-level multiresolution
whether computed over the bins or over the data
(grey cone). A reasonable approach is to keep, at any resolUy
tion level, a constant ratio between the amount of available dat@ 1/card %) — )3
at that particular resolution, and the number of entries in the Z = w)? =/ V) Z (FGas) = 1)
discrete joint probabilityy. One consequence to keep in mind
is that not only do we change data when we switch from oreshould be clear from these relations of statistical equivalence
level to the next, but we also change the criterion itself, since w@ to third order—disregarding the constant bias in the case of
now letL; andLr depend on the actual resolution level. Howthe variance—that reducing the number of levels while working
ever, we still expect that the true optimal alignment paramete$hin the coarse region of the grey cone is not as detrimental
(fir, fia, ---) will vary only slightly between levels. The setsas it may seem at first.
(Lt, Lg) are constructed by regular sampling of the grey-level

One of the benefits of a multiresolution strategy is the redu %I
tion of the amount of data when the resolution is coarse. How
ever, this data simplification is detrimental to the robustness 81fth
the estimation of the joint probability(¢, ) from which mu

x; €V

range of( fr, fr). IV. OPTIMIZATION
_ _ In addition to optimizing at the coarse levels, the multireso-
D. Underlying Assumptions lution strategy does not preclude optimization at the finest one.

To use multiresolution with some success in performing tHe0r this strategy to be efficient in terms of computation time,
registration of two datasets, it is necessary that their coarse régs required that, at the finest level, the number of criterion
resentation be discriminant enough. In an imaging context, it§¥aluations necessary to reach some registration precision be
well-known that most of the signal energy is concentrated t§:ss than the number needed to solve the same problem without
ward low Spatia| frequenciesy which are essentia“y preserv@dnultireSOIUtion strategy. From this ConSideration, it follows
while switching from a fine resolution to a coarser one. Theréhat it is important to select an optimizer that benefits strongly
fore, it is legitimate to first register the large-scale features @M good starting conditions. As examples of bad candidates,
coarse resolution, and then only to refine registration by takife can think of many direction-set methods (e.g., conjugate-
fine-scale features into account. gradient with or without explicit derivatives), where the opti-

In addition to multiresolution, the pseudo-quantization intrghizer often needs to sequentially explore several directions in
duced by the grey cone results in a registration criterion tH&€ (11, 12, - - -) space, before even starting to really optimize.
tends to be dominated by high-contrast features at coarse scaé# such algorithms, especially when the conditions are nearly
However, this trend can be partially compensated so as to rest@pémal, many criterion evaluations are wasted simply to assess
some sensitivity to low-contrast features. Suppose for a whifeat these conditions are, well, nearly optimal.
that the discrete set of intensitiéshas been so badly chosen The main contribution of this paper is an optimization
that all intensities would fall in the same bin, should a tradition&lgorithm based on the same strategy as that of the Mar-
histogram be constructed: in this case apparently, no infornfilardt-Levenberg optimizer which is characterized by a global
tion can be used for registration. By contrast, the histogram cofnderstanding” of its inmediate surroundings [14]. It benefits
struct proposed in (2), together with a cubic spline in the role §0m superlinear convergence, a regime in which the optimizer
the Parzen window, spreads data contributions over several b)verges quadratically (or better) when the optimum is close
which allows the recovery of more information than with tradienough. An important difference between the present optimizer
tion‘f"'_ binning._ln fact, the cubic Sp””@g satisfies not only the IWe consider here thatard(V) is sufficiently large so as to have
partition of unity ", ., 33(¢ — x) = 1, but also additional re- 1/(card(V)) — 1) = 1/card(V)).
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and Marquardt—Levenberg's is that our specific registratidParzen window satisfying the partition of unity condition, we
problem is non least-squares. get that
Our optimizer is iterative; it proceeds by trying potentially

better solutiqns arounq a given. initial condition. Apart from 5¢ B ap(e, ,{7 Bl
the propagation of the final solution from a coarser level to the7y = — Z Z log, i ) (23)
next finer level, where it will be used as initial condition, the €L kELR B

existence of an underlying image pyramid and of a grey con?1
is ignored while optimizing within any given level. Hence, wel_
present this algorithm out of the multiresolution context.

e derivation from (22) to (23) is detailed in the Appendix.
hen, we can expand the gradient of the joint probability distri-

bution
A. Criterion Model
Ip(e, K; p)
As a first step, let us express the mutual information (7) by a o
Taylor expansion 1
~ card(V) xz&;
2S(v) 7
S(w) =S+ (i = 1) 98" (£)
- O | g™ — i
1 Za2s(Z) Jrnlen = Ints) /e 98 L:L/CT—fﬂg(xw»/cT
4= Ay (i —v) (s — ) +-++. (20 T
2 2 oy i (i — vi) (pg — v5) (20) 1 [ =dfr(t) g (x;; ) (24)
er W egxiim Ope

We then simplify (20) by ignoring all terms above second-order.

Thus, the residual error will decay likén — »||*, provided where it is possible to introduce the explicit expression for the

9°S(v)/(dpi Oy Op.) is bounded. This happens in particulagierivative of a B-spline derived from (13)
when the Parzen window is a B-spline of degree> 3. If

bothx andv are not too far from the optimum, this simplified

guadratic model is known to be quite appropriate. a[ag(g) ="l e+ 1/2) - e - 1/2) (25)
B. Gradient and where the spatial gradient of an imalfét)/dt is given by
Let us define the gradietS as the B-spline model of degree
dfr(t)
VS = [55 885 } . (21) It
H1 g2 B Z C(X‘) dﬁ"(u)
In general, a component &5 is given by g ! du | iy,
M o™ (u T
o5 o) B (6= x)2)
a—u = — a2(p,) Z Z u=(‘3—>;)31n
= 3 o) | e - mp) 20
| Oh R < ch(t, 1 ) ) v U fum s
o) on 22 \a(w) hr (s @) ke w)
. . 26
+ (e, K5 p) log, <ea(u) hhT(EL7:):)R(ﬁ7 H)) #0)
ah( C m ’1 ’ The last unexplained term in (24)dg(x;; u)/3u, which de-
Z Z e oo @) scribes the variation in position due to a variation in parameter.
(elr n€Ly OBe This term depends on geometry alone. Finally, the gradient of
Shr(e; Ohg(k; the marginal joint density can be expressed b
8u au
a ap(e,
' h(e, K5 p) 22) —pgﬁfb) = Z —pgu'i)
alp) hr(e; p) hr(k; p) ~CLz
_ 1 ap™ (&) ‘
wheree is the exponential constant. This expression can be sim- card(V') eV I ejer—fria(xism)/er
plified because, in our formulation of the mutual-information T
criterion,ig = > h(e, 5 p) anda = > > h{s, k; ) do L —dfr(t) Ig(xi; p,). 27)
not dependent op. By selecting a B-spline of degree as a er dt t=g(xsip) I
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C. Hessian Thus, another fortunate consequence of ignoring the second-
Let us define the matrix of the second derivativeSoés its °rder termin (29) is that the Hessi&ft S comes at essentially
Hessianv2s no additional computational cost with respect to that of the gra-
dientVvs.
%S %S
Ou10py Opg Ope D. Standard Optimizers
Vis = &S &S . (28) The steepest-gradient descent is a minimization algorithm
Ou2 Oy g duo that can be succinctly described by
ptD) — M _ryg (uoc)) ) (32)

With the same assumptions as before, including a Par
window satisfying the partition of unity condition, we deter-
mine a component of the Hessian by

4% 1ocal convergence is guaranteed, although it may be very
slow. A key problem is the determination of the appropriate
scaling diagonal matrik'.

