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Abstract
Motivated by applications in orthopaedic and maxillo-facial surgery,

the mechanical behaviour of cortical bone tissue in cyclic overloads at phys-
iological strain rates is investigated. The emphasis is on the development of
appropriate constitutive laws that faithfully reproduce the loading, unload-
ing, and reloading sequence observed during experimental in vitro uniaxial
testing. To this end, the models include three distinct modes of evolution,
namely a linear elastic mode due to bone cohesion, a damage mode where
microcracks are generated and a plastic mode corresponding to sliding at the
microcracks.

The proposed models use the internal state variable approach common
in continuum damage mechanics and allow a straightforward interpretation
of the constitutive behaviour of cortical bone. They are derived within the
generalized standard materials formalism and are thus thermodynamically
consistent. The mathematical formulation of the models is based on the def-
inition of two internal state variables: a damage variable that represents the
microcrack density reducing the tissue stiffness, and a plastic strain variable
representing the deformation associated with these microcracks.

Firstly, two one-dimensional models describing the uniaxial quasistatic
behaviour of cortical bone are developed. The first one includes a single scalar
damage variable, whereas the second one is based on tensile and compres-
sive damage variables, which improves the simulation results. Both models
are then extended into rate-dependent alternatives by relating the rate of
damage accumulation to some high power of the damage threshold stress.
All four models consider different tensile and compressive damage threshold
stresses as it is the case for cortical bone.

Secondly, the material constants characterizing the one-dimensional
models are identified on experimental grounds. To this end, a series of in
vitro uniaxial overloading tests were carried out on bovine cortical bone.
Reliable measurements were obtained in tension using dumbbell specimens,
avoiding thus undesirable boundary effects.

Thirdly, a three-dimensional rate-independent constitutive law ins-
pired by the one-dimensional models is formulated and implemented in a fi-
nite element code. It includes porous fabric-based orthotropic elasticity and
rate-independent plasticity with damage. The onset of damage is character-
ized by an orthotropic stress-based damage criterion described by porosity
and fabric, which takes into account distinct tensile and compressive damage
threshold stresses.

Finally, the potential of the new three-dimensional elastic plastic dam-
age constitutive law for cortical bone is demonstrated by means of a finite
element analysis of the compression of a vertebra.
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Version abrégée
Motivé par des applications en chirurgie orthopédique et maxillo-

faciale, le comportement de l’os cortical en situation d’endommagement à
des taux de déformation physiologiques est étudié. L’accent est mis sur le
développement de lois constitutives appropriées qui reproduisent fidèlement
les séquences de charge, décharge et recharge observées lors d’expériences uni-
axiales in vitro. A cette fin, elles comprennent trois modes d’évolution: un
mode linéaire élastique dû à la cohésion de l’os, un mode d’endommagement
dans lequel des microfissures sont générées et un mode plastique correspon-
dant au glissement à leur interface.

Les modèles proposés utilisent l’approche des variables internes cou-
rante en mécanique des milieux continus et permettent une interprétation
aisée du comportement mécanique de l’os cortical. Ils sont établis dans
le cadre des matériaux standards généralisés donc thermodynamiquement
consistants. Leur formulation est basée sur la définition de deux variables
internes: une variable d’endommagement qui représente la densité de mi-
crofissures et une déformation plastique associée à leur déformation.

Premièrement, deux modèles unidimensionnels décrivant le comporte-
ment uniaxial quasistatique de l’os cortical sont développés. Le premier est
à une seule variable d’endommagement scalaire alors que le deuxième est
basé sur deux variables, une en tension et une autre en compression, ce qui
améliore le résultat des simulations. Les deux modèles sont ensuite étendus
en alternatives dépendantes du temps en reliant le taux d’accumulation de
l’endommagement à une haute puissance du seuil d’endommagement. Les
quatre modèles considèrent des seuils d’endommagement différents en ten-
sion et en compression.

Deuxièmement, les constantes matérielles qui caractérisent les modè-
les unidimensionnels sont identifiées expérimentalement. A cette fin, une
série de tests uniaxiaux in vitro furent effectués sur de l’os cortical bovin.
Des mesures fiables purent être obtenues en tension à l’aide d’éprouvettes de
traction en forme d’haltères, évitant ainsi des effets de bords indésirables.

Troisièmement, une loi constitutive tridimensionnelle indépendante
des taux inspirée des modèles unidimensionnels est formulée puis implémen-
tée dans un code d’éléments finis. Elle comprend une élasticité orthotrope
basée sur la porosité et le tenseur de fabrique, et une plasticité avec endom-
magement indépendante des taux. Ce dernier est caractérisé par un critère
orthotrope formulé en contrainte et décrit par la porosité et le tenseur de
fabrique. Il tient compte de seuils d’endommagement différents en tension et
en compression.

Finalement, le potentiel de la nouvelle loi constitutive tridimension-
nelle élastique, plastique avec endommagement de l’os cortical est démontré
à l’aide d’une analyse par éléments finis de la compression d’une vertèbre.
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Chapter 1

Introduction

The skeleton is the bearing structure of the human body. Its integrity
is essential to human health. The human skeleton is made of a couple hun-
dred bones with various shapes and sizes. Each bone is constituted of bone
tissue. Understanding and modeling the mechanical behaviour of bone tissue
is important. This is the main objective of this thesis. In this introduction,
we will substantiate the current need to develop a more realistic behaviour
law for bone starting from a detailed description of this tissue and its func-
tion, in order to motivate our thesis achievement: an elastic plastic damage
law for bone.

1.1 Cortical and trabecular bone

Bone tissue is traditionally subdivided into two types: cortical (com-
pact) bone and trabecular (porous) bone, although the interface between the
two is somewhat fuzzy. This distinction comes from the macroscopic appear-
ance of bone tissue. At this level, the outer shell of a bone which is made of
cortical or compact bone can be clearly discerned from the inner core of the
bone made of trabecular or cancellous bone (Figure 1.1). These two types of
bones are identified by their porosity and exhibit distinct material proper-
ties. On the one hand, cortical bone has a dense microstructure (a porosity
of about 5-10%) and accounts for approximately 80% of the total mass of the
skeleton. On the other hand, trabecular bone has a porosity in the range of
45-95% and represents 20% of the skeleton mass. It consists of a meshwork
in which the trabeculae (i.e.struts and plates) are roughly arranged along the
principal stresses in the bone.

1
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Trabecular bone

Cortical bone

Figure 1.1: Cross-section of a femur showing a dense tissue, namely cortical bone
on its periphery and a porous tissue which is called trabecular bone in its interior.

1.2 Bone: an optimized material

Bone tissue, like other biological microstructures, is the result of a
long-term optimization controlled by the selection processes of evolution.
Therefore, the microstructure and composition of bone is well adapted to its
function. Beside the structural functions of bone such as protecting vital or-
gans and serving as an articulated framework that supports soft tissues and
allows for muscular activity, it has also important metabolic functions. It
regulates ionic concentrations in the fluids of the body (homeostasis), serves
as calcium repository and plays a major role in the formation of blood cells
(hematopoiesis).

The human skeleton contains 206 bones which vary in size from the al-
most microscopic ossicles of the inner ear to femora which may exceed 45 cm
in length. This large variation in size is accompanied by similar variations in
shape and function which results in a broad range of mechanical properties.

Being a highly specialized tissue, the relevant properties of bone are
particularly well adapted and outstanding in comparison to other inert ma-
terials. Following the ideas of Ashby et al. [Ashby, 1992, Ashby et al., 1995]
developed in their concept of materials property charts, it is helpful to eval-
uate and compare the mechanical behaviour of bone and other materials on
the basis of so-called performance indices (Figure 1.2). If maximizing a com-
bination of properties such as Young’s modulus ε to density ρ ratio, some
aspect of the performance of the material will be optimized. For example,
the stiffness of a lightweight beam with respect to bending is optimized with
a maximum value for ε/ρ. Bone tissue resists particularly well to fracture,
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better than any synthetic ceramic. It is characterized by a high fracture
toughness. Motivated by this observation, it is of primary importance to
characterize bone tissue on solid grounds and to develop constitutive laws
which can be very helpful to optimize many clinical procedures and the req-
uisite medical devices.

Figure 1.2: A material property chart for bone tissue and engineering materials,
plotting Young’s modulus against density. Guidelines identify efficient materials
with minimum weight design (adapted from [Ashby, 1992]).

1.3 Degradation of bone

1.3.1 Osteoporotic fractures

Many life (biological) factors can be associated to an alteration of
the mechanical properties of bone. Some of them are intense physical ac-
tivity, malnutrition, growth, aging, and diseases. Osteoporosis is a disease
characterized by a decrease of bone mass and a degradation of bone archi-
tecture, which leads to an increased bone fracture risk (Figure 1.3). This
metabolic disease affects mostly elderly people and in particular women.
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Past the age of 50, approximately one woman of three is victim of an os-
teoporotic fracture and one men of five. Hence, osteoporosis has become a
major public health problem with significant socio-economic consequences
all over the world. In year 2000, the costs for the treatment of all os-
teoporotic fractures in Europe exceeded 24.6 billions euros (newspaper ‘Le
Temps’, 2005). One frequent location of osteoporotic fractures is the verte-
bral body ([Lippuner et al., 1997]). Vertebral fractures result in back pain,
increase the risk of subsequent vertebral fractures and mortality. Other fre-
quent osteoporotic fractures include hip and wrist fractures.

