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A Generalized Sampling Theory
without bandlimiting constraints

Michael Unser and Josiane Zerubia

Abstract— We consider the problem of the reconstruction
of a continuous-time function f(x) ∈ H from the samples of
the responses of m linear shift-invariant systems sampled at
1/m the reconstruction rate. We extend Papoulis’ general-
ized sampling theory in two important respects. First, our
class of admissible input signals (typ. H = L2) is consid-
erably larger than the subspace of bandlimited functions.
Second, we use a more general specification of the recon-
struction subspace V (ϕ), so that the output of the system
can take the form of a bandlimited function, a spline, or a
wavelet expansion. Since we have enlarged the class of ad-
missible input functions, we have to give up Shannon and
Papoulis’ principle of an exact reconstruction. Instead, we
seek an approximation f̃ ∈ V (ϕ) that is consistent in the
sense that it produces exactly the same measurements as
the input of the system. This leads to a generalization of
Papoulis’ sampling theorem and a practical reconstruction
algorithm that takes the form of a multivariate filter. In
particular, we show that the corresponding system acts as
a projector from H onto V (ϕ). We then propose two com-
plementary polyphase and modulation domain interpreta-
tions of our solution. The polyphase representation leads to
a simple understanding of our reconstruction algorithm in
terms of a perfect reconstruction filterbank. The modula-
tion analysis, on the other hand, is useful in providing the
connection with Papoulis’ earlier results for the bandlim-
ited case. Finally, we illustrate the general applicability of
our theory by presenting new examples of interlaced and
derivative sampling using splines.
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GLOSSARY OF SYMBOLS

f(x) : unknown input signal;
f̃(x) : reconstructed signal approximation;
H : input space;
V (ϕ) : reconstruction subspace;
ϕ(x) : generating function;
aϕ(k) = 〈ϕ(x− k), ϕ(x)〉 : autocorrelation sequence;
âϕ(ejω) : Fourier transform of aϕ(k);
Aϕ, Bϕ : Riesz bounds;
m : number of channels;
i : channel index;
gi(mk): measurements (input);
c(k) : coefficients of signal representation (output);
hi(x) : analysis filters;
ĥi(ω) : Fourier transform of hi(x);
φi(x) = hi(−x) : analysis functions;
φ̃i(x) : dual synthesis functions;
Q(k) : multivariate reconstruction filter;
Q̂(z) : z-transform of Q(k);
Aφϕ(k) : system cross-correlation matrix sequence;
qi(k) : synthesis sequences;
q̂i(z) : z-transform of qi(k);
ai(k) : analysis sequences;
Âpoly(z) = Âφϕ(z) : polyphase matrix;
Âmod(z) : modulation matrix;
Φ(x) : analysis vector;
Ψ(x) : generating vector (block representation);
gm(k) : measurement sequence;
cm(k) : block representation of c(k);
â(k) : z-transform of a(k);
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I. Introduction

In 1977, Papoulis introduced a powerful extension of
Shannon’s sampling theory, showing that a bandlimited
signal f(x) could be reconstructed exactly from the sam-
ples of the responses of m linear shift-invariant systems,
sampled at 1/mth the Nyquist rate [13]. The main point
of this generalization is that there are many possible ways
of extracting data from a signal for a complete characteriza-
tion [9], [6], [12]. The standard approach of taking uniform
signal samples at the Nyquist rate is just one possibility
among many others [15]. Typical instances of generalized
sampling that have been studied in the literature are inter-
laced and derivative sampling [10], [25]. Recently, there has
been renewed interest in such alternative sampling schemes
for improving image acquisition. For instance, in high res-
olution electron microscopy there is an inherent tradeoff
between contrast and resolution. It is possible, however, to
compensate for these effects—including the frequency nulls
of the transfer function of the microscope—by combining
multiple images acquired with various degrees of defocus-
ing [23]. Super-resolution is another promising application
where a series of low resolution images that are shifted
with respect to each other are used to reconstruct a higher
resolution picture of a scene [21], [16].

A recent trend has been to study sampling from the
general point of view of the multiresolution theory of the
wavelet transform. The basis for this kind of formulation
is the realization that the various wavelet subspaces have
essentially the same shift-invariant structure as Shannon’s
class of bandlimited functions. This has led researchers to
propose various sampling theorems for the representation
of functions in wavelet subspaces [24], [2], [8], [7], as well
as more general spline-like spaces which do not necessarily
satisfy the multiresolution property [3], [17].

In principle, Papoulis’ generalized sampling theory pro-
vides an attractive framework for addressing most restora-
tion problems involving multiple sensors or interlaced sam-
pling. However, we feel that the underlying assumption
of a bandlimited input function f(x) is overly restrictive.
Indeed, most real world analog signals are time or space
limited which is in contradiction with the bandlimited hy-
pothesis. Another potential difficulty is that Papoulis did
not explicitly translate his theoretical results into a prac-
tical numerical reconstruction algorithm. Here, we will ex-
tend Papoulis’ theory in an attempt to correct for these
shortcomings. Our three main contributions are as fol-
lows. First, we propose a much less constrained formula-
tion where the analog input signal can be almost arbitrary,
typically f(x) ∈ L2 where L2 is the space of finite energy
functions. This is only possible because we replace Papoulis
and Shannon’s principle of a perfect reconstruction by the
weaker requirement of a consistent approximation. In other
words, we want our reconstructed signal f̃(x) to provide ex-
actly the same measurements as f(x) if it was re-injected
into the system; i.e., to look the same to the end-user when
it is acquired through the measurement system. Second, we
consider a more general form of reconstruction subspace

V (ϕ) generated from the integer translates of a function
ϕ(x). In this way, we obtain results that are also applicable
for recent (non-bandlimited) signal representation models
such as splines[18], [2] and wavelets [11], [22]. Interest-
ingly, in the case where the approximation is performed in
the space of bandlimited functions (e.g. ϕ(x) = sinc(x)),
we obtain exactly the same reconstruction formula as Pa-
poulis. The essential difference, however, is that the input
of the system does not need to be bandlimited. Third,
we do address the implementation issue explicitly and pro-
pose a practical reconstruction algorithm that takes the
form of a multivariate filter. We also provide an interest-
ing connection with perfect reconstruction filterbanks. In
many ways, our approach is similar to that of Djokovic and
Vaidyanathan [7], except that these authors limited them-
selves to the study of specific forms of sampling in mul-
tiresolution subspaces (periodically non-uniform sampling,
sampling of a function and its derivative, and reconstruc-
tion from local averages). In addition, they investigated
perfect reconstruction schemes only, which corresponds to
the most restrictive case of our theory with H = V (ϕ).