9%S The Newton method can be described by
Oy Opia -1
(k+1) _ (k) _ (2 (k) (k)
<Z > Prle ) <p(b7ﬁ)>> uD = p® — (25 (W) us (u¥). (33)
82
vCLy wCLp Op Oy pr(t) Its convergence to an optimum is not guaranteed: it may con-

1 Opr(t) dpr(t) 1 verge to a saddle point (at the same time a maximum for some
+ oz (2) Z parametey;; and a minimum for another paramejeyr). Even

WLy Opr Opz pr(y) worse, it diverges from the desired solution when the problemis

ap(, k) Ap(e, k) 1 not convex. In return, it is extremely efficient when the criterion
log Z Z T Bz ple, 1) (29) s locally quadratic convex, for in this case it finds the optimum
¢ «CLr kCLR ’ after a single criterion evaluation.

The first term of (29) depends on the second-order variati
of the joint probability when a pair of registration paramete
varies jointly. We will ignore this term, which amounts to lin- The Marquardt-Levenberg strategy is a convenient way to
earizing the variation of with respect tq:. Another motivation combine the advantages of the gradient method with those of the
for dropping the first term in (29) arises when one considers thiewton method, preserving the efficiency of the latter when the
situation at ideal registration of two dependent images. In thienditions are nearly optimal, and the robustness of the former
case, we have thatt, k) = pr(.) pr(x). Then, the partition when they are not.

g Marquardt—Levenberg Strategy

of unity condition implies Let us introduce a modified Hessi&\S in which we retain
the off-diagonal entries 672S and multiply its diagonal entries
Z Z o &p(r, ©) 0gs <p(bv “)> by some factor
g Oy Oz 3#2 pr(t) )
P pr(n (RS, = [V=5 ()i, 5 (1 + 6 5 A) (34)
=D oo g (pr(m) =0 (30) _ N
wely CH1CH2 whereé; ; is the Kronecker symbol, and whedeis a tuning

factor that represents the compromise between the gradient

and the first term in (29) vanishes. We note that the remainifgethod and the Newton method. Suppose we now determine
terms do still contribute and that the Hessian does not globajie new updatg*+1) as in

vanish at ideal registration. This is important to keep superlinear .
convergence near the optimum. Finally, in this paper we use the  (x+1) _ (%) _ 1S (™YY vs (u®) . 35
following simplified form b # ( (” )) (” ) (35)
925 Depending on the value df, one can distinguish two extreme
cases. When. — 0, one sees that (35) and (33) are identical.
WhenA — 40, the diagonal terms of the modified Hessian
1 <Z dpr(t) Opr(e) 1 ) HS dominate, and we are in the situation of (32). Note that,

8u1 8u2

"~ log,(2) S 9m e pr(t) although the magnitude of the update is adapted to each com-
ponent by the virtue of the normalizing ten[?WS];}, the steps
are vanishingly small in this second case. This is not a problem
because itis easy to adapbetween these two extremes in order
(31) to achieve a good compromise between the efficiency (but lack
of robustness) of the Newton approach, and the size of the steps
Comparing this last expression with (24) and (28), one seekthe robust (but generally inefficient) gradient approach. In
that every term needed by our simplified Hessian has been thlis paper, the mechanism to adags identical to the original

ready precomputed while determining the value of the gradieMarquardt—Levenberg proposition.

ap(e, k) Op(e, k) 1
(3 e

5 p2  plt, k)
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V. EXPERIMENTS level correspondence between the test and the reference image.
We want first to illustrate the performance of our approath'rS.t’ we attempt _to register identical 'mages _and show that our
registration algorithm performs well in this intramodal case.

with experiments in which the true alignment is knoavpriori, . . .
"[j‘rp_en, we simulate the intermodal case by performing a non-

and in which the grey-level correspondence between the moqIn r nonmonotonic transformation on the arev-levels of on
ities is controlled. This will allow for an objective measure- ear, nonmonotonic transtormation on the grey-levels ot one

géthe image, and show that our registration algorithm performs
as well as in the intramodal case. Finally, we add white Gaussian

where the true alignment is approximately known, but whe to the simulated int dal d show that
the grey-level correspondence between the modalities is not. pyise to the simulated intermodal Images and snow that our reg-
tration algorithm is robust with respect to this type of noise.

nally, we present results in which the true alignment has be'\%/ ‘ th : tsin 2-D with widel ilable
estimated by another registration technique that is believed g Periorm these experiments in 2-L with widely available im-

be very accurate, but that is generally unavailable becaus€9ES: Although unrealis?ic, this cor_1trolled environment offers a
requires planning before data acquisition. This last validati(%ear framework for the interpretation of the results.

approach has been used as a benchmark by several other r%) Intramodal Case:Selecting thé12 x 512 Lena image in

searchers [2], and is representative of a typical application 11&9 role of bothfz andfr, we expectamultlr esoly'uon approac.h
this algorithm. to influence at least two aspects of the registration method. First,

it should improve the robustness of nonstochastic optimization
A. Warping Index procedures such as ours. Second, it should improve its speed.

L ) ) To observe these effects, we compare the success of our regis-
The general procedure for validating our algorithm will be % ation method when we vary the number of levels in the image

start with two images that are supposed to be in perfect registigia miq. since the goal is to investigate the interaction between
tion. We then destroy this correspondence by applying a knoy}, siness and precision, we prescribe a fixed overall computa-

geometric transformation. The goal is to recover its inverse By, ime and adapt the number of criterion evaluations at each

our registration method. _ level such that this resource is shared between levels in an ade-
Consider a test imagér and a reference imagg; that are quate fashion

already in perfect correspondence. Rather than transforming al‘able | presents the results of these experiments where the

single image in this pair, we prefer to transform both becauﬁrest block of lines corresponds to a strategy using a one-level
this tends to lessen any bias that would otherwise result from P 9y 9

the introduction of interpolation artifacts into one image onIy.pyram'd’ and .the last blopk of lines to asm-leve] pyrqm|d (the
Therefore, we compute coarsest level is 46 x 16 image). The geometric unit of the

