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Abstract

An equation solver data reconciliation soft-
ware has been used to build a validated
model of a waste paper deinking mill, by
combining control room measurements
and process design specifications. An opti-
mal sampling protocol to validate the model
by using only control room measurements
has been determined by identifying, with
genetic algorithm programming, the addi-
tional sampling points and corresponding
sensors required to compensate for the lack
of redundant measurements.

Introduction

Computer aided process simulation is an
efficient design tool, which can help pulp
and paper companies, pressured by global
competition, and urged to comply with en-
vironmental regulations, to upgrade their
facilities rapidly, and at low engineering and
operating cost. Specifically, in the context of
system closure, accurate models are needed
to predict the impact of retrofit modifica-
tions on a given process. Data reconcili-
ation is essential for process performance
follow-up and simulation model calibra-
tion. Based on measurement redundancy,
it is recommended as a preliminary step to
process simulation. Data reconciliation has
been extensively used in the petro-chemi-
cal and chemical industries, however only
recently has it been applied to pulp and pa-
per processes (Jacob and Paris, 2003). Due
to the number of pieces of equipment and
process streams involved, and in spite of
the abundance of information that can be
acquired using process sensors, additional
measurements are often required to reach
satisfactory levels of redundancy. This can be
achieved at an acceprable cost by combiging
dara reconciliation with equipment design
specifications and process diagrams. The

problem with this approach is the validity
of these additional specifications, and their
impact on the measurement corrections and
precision. However, conducting systematic
online process calibration by using data from
a digital control system would ensure meas-
urement precision and coherence. The ben-
efits of real time mill data reconciliation have
been discussed in detail by Heyen (2000).
Jacob and Paris, (2003) have discussed the
principles of reconciliation and the concept
of measurement redundancy. They applied
a heuristic approach based on local redun-
dancy analysis of each process unit to plan
sampling campaigns in an integrated TMP
mill, to show how dara reconciliation can
improve reliability of simulations and help
detect suspicious dara. However even though
computer aided, this flowsheet examination
of a large scale process is cumbersome. To
overcome this drawback, a method based on
the sensitivity matrix analysis and the use of

_a genetic algorithm has been proposed and

applied to an ammonia production plant
by Heyen ez a/ (2002) to automatically op-
timize the identification of appropriate ad-
ditional sampling points. The first objective
of this study was to calibrate a model of an
old newspaper and magazine deinking mill
by applying data reconciliation. This model
was built by using various sources of infor-
mation which trace back to different periods
in time. The second objective was to design
a sampling protoco! to determine the mini-
mum additional measurements required to
enable process calibration by utilizing only
control room measurements.

Methodology

Data reconciliation

In order to perform data reconciliation the-
re must be an excess of information, beyond
what is strictly needed to solve the system of
equations that are used to model a process:
this is redundancy. By subtracting the num-
ber of unmeasured variables from the num-
ber of model equations a global redundancy
number can be determined:

Ry =p-m W
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Thus, it is possible to know if the prob-
lem can still be solved (R;20) or if addi-
tional measurements are necessary (R<0).
From a mathematical standpoint data rec-
onciliation is an optimization, carried out by
means of an objective function that corre-
sponds to the minimization of the weighted
errors on measurements, under constraints
representing the behavior of the process op-
erations (mass and energy balances, separa-
tion rules, and thermodynamic behaviors).
The data reconciliation problem can be
expressed as:

. _ T
1}{!;1H =Y -y) P(Y -y), (22)
under the constraint
F(X,Y)=0, 2b)
with,
F=AY+BX +C, (20)
and,
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If the assumption of statistically inde-
pendent and normally distributed random
errors on measurements (Madron, 1985) is
made, P is the diagonal matrix of the invers-
es of the variances of the measured values.
Therefore the objective function can also be
expressed as:

2
n
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The constrained data reconciliation
problem can be transformed into an un-
constrained one by using the Lagrange for-
mulation: ¢
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Then, the following Euler equations are
solved.
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to yleld the following system of equations:

PY+4" A=Py

(6a)
B" 1=0 (6b)
AY+BX =-C (6¢)

The square matrix M and vectors V and D
can then be defined such that:

P 0 A Y
M={0 0 B V=X D=
A B 0 A

@

In this way, the solution of the valida-
tion problem can simply be expressed as:

V=MD (8)

Vectors X and Y are linear combina-
tions of measured values y. The matrix M™!
can be used to perform a sensitivity analysis
i.e to evaluate to what extent the validated
value of a variable is affected by other meas-
ured variables and their standard deviations

(Heyen ez al, 1996):

m+n+p
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(9b)
The variance of a linear combination
Q, of several variables Z is calculated in th:
following way:

0 =Z_;ae2u (10)
P -

var(Q,) =y a} var(Z,) (11)
e=1
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Thus the reconcilc.d standard deviation
of the reconciled measured variable Y, is
given by:

~ (M)
var(X):Z(—‘ﬁ—) Vi=ln (12
Y

In practice, data reconciliation of a large
scale process is an iterative procedure be-
cause a preliminary observation of available
process data generally indicates that the
problem of local redundancy is insufficient.
Local redundancy i.e., the redundancy of
the subsystems of streams in the vicinity of
a process unit has been discussed by Jacob
et al (2003). The redundancy of the system
can also be determined by the form of the
incidence matrices A and B defined in equa-
tion 2d.

Analysis of redundancy

The data reconciliation problem has an in-
finite number of solutions if the number
of unmeasured variables is superior to the
number of constraint equations. In
this particular case, R_ is negative

Py g
and matrix B is rectangular and hor-
0 izontal, and the sensitivity matrix is
~C singular. If the number of unmeas-

ured variables is just equal to the

number of constraint equations, R
is equal to zero and B is a square matrix,
and the solution of the problem can be
obtained by considering all measured vari-
ables as constants; however, there can be no
validation of process measurements. This is
typical in process simulation. If the number
of unmeasured variables is inferior to the
number of constraint equations, Rc is posi-
tive and B is rectangular and vertical, and
measurements can be reconciled. For a solu-
tion to exist, matrix B cannot be horizontal.
Furthermore, the sensitivity matrix cannot
be singular. This happens for instance when
the constraint equations are linearly depend-
ant, when the measurements are not well
distributed and certain parts of the proc-
ess remain undetermined (i.e., when local
redundancy is insufficient) or, when the
constant variables are not well chosen and
create an over specified problem. Structural
analysis of the global incidence matrix [A B]
(the matrix of measured and non-measured
variables) can be applied to identify missing
measurements, and measurements that can-
not be validated, as well as the ones that can
be corrected with redundant measurements
(Kalitventzeff and Joris, 1987). It consists
in outlining by line column permuration,
two sub-matrices within both the measured

" and the unmeasured variables incidence

matrices:
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— For matrix A: a horizontal matrix of
measurements that cannot be validated,
and a vertical macrix of variables that can
be recalculated and corrected by using
the values of other measurements.

— For matrix B: a horizontal matrix of in-
calculable variables, and a vertical ma-
trix of variables that can be calculated
or validated.

If a set of incalculable variables exists,
additional measurements are required. The
question to be resolved then is where to lo-
cate the most favorable sampling points.

Sampling protocol design

The identification of additional sampling
points can be done by using a method in-
volving genetic algorithm programming
(Heyen ez al, 2002), that selects optimal
sampling points for missing measurements.
In this phase, a simplified formulation of the
sensitivity matrix has been defined: the ac-
tual measurements have their own accuracy,
while the unmeasured variables are consid-
ered as measured variables with a very high
standard deviation (10%):

-1
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(13)