Figure 1.3: Differences between an osteoporotic (left) and a normal (right) femur.
Osteoporotic bone shows a markedly lower density, degraded microstructure and
bone fracture (from Medisave UK, Ltd.).

1.3.2 Clinical treatments

The current clinical treatment of vertebral fractures consists of high
dose analgesia and initial bed rest (no more than a few days), followed by
physical therapy to prevent further fractures. Patients who do not respond
to conservative treatment or who continue to have severe pain may be candi-
dates for percutaneous vertebroplasty. Percutaneous vertebroplasty involves
injecting a biomaterial (a bone cement) into the collapsed vertebra to stabi-
lize and strengthen the fracture and vertebral body ([Predey et al., 2002]).
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Beside many biological and clinical requirements for a biomaterial
such as biocompatibility or setting time, its mechanical properties must be
well understood and characterized. It is of primary importance to have an
accurate knowledge of elasticity, ultimate stresses, amount and distribution of
the biomaterial injected in the vertebral body. This is critical to recover the
stiffness, prevent further crushing of the treated vertebra and avoid fracture
in the adjacent vertebral bodies.

Hip fractures are currently treated by a total joint replacement of the
hip. The choice of the biomaterial constituting the prosthesis determine its
reliability. Hence, failure predictions in bone and bone-implant stability must
be thoroughly investigated on numerical and experimental grounds.

1.4 Motivation for a damage law of bone

In order to find an adequate bone substitute material intended for
use in percutaneous vertebroplasty, it is essential to have a thorough un-
derstanding of the mechanical behaviour of bone tissue. Similarly, in view
of optimizing the reliability of a bone-implant structure or predicting bone
fracture, an accurate model of the mechanical behaviour of bone is required.
Hence, orthopaedic research has an important need for realistic constitutive
laws for bone tissue including heterogeneities, anisotropic elasticity and dam-
age behaviour i.e. progressive degradation of its elastic properties.

To date, little has been accomplished in describing the mechanical be-
haviour of cortical bone tissue in cyclic overloading (i.e. damaging) situations
([Fondrk et al., 1999a], Section 2.3). This is why we decided to develop an
elastic plastic law for cortical bone including damage.

To this end, the general methodology proposed by [Humphrey, 2003]
was available to us. It includes five basic steps which are followed throughout
this thesis:

(i) ‘delineation of general characteristics of interest;

(ii) establishing an appropriate theoretical framework for quantification;

(iii) identification of specific functional forms of the constitutive relations;

(iv) calculation of the values of the associated material parameters; and

(v) evaluation of the predictive capability of the final relation.’
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Regarding the framework, continuum damage mechanics has shown to
be appropriate for modeling and quantifying damage processes at a macro-
scopic level ([Krajcinovic, 1989]).

In addition to these guidelines, let us mention that solving complex
problems like the ones involved in orthopaedic biomechanics requires a combi-
nation of specific computational techniques such as the finite element method
(spatial discretization), the linear iteration method (solution of nonlineari-
ties) and the finite difference method (time discretization). Therefore, in
order to be useful, the constitutive laws must be developed in a form which
is compatible with these computational methods.

1.5 Thesis postulate
For all the reasons given in the previous Section, the main objective of the
present thesis can be stated as follows.

In this thesis, we address the effect of single and cyclic overloads on
the mechanical behaviour of cortical bone tissue at physiological strain
rates. New thermodynamically consistent rate-independent and rate-
dependent constitutive relations for cortical bone tissue which combine
elasticity, plasticity and damage are presented. The laws are first for-
mulated in one dimension and subsequently identified experimentally.
One of them is then generalized in three dimensions and provides the
basis for a biomechanical application.

More precisely, the four original contributions of the thesis are:

• Firstly, new one- and three-dimensional constitutive laws for cortical
bone that combine elasticity, plasticity and damage are formulated in
the framework of continuum mechanics and thermostatics of irreversible
processes.

• Secondly, the material constants of the uniaxial laws are identified through
a series of in vitro mechanical tests carried out on bovine cortical bone.

• Thirdly, the three-dimensional law is discretized in time mainly with the
help of implicit projection algorithms, and implemented in a commercial
software for finite element mechanical analysis (ABAQUS).

• Finally, the potential of the resulting law and model is demonstrated via a
biomechanical application simulating the axial compression of a vertebra.



1.6 OUTLINE • 7

1.6 Outline

According to these objectives, the thesis is organized in the following
eight chapters.

• Chapter 2 begins with a brief histological description of bone tissue go-
ing from the macrostructural to the sub-nanostructural level. Then, the
principal macroscopic mechanical properties of cortical bone are reviewed
and existing models for its constitutive behaviour are exposed.

• Chapter 3 defines the theoretical solid mechanics framework used through-
out this thesis. Firstly, we present the notions of continuum mechanics
necessary to understand the models. Secondly, the thermostatics frame-
work used to formulate the constitutive laws is exposed. Thirdly, we
describe progressively the basic rheological models and behaviours upon
which our models are based on.

• Chapter 4 consists in the conception, design and formulation of innova-
tive one-dimensional constitutive laws for cortical bone tissue. We begin
by modeling its quasistatic behaviour with help of two rate-independent
models. Rate-dependent damage accumulation mechanisms are then taken
into account by relating the rate of damage accumulation to some high
power of the damage threshold stress. The resulting two rate-dependent
models are shown to be an intuitive generalization of the rate-independent
ones.

• Chapter 5 presents the methods, results and discussion of original in vitro
uniaxial mechanical tests carried out on bovine femoral cortical bone.
The tests were specially elaborated to highlight the cyclic overloading
behaviour of bone at physiological strain rates. They allowed for a suc-
cessful identification of the material constants and thus the validation of
the one-dimensional constitutive laws.

• Chapter 6 details a straightforward three-dimensional generalization of
the simplest one-dimensional constitutive law for cortical bone. It in-
cludes its theoretical formulation, followed by a description of its numer-
ical implementation. Implicit projection algorithms are presented and
consistent tangent operators are derived. Then, the numerical methods
traditionally employed in computational solid mechanics are presented,
namely the finite element method, the iterative linearization method and
the finite difference method. Finally, the implementation of the three-
dimensional law is validated simulating some elementary test problems.
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• Chapter 7 is the application of the developed three-dimensional law to
a concrete biomechanical example. Damage of a lumbar vertebra under
compressive load is analyzed and visualized by means of a finite element
model. The chapter begins with a description of the mesh, the material
properties and boundary conditions. Then, stress and damage distribu-
tions in the vertebra are visualized and discussed.

• Chapter 8 summarizes the main features and limitations of the devel-
oped one- and three-dimensional constitutive laws and concludes on their
potential utility in orthopaedic biomechanics.



Chapter 2

Histological and biomechanical
background

In this Chapter, we begin with a brief description of the complex hi-
erarchical structure of bone tissue (Section 2.1). We distinguish mainly five
degrees of organization going from the macroscopic level (up to several mil-
limetres) to the sub-nanostructural level (below a few hundred nanometers).
These structures are adapted to the variety of mechanical, biological and
chemical functions that bone fulfills. Then, as the mechanical properties of
bone vary considerably at different structural levels, we focus our attention
on the mechanical properties of bone at the macroscopic level (Section 2.2).
The description covers elastic and viscoelastic properties, damage thresholds,
and damaged behaviour, with an emphasis on cortical bone. Finally, some
constitutive models of bone tissue are presented and criticized in Section 2.3.

2.1 Bone structure and composition

2.1.1 Bone structure

The main function of the musculoskeletal system (bone, cartilage, ten-
dons, ligaments and muscles) is to transmit forces from one part of the body
to another in order to effect its motion and locomotion and to support vital
organs (e.g. brain, heart, lungs) and protect them from accidental damaging
loads. Beside the mechanical functions of structural support and protection,
bone tissue has important biological and chemical roles. It stores stem cells
and carries out the mineral ion homeostasis serving as mineral reservoir (cal-
cium and phosphate needed for metabolism).

Being a living tissue, bone has the remarkable property to adapt its

9
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structure to its function. As a result, bones of various shapes and structure
are found in the body, but the architecture of a vertebrate skeleton is fairly
the same from one species to another. The ability of bone to modify its
structure to specific loadings is known as Wolff’s law ([Wolff, 1892]). At the
macroscopic level (millimetre lengthscale) bone is heterogeneous, porous and
anisotropic. Although porosity can vary continuously from 5 to 95%, most
bones are either very dense or very porous. Thus, at this level, bone tissue
is divided into two types (Figure 2.1). The first type is cortical or compact
bone. Its porosity of 5 to 10% is characterized by different types of pores
([Cowin, 1999]).