The paper is organized as follows. In Section II, we start
by defining the underlying reconstruction subspace and re-
view some basic results on multivariate filtering. In Section
III, we provide a detailed formulation of the generalized
sampling problem with an explicit statement of our three
assumptions: measurability (a1), well-defined reconstruc-
tion subspace (a2), and invertibility (a3). The reconstruc-
tion process itself is discussed in Section IV. This includes
our generalized sampling theorem in Section IV.A, and a
multivariate filtering reconstruction algorithm which is de-
rived in Section IV.B. In Section V, we interpret our sam-
pling formulas using some of the basic tools of multi-rate
signal processing (polyphase and modulation analysis). In
particular, we use the modulation representation to make
the connection with Papoulis’ derivation in the frequency
domain. Finally, in Section VI, we present some new ex-
amples of interlaced and derivative sampling using splines.

II. Preliminary notions

Before developing our sampling theory, it is important to
specify the signal subspaces in which we are performing the
approximation. It is also useful to review some basic results
on the stability and invertibility of multivariate convolution
operators which turn out to be central to the argument.

A. Representation subspace

The purpose of sampling is to represent a function f(x)
of the continuous variable x by a discrete sequence of num-
bers, a representation that is often better suited for signal
processing and data transmission. Since we want this dis-
crete representation to be unambiguous, we must restrict
ourselves to a given subclass of signals. Most classical
sampling theories consider the class of bandlimited func-
tions which can be expanded in terms of the translates of
sinc(x) = sin(πx)/(πx) [15], [12].

Here, we will extend our choice of signal models by con-
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sidering the representation space

V (ϕ) = {f̃(x) =
∑
k∈Z

c(k)ϕ(x− k)|c(k) ∈ l2} (1)

where ϕ(x) is a given generating function. For notational
simplicity, we are using a unit sampling step because we
can always perform an appropriate rescaling of the time
axis. Intrinsically, the present formulation has the same
conceptual simplicity as the bandlimited model (ϕ = sinc),
but it allows for more general signal classes such as splines
[14], [18], and wavelets [11], [2], [22]. Our only restriction
on the choice of the generating function is that V (ϕ) is a
well-defined (closed) subspace of L2 with {ϕ(x − k)}k∈Z
as its Riesz basis. In other terms, there must exist two
constants, Aϕ > 0 and Bϕ < +∞, such that

∀f̃ ∈ V (ϕ), Aϕ · ‖c‖2l2 ≤ ‖f̃‖
2
L2
≤ Bϕ · ‖c‖2l2 . (2)

The Riesz bounds (Aϕ, Bϕ) correspond to the tightest pos-
sible pair of such constants. The upper inequality ensures
that V (ϕ) is a subspace of L2 (the space of finite energy
functions). The lower inequality implies that the integer
shifts of ϕ are linearly independent. Thus, we have the
guarantee that any function f̃(x) ∈ V (ϕ) is uniquely char-
acterized by its coefficients c(k) in (1) (continuous/discrete
representation). Also note that the discrete (l2) and con-
tinuous (L2) norms in (2) are rigorously equivalent (i.e.,
Aϕ = Bϕ = 1) if and only if the basis is orthogonal. For
example, this is the case for ϕ = sinc.

B. Multivariate sequences and filtering

lm2 is the space of square summable m-variate sequences
a(k) = (a1(k), . . . , am(k)), k ∈ Z. Any multivariate se-
quence a ∈ lm2 is uniquely characterized by its z-transform,
an m-dimensional vector, which we denote using the hat
symbol

â(z) =
∑
z∈Z

a(k)z−k. (3)

This correspondence is expressed as a(k) z←→ â(z). The
Fourier transform is obtained by replacing z by ejω.

An m × m linear filter with input and output vectors
a(k) and b(k) is defined by the equation

b(k) =
∑
l∈Z

H(l)a(k − l) = (H ∗ a) (k), (4)

where the impulse response H(k) is a sequence of m ×m
matrices. Such a filter array is characterized by its trans-
fer function matrix Ĥ(z) =

∑
k∈Z H(k)z−k. The effect of

filtering can thus be represented by a vector-matrix multi-
plication in the z-transform domain

b̂(z) = Ĥ(z) · â(z). (5)

The inverse filter, if it exists, corresponds to the m × m
transfer function matrix Ĥ−1(z). An important result con-
cerning the existence and the stability of such an inverse
operator is the following.

Proposition 1: The multivariate convolution operator
H : lm2 → lm2 , generated from the m ×m matrix sequence
H(k), is an invertible operator from lm2 into lm2 if and only
if

mH =
√

ess inf
ω∈[0,2π)

λmin

[
ĤT (e−jω) · Ĥ(ejω)

]
> 0 (6)

MH =

√
ess sup
ω∈[0,2π)

λmax

[
ĤT (e−jω) · Ĥ(ejω)

]
< +∞, (7)

where the operators λmax[·] and λmin[·] denote the maxi-
mum and minimum eigenvalues of the self-adjoint matrix
that is in the argument.