The different types of feasible measure-
ments are defined in a database (e.g. flow
rate, consistency, pressure, temperature,
etc...). The measurement precision has to
be specified, (fixed and/or variable errors).
Other pertinent (but optional) informa-
tion can be the cost and range of measuring
devices. Heyen et a/ (2002) have empha-
sized the incentive of designing an online
data recenciliation sensor system, in which
cost weighting factors are used to minimize
the investment required for such a system.
Nonetheless, the optimization’s objective
function may also simply consist in the
number of sampling points for a measure-
ment campaign. Prior to optimization, the
program verifies thart reconcilable configu-
ration can be found, assuming that all pos-
sible measurements are done. This provides
an upper limit for the objective function.
The use of 2 new measurement at a poten-
tial sampling point is obtained by assigning
a 0-1 value to an integer variable.
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The reconciled standard deviations are
recalculated from the modified sensitivicy
matrix redefined by the sets of measure-
ments selected by the algorithm. Then the
objective function is computed by summing
up the number of measurements (or sensors
costs) and a penalty function constituted
by the sum of the projected standard devia-
tion of key performance indicarors (or by
default any process variable) resulting from
the analysis of the sensitivity matrix.
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Following Heyen et a/ (2002), two do-
mains have been considered for the penalty
function to retain solutions violating the
constraint on the variance and thus main-

(15b)

tain a broad spectrum of solutions from
which an optimum can be identified by ge-
netic algorithm search.

Data reconciliation, measurement re-
dundancy analysis and optimal sampling
point location have been applied to an old
newspaper and magazine deinking process.
This will now be discussed.

if var(¥)> var(Y;)

Case study

The methodology was applied to a deink-
ing mill located in Quebec. It uses 80% old
newsprint (ONDP) and 20% old magazines
(OM) furnish to produce deinked pulp.
The mill is located next to an integrared
thermo-mechanical pulp and newsprint
mill to which part of the deinked pulp is
sent to produce 30% recycled content pa-
per. The recycling facility was built in the
early nineties, and was subsequently mod-
ernized at the end of the decade in order to
increase its production capacity. During the
upgrade, several modifications were made to
the pulp treatment sequences and the proc-
ess water circulation layout. It is estimated
that the fresh water in-
take has been reduced
from approximately 21
to 15 tons per odt of
pulp produced. Fig. 1
shows a simplified layout
of the present day mill.
A derailed description
of the process in its con-
figuration at the time of the study is given
in Brown (2004).

desired

Modelling assumptions for data
reconciliation

The model of the mill has been developed
by using the equation solver data reconcili-
ation software VALI III (Belsim s.a, 2001).
This software can perform darta reconcilia-
tion and plant simulation and automatically
transfers data between the two operations.
The calibrated mode] has been built by us-
ing data from previous studies of the original
mill (Walosik, 1999; Bonhiver et al, 1998;
Savu et al, 2004), updated with specifica-
tions from control diagrams, and laboratory

test benchmarks of (he present day mill,
Furthermore, severa| assumptions were made
to reduce the number of required specifica-
tions. The density of cellulose was added 1o
the component data base of VALI Il and
other physical properties of cellulose ignored
since temperature variations are small in a
deinking process. It was also assumed that
waste paper enters the pulper at 15 °C, thac
the temperature of fresh water and white-
water entering the system is constant at
50 °C, that there is no heat loss from the
process piping and equipment, and thar out-
put streams from units with multiple outlets
are at equal temperature. Pressure variations
in the piping network were accounted for
when they were indicated by measurements
from controller room printouts. Pressure
drops were otherwise neglected.

In a preliminary step to data reconcili-
ation, the VALI III solver determines the
degree of global and local redundancy of
the system. Five different types of specifica-
tions related to mass balances were used to
compensate for the missing control room
measurements:

* Two types of measured variables: consist-
ency and flow rate. Generally, consisten-
¢y and pressure variations are monitored
using smaller time constants in control
loops. Hence, consistency was preferred
over flow rate when specifying dilution
stream requirements from design specifi-
cations, the exception being when units
such as pressure screens must operate at
steady discharge.