Haversian osteon

Circumferential
lamellae
Lamellae

Lamellae
Osteocyte

Lacunae
Canaliculi
Haversian
canal

Cancellous

bone

bone Osteon

Haversian canal
Volkmann’s canal
Blood vessel

Periosteum

Blood
vessel

Cortical

Sharpey’s
fibers

(a)

(b)

(c)

Figure 2.1: Microscopical structure of cortical bone (a) sketch of cortical bone,
(b) cut of Haversian system, (c) photomicrograph of a Haversian system (from
[Fridez, 1996]).

The Haversian canals are approximately aligned along the long axis
of the bone. They contain capillaries and nerves, forming thus a vascular
type of porosity. They are about 50 μm in diameter. The Haversian canals
are connected to each other by the shorter and transverse Volkmann’s canals.
Another class of porosity is formed by the resorption cavities which are about
200 μm in diameter. They are an integral part of the bone remodelling pro-
cess.

The second type of bone is trabecular or cancellous bone. Its porosity
varies from 50 to 95%. The pores are interconnected and filled with marrow.
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Their size is on the order of 1 mm. The main function of the marrow is to
produce the blood cells. The bony matrix is constituted of plates and struts
called trabeculae, with a thickness of about 100-200 μm (Figure 2.1). Their
arrangement is variable but has a preferential orientation in highly mechan-
ically loaded bones ([Burr et al., 1998]). There is a "grain" direction along
which mechanical stiffness and strength are greatest.

In a cross-section of a long bone such as the femur, cortical bone is
found in the periphery of the shaft (diaphysis) and the extremities (epiphysis)
where it surrounds a porous trabecular core. Trabecular bone is found at the
ends of all long bones and within flat and irregular bones. It is enclosed by
a dense cortical shell.

The microstructure of cortical bone is composed of regular, cylindri-
cally shaped lamellae (Figures 2.1 and 2.2). In contrast, the microstructure
resulting from compaction of trabecular bone is composed of an irregular
superposition of lamellae. Some investigators ([Carter and Hayes, 1977b,
Zysset, 1994, Roy et al., 1999]) consider, for mechanical purposes, cortical
and trabecular bone as a single constitutive material with variable poros-
ity. Others ([Choi et al., 1990, Rho et al., 1993]) think that the two types of
bone must be considered as two different materials. As they share a similar
chemical composition and show a similar mechanical behaviour over a wide
range of deformations (Section 2.2), we think that a single constitutive law
can be used locally for both types of bone.

Cancellous bone

Cortical bone

Osteon

Lamella

Haversian
canal

Collagen

Collagen
Collagen

fiber
fibril

molecule

Bone
crystals

10-500 μm 3-7 μm

0.5 μm

1 nm

Macrostructure
Microstructure

Sub-microstructure
Nanostructure

Sub-nanostructure

Figure 2.2: Hierarchical structural organization of bone: macro) cortical and can-
cellous bone; micro) osteons with Haversian systems; sub-micro) lamellae; nano)
collagen fiber assemblies of collagen fibrils; sub-nano) bone mineral crystals, colla-
gen molecules, and non-collagenous proteins (from [Rho et al., 1998]).
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At the microstructural level, cylindrical structures known as osteons
or Harversian systems are found in cortical bone (Figures 2.1 and 2.2 micro)).
They are roughly parallel to the long axis of the bone and have a diameter
of about 200 μm. They are formed by concentric lamellae and surround the
Haversian canal. The boundary between the osteon and the surrounding cor-
tical bone is known as the cement line.

A single lamella (3-7 μm wide) is formed by a planar arrangement of
mineralized collagen fibers (Figure 2.2 micro)). Beside the osteons, cortical
bone exhibits other forms of architectures. The tissue where the mineralized
collagen fibers are poorly organized and no pattern can be distinguished are
called woven bone. This type of bone is quickly formed and appears during
the healing process after fracture (e.g. [Doblaré et al., 2004]). Highly orga-
nized bone consisting of parallel layers or lamellae is called lamellar bone.
This type of bone is slowly formed and stronger than woven bone due to
its architecture. The skeletal embryo consists of woven bone, which is later
replaced by lamellar bone.

Within a single lamella, the arrangement and orientation of the sub-
stance of a lamella is not well known. At the sub-microstructural level
(Figure 2.2 sub-micro)), the classical view of a twisted "plywood" lamel-
lar structure is due to [Giraud-Guilles, 1988]. In this representation, the
collagen fibers of a lamella in an osteon lie in parallel in each lamella, with
a change of orientation of fibrils from one lamella to the next. Transmis-
sion electron microscope studies suggest a rotated plywood structure within
each lamella ([Weiner et al., 1999]). However, precision acoustic microscopy
measurements indicate that the structure of collagen in bone is, as yet, not
fully understood ([Turner et al., 1995]). Thus, a single lamella cannot be
considered to contain individual, highly oriented collagen bundles, but the
fibers form a continuum both within a single lamella and between lamellae
([Rho et al., 1998]).

The nanoindentation technique provides an interesting tool to investi-
gate the mechanical properties of microstructural components of bone tissue
(e.g. [Rho et al., 1999a, Hengsberger et al., 2001]). The elastic properties
of individual human bone lamellae have been investigated by [Hengsberger,
2002, Hengsberger et al., 2002] for example. The variations of the nanoinden-
tation properties have been studied as a function of the locus of indentation
within a single osteon by [Rho et al., 1999b], and as a function of age and
gender by [Hoffler et al., 2000b].
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2.1.2 Bone composition

At the nanostructural level, bone is composed of collagen, water, hy-
droxyapatite mineral, and small amounts of proteoglycans and noncollage-
nous proteins, exhibiting thus a composite structure. Being a dynamic porous
structure, its porosity and composition varies with species, age, sex, the spe-
cific bone, and may change as a result of a pathologic condition or in a normal
adaptive response to a mechanical or physiological stimulus.

The collagen, mainly of type I in bone, is a structural triple helix
protein which can organize itself into strong fibers. It gives bone flexibility
and tensile strength. It is also found in tendons, ligaments and skin. The
bone mineral crystals grow within the collagen fibrils and between the colla-
gen molecules (Figure 2.2 sub-nano)). These are the hydroxyapatite crystals,
Ca10(PO4)6(OH2). They have a plate-like shape with hexagonal symmetry
and are mainly responsible for the stiffness of the bone. The average lengths
and widths of the plates are 50× 25 nm and the crystal thickness is 2-3 nm.
The periodic arrangement of the collagen molecules and the bone crystals
form the mineralized collagen fibril.

Other ground substances are found in bone tissue. The proteoglycans
may modulate the collagen fibril assembly and control the location or rate of
mineralization ([Burr et al., 1998]). Other noncollagenous proteins, such as
osteocalcin, play an important role in the mineralization of new bone.

Finally, water is found in its free form in the calcified bone matrix
but also bound to other molecules.

In summary, bone tissue has a highly hierarchized material structure,
which is complex, multiphasic, heterogeneous and anisotropic. Depending
on the scale level of interest, it can be observed in various forms and each
of them depends on the local degree of maturation of the tissue. At the
macroscopic level, which is the level of interest in this study, bone is classi-
fied into cortical and trabecular bone. Both undergo continuous changes in
their structure, shape and composition, as a response to an adaptative pro-
cess known as bone remodelling. Four types of bone cells are responsible for
this adaptation. They allow for efficient repair and help to prevent fractures.
The basic bone cells and their functions are briefly described in the following
Subsection.

2.1.3 Bone cells and bone remodelling

During bone growth, like during our childhood, bones adapt their
shapes as a response to physiological needs or repeated physiological loads.
This process is referred to as bone modelling. It can be formative or resorp-
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tive ([Burr et al., 1998]). The ability of bone tissue to continuously renew
itself is called remodelling. It plays a fundamental role in microdamage re-
pair removing a portion of older bone and replacing it with newly formed
bone. This process prevents accumulation of fatigue damage that could lead
to fatigue fracture. Fracture healing only occurs during fracture repair (e.g.
[Doblaré et al., 2004]).

Bone remodelling usually takes place in Haversian systems of cortical
bone or on the surfaces of single trabeculae in trabecular bone. It is ac-
complished antagonistically by two types of bone cells: the osteoclasts and
osteoblasts. They work together in basic multicellular units, or BMUs (e.g.
[Frost, 1963]). A BMU is formed by about 10 osteoclasts and several hun-
dreds osteoblasts (Figure 2.3).

The osteoclasts, originating from the marrow, remove bone by dem-
ineralizing it with acid and cleaving collagen with enzymes. The osteoblasts,
partly created at the periostum layer, produce new bone.

osteoclast
osteoblast

unmineralized organic matrix

surrounding cortical bone

40μm/day

resorption cavity

Figure 2.3: Schematic diagram of the osteonal bone remodeling process (not to
scale). The osteoclasts remove bone followed by the osteoblasts which produce new
unmineralized bone. The cells complex is referred to as BMU.