The proof of this result can be obtained as a direct corollary
of Theorem 2.2 in [4] which provides the norm of a mul-
tivariate convolution operator. Specifically, the constant
MH is the norm of the convolution operator H and 1/mH

is the norm of its inverse H−1. These bounds are obtained
by taking the essential infimum and essential supremum of
the minimum and maximum eigenvalues of the Fourier au-
tocorrelation matrix

(
ĤT (e−jω) · Ĥ(ejω)

)
. Here, the term

“essential” means that the supremum or infimum provides
a bound that is valid almost everywhere. If the argument is
a continuous function of ω then these extrema calculations
are equivalent to taking the conventional minimum and
maximum. Thus in the usual case where Ĥ(ejω) is contin-
uous and bounded, a sufficient condition for invertibility is
that the determinant of the matrix Ĥ(z) is non-vanishing
on the unit circle.

III. Formulation and assumptions

The multi-channel system that we consider is schemat-
ically represented in Fig. 1. The continuous-time input
signal f(x) is injected into an m-channel filterbank with
impulse responses hi(x), i = 1, · · · ,m. The channels are
sampled at 1/mth the reconstruction rate to yield the mea-
surement vector gm(k) = (g1(mk), g2(mk), · · · , gm(mk)).
These measurements are then combined to reconstruct an
approximation f̃(x) of the input into the subspace V (ϕ).
The system is essentially the same as the one considered
by Papoulis except that the output f̃ ∈ V (ϕ) is only an
approximation of the input f ∈ H where H is a class of
functions considerably larger than V (ϕ). To use an anal-
ogy, H is to V (ϕ) what R is to Z.

For mathematical convenience, we describe the measure-
ment process using the following inner products

gi(mk) = (hi ∗ f) (mk) = 〈f(x), φi(x−mk)〉 (8)

where the analysis functions φi are the time-reversed ver-
sions of the hi’s

φi(x) = hi(−x). (9)

We will now state our mathematical assumptions, empha-
sizing the main differences with Papoulis’ initial formula-
tion [13].



         
TO APPEAR IN IEEE TRANSACTIONS ON CIRCUITS AND SYSTEM II 4

×
synthesisanalysis

sampling
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δ(x − mk)

k∑
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Fig. 1. Generalized sampling procedure. The left part of the block
diagram represents the measurement process which is performed
by sampling the output of an m channel analysis filterbank. The
sampling operation is modeled by a multiplication with a se-
quence of Dirac impulses. The right part describes the recon-

struction process which involves the synthesis functions φ̃i(x) in

Theorem 1. The system produces an ouput function f̃(x) ∈ V (ϕ)
that is a consistent approximation of the input signal f(x) ∈ H.

A. Extended class of input functions

The first essential difference is that our input signal
space, H, is considerably larger than the class of bandlim-
ited functions, or, in more general terms, V (ϕ) ⊂ H. In
principle, we can consider almost any input function f(x),
except that we want to make sure that all measurement
sequences are well-defined in the l2 sense. Specifically, our
measurability constraint is

Condition (a1) :

∀f ∈ H,
m∑
i=1

∑
k∈Z
|〈f(x), φi(x−mk)〉|2 < +∞,

or, equivalently, gm ∈ lm2 . Thus, we would expect the spec-
ification of an admissible input space H to depend on the
smoothness class and decay properties of the analysis func-
tions φi, i = 1, · · · ,m. Interestingly enough, this is only
partially the case. For instance, if the φi’s are in L2, then
it is usually possible to consider any possible finite energy
input function; i.e., H = L2. This statement will be clari-
fied in a companion paper [20]. If, on the other hand, we
are dealing with generalized functions such as tempered
distributions, we will usually need to consider more re-
strictive classes of input functions, e.g. H = S where S
is Schwartz’s class of functions that are infinitely differen-
tiable and of rapid descent in the sense that xpf (q)(x)→ 0
as |x| → +∞, for any fixed positive integers p and q. In
the case where the φi’s are Dirac delta functions (interlaced
sampling), we can also be less conservative and consider
H = W 1

2 where W p
2 denotes Sobolev’s space of order p; i.e.,

the class of functions whose derivatives up to order p are
well defined in the L2 sense. Note that such a smoothness
constraint is sufficient for the samples of a function to be
in l2 (cf. [5], Appendix II.A).

B. Reconstruction subspaces

The next extension over Papoulis’ theory is that we are
considering the more general reconstruction models dis-
cussed in Section II-A. Specifically, the signal approxima-
tion produced by our system will have the form

f̃(x) =
∑
k∈Z

c(k)ϕ(x− k) (10)

where the generating function ϕ(x) can be chosen almost
arbitrarily—and not necessarily bandlimited. Practically,
the Riesz basis condition (2) gets translated into a rela-
tively simple positivity and boundness constraint in the
Fourier domain (cf. [3])

Condition (a2) :


Aϕ = ess inf

ω∈[0,2π)
âϕ(ejω) > 0

Bϕ = ess sup
ω∈[0,2π)

âϕ(ejω) < +∞,

where âϕ(z) is the z-transform of the autocorrelation se-
quence

aϕ(k) = 〈ϕ(x− k), ϕ(x)〉. (11)
In other words, we want âϕ(ejω) to be finite and non-
vanishing almost everywhere for ω ∈ [0, 2π). This is a
relatively weak constraint. In particular, condition (a2) is
satisfied for the bandlimited model with ϕ(x) = sinc(x) and
for the various polynomial spline spaces that are generated
by the compactly supported B-spline functions [14].