* Three types of constant ratio specifica-
tions defined by link equations for sepa-
ration units and stream splicters:

- rejects or accepts mass ratios (expressed
as the ratio between inlet and outlet
mass flows on an oven dried basis),
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Fig. 1. Process water flow diagram.
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- separation units’ thickening ratios (ex-
pressed as the ratio of the outlet consist-
ency to the inlet consistency),

- flow rate ratios for split streams.

In practice, only volumetric flow and
consistency can be determined from the
mill’s control system, whereas specifications
expressed as ratios are related to equipment
performance parameters indicated on proc-
ess diagrams, and cannot be directly meas-
ured during mill operation. These types of
specifications are useful because they model
process units, and thus confer the flexibility
required to account for flow or consistency
variations.

Outline of sampling protocol design
After the initial data reconciliation step, the
values of the precision of the measurements
that were not obrained from the mill’s con-
trol system were changed so as to redefine
them as unmeasured variables. Process vari-
ables can be alternately defined by the VALI
1II software either as measured variables,
unmeasured variables or constants simply by
modifying the values of their precision.
The sampling protocol design was done
for sections of the mill for which controller
room printouts were available: the pulper
and the second pulp treatment line. Cost
weighting factors have been included to
account for the possibility of designing an
online sensor system; however this does not
exclude using results for a measurement
campaign. Annualized costs and sensors’
precision are taken from the database of
Gerkens (2002). These include pressure,
temperature, flow, and consistency measur-
ing devices. Two different cases have been
considered:
In the first case, ratio specifications are
considered as constants; this implies that
there is no variability in the separation

ratios of the units or splitters of the proc-
ess. The resulting measurement configu-
ration would be capable of accounting
for the overall process variability (e.g.
the generally non-steady state behavior
of the process due to sheet breaks, start-
ups, slow downs, etc.).

In the second case, ratio speciﬁcétions
are considered as variables, so that the
performance of each individual separa-
tion unit may also be accounted for.

Results and discussion

Data reconciliation

Table 1 compares global mass balances for
the entire process computed with raw data,
to the same balances obtained by darta rec-
onciliation. Differences can be noted for the
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Table 1. Process overall-mass balances.

Stream Description Raw data Corrected by data reconciliation
Flow (kg/s) Flow (ke/s)
Inlets Water 77.20 78.14
Paper (ONP / OM) 6.74 6.74
Whitewater 63.45 63.57
Total In 147.39 148.45
Outlets Sludge 2.20 2.28
Other solid waste 047 0.45
Effluent Water 55.86 56.90
Pulp (10% Cs) 18.88 18.42
Pulp (4.4% Cs) 70.18 70.40
Total Out 147.59 148.45

Table 2. Measurements and reconciled measurements for selected streams.

Stream Description Flow Rate (kg/s) Consistency (%)
Meas. Rec. D. (%) Meas. Rec. D. (%)
Fresh water to whitewater tanks 74.28 74.94 0.9 0 0 0
Cloudy whitewater to pulper 153.30 153.30 0.0 0.033  0.035 6.2
Upper Cleaning Line (L1)
Cloudy whitewater to coarse cleaners 50.16 53.92 7.5 0.033 0.035 6.2
Whitewater to flotation cells 83.97 78.25 6.8 0.095 0.096 1.7
Clarified water to fine cleaners 98.15 99.76 1.6 0.034 0.036 7.0
Clarified water to washers 73.86 73.94 0.1 “ “ “
Lower Cleaning Line (L2)