warping index for the intramodal case, ..., is 1.0 pixel at the
_ _ -1 finest resolution, and the time unit is 1.0 CPU second on a Sun
9r(x) = r(go(x)),  9r(x) = Jr(go™(x)) (36) ULTRA 30 workstation. The processing time reported in this
whereg,, is a rigid-body transformation consisting of a randortgble includes the overhead time necessary for computing the
translation and a random rotation around the center of the imaggramid (starting each time from the finest level). For example,
It follows that the correct registration gf- to gr involves the performing 64 criterion evaluations on an image down-sized
transformationg = go o go such thatgr(x) = gr(g(x)). In from card(V)) = 512 x 512 to card(V) = 32 x 32 requires
our case, since is rigid-body, so isg. 3.9 s, while performing twice as many criterion evaluations with
Next, we estimate a rigid-body transformatigrout of the the same overhead requires only 5.9 s. We alsogivé(/.) =
data(gr, gr). Our aim is now to determine the precision ofard(Lz) = card(Lg) the number of quantized intensities at
each estimation. We achieve this goal by introducing a warpiegch level of the grey cone. To determine this number of grey-
indexw that measures an average geometric exror levels, we observe the rulerd(Lg) card(Lr)/card(V) = R
that we proposed at Section IlI-C, and we select a constant ratio
Z g™ (xi) — &7 (xi)| 37) R=1/8 , , _ _
eV The purpose of this experiment is to show the degree to which
multiresolution is able to ameliorate the performance. We ob-
where]| - || stands for the Euclidean distance. After having pegerve that our algorithm is essentially unable to converge within
formed several registrations with different realizations of th@e allotted computation time when the pyramid consists of its
random transformatiogo, we average together the values finest level only. This was to be expected, since we spent most
and report a pooled warping index. For this paper, there are 1§Qyr attention to building an optimizer that works well when
warping indexes to pool for each experiment. Meanwhiihas it s close to the solution, without concerning ourselves with its
a translation that is uniformly distributed [r-2.5, 2.5], and @ pehavior when the solution is remote. With two levels, the accu-
rotation around the center of the image that is uniformly digacy improves but is still insufficient. In the three-level case, the
tributed in[—m/36, 7/36]. Hence, the maximal excursion ofgrder of magnitude of the accuracy reached by our algorithm is
& = 8o © go is about seven pixels of translation ab@" of  apout a pixel. With four levels, this accuracy still improves to
rotation. about a couple hundredth of a pixel; it reaches a hundredth of
L L a pixel for five levels. An additional sixth level does not bring
B. Objective Validation additional gains. It is also interesting to note that, although half
We start our series of experiments in a controlled enviroof the processing time is spent at the finest level, the biggest
ment where we knowa priori both the geometry and the grey-improvements result from computations performed at coarser

1
card(V)

w =



INFLUENCE OF MULTIRESOLUTION ON THE ROBUSTNESS OFREGISTRATION IN AN IDEAL CASE. @;n¢ra: ORIGINAL LENA VERSUS

TABLE |

THEVENAZ AND UNSER: OPTIMIZATION OF MUTUAL INFORMATION FOR MULTIRESOLUTION IMAGE REGISTRATION

ORIGINAL LENA. @, 1c-: MODIFIED LENA VERSUSORIGINAL LENA

Initial Coarse Fine
Wintra | 12.7+6.5 12.1+ 6.6
Dinter | 12.7£6.5 12.5 + 6.6
Time/Iter. 65.3/8
Total Time 65.3
card(L)/+/card(V) 64/512
Dintra | 12.7+6.5 9.446.6 9.146.7
Dinter | 12.7£6.5 11.3 £ 6.9 11.2+ 6.9
Time/Iter. 33.1/16 31.7/4
Total Time 33.1 64.8
card(L)/+/card(V) 32/256 64/512
Wintra | 12.7+6.5 2.5+ 2.9 1.5+2.4 1.4+2.3
Dinter | 12.7£6.5 6.4+ 5.9 5.8 + 5.9 5.7 +£5.9
Time/Iter. 17.5/32 16.4/8 31.7/4
Total Time 17.5 33.9 65.6
card(L)/+/card(V) 16/128 32/256 64/512
Wintra | 12.7 £ 6.5 0.58 £ 0.73 0.079 4 0.10 0.022 4 0.028 0.018 4 0.019
Winter | 12.7£6.5 0.72 £ 1.2 0.096 4 0.23 0.024 + 0.055 0.013 + 0.022
Time/Iter. 9.7/64 9.5/16 16.4/8 31.7/4
Total Time 9.7 19.2 35.6 67.3
card(L)/+/card(V) 8/64 16/128 32/256 64/512
@intra | 12.7+6.5 1.2+ 1.5 0.16 £0.38  0.028 £0.039  0.0095 =+ 0.014  0.0094 % 0.013
@Winter | 12.7£6.5 1.740.86 0.194+0.083 0.033+0.018 0.013+0.0061  0.0090 % 0.0045
Time/Iter. 5.9/128 5.8/32 9.5/16 16.4/8 31.7/4
Total Time 5.9 11.7 21.2 37.6 69.3
card(L)/+/card(V) 4/32 8/64 16/128 32/256 64/512
@intra | 12.7+6.5 122465  2.6+2.5 0.36 £0.60  0.051+0.088  0.017 + 0.027 0.014 + 0.019
Winter | 12.7+£6.5 12.6+£6.5 3.5+3.0 0.33+0.48  0.04140.033  0.013 £ 0.0062  0.0090 % 0.0045
Time/Iter. 4.0/256 3.9/64 5.8/32 9.5/16 16.4/8 31.7/4
Total Time 4.0 7.9 13.7 23.2 39.6 71.3
card(L)/+/card(V) 2/16 4/32 8/64 16/128 32/256 64/512

2091

levels; the improvements at fine levels are however the hardegermodal case is given by;,..... We observe that the opti-
to obtain, and our optimizer excels at getting them. As plannedjzation is trapped in local minima far from the true optimum
the overall computation time is about the same in all cases. for pyramids consisting of one, two and three levels. Using at
2) Intermodal Ideal Case:Now, we keep the sameimagig least four levels solves this problem. We see that the perfor-
as before, and we synthesifg by applying a grey-level trans- mance of the algorithm is essentially the same for the intermodal
formation that is nonlinear and nonmonotonic, thus possessidgal case as it was for the intramodal one.
no inverse. By this operation we try to confuse the algorithm. 3) Intermodal Noisy CaseTrying to confuse the algorithm
The synthesized test image is even more, we now add independent realizations of white
Gaussian noise both to the reference image and to the
test image fr synthesized according to (38). We measure
the amount of added noise as a signal-to-noise ratio (SNR)
expressed in decibels, according to
where the range of intensities found fig is assumed to be
[0, 1]. We performed the same experiments as in the intramodal a2(f
case. Table I shows the results where the warping index for the 7 =10 logy, 2(n)

_ 1—cos(27 fr)

fr = =22 (38)

~—

(39)

N
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0.1 -

w (pixel)

0.01

T T T T
r(dB) Fig. 4. Cryosection of a human brain in an RGB representation. Left: red
channel. Right: blue channel.
Fig. 2.  Warping indexo versus amount of added noise (noisy modified Lena
versus noisy original Lena). .
yong ) C. Known Geometry with Unknown Grey Correspondence

We now use a pair of biomedical 2-D images coming from
different modalities. Fig. 4 shows such a pair, where the left
image is the red channel of the cryosection of a human brain
(Slice 4125 of the Visible Human Project), and the right image
is its blue channel. Since they come from the same 24 bit color
photograph, we can have somaepriori confidence in their
overall correct prior alignment. However, we may also have to
mitigate this statement since inaccuracies in the scanner interfere
with the level of geometric precision we are interested in. To
alleviate this problem somewhat, we have reduced the image
size threefold t@56 x 256, which tends to reduce any original
mismatch in the color channels by as much. Contrary to the
Fig. 3. Lenaimage corrupted with 0 dB noise. Left: reference. Right: modifie:%)(pe”.ﬁ.]entS of Sec’.ﬂon V-B, the correspondence b_etween the
histogram. intensities recorded into the red and the blue channel is unknown.