C. Consistent measurements

Because we have enlarged the class of admissible input
functions to H, we must give up Papoulis or Shannon’s
idea of an exact reconstruction. We will replace it with the
notion of a consistent approximation of f(x) in V (ϕ), that
is, a reconstruction f̃(x) ∈ V (ϕ) that would produce the
same set of measurements {gi(mk), k ∈ Z}i=1,...,m if it was
re-injected into the system. Specifically, we want to impose
the consistency requirement for k ∈ Z and i = 1, · · · ,m
∀f ∈ H, 〈f̃(x), φi(x−mk)〉 = 〈f(x), φi(x−mk)〉. (12)

This means that f(x) and f̃(x) are essentially equivalent
to the end-user because they both look exactly the same
through the measurement system which typically consti-
tutes the only observation method available.

D. Invertibility condition

In the course of our derivation, we will need to take the
convolution inverse of the m×m matrix sequence Aφϕ(k),
whose scalar entries are given by

[Aφϕ]i,j(k) = 〈φi(x−mk), ϕ(x− j + 1)〉 (13)
= (hi ∗ ϕ) (mk − j + 1). (14)

In view of Proposition 1, our invertibility requirement can
therefore be formulated as

Condition (a3) :
m2
A = ess inf

ω∈[0,2π)
λmin

[
ÂT
φϕ(e−jω) · Âφϕ(ejω)

]
> 0

M2
A = ess sup

ω∈[0,2π)

λmax

[
ÂT
φϕ(e−jω) · Âφϕ(ejω)

]
< +∞,
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where mA and MA are the corresponding bound constants.

IV. Reconstruction procedure

A. Generalized sampling Theorem

Theorem 1: Under assumptions (a1), (a2), and (a3), it is
always possible to design a system that provides a consis-
tent signal approximation in the sense of (12) for any input
function f ∈ H. The corresponding signal approximation
admits the expansion

f̃(x) =
m∑
i=1

∑
k∈Z

gi(mk)φ̃i(x−mk) = P̃ f(x), (15)

and the underlying operator P̃ is a projector from H into
V (ϕ). The synthesis functions φ̃i are given by

φ̃i(x) =
∑
k∈Z

qi(k)ϕ(x− k), (i = 1, . . . ,m) (16)

where the filter sequences qi(k) are determined as follows[
q̂1(z) · · · q̂m(z)

]
=[

1 z−1 · · · z−m+1
]
· Â−1

φϕ(zm). (17)

The proof is deferred to Section IV-C. Let us now examine
some of the consequences of this result. First, because the
operator P̃ is a projector, our result ensures a perfect re-
construction whenever the input signal is already included
in the output space: ∀f ∈ V (ϕ), P̃ f = f. This corresponds
to the more restrictive framework used in the majority of
published sampling theories [15], [13], [6], [1], [24], [8], [7].
The connection with univariate sampling in particular will
be examined in Section IV-D. Second, it is not difficult
to show that the functions φ̃i ∈ V (ϕ), i = 1, · · · ,m are the
duals of the φi’s in the sense that they satisfy the biorthog-
onality property

〈φi(x−mk), φ̃j(x−ml)〉 = δk−l,i−j . (18)

In particular, this implies that the functions φ̃i will be re-
constructed exactly if they are re-injected into the system.
Third, this theorem extends Papoulis result in [13] which
corresponds to the particular caseH = V (sinc) = Bπ where
Bπ denotes the subspace of finite energy functions that
are bandlimited to the frequency interval ω ∈ [−π, π]. In-
terestingly, it turns out that Papoulis’ bandlimited recon-
struction formula also remains valid in our more general
situation where the input signal is not necessarily bandlim-
ited. The explicit connection with his result will be given
in Section V-C. However, we must insist on a fundamental
difference in interpretation. Since obtaining an exact re-
construction of f(x) is in general not feasible for arbitrary
inputs, we will reconstruct a function f̃(x) ∈ V (ϕ) that
looks identical to f(x) when acquired through our mea-
surement system. The same type of connection can also be
made with the results by Djokovic and Vaidyanathan on
the reconstruction of periodically non-uniformly sampled

data in multiresolution subspaces [7], which again can be
viewed as particular cases of our theory. Thus, one of the
main strength of Theorem 1 is its generality: It provides a
unifying perspective of many instances of generalized sam-
pling, while extending the applicability of previous recon-
struction procedures to the cases where the input signal is
essentially arbitrary (i.e., not necessarily included within
the reconstruction subspace).

Note that the consistent measurement condition (12)
specifies f̃(x) in a unique way. In other words, there is
only one projector P̃ that can be specified in terms of the
measurement values in Fig. 1. This projector is not nec-
essarily the orthogonal one which corresponds to the mini-
mum error solution. This raises the important question of
performance which will be addressed in [20]. In particu-
lar, we will present a general L2 bound for the approxima-
tion error suggesting that our present solution is essentially
equivalent to the optimal one.

B. Reconstruction algorithm

We will now derive the corresponding digital reconstruc-
tion algorithm, which will also allow us to prove Theorem
1 in a constructive manner. The main difficulty in writing
down the system’s equations is that we have to deal with
a multirate system where the measurements are collected
at 1/m the reconstruction rate. To simplify the analysis,
we can match the input and output sampling rates nota-
tionally by introducing an equivalent block representation
of the reconstructed function

f̃(x) =
∑
k∈Z

cTm(k)Ψ(x−mk) =
∑
k∈Z

ΨT (x−mk)cm(k)

(19)
where the m-vector cm(k) provides a block representation
of the coefficient sequence c(k),

cm(k) =


c(mk)
c(mk + 1)

...
c(mk +m− 1)

 , (20)

and where

Ψ(x) =


ϕ(x)
ϕ(x− 1)

...
ϕ(x−m+ 1)

 (21)

is the corresponding m-vector generating function.
Let us now re-inject f̃ into the system using its vector

representation (19). By linearity, the consistency require-
ment (12) implies that

gm(k) =
∑
k′∈Z
〈Φ(x−mk),ΨT (x−mk′)〉 · cm(k′),

where we also use the vector representation Φ(x) =
(φ1(x), φ2(x), · · · , φm(x)) of the analysis functions (9).
Making the change of variable l = k − k′, we get

gm(k) =
∑
l∈Z
〈Φ(x−ml),ΨT (x)〉 · cm(k − l),
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↑ m

Q̂(z)

↑ m
g

m(k) c
m (k)

. . . .