Acid WW to primary coarse screen 8.27 8.25 03 0.035 0.036 2.1
Acid WW to secondary coarse screen 2.35 0.22 90.6 “ “ “
Acid WW to secondary fine screen 53.35 53.65 0.6 “ “ “
Acid WW to tertiary fine screen 31.57 31.95 12 “ “ “
Acid WW to secondary fine cleaners 70.07 72.93 4.1 “ “ “
Acid WW to tertiary fine cleaners 26.37 27.29 3.5 “ “ “
Acid WW to quaternary fine cleaners | ... 6.01 5.75 4.2 “ “ “
Acid WW to reverse fine cleaners ..-14.03 14.01 0.2 “ “ “
# 1 disk filter cloudy water 113.30 113.24 0.1 0.04 0.04 0.0
# 2 disk filter cloudy water 159.14 ~ 159.59 0.3 0.025 0.025 0.0
# 1 disk filter clear water 113.30 113.22 0.1 0.03 0.03 0.0
# 2 disk filter clear water 159.14 159.57 0.3 0.025 0.025 0.0
Filtered whitewater to belt press 9.93 9.93 0.0 0.005 0.005 0.0
Filtered whitewater to disk filter # 1 39.71 39.71 0.0 “ “ “
Filtered whitewater to disk filter # 2 38.06 38.02 0.1 “ “ “

Notes. Meas.: measured value; Rec.: reconciled value; WW: whitewater; D.: difference between reconciled and

measured value

Table 3. Summary of the analysis of the incidence matrix.

Total number of... Constant ratio Variable ratio
- specifications specifications
Equations 405 405
Measured variables 43 43
Unmeasured variables 448 486
Constants 130 92
Equations with no influence on the validation problem 40 20
Measurements that cannot be validated 21 21
Unmeasured variables that cannot be va}idated nor calculated 408 466
Additional measurements required (minimum) 45 90
Global redundancy number (R, = p-m) -43 -81

unmeasured flow variables (only the ONP
and OM feed was specified as a measure-
ment). It was deemed preferable to con-
sider the process diagram specifications as
indicative values, because when compared
to design specifications, control room print-
outs indicated significant variability. Also,
production reports from the mill show thar
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the total pulp output may vary considerably
from day to day. In this respect, a real time
simulation model would have to be flexible
enough to account for process operation var-
iability. Table 2 shows selected measured and
reconciled values of flow rates and consist-
ency for some major process water streams.
Some variables are significantly corrected



Table 4. Summary of the sampling protocol optimization (with weighting factors for a
sensor system design).

Maximum number of possible measurements

Upper limit of objective function (CAN $)

385 354,482
Best solution after 24 020 evaluations Constant RS* Variable RS*
Additional sensors required 47 97
Objective function (CAN §) 35,511 84,340
Measurement ()* Weighting® Precision® Number of Measurements
(CAN $§) Present Constant Variable RS*

. RS:
Temperature (1) 824 1.5°C 0 11 19
Pressure (1) 808 1.5% 30 50 56
Volumetric fow (2) 904 & 1, 585 1.5% 8 16 30
Consistency (6) 793 to 1, 585 1% 5 13 36
Total - - © 43 90 141

Notes. a: RS = Ratio specifications; b: number of sensor types per type of measurement; ¢: weighting factors:
annualized costs; d: the error is absolute for temperature measurements, and relative for other measurements

while in other cases there is no correction at
all. A gross error (90% difference) has been
detected for the flow of whitewater to the
secondary coarse cleaners of the lower pulp
treatment line; the reconciled dara is other-
wise within close range of the measured val-
ues (the second largest difference is 7.5%).
It should be stressed though, that data is not
necessarily accurate because it is not cor-
rected. Lack of local redundancy (Jacob and
Paris, 2003), causes certain measurements to
be corrected only by their own value, which
means that they are not reconciled. The cur-
rently calibrated model was built with data
from various sources and periods in time,
but for the oldest parts of the mill, the op-
erating conditions are the same as before.
It can be argued that the reconciled model
is still a valid representation of the proc-
ess. However, the design of a new sampling
protocol was of interest, to validate it with
additional actual data.