The BMUs follow a well defined sequence, known as the activation,
resorption, and formation sequence (ARF ). Firstly, a biochemical or me-
chanical signal causes the osteoclasts to migrate. Secondly, they begin to
remove bone somewhere on the bone surface. In compact bone, they dig tun-
nels of about 200 μm in diameter through the cortex at a velocity of about
40 μm/day. When working on bone surfaces, they simply progress and re-
move bone material along these surfaces. Finally, once the osteoclasts have
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resorbed a certain amount of bone, the much smaller osteoblasts follow them,
replacing the removed tissue by an unmineralized organic matrix. They lay
down concentric lamellae at an average radial closure rate of 1-2 μm/day. In
humans, the resorption period is about 3 weeks and the formation or refilling
period is about 3 months. Thus, the total remodelling period is about 4
months.

The mineralization phase follows the ARF sequence, namely mineral
is deposited within and between the collagen fibers of the newly formed un-
mineralized tissue ([Landis, 1995]).

Two others types of bone cells, which result from the bone remodelling
process, must be mentioned. The bone lining cells are inactive osteoblasts
that remain on the surface of the bone once the formation period has stopped.
If needed, they can be reactivated by a biochemical or mechanical stimulus
and initiate a new ARF sequence. The osteocytes are former osteoblasts
that are buried in the bony matrix. Located in the resorption cavities and
interconnected with each other by the canaliculi, they form a dense network
which acts as a mechanical sensor that may control bone remodelling (Figure
2.1 b)).

The continuously renewed heterogeneous anisotropic composite struc-
ture of bone tissue confers it very interesting mechanical properties. They
are described in the following Section, with a focus on cortical bone.

2.2 Macroscopic mechanical properties of cor-
tical bone

It has been shown that the mechanical properties of bone tissue de-
pend strongly on the structural level of interest. For example [Reilly and
Burstein, 1975], measured a femoral tensile longitudinal elastic modulus in
the 17 GPa range (cortical bone). Microbending experiments carried out on
cortical bone specimens provided a modulus of 5.4 GPa ([Choi et al., 1990]).
Ascenzi and Bonucci examined the tensile properties of single osteons. For
osteons with a majority of fibers aligned with the long axis of the bone, they
measured a tensile elastic modulus of 12 GPa, whereas 5.5 GPa were found
for osteons with alternating lamellar orientations ([Ascenzi and Bonucci,
1967]). More recently, nanoindentation experiments done on single lamel-
lae of cortical bone reflected an elastic modulus in the 22 GPa range close to
the macroscopic value ([Rho et al., 1997, Zysset et al., 1999, Hengsberger et
al., 2001]). Similar experiments carried out on human trabecular bone lamel-
lae reflected an elastic modulus in the 11 GPa range ([Zysset et al., 1998]).
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Going much deeper into the structure of bone, the elastic modulus of the
apatite crystals is about 80 GPa and about 1.5 GPa for the collagen.

In order to understand the mechanical behaviour of bone tissue, it is
important to combine various experimental techniques, each having its own
resolution. The difficult task to reconcile the different material structures
and properties at the many different length scales still is to be done (e.g.
[Hengsberger et al., 2003]).

Much of the finite element studies to date (Chapter 7) still consider
bone tissue as a linear elastic material (e.g. [Crawford et al., 2003]).

In view of the scarcity of a satisfactory macroscopic constitutive model
for bone and adequate cyclic overloading experiments, this work is concerned
with a macroscopic description, formulation and identification of bone. The
emphasis is on cortical bone but we are confident the same model can be
used for trabecular bone.

2.2.1 Constitutive behaviour of cortical bone

The macroscopic mechanical properties of cortical bone vary greatly
with porosity, mineralization level and organization of the solid matrix. Their
values differ from one bone to another as well as within different regions of
the same bone ([Goldstein et al., 1983, Rho et al., 1995]).

[Currey, 2004] lists five important mechanical properties on which nat-
ural selection may be acting. The first is bone stiffness, which is directly
related to its elastic behaviour. The second is resilience or ability to ab-
sorb energy beyond the elastic limit or damage threshold and before rup-
ture. Within this range, bone will not necessarily break but undergo dam-
age, which leads to stiffness reduction and permanent strains. The third is
damage threshold stress, an important property defining the onset of damage
accumulation. It is usually determined in tension, compression or bending.
The fourth property which is directly related to the second one is toughness
or ability to prevent the formation and propagation of cracks. The fifth is
fatigue resistance, a particularly important requisite for all biological tissues
of the musculoskeletal system.

The most classical way to analyze and characterize the macroscopic
constitutive behaviour of cortical bone is to examine a typical uniaxial qua-
sistatic cyclic stress-strain curve. Figure 2.4 shows the typical tensile be-
haviour of cortical bone during cyclic loading. The experiment was carried
out under load control at a low stress rate and was provided by [Zioupos, 2002].

Just looking at Figure 2.4, we retained three principal deformation
modes in this thesis which should be included in any macroscopic quasistatic
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Figure 2.4: Typical quasistatic cyclic tensile stress-strain curve of cortical bone
(from [Zioupos, 2002]).

constitutive model for cortical bone.
The first mode is intact linear elasticity, abbreviated by (E). This

mode is clearly seen at the beginning of each new cycle and to a lower ex-
tent during the initial unloading phase (Figure 2.5). Bone cohesion may be
responsible for this mode.

The second mode is the damaging mode, abbreviated by (D). This
phase corresponds to the generation of microcracks (which leads to the stiff-
ness reduction seen in the reloading curves), to an energy dissipation (hys-
teresis loop area), and to permanent strains (loop feet strains) (Figure 2.5).
The observed permanent strains suggest that this mode is a plastic damaging
mode in addition to elastic damage.

The third mode, called plastic mode, is abbreviated by (P). It corre-
sponds to the damaged unloading and reloading curves and may be inter-
preted as a sliding with friction at the microcracks. A striking feature visible
in Figure 2.5 is that all damaged reloading curves are collinear with the
origin. To our knowledge, no other material possesses this remarkable prop-
erty. Its physiological or biomechanical consequence remains to be explained.
The piecewise linear behaviour of damaged bone has also been observed by
[Kotha and Guzelsu, 2003] and contrasted with the behaviour of undamaged
bone. [Keaveny et al., 1999] also pointed out similar features on their load-
unload-reload curves.

Applying this classification, these three deformation modes will con-
stitute the major ingredients of our constitutive laws for bone tissue.

A very similar behaviour is obtained with trabecular bone suggesting
that damage occurs at the nanometer scale of the collagen and hydroxyapa-
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Figure 2.5: Three hypothesized modes of deformation of cortical bone: (E) intact
linear elastic mode (D) damage mode (P) plastic mode. Note that all damaged
reloading curves are collinear with the origin.

tite ([Keaveny et al., 2001]). Damage in bone may be caused by shear failure
of the organic matrix, namely sliding of the collagen molecules or microfib-
rils on each other. Figure 2.6 shows the uniaxial compressive behaviour of
trabecular bone in a cyclic overloading situation. The main difference be-
tween the two types of bone lies in the damage mode. Due to pore collapse,
a softening of the stress occurs in the damaging mode. Furthermore, once
damage has been accumulated, the damage threshold is decreased as can be
seen in the subsequent cycle.

Suspecting similar microdamage mechanisms responsible for the dam-
aged behaviour of both compact and trabecular bone, we will use the same
damage model for both types of bone in our finite element simulations (Chap-
ter 7).

Only in a second step, viscous effects may be investigated. Even
though the mechanical properties of bone show differences from person to
person and from bone to bone, the qualitative aspect of a stress-strain curve
remains unchanged, keeping its characteristic features. We now briefly review
the principal mechanical properties of bone.

Densities

Bone is composed approximately of 43% of mineral phase, 32% of organic
phase and 25% of water. Being a porous material, various densities can be
defined. Volume fraction or structural density ρs is defined as the volume of
the bony matrix per unit of volume. Complementarily, porosity is defined as
(1−ρs). Cortical and trabecular bone tissue densities (mass per unit volume)
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Figure 2.6: Uniaxial compressive cyclic behaviour of trabecular bone (adapted
from [Keaveny et al., 1999]). Note that the damaged reloading is also collinear
with the origin.

are essentially constant at about 2 g/cm3. The apparent density ρa is defined
as the product of volume fraction and tissue density (or equivalently total
mass per unit volume of bone). A measure of the degree of mineralization is
given by the ash density. It reflects the concentration of the mineral phase
of the bone (weight of ash per unit volume).