1) Multiresolution: Table Il presents the results of the same

) ) ] ) ~experiments as before performed with the images of Fig. 4. Out
whereo?(f) is the variance of an image and(n) is the vari- of 100 trials, we retain in this table only those for which the
ance of the added noise. We corrupted the test and refereggglity of the registration is subpixel; we consider the rejected
image in such a way that they exhibit the same SNR. Fig.cdses to be failures. We name capture range the largest pre-reg-
shows the resulting dependence of the warping ingean =, jstration warping index that leads to a subpixel post-registra-
using the same methodology as in the previous experiments, g8 warping index. Trying again to assess the gain in robustness
with a five-level pyramid. We observe that the algorithm is lefyrought by multiresolution, we observe that our algorithm is un-
undisturbed by moderate amounts of noise (SNR better thanglfte to converge within the allotted computation time when the
dB). Moreover, the degradation is graceful when more noiseggramid consists of its finest level only. With two levels, some
added. For example, even when the variance of the noise iscases are within the capture range but the number of failures is
big as the variance of the signal itself (0 dB case), the warpiggll very significant. Both accuracy and capture range improve
index is still no more than a tenth of a pixel. Fig. 3 displgys  with the introduction of a third level, where we still experience
and fr in this particular O dB case. Note that the actual realizabout as many failures as successes. With a fourth level how-
tion of the noise is different in all 100 experiments performeever, the capture range is maximal and every of the 100 random
for each data point of Fig. 2. transformations leads to a successful subpixel registration. The

We can now compare the performance of the present integsidual error, which might also be due to inaccuracies in the
modal image registration algorithm with those of the intramodatanning device itself, reaches a half tenth of a pixel.
one that we presented in [5]. We conclude that their precision isSince we retain in Table Il only those experiments with ini-
essentially the same in presence of strong noise (both readimbconditions that lead to subpixel registration at full resolution,
tenth of a pixel in the 0 dB case), while the intermodal algat is easy to read in the first data column of this table the max-
rithm applied to the intramodal noiseless case of Section V-Bhal amount of initial misregistration our method can cope with.
performs worse than the intramodal algorithm (a hundredth off&is maximal amount clearly depends on the number of levels
pixel instead of a thousandth of a pixel for a comparable allottedithe pyramid; its general trend is to double for each additional
computation time). This relative loss of precision is largely confevel, which is consistent with the use of a dyadic multiresolu-
pensated for by the fact that it is impossible to register intion scheme. As a rule of thumb, we observe that our method
ages like those presented at three with the intramodal algorithmorks well as soon as the initial misregistration is subpixel at
Also, for many practical purposes, the precision of a hundredihy given level; this subpixel score has then to be scaled from
of a pixel reached by the present intermodal algorithm is ofteéine actual spatial resolution to the final spatial resolution to in-
sufficient. dicate the true range of misregistration where our method is ef-
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TABLE I
INFLUENCE OFMULTIRESOLUTION ON THE ROBUSTNESS OFREGISTRATION (CRYOSECTIONBLUE CHANNEL VERSUSCRYOSECTIONRED CHANNEL)
Initial Coarse LER el Fine Total Time Failures
@ N/A N/A
Time/Iter. 16.3/8 16.3 All
w 2.08 + 0.66 0.33 + 0.49 0.27 £ 0.41
Time/Iter. 8.7/16 7.6/4 16.3 96%
w 5.16 + 1.83 0.52 + 0.52 0.17 £ 0.26 0.13 £0.21
Time/Iter. 4.7/32 4.4/8 7.6/4 16.7 45%
w 7.16 + 2.89 1.05 £ 0.70 0.13 £ 0.094 0.046 + 0.020 0.044 £ 0.010
Time/Iter. 2.7/64 2.6/16 4.4/8 7.6/4 17.3 None
TABLE Il

INFLUENCE OF THEMODEL DEGREE ON THEROBUSTNESS OFREGISTRATION (CRYOSECTIONBLUE CHANNEL VERSUSCRYOSECTIONRED CHANNEL)

Initial Coarse cee e Fine Total Time Failures

@ (8%) 7.15 + 2.89 1.05 £ 0.70 0.13 £ 0.094 0.046 £ 0.020 0.044 £ 0.010

Time/Iter. 2.7/64 2.6/16 4.4/8 7.6/4 17.3 None

w(ﬁz) 7.11 £+ 2.87 1.21 £0.89 0.17 4+ 0.20 0.059 £ 0.096 0.054 £ 0.076

Time/Tter. 2.4/64 2.4/16 4.2/8 7.3/4 16.4 1%
w(Bl) | 6.814+2.66 2.20+1.37  0.60 & 0.57 0.22 + 0.30 0.16 + 0.23
Time/Iter. 1.8/64 1.7/16 3.0/8 5.4/4 11.9 36%

ficient. For example, we see in Table Il that the capture rangemposition is that our optimizer is inefficient out of a multireso-
a four-level multiresolution pyramid is abot—! = 8 pixels, Iution context; in particular, at the first (coarsest) pyramid level,
as computed according to Definition (37). itis less robust and slower than many other optimizers. To ben-

2) Quality of the Model: We expect the quality of the imageefit from both of best worlds, we suggest a compromise where
model to reflect itself in the quality of registration, particularlya robust, but eventually evaluation-hungry optimizer, is used at
at the coarse levels of the pyramid. To investigate this hypottire coarsest resolution, followed by the efficient use of our accu-
esis, we construct Table Ill, where we show the results of regte, evaluation-savvy optimizer at finer levels. This suggestion
istration using cubic, quadratic and linear models, respectivelynot further pursued here; rather, we concentrate on the perfor-
The number of levels and the number of criterion evaluatiomsance of our optimizer alone.
are identical in these three cases. The structure of this presentation is as follows: we first show