. . . .

↑ m

z−1

z−1

z−1

c(k)

. . . .

Fig. 2. Digital reconstruction algorithm. The block representation
cm(k) of the coefficient sequence c(k) is obtained by multivariate
filtering of the measurement vector gm(k). The sequence is then
unpacked by up-sampling by a factor of m and summation of the
delayed vector-components (cf. Eq. (25)).

a relation that can also be written in the form of a multi-
variate convolution

gm(k) =
∑
l∈Z

Aφϕ(l)cm(k − l) = (Aφϕ ∗ cm) (k), (22)

where Aφϕ(k) = 〈Φ(x−mk),ΨT (x)〉 is precisely the m×m
matrix sequence defined by (14). Therefore, we can solve
the system by applying the inverse operator Q

cm(k) =
∑
l∈Z

Q(l)gm(k − l) = (Q ∗ gm) (k), (23)

whose transfer function is

Q̂(z) = Â−1
φϕ(z). (24)

This inverse is well-defined because of the stability con-
dition (a3); the norm of the deconvolution operator Q is
precisely 1/mA. We have therefore established that a con-
sistent approximation f̃ in the form (10) or (19) exists. In
addition, we have derived a practical filtering reconstruc-
tion algorithm (23)-(24) that is schematically represented
in Fig. 2.

We may also interpret the filtering operation (23) as a
change of coordinate system. For instance, it can be shown
that the dual basis functions in Theorem 1 also form a Riesz
basis of V (ϕ) (cf [20], Theorem 2). Thus, the system ma-
trix Âφϕ(z) contains all the information for performing the
change of coordinate from {φ̃i(x −mk)}k∈Z , i = 1, · · · ,m
to {ϕ(x− k)}k∈Z , and vice versa.

C. Proof of Theorem 1

We now proceed to complete the proof of Theorem 1.
Because of our consistency requirement, the operator P̃
that is specified by (19) and (23) is necessarily a projector;
i.e., ∀f ∈ H, (P̃ ◦ P̃ )f = P̃ f ∈ V (ϕ). To show that this
approximation is equivalent to (15), we momentarily switch
to the z-transform domain. First, we use the well-known
polyphase identity (cf. [22])

ĉ(z) =
[

1 z−1 · · · z−m+1
]
· ĉm(zm), (25)

which relates the z-transforms of the sequence c(k) and
its block-representation cm(k). Next, we use the fact that
ĉm(z) = Q̂(z) · ĝm(z) and write

ĉ(z) =
[

1 z−1 · · · z−m+1
]
· Q̂(zm) · ĝm(zm)

=
[
q̂1(z) · · · q̂m(z)

]
· ĝm(zm) (26)

where the filters q̂i(z) are defined by (17). Using the time-
domain equivalent of this last equation

c(k) =
m∑
i=1

∑
l∈Z

gi(ml)qi(k −ml),

we make the following substitution in (10)

f̃(x) =
∑
k∈Z

m∑
i=1

∑
l∈Z

gi(ml)qi(k −ml)ϕ(x− k)

=
m∑
i=1

∑
l∈Z

gi(ml)

(∑
k′∈Z

qi(k′)ϕ(x− k′ −ml)
)
,

with the change of variable k′ = k−ml. Finally, we obtain
(15) by identifying the term in parenthesis as φ̃i(x −ml)
(cf. Eq. (16)). 2

D. Sampling in the univariate case

The simplest application of Theorem 1 corresponds to
the univariate case with m = 1. In this case, we recover
the basic results of the sampling theory for non-ideal ac-
quisition devices proposed in [17]. Specifically, we have the
reconstruction formula

P̃ f(x) =
∑
k∈Z
〈f(x), φ(x− k)〉 φ̃(x− k), (27)

with the synthesis function

φ̃(x) =
∑
k∈Z

q(k)ϕ(x− k). (28)

The sequence q(k) in (28) also represent the impulse re-
sponse of the reconstruction filter. Using (17) and (14), we
obtain the following expression for its transfer function

q̂(z) =
1∑

k∈Z aφϕ(k)z−k
, (29)

where aφϕ(k) = 〈φ(x− k), ϕ(x)〉.
We will now show that we can use these results to recover

the sampling theorems of Walter and Janssen [24], [8]. The
latter situation corresponds to the choice φ(x) = δ(t − a),
where a is a shift parameter. Walter only considers the
standard interpolation formula with a = 0. First, we ob-
serve that 〈f(x), φ(x − k)〉 = f(k + a) where we assume
that f(x) is sufficiently smooth for its samples to be in
l2. We then place ourselves in the case of a perfect recon-
struction by restricting the class of admissible input sig-
nals to H = V (ϕ). (27) then reduces to Janssen’s shifted-
interpolation formula

∀f ∈ V (ϕ), f(x) = P̃af(x) =
∑
k∈Z

f(k + a)φ̃a(x− k).

(30)
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Likewise, we find that aφϕ(k) = ϕ(k + a), which specifies
the corresponding reconstruction filter. If we now consider
the resulting form of (29) for z = ejω, we find that its
denominator is Zϕ(a, ω) =

∑
k∈Z ϕ(a + k)e−jkω, which is

the Zak transform of ϕ evaluated at t = a [8].