Elastic properties

The elasticity of bone is its ability to fully and instantaneously recover
its initial shape after release of an applied load that did not exceed the
elastic limit. Various experimental techniques have been used to investi-
gate the elastic properties of cortical bone tissue. Beside the traditional
mechanical techniques such as uniaxial tensile or compressive testing (e.g.
[Reilly and Burstein, 1975]), torsion tests (e.g. [Jepsen and Davy, 1997]), bi-
axial testing (e.g. [Lakes et al., 1979]), or bending (e.g. [Currey, 1965]), ul-
trasonic technique is a useful method in measuring elastic properties of cor-
tical bone (e.g. [Lang, 1970, van Buskirk et al., 1981]). The advantage of
this method is the determination of the fully anisotropic elastic constants
within the same specimen. Microstructural heterogeneities and anisotropic
elastic properties can be measured with the nanoindentation technique (e.g.
[Hoffler et al., 2000a, Fan et al., 2001]). However, several concerns are raised
regarding nanoindentation tests. Indeed, the commonly used model of defor-
mation of an elastic half space by a rigid punch ([Sneddon, 1965, Oliver and
Pharr, 1992]) assumes an isotropic targeted material and must be adapted in
consequence ([Stroh, 1962, Lothe and Barnett, 1976, Vlassak and Nix, 1993,
Hay et al., 1999, Swadener and Pharr, 2001]).
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At the macroscopic level, the anisotropic elasticity of cortical bone
tissue is well approximated by transverse isotropic or orthotropic constitu-
tive relations ([van Buskirk and Ashman, 1981, Piekarski et al., 2004]). The
longitudinal elastic modulus of long bones is about 17.4 GPa for human bone
(20.4 GPa for bovine bone), whereas the transverse elastic modulus is about
9.6 GPa (and 11.7 GPa for bovine bone)([Cowin, 1989]). These values are
the same in tension and compression.

The effect of porosity and mineral content on the longitudinal elastic
modulus of compact bone has been studied, among others, by [Currey, 1988b].
He found that over 80% of the total variation in the elastic modulus is ex-
plained by these two variables and that the dependence is roughly cubic on
both volume fraction and calcium content. [Carter and Hayes, 1977b] found
that the elastic modulus of both compact and trabecular bone are closely re-
lated to the cube of the apparent wet bone density. The ash density probably
proportional to mineral content seems also to be a representative composi-
tional variable of bone tissue. A review of the different correlation relations
can be found in [Doblaré et al., 2004].

The role of collagen on the elastic properties of bone has been in-
vestigated by [Wang et al., 2001], by heating the bone, thus denaturating
the collagen within the bone. Their results indicate that the toughness and
strength of bone decrease significantly with increasing collagen denaturation,
whereas its elastic modulus is almost constant irrespective of collagen denat-
uration.

The elastic properties of trabecular bone tissue are more difficult to
measure than those of cortical bone. The extremely small dimensions of in-
dividual trabeculae set numerous technical difficulties. The apparent elastic
modulus of trabecular bone can vary over a wide range (roughly speaking
from 0.1 to 2000 MPa) ([Keaveny et al., 2001]). By the term apparent we
mean defined at the continuum (macroscopic) level. At this level, a rep-
resentative volume element containing a large number of trabeculae must
be tested (typically around 5×5×5 mm3). As for cortical bone, there are
no differences between the tensile and compressive elastic constants of tra-
becular bone ([Rohl et al., 1991]). Structural density relationships also hold
for the elasticity of trabecular bone. Approximating the longitudinal elastic
modulus by the general form ε=cρ p

a , [Hodgskinson and Currey, 1992] found
that the power p between the modulus and the apparent density is close to
two. Other structural relationships can be found in [Cowin, 2001]. Relation-
ships between the elastic constants and a fabric tensor that represents the
anisotropy of trabecular bone have been investigated by [Cowin, 1985]. An
alternative and attractive model that requires less independent parameters
was developed by [Zysset, 1994, Zysset and Curnier, 1995].
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Viscous properties

The viscous part of the mechanical viscoelastic behaviour of bone is respon-
sible for the dependency of stiffness on strain rate, the ability to dissipate
energy within the elastic range of deformation, and for phenomena such
as stress relaxation and creep behaviour found in both compact and tra-
becular bone. It has been shown that, at physiological strain rates, i.e.
rates as they occur during normal daily activities (∼ 1 Hz), bone tissue has
a weak dependence on strain rates ([McElhaney, 1966, Fondrk et al., 1988,
Fondrk et al., 1999b]). Elastic moduli are approximately proportional to the
strain rate raised to the 0.06 power ([Carter and Hayes, 1977b]). In the same
study, the stiffening effect due to the water content in compact bone or mar-
row in trabecular bone was shown to be small, except for high strain rates.

Various creep-fracture tests have been carried out on cortical bone
([Carter and Caler, 1983, Caler and Carter, 1989, Mauch et al., 1992]). The
three characteristic stages of creep exhibited by many materials are also ob-
served for bone (in tensile and compressive loadings). The effect of temper-
ature, stress and microstructure on the creep behaviour of compact bovine
bone was investigated by [Rimnac et al., 1993]. The viscoelastic and creep
properties of trabecular bone are similar to those of cortical bone ([Bowman
et al., 1994]).

In conclusion, viscoelastic effects of bone are of secondary importance
at physiological strain rates. Our constitutive model for cortical bone tissue
will thus consider a linear behaviour in the elastic range of deformation (it
may not be appropriate for impacts).

Overloading and failure properties

The damaged behaviour of cortical bone corresponds to the generation of
microcracks, (which leads to stiffness reduction), an energy dissipation, per-
manent strains and may result in its failure. The damage threshold stress
which coincides with the elastic limit or yield stress quantifies the onset of
damage behaviour. As in standard plasticity, the damage threshold or yield
point is mostly taken as the point where the stress-strain curve deviates
by a strain of 0.2% from the straight line describing the initial part of the
curve (e.g. [Currey, 1990]). Numerous studies show that damage threshold
stresses of compact bone tissue are different in tension and compression (e.g.
[Reilly and Burstein, 1975, Currey, 1990, Kotha and Guzelsu, 2003]). Their
mean values vary considerably from one author to another, but let us mention
the values of [Cowin, 1989] for an order of magnitude. For human femoral cor-
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tical bone, the tensile longitudinal damage threshold stress is about 115 MPa
and the compressive one about 182 MPa. For bovine femoral cortical bone,
the mentioned damage threshold stress values are 141 MPa in tension and
196 MPa in compression. Distinct tensile and compressive thresholds also
hold for trabecular bone (e.g. [Keaveny et al., 1999, Keaveny et al., 2001,
Rincón, 2003]). The recent study of [Bayraktar et al., 2004] indicates that
the elastic and the tensile and compressive yield properties of trabecular bone
at the tissue (microscopic) level are similar to those of cortical tissue.

Similar structural relations linking the apparent density to the elas-
tic modulus were found between the apparent density and the longitudi-
nal damage threshold stresses. The power law relating these two variables
is characterized by an exponent close to two ([Reilly and Burstein, 1975,
Currey, 1990]). However, these trends depend on the loading direction.

The maximal stress reached before failure in a monotonic loading, also
known as ultimate stress, is mostly slightly higher than the damage threshold
stress ([Currey, 1990]). This is mainly due to the damaged behaviour of cor-
tical bone which shows only a small hardening in that region, in tension as
well as in compression. The tensile longitudinal ultimate strains for femoral
human cortical bone are in the range of 3% (and 1.6% for bovine cortical
bone). The compressive longitudinal values are about 2.2% for human bone
and 2.5% for bovine bone ([Cowin, 1989]).

Fatigue properties

Another type of damage occurring in bone tissue and which results in a
degradation of its mechanical properties is fatigue damage (e.g. [Carter and
Hayes, 1977a, Pattin et al., 1996]). When periodically loaded in the labo-
ratory, bone experiences fatigue damage and may fail from it like any other
composite material (e.g. [Carter et al., 1976]). This behaviour can be at-
tributed to cumulative microcracking, debonding, void growth, and fiber
breakage. In living bone, fatigue damage accumulation has been postulated
as a stimulus to the bone remodelling response ([Martin and Burr, 1982,
Ramtani and Zidi, 2002]).

Fractures induced by fatigue damage accumulation are clinically called
stress fractures. They mostly occur in persons who have repetitive physical
activities such as soldiers, ballet dancers or joggers (e.g. [Burckhardt, 2004]).
It also occurs at lower activity levels in bones weakened by osteoporosis. If
the remodelling process is not sufficient to repair the accumulation of fatigue
microcracks, they can result in macrocracks leading to fracture.

Many experimental studies have investigated the fatigue strength be-
haviour of cortical bone (e.g. [Caler and Carter, 1989, Zioupos et al., 1996,
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Zioupos and Casinos, 1998, George and Vashishth, 2003]). The fracture mech-
anisms in bone tissue were recently examined by [Ritchie et al., 2004]. The
fatigue behaviour of trabecular bone shows similarities with that of cortical
bone ([Choi and Goldstein, 1992]). Therefore, it is plausible that cortical
bone properties can be used to predict the behaviour of trabecular bone
([Taylor et al., 2002]).