The quality of the model affects both interpolation and case where the traditional Powell optimizer yields good results
pyramid computation. One can see that the difference betwdan multiresolution). Since this case does not correspond to the
a cubic and a quadratic model is not striking when dealing wittontext in which our optimizer has been developed, we experi-
the finer levels of the pyramid. For the coarser levels howevemnce much worse performance. We then introduce multiresolu-
the difference is more marked. This tends to show that the maiion in a way that tends to be very favorable to Powell. We ob-
advantage of using a cubic model (with respect to the quadrati&rve that this optimizer performs better than without multires-
one) is not so much due to interpolation, but rather to reducellition; at the same time, we observe that our algorithm yields
aliasing in the pyramid. Note that quadratic and cubic modai®od performances too. The important point comes last: while it
have essentially the same computational cost, while a lineanot possible to furtherenhance Powell, itis still possible to have
model is somewhat cheaper. The gain in speed is not dramatlarge increase in performance with ouralgorithm. Inconclusion,
however, and has to be weighed against a sharp reductiowigoutperformthe best (multiresolution) Powell resultby a factor
accuracy. Moreover, since the algorithm sometimes failed tioree with respect to time, without any compromise in accuracy.
converge with a linear model, robustness is also decreased. Forhe Powell algorithm computes no criterion derivatives while
all these reasons we advocate the use of a cubic model. attempting to recover the gradiemsS and the Hessiaiv?8,

3) Powell Optimizer: We want now to compare the accuracyhich makes it an attractive candidate when closed forms of
and efficiency of our proposed optimizer to the Powell algorithithe derivatives are not available or when their computation cost
that has also been used in the context of image registration baisgarohibitive. It is known as a direction-set method, where the
on mutual information [15]. The goal of this presentation is tparameter space span(s explored along straight lines exclu-
show the reason why a Powell algorithm fails to take full adsively [linear combinations ofyi1, p2, -~ ).
vantage of a multiresolution approach, while the optimizer pro- Line minimizations require a bracketing of the minimum
posed in this paper succeeds. The unfortunate corollary to thleng the considered line before being able to start the opti-
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Fig. 5. Left: accuracy of the multiresolution Powell algorithm during optimization versus number of criterion evaluations. Right: accuracyagfoedp
algorithm during optimization versus number of criterion evaluations. Thick line: best solution. Thin line: current attempt. Square dotsf csnigeon level.

mization itself. This bracketing alone is worth several criterion The bracketing episodes of the Powell algorithm can be easily
estimations, which is inefficient when using a multiresoluidentified as big excursions @. Those are necessary because
tion strategy. Because these initial criterion estimations atés algorithm has no indication of the correct scale of the opti-
necessary for the proper behavior of the Powell optimizenization problem and has to start with wild guesses each time a
regardless of whether the starting conditions are good or nothéw direction is tried. The reward is a reduction in complexity,
is not possible to arbitrarily reduce their number. In additiorsince no explicit derivative computations are performed. This
no convergence can be detected before at least as many tfiaeslates in a reduction of the time per criterion evaluation.
minimizations as free parameters have been performed. OBMith a number of evaluations set to match those of the Powell
ously, the fact that the Powell algorithm uses estimates for takgorithm, we need 716 s to perform the computations, while
derivatives rather than their true values tends to further redueewell is done in half the time (363 s). This last value has to be
its efficiency. compared to the time needed by Powell to reach convergence
We conduct an experiment where the transformagiaor-  without multiresolution (821 s).
responds to an initial displacement of 10 pixels along each axisWe observe that both algorithms can be characterized by
and to a rotation ofr/18 = 10°. The image model is cubic for bursts of an efficient optimization mode alternating with more
both algorithms (including Powell), and the joint histogram anstatic periods. It is important to point out that, as soon as the
the mutual information are computed according to (2) and (dijtial conditions are good (about one pixel), our algorithm
respectively. Thus, we expect to reach the same accuracy witinverges almost instantly when compared to Powell. In fact,
either optimizer since the absolute optimum is defined only likie 62 criterion evaluations performed by the latter on the two
the criterion and by the interpolation technique. The images digest resolution levels represent the smallest possible amount
the same as in Section V-B2, with the same grey-cone strategfy.computation, because Powell needs a first sweep through
First, we attempt registration without multiresolution. We obthree parameters (with ten criterion evaluations each) to opti-
serve that the Powell algorithm needs 196 criterion evaluatiomsze for the added image details that distinguish a resolution
to converge when its working conditions are identical to thodevel from the next, and one additional sweep to decide for
found in [15], that is, at most 10 criterion evaluations for eaatonvergence. By contrast, our algorithm is not constrained by
line minimization, and convergence thresholds set®o® for line minimizations; it can stop at any time during optimization,
Powell and10~2 for Brent minimization routine, respectivelyand starts to simultaneously optimize for all parameters from
[22]. Allowing for the same number of criterion evaluations, théhe very first criterion evaluation on. This suggests that it can
algorithm proposed in this paper is unable to converge at alhnverge with a much reduced number of evaluations at each
which demonstrates its lack of efficiency and robustness whiewel, but for the first one.
it is far from the solution. We then propose an optimization strategy where the number
We then attempt registration in a multiresolution contexaf evaluations performed at finer levels of the multiresolution
Using a four-level pyramid, we observe the evolution of theyramid has been sharply reduced. Fig. 6 shows a case where
warping indexw during the course of registration, both forl28, 32, 16 and 8 evaluations have been performed (so few eval-
our algorithm and for Powell. Fig. 5 shows the result of thigations make no sense in the context of a Powell optimizer, so
experiment, where Powell has been allowed to freely decide foe provide no direct comparison). Our accuracy is as good, or
convergence at each level, and where the number of criterioetter than Powell (we reaeh = 0.002 591). Moreover, since
evaluations performed by our optimizer has been set equa remove many of those criterion evaluations that make for
to those observed while letting Powell converge. We cdhe longest computation time, we are able to reach convergence
clearly see that both algorithms reach a satisfying solutionuch earlier than Powell, both in terms of time and criterion
(w = 0.003338 in both cases), which demonstrates the gavaluations. We need no more than 132 s to perform the whole
in robustness brought by multiresolution. Thick square dotgtimization procedure, which is about the third of Powell in a
indicate the last result reached before a change of level. Fromltiresolution context, and about six times faster than the tra-
the coarsest to the finest level, Powell claimed convergenditional Powell optimizer. Fig. 7 substantiates these results and
after 155, 102, 62, and 62 criterion evaluations. show that the time spent at coarse resolution is essentially irrel-
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Fig. 6. Left: accuracy of the proposed algorithm during optimization versus number of criterion evaluations. Right: observed value of theT¢réterionber
of allowed criterion evaluations at each level is less than those demanded by the Powell optimizer. Thick line: best solution. Thin line: copteBoptéee dots:
change of resolution level.
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TABLE IV
RESIDUAL DIFFERENCE INMm BETWEEN A FIDUCIAL -MARKER PROSPECTIVE
REGISTRATION TECHNIQUE AND THE PROPOSEDRETROSPECTIVEALGORITHM
(VOLUMETRIC BRAIN DATA)

le+01

1e+00

B 9
101 — CT-T1 CT-PD CT-T2 CT-Tir CT-PDr  CT-T2r
] Median 15 17 11 0.9 1.0 0.9
le-02
E Max 2.9 4.2 4.2 3.1 1.6 2.8
R et PET-T1 PET-PD PET-T2 PET-Tir PET-PDr PET-T2r
0 100 200 300 400
Median 3.0 2.7 2.6 1.9 2.0 1.9
Time in [s]
Max 14.3 9.7 6.0 4.9 9.6 8.4