V. Polyphase and modulation analysis

Here, we will re-examine our generalized sampling equa-
tions using some of the basic tools of multi-rate signal pro-
cessing. Our motivation is two-fold. First, we want to
provide alternative techniques for writing down the sys-
tem’s equation, so that we can select the approach that is
best suited for the application at hand. Second, we want
to make the connection with Papoulis’ earlier result for the
bandlimited case more apparent.

A. Polyphase representation

We have seen that our system is entirely specified once
we have determined the z-transform of the cross-correlation
matrix Aφϕ(k) (cf. Eq. (14)). The determination of this
transfer function matrix may be facilitated if we introduce
the auxiliary analysis sequences:

ai(k) = (hi ∗ ϕ) (k), (i = 1, · · · ,m). (31)

The z-transform of these sequences may be decomposed as
follows

âi(z) =
∑
k∈Z

ai(k)z−k =
m−1∑
l=0

zlâi,l(zm), (32)

where

âi,l(z) =
∑
k∈Z

ai(mk − l)z−k, (33)

is the so-called lth polyphase component of the analysis
filter ai (cf. [22], Eq. (3.4.7), p. 162). Using the basic
definition (cf. [22], Eq. (3.4.8), p. 162), we can then write
the polyphase matrix of our auxiliary analysis filterbank

Âpoly(z) =

 â1,0(z) · · · â1,m−1(z)
...

...
âm,0(z) · · · âm,m−1(z)

 = Âφϕ(z), (34)

which is precisely the z-transform of Aφϕ(k). Thus, we
have effectively shown that the process of determining
Âφϕ(z) is equivalent to computing the polyphase repre-
sentation of the auxiliary filterbank â1(z), · · · , âm(z).

Thanks to this representation, we can now implement the
process of re-injecting the function f̃(x) =

∑
k∈Z c(k)ϕ(x−

k) into our system by using the analysis stage of an equiv-
alent multirate filterbank. In this way, we can interpret
the various filtering sequences that have been defined so
far in terms of the component of the perfect reconstruction
filterbank shown in Fig. 3. The polyphase representation
of this system is given in the upper block diagram. The
analysis part corresponds to the multivariate convolution

c(k)

z

z

z

↓ m

↓ m

↓ m ↑ m

Q̂(z)

↑ m
c

m (k)

. . . .

. . . .

↑ m

z−1

z−1

z−1

g
m(k)

. . . .

c(k)c
m (k)

. . . .

. . . .

Âpol (z)

(a)

↑ m

. . . .

. . . .

↑ m

q̂1(z)

q̂m (z)

c(k)

↓ m

. . . .

↓ mâ1(z)

âm (z)

....

....

+
c(k)

g1(mk)

gm (mk)

(b)

Fig. 3. Generalized sampling and the filterbank interpretation. (a)
Polyphase representation of the analysis/reconstruction system;
(b) Equivalent m channel perfect reconstruction filterbank.

(22), while the synthesis part implements the reconstruc-
tion algorithm. The condition for a perfect reconstruction
is Q̂(z)·Âpoly(z) = I, which is obviously equivalent to (24).
The block diagram in Fig. 3b provides the equivalent m-
band perfect reconstruction filterbank interpretation of the
system. Switching from one representation to the other is
achieved easily by using the standard identities for multi-
rate systems [22]. Similar to the relation (17) that exits
between q and Q, we have that

â1(z)
â2(z)

...
âm(z)

 = Âpoly(zm)


1
z
...

zm−1

 , (35)

which is matrix form of (32). From Fig. 3b, it is thus clear
that the auxiliary analysis sequences ai(k) are the duals of
the synthesis sequences qi(k) in Theorem 1.

B. Modulation representation

An alternative way of characterizing an analysis filter-
bank is to use the modulation matrix (cf. [22]), which is
defined as follows

Âmod(z) =

 â1(z) â2(zWm) · · · â1(zWm−1
m )

...
...

...
âm(z) âm(zWm) · · · âm(zWm−1

m )

 (36)

where Wm = ej2π/m. This representation has a partic-
ularly simple interpretation in the Fourier domain where
the modulation takes the form of a simple frequency shift

Âmod(ejω) =
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â1

(
ejω
)

â1

(
ej(ω+ 2π

m )
)
· · · â1

(
e
j
(
ω+

(m−1)2π
m

))
...

...
...

âm
(
ejω
)

âm

(
ej(ω+ 2π

m )
)
· · · âm

(
e
j
(
ω+

(m−1)2π
m

))
(37)

There is a well-known equivalence between the modulation
and polyphase representations; it is expressed by the rela-
tion (cf. [22], problem 3.22)

Âmod(z) = Âpoly(zm) ·D(z) · Fm (38)

where D(z) = diag(1, z, · · · , zm−1) and where Fm is the
m × m discrete Fourier matrix with entries [Fm]k,l =
1
mW

kl
m , where k, l = 0, · · · ,m − 1. Similarly, if we know

the modulation matrix Âmod(z), we can always obtain the
polyphase matrix by applying the inverse relation

Âpoly(zm) = Âmod(z) · F−1
m ·D(z−1). (39)

This leads to a another direct way of obtaining the dual
basis functions in Theorem 1.

Proposition 2: The filter sequences qi(k) for the synthe-
sis functions φ̃i in (16) are given by[

q̂1(z) · · · q̂m(z)
]

=
[

1 0 · · · 0
]
·Â−1

mod(z) (40)

where Âmod(z) is the modulation matrix defined by (36).

Proof: Starting from (39), we can easily obtain an ex-
pression for the inverse matrix:

Â−1
poly(zm) = D(z) · Fm · Â−1

mod(z). (41)

Next, we substitute this expression in (17) and make the
following simplifications[

q̂1(z) · · · q̂m(z)
]

=
[

1 z−1 · · · z−m+1
]
·D(z) · Fm · Â−1

mod(z)

=
[

1 1 · · · 1
]
· Fm · Â−1

mod(z)

=
[

1 0 · · · 0
]
· Â−1

mod(z),

where the last step uses the fact that (1, · · · , 1) is colinear to
the first column vector of Fm and therefore perpendicular
to all the others (Fm is an orthogonal matrix).