In this study, we do not consider damage accumulation mechanisms
due to fatigue. For modeling the mechanical behaviour of cortical bone tissue,
the accent is put on typical overloading situations including a low number
of tensile and/or compressive cycles. Nevertheless, we expect bone tissue
to exhibit similar mechanical properties degradations due to fatigue damage
and overloading damage.

2.2.2 Human and bovine cortical bone

Many of the forequoted biomechanical studies have been carried out
on bovine bone tissue. The main reason for this is that bovine bones are
larger and much more accessible than human bones. Therefore, it is quite
justified to ask if the corresponding results can be applied to human bone
tissue and if some useful conclusions or predictions can be drawn from those
studies.

From a structural standpoint, the differences between bovine and hu-
man cortical bone are primarily attributable to differences in maturation
rates (e.g. [Carter et al., 1976]). A bovine bone grows much faster than a
human bone. Indeed, in humans, full growth is not achieved until the age
of about 16 yr but cows are fully grown in only two years. In consequence,
the structure of bovine bone is fibrolamellar whereas that of human bone is
lamellar ([Currey, 2002]).

The compositions of human and bovine bones are similar. Different
degrees of mineralization can lead to slightly different shapes of the overload-
ing part of the stress-strain diagrams. By testing a wide variety of animals,
[Currey, 1990] showed that in highly mineralized specimens the stress-strain
curve is almost flat in the overloading region. The less mineralized specimens
were characterized by a quite marked hardening in that region.

By comparing the studies of human and bovine bone, we conclude
that even if the microstructure and composition may vary between human
and bovine bones, the mechanical behaviour of these tissues is qualitatively
similar. In consequence, as bovine bone tissue is of easy access, it is rea-
sonable to investigate it first and to model its constitutive behaviour. In a
second step, the model should be adjusted to human bone tissue, based on
novel tests with human bone specimens.
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2.2.3 Age-related and disease effects

When the balance between bone apposition and bone resorption is
no longer respected (due to age, sex hormone deficiency in women, other
hormonal disorders, calcium or vitamin D deficiency), the quantity of bone
is substantially reduced. It may result in a net loss of bone substance and
a deterioration of its microarchitecture. As a consequence, the mechanical
properties of pathologic bones are greatly altered ([Seeman, 2002]).

There is a large number of diseases affecting bone quality. One of them
is osteoporosis which results in a significant bone loss. Osteoporotic bone is
much more porous and thus more fragile and subject to fractures than nor-
mal (healthy) bone. Another pathology affecting bone tissue is osteopetrosis.
It is a disease caused by an inability to produce sufficient osteoclasts. Thus,
normal resorption and remodelling cannot occur, resulting in much harder
and denser bones than usual.

Age-related changes in the mechanical properties of bone are of great
importance in understanding bone fragility and age-related fractures. Both
cortical and trabecular bone from young adults show significantly higher elas-
tic moduli than the tissues from older adults ([Guo, 2001]). The strength and
the modulus of elasticity decrease after maturation by approximately 2% per
decade ([Burstein et al., 1976]). The mechanical properties of bone tissue
were explored at the lamellar level by [Hoffler et al., 2000b]. Their results
suggest that the elastic modulus and hardness of bone lamellae are indepen-
dent of age and gender. Therefore, the age and gender-related decrease in
mechanical integrity observed at the macroscopic level may not involve nec-
essarily alterations at the microstructural level.

Age-related and disease effects on the quality of bone tissue are cur-
rently the object of intensive investigations. Biomechanical testing is an
essential tool for assessing bone quality. For example, it proves to be spe-
cially useful for all drug therapy investigations which intend to prevent bone
fractures (e.g. [Hengsberger, 2002]).

2.3 Constitutive models for bone tissue

As described in the previous Section, damage accumulation is a criti-
cal component of the fracture process in bone under monotonic, cyclic, creep,
and fatigue loading conditions. However, our understanding of damage is in-
complete. A wide range of constitutive damage models have been developed
for different classes of materials (e.g. [Lemaitre and Chaboche, 1985, Simo
and Ju, 1987, Lubarda and Krajcinovic, 2000, Carol et al., 2001b]).
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One important issue when modeling a damageable material is the
choice of the damage variable quantifying its alteration ([Krajcinovic, 1998]).
The most common estimate of damage accumulation is to measure its stiffness
degradation. The elastic moduli of a cracked solid have been determined by
[Budiansky and O’Connell, 1976]. Alternative measures of the damage pro-
cess in cortical bone were investigated by [Jepsen and Davy, 1997]. Their
results suggest that the reduction in torsional properties are better measures
of the damage process than reduction in either damage threshold stress or
modulus in traction.

The problem of finding an appropriate damage measure is not sim-
ple, even for isotropic materials. Indeed, materials which show an isotropic
material response in the elastic regime often exhibit anisotropic character-
istics in the inelastic regime. The development and growth of cracks and
voids can undoubtly induce anisotropy in the mechanical behaviour of the
material. To describe this effect realistically, the underlying model must be
able to reproduce these anisotropies. In the context of continuum damage
mechanics, this leads to the introduction of high order tensorial damage vari-
ables (e.g. second-order or even fourth-order damage tensors). Even if it is
not very realistic, only "isotropic" damage will be considered in this study
for simplicity. It will be formulated in its simplest form, namely in terms of
a single scalar variable representing the stiffness reduction of cortical bone
tissue (e.g. [Lemaitre, 1996]).

Let us now describe some constitutive models which have been devel-
oped and which could or have been applied to cortical bone tissue.

2.3.1 Composite models

In an early attempt to model bone tissue, [Piekarski, 1973] viewed it
as a composite material. He applied the underlying theory to bone with var-
ious contents of mineral and organic phases. However, this model could not
satisfactorily explain the elasticity and the anisotropy of bone.

Damage mechanics, incorporating anisotropic elasto-plasticity and ani-
sotropic elastic degradation, was applied to the composite nature of concrete
by [Ortiz, 1985]. Interestingly, it delivered a very similar constitutive be-
haviour to that of bone tissue. Damage mechanics was also applied to com-
posite laminates ([Allix et al., 1987]) and several elastic plastic damage con-
stitutive models were more recently developed for composite materials (e.g.
[Matzenmiller et al., 1995, Oller et al., 1996, Voyiadjis and Deliktas, 2000,
Chaboche et al., 2001]). Recently, a simplified hierarchical model of bio-
composites including mineral platelets and a protein matrix was developed
([Jäger and Fratzl, 2000, Gao et al., 2003]). They showed that the nanome-
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ter size of the mineral platelets in bone may be the result of fracture strength
optimization. However, the composition of bone tissue is more complex than
most engineering composites. Thus, none of these models could satisfactorily
explain the nonlinear macroscopic mechanical behaviour of bone for arbitrary
loading conditions.

2.3.2 Microplane models

An interesting alternative to describe the anisotropic behaviour of a
material is given by the microplane theory (e.g. [Carol and Bazant, 1997]). In
that framework, the constitutive equations between single stress and strain
components are formulated on individual microplanes at a material point.
Most microplane models are based on the formulation of phenomenological
microplane constitutive laws with parameters which are difficult to identify
experimentally. The microplane model was formulated in a thermodynami-
cally consistent way by [Carol et al., 2001a]. In addition, [Kuhl et al., 2001]
presented a technique to derive microplane constitutive equations in a ther-
modynamically consistent way. In an attempt to link the micro and macro
material scales, the microplane damage parameters have been adjusted to
macroscopic damage laws by [Leukart and Ramm, 2003]. To our knowledge,
microplane theory has not yet been applied to bone tissue, but deserves our
attention.

2.3.3 Specific models

One of the most successful model to date in describing the mechanical
behaviour of cortical bone tissue in cyclic overloading conditions is due to
[Fondrk et al., 1999a]. The model is based on two internal state variables
and successfully reproduces the tensile behaviour of compact bone under
arbitrary loading conditions. However, the interpretation and experimen-
tal identification of the internal state variables is delicate. Furthermore, it
includes only the axial tensile behaviour of bone and is unable to take into ac-
count a distinct compressive behaviour. A three-dimensional generalization
of the model, specially useful for any finite element analysis, is also missing.

Another interesting attempt in modelling bone tissue is due to [Kraj-
cinovic et al., 1987]. In their simple microstructural model, damage is quan-
tified by the ratio between the number of pulled-out osteons and the total
number of osteons. This model allows for some useful insights into micro-
damage mechanisms.

The cumulative damage model for bone fracture proposed by [Carter
and Caler, 1985] is derived from tests in cyclic fatigue loading, and also in
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monotonic tensile loading. In this model, a certain amount of damage is
necessary to fracture bone, and the rate of damage accumulation is related
to some high power of the damage threshold stress. The predictions of the
model deliver fairly good results for creep and strain rate experiments. How-
ever, it is unable to describe correctly the loading, unloading and reloading
sequence observed in overloading experiments.

Further one-dimensional models for bone tissue are proposed by [Rincón
et al., 2001] and [Zysset, 2002]. Both models combine linear viscoelasticity
with plasticity and damage but do not describe satisfactorily the damaged
behaviour of bone.