Fig. 7. Comparison of accuracies during optimization versus computation
time. Thick line: proposed optimizer. Thin line: Powell optimizer. Square dots:

change of resolution level. in the literature. The comparison is based on a methodology pro-
posed by Weset al. [2], who let selected researchers access

evant. Obvious|y, there are many_perhaps more robust_(ﬂjstandard set of volumes to be registered. They also act as a
timizers other than ours that could be used for this first levégpository for the ideal registration transformations (gold-stan-
including Powell. Thereafter, an optimizer that takes strong be#rd) acquired by a prospective method using physical markers.
efit of starting conditions, such as ours, is an absolute necesdif}ese markers are erased before the volumes are disclosed to
for a successful multiresolution strategy. the investigators, who then face a retrospective blind registra-

We also take advantage of this experiment to show the refion task. After registration, they report back a set of transfor-
tionship between the measure of geometric accuraand the mation parameters that are compared to the gold-standard. This
value taken by the criterioi during the course of optimization '€SUlts in a geometric error measured in mm, and allows for a
by our algorithm. It can be seen in Fig. 6 thatclosely follows Simple ranking of the competing algorithms—from an accuracy
S. It is also very likely that the most efficient behavior of ouPint of view. Although we carried out our registration some

algorithm has been while optimizing on the rangee [0.1, 1], time aftgr the.researchers listed in the paper by Weat., we
were blinded in exactly the same way.

because there it needed few evaluations to head its way tow: : )
the optimum. .Table v sr_]ows the resultslobtamed by our algorithm and
give the median and the maximum error over about ten cases
for each pair of modalities. The registration of the images was
crudely initialized by an exhaustive search procedure. With a
We also applied our algorithm to the registration of volumgsroper heuristic to decide for convergence of the optimization,
acquired by computed tomography (CT) or positron emission tihe typical execution time for256 x 256 x 28 CT-MR registra-
mography (PET) with respect to three different magnetic resgon is about 4 min on a Macintosh 9600 clocked at 350 MHz,
nance imaging (MRI) modalities: proton density (PD), T1 rela¥ncluding about 40 s of data preprocessing (e.g., determination
ation time (T1), and T2 relaxation time (T2) . The goal was tof a mask over which to carry the optimization, nonlinear in-
align the CT or the PET volumes with the MRI ones, which regensity modification of the CT data to spread their distribution
resents very differentmeasurements since the former use X-raysre evenly). For d428 x 128 x 15 PET-MR registration, the
respectively, the decay of injected radioactive isotopes, while ttypical execution time is about 40 s, of which 10 s are spent
latter deals with the interaction between spin and magnetic field.preprocessing and 30 s in performing the realignment itself.
The MRI volumes were available in two versions: raw (PD, TT hese results compare very favorably to those of other investi-
T2), and corrected (rectified) for scanner-dependent geomefitors published in the literature [2].
distortion (PDr, T1r, T2r). There were seven patients in each caseWe show the performance of the other investigators in Figs. 8
We compare the results of our intermodal brain image reg@nd 9, where the labels are the same as in [2], and where we have
tration algorithm to those of several other approaches publishegresented ourselves by the label TH. The accuracy of the gold-

D. Prospective and Retrospective Registration
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Fig. 8. Residual difference in mm between the prospective gold-standard and several retrospective registration algorithms (CT versus tdg)r fazlali
algorithm proposed in this paper is labeled TH.
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Fig. 9. Residual difference in mm between the prospective gold-standard and several retrospective registration algorithms (PET versusitiis¢r Thedal
algorithm proposed in this paper is labeled TH.

standard has been estimated in the paper previously cited. Th#sed on the joint histogram, too. Madsl.[15] show relations
for a given pair of modalities, we can surround the best resbi¢etween them. Other criterions are also suggested in the same
of all 11 investigators by a tolerance band of the correspondipgper, such as thg, -divergence, thé,-information, they?-di-
size. This band is shown in grey in Figs. 8 and 9. vergence, the 2-information, the difference between the joint
We can draw several comments with respect to ranking. Firshtropy and the mutual information, and the ratio between the
no single algorithm is the best in all cases. Moreover, there areitual information and the sum of the marginal entropies. The
only three algorithms that stay within the tolerance band dauthors could not establish a clear preference for either of these.
fined above (CO [13], HI [23] and TH); those three algorithms Studholmeet al. [23]-[25] present a comparative study of
are allimplementations of mutual information. Among all algoseveral voxel-based registration criterions (e.g., various corre-
rithms, there are 2 that come first the most often (HI and THigtion measures, corresponding variance, moments of the joint
however, TH is the only algorithm that is beaten by the leakistogram, joint entropy?, mutual informations). In term of
number of better results. Itis also the best algorithm with respeobustness, they conclude that mutual information performs ex-
to pooled median errors (for precise numeric results and expgemely well when compared to the other measures. In another
imental conditions, see [2]). Nevertheless, no algorithm takiqaper [26], they propose to ué = 1 + S/H, the ratio be-
part in this study clearly outperformed the others, and a bettereen mutual information and the joint entropy, which hints at
gold-standard or a larger number of datasets would be necessagn better performances. Due to its apparent robustness to the

to get more confidence in these comparative results. partial overlap problem, this last criterion could be a good can-
didate to initiate registration at the coarsest level of a pyramid
VI. DISCUSSION approach.
A. Choice of the Criterion B. Computation of the Criterion

While the mutual-information measure is based on the joint Viola et al.[12], [27] propose to estimate the joint histogram
histogram, some measures from other researchers [6], [23] &¥z) on the basis of Parzen windows made of Gaussian den-
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sity functions which do not satisfy the partition of unity. Thusnone is wasted in bracketing and because our algorithm is free to
their scheme does not benefit from the simplified expressionstbp at any time. Nevertheless, a clear advantage of the Powell
derivatives that we presented at Section IV, which is particulariyfgorithm is its robustness. This suggests a global optimization
relevant when computing the second-order derivatives needghtegy where Powell is used at the coarsest level of a multires-
for the Hessian. olution pyramid to bring robustness, and where our algorithm is
While Viola and Wells produce an estimate of the joint hisused at all finer levels for faster convergence.

togram that is entirely continuous, thanks to Parzen windows
and thanks to the direct use of unquantized grey values, Col-
lignon et al. [13], [15], [28] represent the joint histogram in
an essentially discrete fashion: they use binning with regularlywe have developed a new optimizer for solving the problem
spaced bins. Our work is a compromise between these two ekintermodal image registration. This optimizer takes benefit of
treme views, because our representation of the histogram is ctie- Marquardt—Levenberg strategy, while extending its capabil-
tinuous, like in Viola’'s approach, and at the same time it isies to a specific problem that does not involve a least-squares
described by a set of discrete and regularly-spaced intensstjterion. The optimized criterion is the mutual information be-

