Using Iterated Rational Filter Banks Within the ARSIS Concept for Producing 10 m Landsat Multispectral Images

The ARSIS concept is designed to increase the spatial resolution of an image without modification of its spectral contents, by merging structures extracted from a higher resolution image of the same scene, but in a different spectral band. It makes use of wavelet transforms and multiresolution analysis. It is currently applied in an operational way with dyadic wavelet transforms that limit the merging of images whose ratio of their resolution is a power of 2. Rational discrete wavelet transforms can be approximated numerically by rational filter banks which would enable a more general merging. Indeed, in theory, the ratio of the resolution of the images to merge is a power of a certain family of rational numbers. The aim of this paper is to examine whether the use of those approximations of rational wavelet transforms are efficient within the ARSIS concept. This work relies on a particular case: the merging of a 10 m SPOT Panchromatic image and a 30 m Landsat Thematic Mapper multispectral image to synthesize 10m multispectral image TM-HR.

Published in:
International Journal of Remote Sensing, 19, 12, 2331–2343
International Journal of Remote Sensing

 Record created 2005-11-30, last modified 2018-01-27

External link:
Download fulltext
Rate this document:

Rate this document:
(Not yet reviewed)