A damage constitutive law based on the generalized standard materi-
als formalism has been developed for trabecular bone by [Zysset, 1994]. In
the same work, the law is successfully generalized in 3D, using a model based
on fabric tensors characterizing the local trabecular morphology. The model
may be applied to cortical bone tissue but it does not take into account an
anisotropic damage surface with different properties in tension and compres-
sion. Furthermore, the piecewise linear behaviour observed in damaged bone
is not included in this model (Subsection 2.2.1).

A three-dimensional model for brittle elastic solids with unequal ten-
sile and compressive strengths has been developed by [Lubarda et al., 1994].
The different response in tension and compression of a brittle material is
modeled by introducing positive and negative stress and strain operators.
However, bone is not a completely brittle material. The damaged deforma-
tion mode following the nearly linear elastic part of a tensile stress-strain
curve (Figure 2.4) exhibits rather a ductile behaviour.

Bone damage criteria

Various criteria have been developed in modeling the constitutive behaviour
of different classes of materials. Let us mention some important criteria
which may be applied to cortical bone.

The Tresca and von Mises criteria are isotropic criteria traditionally
used to predict yielding of ductile materials like metals. If used as damage
threshold criteria, they also assume equal damage threshold stresses in ten-
sion and compression, which is not very realistic for bone tissue.

An anisotropic generalization of the Mises criterion is due to [Hill, 1950].
Unfortunately, the quadratic Hill criterion also assumes equal tensile and
compressive strengths. Further criteria applied in the field of anisotropic
plasticity have been studied by [Rogers, 1987] and by [Spencer, 1993, Voyi-
adjis and Thiagarajan, 1995] for the case of fibre-reinforced materials.

The Mohr-Coulomb conical criterion is an isotropic damage criterion
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which is commonly used for materials with different behaviour in tension and
compression. It depends on the mean stress and has been applied to soils,
rocks, and concrete. [Hoffman, 1967] proposed a fracture criterion for brittle
materials that also takes into account different strengths in tension and com-
pression. Nevertheless, Hoffman’s criterion is also an isotropic criterion and
thus unsuitable for bone tissue. More recently, [Ferrari and Granik, 1995]
developed a more general criterion with also distinct tensile and compressive
thresholds. Unfortunately, it is not convex a priori and may be not ther-
modynamically consistent. Recently, a method for defining general implicit
orthotropic yield criterion has been formulated by [Oller et al., 2003].

The Tsai-Wu quadratic criterion was originally developed for fibre-
reinforced composite materials by [Tsai and Wu, 1971]. It is a generalization
of Hill’s anisotropic criterion and accounts for different tensile and compres-
sive damage threshold stresses, as well as interactions between the strengths
under different loading conditions. The criterion is expressed in terms of the
stress tensor and two material dependent tensors. The different behaviour in
tension and compression is mainly achieved by translating Hill’s anisotropic
damage surface in stress space. Unfortunately, the Tsai-Wu criterion is de-
fined by a high number of material constants. In particular, three interaction
coefficients between normal stresses are difficult to identify on experimental
grounds (i.e. biaxial testing, e.g. [Rincón, 2003]).

In order to reduce the number of constants of the Tsai-Wu criterion,
[Cowin, 1986] proposed a fracture criterion applicable to porous and/or com-
posite materials. Cowin’s criterion is formulated in stress space and is based
on the properties of the homogenized microstructure. It depends on the
stress state, the porosity of the underlying material, and on the fabric tensor
reflecting the microstructural morphology. The main drawback of this crite-
rion is the difficulty of determining all parameters involved.

An alternative criterion for bone tissue also based on fabric and poros-
ity is due to [Pietruszczak et al., 1999]. It is formulated in terms of the first,
second, and third stress invariant. Unfortunately, it does not predict failure
of bone under hydrostatic compression.

Recently, an interesting multiaxial yield and failure criterion has been
successfully identified for human trabecular bone ([Rincón, 2003, Zysset
and Rincón, 2005])). The criterion is expressed in terms of the stress ten-
sor. It combines an halfspacewise definition of Hill’s criterion for anisotropy
([Curnier et al., 1995]) and an alternative porosity and fabric dependence of
the criterion for reducing the number of necessary constants ([Zysset, 1994,
Zysset and Curnier, 1995]). If we assume a similar constitutive behaviour
for trabecular and cortical bone, this makes it an attractive candidate for an
anisotropic damage criterion for cortical bone tissue.
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In spite of the large number of models and the lack of agreement be-
tween different studies on bone biomechanics, priorities must be set in any
modelling process. Let us now describe some important ingredients which
should be included in a constitutive law for bone tissue.

Requirements for a constitutive law for cortical bone

We retained four basic requirements for a constitutive law for cortical bone.

1. It should be based on simple mechanical principles and formulated in a
thermodynamically consistent way. Doing so, it should provide a coherent
and comprehensive interpretation of the observed behaviours. Effects
such as mechanical properties degradation, increased energy dissipation,
and damage accumulation processes should be clarified this way.

2. It should reproduce with accuracy a broad sample of experimental records.
By the word broad we do not mean all types of experiments. The model
should predict only the effects it is accounting for. For example, a con-
stitutive model intended to describe the quasistatic behaviour of cortical
bone can hardly be applied to impact studies involving high strain rates.
In our case, the model is intended to explain the overloading behaviour
of bone at physiological strain rates for arbitrary proportional loading
conditions. It should be able to reproduce the elastic degradation and
development of permanent residual strains after overloading. Further-
more, in cyclic overloading experiments, the reloading stress-strain curve
should have a short initial nonlinear region with a tangent modulus sim-
ilar to that of the undamaged material (Figure 2.4). This should be
followed by an approximately linear region with a reduced or damaged
modulus (collinear with the origin). The reloading curve should approach
the extrapolated envelope of the original loading curve. The model should
display elements of both metal-type plasticity and brittle-type damage.

3. Its material constants should be measurable and identifiable on experi-
mental grounds. The model should be as simple as possible and based on
a minimal set of material parameters. The determination of the constants
should imply a minimal set of mutually independent feasible mechanical
experiments.

4. It should be suitable in any computational implementation. In particular,
its implementation in a finite element code must be efficient and compu-
tationally inexpensive.





Chapter 3

Theoretical solid mechanics
background

The objective of this Chapter is to define the theoretical framework
and to recall the general concepts used throughout this work. First, a brief
review of continuum mechanics is given. Then, the methods of thermostatics
and the formalism of generalized standard materials are presented. Finally,
basic rheological behaviours and their underlying mathematical models are
explicited. They will serve as a basis for the new constitutive laws for cortical
bone.

3.1 Continuum mechanics framework

The motion of macroscopic deformable bodies can be described in
the framework of continuum mechanics. The main assumption is to con-
sider sufficiently large bodies with respect to their microscopic structure.
Then, the fundamental law of dynamics governing the motion of the body
can be deduced from the principle of virtual power (e.g. [Germain, 1995,
Curnier, 2005]).

In this Section, we first define the strain and stress measures used
in this study. Then the principle of virtual power and the formulation of a
general problem in continuum mechanics are stated.

3.1.1 Strain measures

Let � be a solid body formed by a set of particles which occupy a
portion Ω of the space R3 at time t = 0. If each particle composing the solid
is labelled by a vector x expressed in a reference frame {e1, e2, e3} (Figure

31
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3.1), then a body is defined as:

� ≡ Ω := {x = xiei, i = 1, 2, 3 | conditions defining the body } ⊂ R
3

The deformed or present configuration of the solid, denoted as Ωt, is defined
by:

Ωt := {y = yiei, i = 1, 2, 3} ⊂ R
3

The function y : Ω× R+ → Ωt

y = y(x, t) with y(x, 0) = x (3.1)

is the motion or deformation of the body (Lagrangian description). Thus,
the displacement of the particle x at time t is given by:

u = u(x, t) := y(x, t)− x (3.2)

e1

e2

e3

Ω

∂Ω

Ωt

∂Ωt

dx

dy
x

y(x, t)

u(x, t)

t = 0

t > 0

Figure 3.1: Reference and present configuration used in the Lagrangian descrip-
tion.