Sampling protocol design

Table 3 presents an overview of the analysis

of the incidence matrix of the system, after

measurements not provided by the control
system have been removed from the recon-
ciled model, and for both modeling assump-
tions previously stated in the outline of the
sampling protocol design. The summary of
the sampling protocol design is presented

in Table 4. In the actual configuration, 43

control room measurements are available,

but from Table 3 it has been shown that they
do not suffice to allow for the recalculation
and validation of all other process variables.

The results show that:

* the constant ratio specification con-
figuration would require doubling«he
number of measurements, which is close
to four times less than the maximum
number.

* the variable ratio specification configura-
tion would require tripling the number
of measurements, which is close to three
times less than the maximum number.
Although it is never certain that global

optimality is reached when genetic algo-
rithm programming is used and although
the total number of required measurements
might still have been reduced by weight-
ing all measurements equally, the results
obtained would nevertheless allow effective
data reconciliation. The interest of the soft-
ware is in automated measurement cam-
paign planning, reducing the amount of
unnecessary measurements, and avoiding
using fastidious heuristic methods.

The added incentive of the design of a
retrofitted sensor system would be to pro-
vide a monitoring tool to contribute to rap-
id detection of system defaults (decalibrated
sensors, process unit breakdowns or leaks),
hence to minimising losses and obtaining
actualized mill balances for accounting and
process follow-up (Heyen, 2000). This is
the only way to ensure that the results of a
simulation model rigorously correspond to
the output of a process in operation.

Conclusions

Dara reconciliation has been applied to
build a validated model of a recycled paper
deinking plant. Controller measurements
were combined with equipment and proc-
ess design specifications, to compensate for
missing data. Five different types of specifi-
cations related to mass balances were added
to the model: consistency, flow rate, and
three types of ratio specifications for rejects
or accepts rates, thickening ratio and stream
splitters. Despite the fact that the inputs to
the process may vary greatly, the model is
still generally consistent because ratio design
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specifications allgy accounting for measure-
ment variability.

The key to effective reconciliation is
measurement redundancy. If there is not
sufficient information, data cannor be rec-
onciled. In the currently calibrated model,
a satisfactory level of redundancy has been
attained with the use of data from various
sources. In the perspective of eventually up-
dating the data from the simulation, meas-
urement specifications from sources other
than the control system were eliminated
and a method based on genetic algorithm
programming was applied to optimize a
sampling protocol. This optimization pro-
gram could also be used to design a sensor
system in order to conduct online data rec-
onciliation by using control room measure-
ments only. Depending on whether or not
the variability of separation units and stream
splitters is taken into account, the sampling
campaign would require doubling or tri-
pling the number of measurements. The
computer generated solution has the advan-
tage of avoiding fastidious planning by local
redundancy observation.

Notation

Roman characters

A: Jacobian matrix (incidence ma-
trix) for measured variables (di-
mension n, p) '

B: Jacobian matrix (incidence ma-
trix) for unmeasured variables
(dimension m, p)

C: matrix of constants

cost : cost of measurement of type g

F(X,Y): vector of process equations

H: objective function in Lagragian
formulation

n: number of measured variables

nKPI:  number of key performance indi-
cators

m: number of unmeasured variables

L: objective function with integrat-
ed constraints

M: Jacobian matrix of the system

p: number of equations

P: inverse variance-covariance ma-
trix of measured variables
(dimension n, n)

Pen, :  penalty function of KPL h

q: number of elements in linear
combination Q

linear combination of variables Z
global redundancy number

5, number of possible additional
measurements
s: number of measurement types
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var {Y): reconciled variance of reconciled
measured variable i

x: vector of unmeasured variables

y: vector of measured variables

Y: vector of reconciled measured

variables

Greek characters

Veg binary integer variable €{0,1}
g reconciled standard deviation of
o reconciled measured variable i
mess_pe g precision of sampling measure-
ment type g
A Lagrange multipliers
o;: standard deviation of measured
variable i
Indices
e linear combination example
f: possible additional measure-
ments
g measurement types
h: key performance indicators.
i measured values
it unmeasured values
k: constants

Exponents

T: transposed matrices
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