C. The bandlimited case

Proposition 2 is especially interesting because it provides
the connection with Papoulis’ derivation for the bandlim-
ited case, which he carried out entirely in the frequency
domain [13]. For the particular case ϕ(x) = sinc(x), we
can easily derive the frequency response of our auxiliary
analysis sequences

âi(ejω) = ĥi(ω), ω ∈ [−π, π], (42)

where ĥi(ω) is the Fourier transform of the continuous time
analysis filter hi(x). This suggests writing down the solu-
tion in the Fourier domain using the modulation formalism.
In fact, the modulation matrix Âmod(ejω) also appears im-
plicitly in the work of Papoulis (cf. [13], Eq. (7)).

While Papoulis’ auxiliary variables Yi(ω, t) differ by a
phase factor from the one used here, his approach is essen-
tially equivalent to the following computational procedure:

• Determine the Fourier matrix (37) using the relation

âi

(
ej(ω+ 2lπ

m )
)

={
ĥi(ω + 2lπ

m ), −π ≤ ω < π − 2lπ
m

ĥi(ω + 2lπ
m − 2π), π − 2lπ

m ≤ ω ≤ π;
(43)

which follows from (42) and the fact that âi(ejω) is
2π-periodic.

• Apply (40) in Proposition 2 with z = ejω to determine
the Fourier transforms q̂i(ejω).

• Perform an inverse discrete Fourier transform to re-
cover the synthesis coefficients qi(k) in the signal do-
main.

This is in essence the reconstruction algorithm proposed
by Brown [6]. Also note that we are in the special situ-
ation where the generating function has the interpolation
property; i.e., ϕ(k) = δk. Thus, the reconstruction se-
quences correspond to the integer samples of the synthesis
functions; i.e., qi(k) = φ̃i(k), i = 1, · · · ,m.

Specific instances of generalized sampling have been dis-
cussed by a number of authors, including Papoulis and
Marks, in the more restrictive bandlimited framework [13],
[12]. As mentioned in Section IV-A, these bandlimited
reconstruction formulas are also applicable here, under
the weaker measurability constraint (a1) where the input
f(x) ∈ H is not necessarily bandlimited.

VI. Non-bandlimited examples

Since most of the results for ϕ(x) = sinc(x) are well
known, we will illustrate our theory with examples of re-
construction in the subspace of polynomial splines of degree
n. This corresponds to the choice ϕ(x) = βn(x), where βn

is the centered B-spline of degree n [14], [18].

A. Example 1: Interlaced sampling

In this very structured form of non-uniform sam-
pling, the samples are acquired at m distinct locations
∆t1, · · · ,∆tm within the basic sampling period m. This
type of data acquisition is also sometimes referred to as
bunched sampling [13], or periodically nonuniform sam-
pling [7]. Here, we consider the case m = 2, with ∆t1 = 0
and 0 ≤ ∆t2 = ∆t ≤ m. The corresponding analysis
filters in the block diagram in Fig. 1 are h1(x) = δ(x)
and h2(x) = δ(x + ∆t), or equivalently, φ1(x) = δ(x) and
φ2(x) = δ(x−∆t). Thus, the auxiliary analysis sequences
ai(k) in (31) are given by

a1(k) = ϕ(k) (44)
a2(k) = ϕ(k + ∆t). (45)
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Fig. 4. The cubic spline reconstruction functions φ̃1(x) and φ̃2(x)
for interlaced sampling in the two-channel case. The sampling
locations in the first and second channel are marked by black
and white circles, respectively. (a) : ∆t = 1/2; (b) ∆t = 1
(uniform sampling).

For the signal samples to be in l2, we consider the input
space H = W 1

2 , which is slightly more restrictive than all of
L2. Let us now be more specific and perform a reconstruc-
tion in the space of cubic splines with ϕ(x) = β3(x). For
the example ∆t = 1/2, we determine the polyphase matrix

Âpoly(z) = Âφϕ(z) =

[
2
3

1+z−1

6
23+z

48
23+z−1

48

]
. (46)

We also compute the two bound constants mA = 0.164337
and MA = 1.01417 in (a3); this shows that the system is
well-defined. We then obtain the reconstruction filter by
simple matrix inversion (cf. Eq. (24)),

Q̂1(z) =
6

−19 + 68z − z2

[
1 + 23z −8− 8z
−23z − z2 32z

]
. (47)

This matrix is rational and non-vanishing on the unit cir-
cle (the poles are 0.2806 and 67.72). Thus, Q̂1(z) de-
scribes a stable infinite impulse response (IIR) matrix filter.
The system is obviously non-causal but it can neverthe-
less be implemented recursively using a cascade of first or-
der causal and anti-causal filters. An univariate version of
such a spline interpolation algorithm is described in [19].
The corresponding cubic spline reconstruction functions,
which were specified by (16) and (17), are shown in Fig.
4a. Observe how the φ̃i’s take the value one at the loca-
tion of their respective sample and how they vanish at all

other sampling positions which are marked by small cir-
cles. This property is a direct consequence of the biorthog-
onality condition (18). In order to cross-check the the-
ory, we also considered the case ∆t = 1 which corresponds
to a uniform sampling. The reconstruction functions are
shown in Fig. 4b. Indeed, these functions are shifted ver-
sions of the so-called cardinal spline interpolation function
whose properties are discussed in [1]. Note that all these
interlaced spline interpolators are very similar to their sinc-
counterparts which have been investigated by Papoulis and
Marks [13], [12]. Their main advantage is that they have a
much faster (exponential) decay.