VII. CONCLUSIONS

values, like in Collignon’s approach. tween the two images to register. We propose to compute its
value by using separable Parzen windows. We show that the
C. Optimizer selection of a Parzen window that satisfies the partition of unity

simplifies several aspects of the problem. It allows us to find a
Viola et al. [12], [27] propose a stochastic estimate of thgactaple closed-form expression for the gradient of the criterion
mutual information between two datasets. They proceed Rjth respect to the transformation parameters, and to justify a
drawing two population data samples (or setind B, which  simpjified form for its Hessian as well. Moreover, the partition
hold, respectivelyN.y and Vp elements. Each element conf ynity guarantees that the marginal histogram of the fixed
sists of a pait(u, v) of pixels located at identical coordinateseference image does not depend on the geometric transforma
in the two images to register. The purpose of the first&$  {jon applied on the test image. We have introduced a coherent
to provide an estimate of the joint histografi(z), while the - framework based on a continuous image model for applying the
purpose of the second sét is to estimate the mutual infor- yransformations and for computing the derivatives of the crite-
mation (z) oc 3_ log *(z;). This leads to a computationaliion, The same model is used for performing the registration
load that is quadratic in the number of elements. Thus, in thgir 3 multiresolution context. Both model and Parzen windows
approach it is impractical to sample the data in an exhaustiygs hased on B-splines. We have shown experimentally that our
way, which constrains the optimization to use noisy estimaiggw optimizer is well adapted to multiresolution processing,
of both the criterion itself and of its derivatives. Other apynich brings robustness and speed to the whole approach. We
proaches (ours, and those presented below) do not suffer #igch a better accuracy in less time than previously published

limitation. methods.
Studholmeet al. [23]-[25] perform experiments based on a

hill-climbing optimization algorithm that requires no derivative
estimates. In the terminology of Hooke and Jeeves [29], their
algorithm is best described as direct search without patternwe provide here the steps that link (22) to (23). First, we
search. This simple optimizer, where only the exploratory phaséncentrate on the middle term of (22) and determine that

is retained, is embedded in a multiresolution framework. Their

pyramid is computed by an averaging-downsampling scheme

akin to Haar's wavelet. By contrast, we take in this paper Z Z O, my m) Z Z Oh(¢, n; p)

APPENDIX

full advantage of a pyramid that is optimal in a least-squares - o - an

sense and that can be computed at a very modest computaz="" """ 1eln \c&lr

tional cost (typically, less than a single criterion evaluation), — Z M -0

while outperforming a Gaussian pyramid and its associated neln i

oversmoothing drawbacks, even considering an idealized,

nontruncated Gaussian kernel. where we have taken into account the definition (6) and the con-

Collignonet al.[13], [15], [28] use a Powell optimization al- ditions that lead to (10). Introducing (3) into (22), and taking
gorithm to search for the best alignment of data. This optimizeraélvantage of the independenceppfon 1., we get that
based on aseries of line minimizationsin the parameter space and
suffers from sensitivity to the initial order in which the parame- 95 (v, ki p)
ters are optimized. This order must be tuned to the data, whichg,, — Z Z [_3—u

detracts from the general applicability of the mutual-informa- velr meln

tion criterion. The optimizer developed in this paper is insensi- - (logy (e) +logy p(v, £; p)

tive to that aspect because all parameters are considered simulta- —logs pr(e; u) — logs prix; 1))
neously. In addition, it offers savings in the number of needed cri- 1 Opr(e; p) ple, k; @)

terion evaluations when compared to a Powell optimizer because log,(2)  Ou pr(L; 1)



2098 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 12, DECEMBER 2000
By reorganization of the terms, we write that [10] J. R. G. Townshend, C. O. Justice, C. Gurney, and J. McManus, “The
impact of misregistration on change detectid&EE Trans. Geosci. Re-
o8 Ople. K: mote Sensingrol. 30, pp. 1054-1060, Sept. 1992.
— = Z (—log,(e) + log, pr(k; u)) Z M [11] M.Berman, L. Bischof, and S. J. Davies, “Estimating band-to-band mis-
o Chn velp o registrations in aliased imageryGraph. Models Image Processiol.
56, pp. 479—-493, Nov. 1994. _ o
Ap(e, k; w) (e, 15 @) [12] P. Viola and W. M. Wells l1I, “Alignment by maximization of mutual
- 108‘2 information,” inProc. 5th Int. Conf. Computer VisipBoston, MA, June
eLr RELn i pr(s; p) 20-23, 1995, pp. 16-23.
[13] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens,
1 Apr(e; 1) 1 and G. Marchal, “Automated multi-modality image registration
log, (2) Z EM pr(e p) Z p(e, K3 ) based on information theory,” iinformation Processing in Medical
€ vELr ? wELR Imaging Norwell, MA: Kluwer, 1995, pp. 263-274.
. . [14] D. W. Marquardt, “An algorithm for least-squares estimation of non-
The first of these three terms disappears becagsép(:, x)/ linear parameters,). Soc. Ind. Appl. Mathvol. 11, pp. 431-441, 1963.

oy = apR(K)/au = 0. For the last term, we get from the [15] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,

“Multimodality image registration by maximization of mutual informa-

definition (5) that tion,” IEEE Trans. Med. Imagvol. 16, pp. 187-198, Apr. 1997.
. [16] E. Parzen, “On estimation of a probability density function and mode,”
1 3 Opr(spw) 1 3 ple, 5 w) Ann. Math. Statistvol. 33, pp. 1065-1076, Sept. 1962.
108‘6(2) T an pT(tv; u) T [17] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing: Part
vebr #ELr |—Theory,” IEEE Trans. Signal Processingol. 41, pp. 821-832, Feb.
1 Opr(i; 1) 1993.
= log (2) Z o . [18] ——, “B-spline signal processing: Part Il—Efficient design and applica-
€ CLr tions,” IEEE Trans. Signal Processingol. 41, pp. 834—848, Feb. 1993.
[19] ——, “The L. polynomial spline pyramid,JEEE Trans. Pattern Anal.
We also observe that Machine Intell, vol. 15, pp. 364-379, Apr. 1993.
. .. [20] A. Aldroubi, M. Unser, and M. Eden, “Cardinal spline filters: Stability
Z M = Z Z M and convergence to the ideal sinc interpolat8ignal Processvol. 28,
eyt ap i) o pp. 127-138, Aug. 1992.
[21] G. Strangand G. Fix, “A Fourier analysis of the finite element variational
8p(b, K; ,,,) method,” inConstructive Aspects of Functional Analysi€Erice/Rome,
= Z Z —_— Italy: Centro Internazionale Matematico Estivo, Edizioni Cremonese,
e \e o June 27-July 7, 1971, pp. 796-830.
[22] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterlihas
_ Z apR(’i% Il') -0 merical Recipes, The Art of Scientific Computi8gd ed. Cambridge,
- o - U.K.: Cambridge Univ. Press, 1988.
KELR [23] D. L. G. Hill, C. Studholme, and D. J. Hawkes, “Voxel similarity mea-
. . sures for automated image registration,”Rmoc. SPIE Visualization
which concludes the equwalence between (22) and (23)' Biomedical Computing/ol. 2359, R. A. Robb, Ed., Rochester, MN, Oct.
4-7, 1994, pp. 205-216.
[24] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “Automated 3-D regis-
REFERENCES tration of MR and CT images of the headfed. Imag. Anal.vol. 1, pp.
[1] L. Gottesfeld Brown, “A survey of image registration techniqués;M 163-175, 1996.
Comput. Sury.vol. 24, pp. 325-376, Dec. 1992. [25] —, “Automated three-dimensional registration of magnetic resonance
[2] J. West, J. M. Fitzpatrick, M. Y. Wang, B. M. Dawant, C. R. Maurer, R. and positron emission tomography brain images by multiresolution op-
M. Kessler, R. J. Maciunas, C. Barillot, D. Lemoine, A. Collignon, F. timization of voxel similarity measuresiMed. Phys.vol. 24, pp. 25-35,
Maes, P. Suetens, D. Vandermeulen, P. A. van den Elsen, S. Napel, T.S.  Jan. 1997.
Sumanaweera, B. Harkness, P. F. Hemler, D. L. G. Hill, D. J. Hawkes, C[26] C. Studholme, D. J. Hawkes, and D. L. G. Hill, “A normalized entropy
Studholme, J. B. A. Maintz, M. A. Viergever, G. Malandin, X. Pennec, measure for multi-modal image alignment,”Rnoc. SPIE Conf. Image
M. E. Noz, G. Q. Maguire Jr., M. Pollack, C. A. Pelizzari, R. A. Robb, D. Processingvol. 3338, San Diego, CA, Feb. 23-26, 1998, pp. 132-143.
Hanson, and R. P. Woods, “Comparison and evaluation of retrospectivi27] W. M. Wells Ill, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis,
intermodality brain image registration technique,’'Comput. Assist. “Multi-modal volume registration by maximization of mutual informa-
Tomogr, vol. 21, pp. 554-566, July/Aug. 1997. tion,” Med. Imag.Anal.vol. 1, pp. 35-51, 1996.
[3] J.B.A.Maintz and M. A. Viergever, “A survey of medical image regis- [28] A. Collignon, D. Vandermeulen, P. Suetens, and G. Marchal, “3D multi-
tration,” Med. Imag. Anal.vol. 2, pp. 1-36, Apr. 1998. modality medical image registration using feature space clustering,” in
[4] J. V. Hajnal, S. Nadeem, E. J. Soar, A. Oatridge, |. R. Young, and G. Proc. Computer Vision, Virtual Reality, Robotics Medicihe Ayache,
M. Bydder, “A registration and interpolation procedure for subvoxel Ed. Nice, France, Apr. 1995, pp. 195-204.
matching of serially acquired MR images),”Comput. Assist. Tomogr.  [29] R. Hooke and T. A. Jeeves, “A direct search solution of numerical and
vol. 19, pp. 289-296, Mar.—Apr. 1995. statistical problems,J. Assoc. Comput. Machvol. 8, pp. 212-229,
[5] P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach 1961.
to sub-pixel registration based on intensitd#EE Trans. Image Pro-
cessingvol. 7, pp. 27-41, Jan. 1998.
[6] R. P. Woods, J. C. Mazziotta, and S. R. Cherry, “MRI-PET registra-
tion with automated algorithmJ. Comput. Assist. Tomogvol. 17, pp. . 3 . ) .
536-546, July—Aug. 1993. Phlllppe Theve_naz(M’QS) was_borr_l in Lau_sann_e, S_Wltzerland, in 1962. He
[7] J. Le Moigne, W. Xia, S. Chettri, T. El-Ghazawi, E. Kaymaz, B.-T.received the Diploma degree in microengineering in January 1986, from the
Lerner, M. Mareboyana, N. Netanyahu, J. Pierce, S. Raghavan, J.L@ausanne Swiss Federal Institute of Technology (EPFL), and the Ph.D. degree
Tilton, W. J. Campbell, and R. F. Cromp, “Towards an intercompalin June 1993, with a thesis on the use of the linear prediction residue for text-
ison of automated registration algorithms for multiple source remotgdependent speaker recognition from the Institute of Microtechnology (IMT),
sensing data,” irProc. Image Registration Workshop. Le Moigne, University of Neuchatel, Switzerland.
Ed. Greenbelt, MD: NASA Goddard Space Flight Center, Nov. 2021, He was with IMT where he worked in the domains of image processing (op-
1997, vol. NASA/CP-1998-206 853, pp. 307-316. tical flow) and speech processing (speech coding and speaker recognition). He
[8] K.Watson, “Processing remote sensing images using the 2-D FFT-noi&as then a Visiting Fellow with the Biomedical Engineering and Instrumen-
reduction and other applications@eophysicsvol. 58, pp. 835-852, tation Program, National Institutes of Health (NIH), Bethesda, MD, where he
June 1993. developed research interests that include splines and multiresolution signal rep-
[9] J.-P. Djamdiji, A. Bijaoui, and R. Maniere, “Geometrical registratiorresentations, geometric image transformations, and biomedical image registra-

of images: The multiresolution approactPhotogram. Eng. Remote tion. Since 1998, he has been First Assistant with the Lausanne Swiss Federal
Sensingvol. 59, pp. 645-653, May 1993. Institute of Technology.



THEVENAZ AND UNSER: OPTIMIZATION OF MUTUAL INFORMATION FOR MULTIRESOLUTION IMAGE REGISTRATION

Michael Unser(M'88-SM'94—F'99) received the M.S. (summa cum laude) and
Ph.D. degrees in electrical engineering in 1981 and 1984, respectively, from the
Swiss Federal Institute of Technology, Lausanne, Switzerland.

From 1985 to 1997, he was with the Biomedical Engineering and Instrumen-
tation Program, National Institutes of Health, Bethesda, MD, where he was Head
of the Image Processing Group. He is now Professor and Head of the Biomed-
ical Imaging Group, Swiss Federal Institute of Technology, Lausanne. His main
research area is biomedical image processing. He has a strong interest in sam-
pling theories, multiresolution algorithms, wavelets, and the use of splines for
image processing. He is the author of over 80 published journal papers in these
areas. He is on the editorial boardsSignal Processinghe Journal of Visual
Communication and Image Representat@ndPattern RecognitiorHe serves
as regular Chair for the SPIE Conference on Wavelet Applications in Signal and
Image Processing, which has been held annually since 1993.

Dr. Unser is an Associate Editor for the IEERANSACTIONS ONMEDICAL
IMAGING. He is a former Associate Editor for the IEEERANSACTIONS ON
IMAGE PROCESSING (1992-1995), the IEEE IGNAL PROCESSING LETTERS
(1994-1998), and was a member of the IMDSP Committee of the IEEE Signal
Processing Society (1993-1999). He received the Dommer Prize for Excellence
from the Swiss Federal Institute of Technology in 1981, the Research Prize of
the Brown—Boveri Corporation, Switzerland, for his thesis in 1984, and the
IEEE Signal Processing Society's 1995 Best Paper Award. In January 1999,
he was elected Fellow of the IEEE with the citation “For contributions to the
theory and practice of splines in signal processing.”

2099