Other examples of interlaced sampling can also be found
in the work of Djokovic and Vaidyanathan [7]. As we have
already remarked, their reconstruction procedure, which
was derived under the stronger assumption H = V (ϕ), is
also transposable to our more general context — the com-
putational solutions (reconstruction filterbanks) are rigor-
ously equivalent. These authors were especially interested
in displaying cases where the synthesis functions are com-
pactly supported. They showed that FIR solutions can be
obtained provided that the support of ϕ is lesser or equal
to the number of channels m. The down side is that the
samples typically need to be tightly bunched together (e.g.,
0 ≤ ∆ti < 1, i = 1, · · · ,m), which may have a negative im-
pact on the stability of the algorithm [20].
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Fig. 5. Cubic spline reconstruction functions for the interlaced first

derivative sampling with ∆t = 1/2: (a) φ̃1(x) and its first deriva-

tive; (b) φ̃2(x) and its first derivative. The derivative functions
(dotted lines) are quadratic splines. The sampling locations in
the first and second channel are marked by black and white cir-
cles, respectively.
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Fig. 6. Cubic spline reconstruction functions for the interlaced second

derivative sampling with ∆t = 1: (a) φ̃1(x) and its 2nd derivative;

(b) φ̃2(x) and its 2nd derivative. The 2nd derivative functions
(dotted lines) are piecewise linear. The sampling locations in the
first and second channel are marked by black and white circles,
respectively.

B. Example 2: Interlaced derivative sampling

We consider the case m = 2, where we take one sample
of the input signal and one sample of its pth derivative with
an offset 0 ≤ ∆t ≤ 2. The corresponding analysis filters
are h1(x) = δ(x) and δ(p)(x + ∆t), where δ(p)(x) denotes
the pth derivative of the Dirac-delta function. Thus, the
first auxiliary analysis sequence a1(k) remains the same as
before (cf. Eq. (44)), while the second is now given by

a2(k) = ϕ(p)(k + ∆t), (48)

where ϕ(p)(x) is the pth derivative of the generating func-
tion ϕ. In the case of B-splines, we use the well-known
relation

dβn(x)
dx

= βn−1

(
x+

1
2

)
− βn−1

(
x− 1

2

)
. (49)

In order to satisfy our measurability constraint (a1), we can
consider the input space H = W p+1

2 which is sufficient to
ensure that the samples of the function and its derivatives
are in l2. Let us now consider some examples of recon-
struction in the space of cubic splines with ϕ(x) = β3(x).
For p = 1 (first derivative) and ∆t = 1/2, we can make the
cross-correlation matrix calculations and derive the recon-

struction filter

Q̂2(z) =
1

−1− 24z + z2

[
6− 30z 8 + 8z
−30z + 6z2 −32z

]
. (50)

Note that one can also obtain FIR solutions using lower
order splines; for example, n = 2 with ∆ = 0 (cf. [7],
Example 3.1).

We now turn to the second derivative example with p =
2. Unfortunately, ∆t = 1/2 is one of the few points where
the system is not well-defined; this raise the important issue
of stability which will be treated in more details in [20]. For
∆t = 1, the invertibility condition (a3) is satisfied and we
find that

Q̂3(z) =
1

1 + 10z + z2

[
12z 1 + z

6z + 6z2 −4z

]
. (51)

The corresponding cubic spline reconstruction functions
are shown in Fig. 5 and 6, respectively. Note that
φ̃1(0) = 1 and φ̃

(p)
2 (∆t) = 1, at the precise position of

their respective sample. Otherwise, these functions are all
zero at the sampling locations in the first channel (black
circle), and their first (resp. second) derivative vanish at
the sampling locations in the second channel (white circle).

VII. Conclusion

In this paper, we have addressed the problem of the re-
construction of a continuous-time function f(x) from the
critically sampled outputs of m linear analog filters. The
generalized sampling theory that we propose has the fol-
lowing novel features:

• The system that has been described reconstructs func-
tions within a generic discrete/continuous reconstruc-
tion space V (ϕ). Depending on the choice of ϕ, the
reconstructed signal can be a bandlimited function, a
spline, or a function that lies in any of the multireso-
lution spaces associated with the wavelet transform.

• In contrast with Papoulis’ theory, the input signal f(x)
is no longer constrained to be bandlimited. It can be
an arbitrary function f(x) ∈ H, where H is a space
considerably larger than V (ϕ). Of course, the price to
pay is that the reconstruction f̃(x) will not always be
exact. However, it will be a meaningful approximation
that is consistent with f(x) in the sense that it yields
exactly the same measurements.

• The reconstructed signal f̃(x) is obtained by project-
ing the input f(x) onto the reconstruction subspace
V (ϕ). The reconstruction will be exact if and only
if f(x) ∈ V (ϕ), which corresponds to the more re-
stricted framework of conventional sampling theories
(cf. Shannon and Papoulis).

• The theory yields a simple reconstruction algorithm
that involves a multivariate matrix filter. The recon-
struction process can also be interpreted in terms of a
perfect reconstruction filterbank.

In addition, we have presented two equivalent representa-
tions of our solution that should facilitate the specification
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of the reconstruction algorithm for any given application.
Generally speaking, the use of the polyphase representa-
tion is indicated when the basis functions are compactly
supported (B-splines or wavelets), while the modulation
analysis is a more appropriate for performing a bandlim-
ited reconstruction. There are still two important aspects
of the problem that will be addressed in a forthcoming pa-
per. The first is the issue of stability and robustness to
noise which depends on the conditioning of the underly-
ing system of linear equations. The second is the issue of
performance: since our reconstruction f̃(x) is not necessar-
ily exact, we want to have some guarantee that it is suffi-
ciently close to the optimal—but generally non-realizable—
estimate which is the least squares solution; i.e., the orthog-
onal projection of f(x) into V (ϕ).
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