The transformation of an original material fiber dx is determined by the
deformation gradient F:

dy = F dx ⇐⇒ F = F(x, t) := ∇x y =
∂y

∂x
(x, t) (3.3)
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Therefore, F is a measure of local transformations (rotations and deforma-
tions) in the solid.
Local changes of volume are given by the jacobian of the transformation:

J = J(x, t) := det F (3.4)

In order to avoid a collapse of the body or its explosion, we impose the
restrictions

0 < J < +∞
The displacement gradient is defined by:

H = H(x, t) :=
∂u

∂x
(x, t) = F− I (3.5)

The (right Cauchy-Green) material metric tensor C = FTF allows to com-
pute the changes of angle and length between material fibers:

dy′ · dy = dx′ ·C dx (3.6)

with (·) the usual vector scalar product.
As C ≡ I in a rigid body motion (implying no deformation of the body), we
define an adequate measure of deformation, the symmetric Green-St Venant
(Lagrangian) material strain tensor :

E = E(x, t) :=
1

2
(C− I) (3.7)

It has the advantage of being objective (invariant in a rigid body motion)
and to vanish when F ≡ I.
For small transformations (F 
 I), we have:

E 
 1

2
(HT + H) (3.8)

3.1.2 Stress measures

Let us assume that the body � is subject to only two types of external
forces: body forces and contact forces.
In the material nominal description, we define the resultant body force gt

acting on the solid at time t by:

gt(Ω, t) :=

∫
Ω

gt(x, t) dV (3.9)
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and the resultant contact force p by:

p(∂Ω, t) :=

∫
∂Ω

p(x, t,n(x)) dA (3.10)

where p(x, t,n(x)) is the nominal stress vector acting on the element surface
dA of outward normal n(x). Finally, we define the inertial forces associated
to the body:

m̈t(Ω, t) :=

∫
Ω

ÿ(x, t)ρ(x, t) dV (3.11)

with ρ(x, t) the density of the solid.
Thus, the equilibrium of the forces acting on the solid can be written as:

m̈t(Ω, t) = gt(Ω, t) + p(∂Ω, t)

The equilibrium remains satisfied for any portion ω ⊆ Ω:

m̈t(ω, t) = gt(ω, t) + p(∂ω, t) (3.12)

Cauchy’s theorem, (e.g. [Curnier, 2005]), states that for any particle of the
solid there exists a first nominal Piola-Kirchhoff stress tensor P, implicitly
defined by:

p(x, t,n(x)) =: P(x, t)n(x) (3.13)

Thus, the forces equilibrium can be expressed in local form:

ρ(x, t)ÿ(x, t) = div P(x, t) + gt(x, t) ∀x ∈ Ω (3.14)

The equilibrium of the moments around the origin associated to the inertial
forces, body forces and contact forces is satisfied for any portion ω ⊆ Ω:∫

ω

y(x, t)× ÿ(x, t)ρ(x, t) dV =∫
ω

y(x, t)× gt(x, t) dV +

∫
∂ω

y(x, t)× p(x, t,n(x)) dA

(3.15)

and in local form:

P(x, t)FT(x, t) = PT (x, t)F(x, t) ∀x ∈ Ω (3.16)

The symmetric and objective second material Piola-Kirchhoff stress tensor
S is defined by:

S = S(x, t) := F−1(x, t)P(x, t) (3.17)
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The local moment equilibrium (3.16) corresponds to the symmetry of S:

S(x, t) = ST(x, t) ∀x ∈ Ω (3.18)

Finally, we define the symmetric spatial Cauchy stress tensor T in the actual
configuration by:

T = T(y, t) := J−1(y, t)P(y−1(y, t), t)FT(y, t) (3.19)

For small transformations (F 
 I), the three measures of stress coincide:

P(x, t) 
 S(x, t) 
 T(y(x, t), t)

3.1.3 Principle of virtual power

It can be shown (e.g. [Curnier, 2005]), that the internal power of
deformation P int associated to the internal efforts acting on an arbitrary
portion ω ⊆ Ω is given by:

P int =

∫
ω

P : Ḟ dV =

∫
ω

S : Ė dV =

∫
ω

JT : D dV (3.20)

with D = 1
2
(ḞF−1 + F−TḞT) and (:) the second-order tensor scalar product

defined in Appendix A. The stress P is said conjugate (or dual) to the strain
F (or H) in the sense that the product P : Ḟ (or P : Ḣ) represents the stress
power at the strain rate Ḟ (or Ḣ). The same statement holds between the
variables S, E and JT,

∫
D dt, respectively.

The principle of virtual power ([Germain, 1973, Germain, 1995]) states that

i) the internal power of deformation vanishes for any rigid body motion

ii) for any virtual motion, we have:

P̊ inertia(t) + P̊ int(t) = P̊ ext(t) (3.21)

where P inertia and P ext are the inertial and external powers of defor-
mation, respectively, and the circle denotes a power developed along a
virtual motion.

The two fundamental laws of solid dynamics can then be derived from this
principle.
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3.1.4 Vector notation

The second-order strain tensor E and the material stress tensor S are
symmetric. Therefore, they consist of only six independent components and
can be represented as vectors of R

6, using the following convention:

E =

⎛
⎜⎜⎜⎜⎜⎜⎝

E11

E22

E33√
2E23√
2E31√
2E12

⎞
⎟⎟⎟⎟⎟⎟⎠ and S =

⎛
⎜⎜⎜⎜⎜⎜⎝

S11

S22

S33√
2S23√
2S31√
2S12

⎞
⎟⎟⎟⎟⎟⎟⎠ (3.22)

The coefficients
√

2 ensure that the scalar product and the dyadic product
are preserved in this new notation.
The fourth-order elasticity (or tangent inelasticity) tensors having major and
minor symmetries are represented by symmetric 6 × 6 matrices with 21 in-
dependent components. Later on, the elasticity tensors of an hyperelastic
material will be represented in this way.

3.1.5 Problem statement

In summary, we can formulate a general problem of continuum me-
chanics in the following way.
Given the initial configuration of a solid body

Ω ⊂ R
3 , ∂Ω ≡ Γy ∪ Γp

the functions
ρ(x), P(x, t), gt(x, t) ∀x ∈ Ω

the initial and boundary conditions

y(x, 0) = x ∀x ∈ Ω
ẏ(x, 0) = v0(x) ∀x ∈ Ω
y(x, t) = ȳ(x, t) ∀x ∈ Γy

P(x, t)n(x) = p̄(x, t) ∀x ∈ Γp

find the motion y : (x, t) �→ y(x, t) such that∫
Ω

ẙ(x, t) · (ρ(x)ÿ(x, t)− gt(x, t)
)

dV +

+

∫
Ω

∇ẙ(x, t) : P(x, t) dV =

∫
Γp

ẙ(x, t) · p̄(x, t) dA
(3.23)
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for any virtual velocity ẙ such that ẙ = 0 on Γy.
Equation (3.23) is the weak form of the differential dynamic equation (3.14)
or the principle of virtual power.

Assumed to be given, the functions ρ(x) and P(x, t) characterize the
actual state of the constituent material. The major goal of this study is to
develop an adequate constitutive law for cortical bone. Such a law relates the
current stress state in the body P(x, t) to other quantities such as the strain
F(x, t) and its rate Ḟ(x, t) known as the state variables. If necessary, these
variables must take into account the past history of the mechanical state of
the body.
It is important to formulate a constitutive law which is objective (invariant
under any change of reference frame). That is the reason why we privilege a
formulation of the law in terms of S(E) rather than P(F) for example.

In the next Section, we present how to formulate a realistic constitu-
tive law with help of the two principles of thermodynamics. It will serve as
a basis for the development of the constitutive laws for cortical bone.

3.2 Thermostatics framework

In contrast with statistical mechanics, thermodynamics is a phenome-
nological theory that tries to find the relations between observed macroscopic
properties, without trying to find their microscopic origin. These measurable
properties arise from averages done over of a very large number of identical
microsystems (typically 1010 for a solid). To simplify the discussion, we
consider only thermomechanical properties and not chemical or electrical
properties. The axioms, rules and methods of thermodynamics are justified
by the agreement between its theoretical predictions and the experimentally
observed results.

Only a few macroscopic quantities like strains survive after this spatio-
temporal averaging process. We call them mechanical variables. Conversely,
most of the microscopic quantities have no effect on the macroscopic descrip-
tion of the system. However, these microscopic quantities that are occulted
during the average process may have an influence at the macroscopic level
through new macroscopic measurable quantities such as the temperature for
example. They are called thermodynamical variables.

In order to describe the constitutive behaviour of a certain class of
materials, let us focus on one representative element system of a continuum
medium, assumed to be so small that, within it, the state variables (mechan-
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ical and thermodynamical) may be considered to be uniform although they
differ from element to element. Furthermore, let us assume that the state
of such a system is described by a set of mutually independent mechanical
variables and by only one thermodynamical variable. The models described
here are, for simplicity, described in terms of small strain theory and are
expressed in terms of Cartesian tensors.

The approach used here is close to that used in the books by [Ziegler,
1983, Germain, 1995, Maugin, 1999] and the review articles by [Collins and
Houlsby, 1997, Houlsby and Puzrin, 2000, Puzrin and Houlsby, 2001, Houlsby
and Puzrin, 2002].

The strain tensor E will be the privileged state variable describing the
element system. As thermodynamical variable we can choose the entropy S
of the element system or alternatively its temperature T . In many materials
the independent state variables E and S suffice to determine its state. But
the study of dissipative materials usually require the introduction of internal
state variables that account for the past history of the system. Such variables
like the plastic strain tensor Ep for plastic materials or the damage variable
D for damaging materials must be added to the list of the mechanical vari-
ables.

For clarity of the report, let us assume that the equilibrium states are
entirely determined by the set of mechanical variables (E,Ep, D) and by the
entropy S. Furthermore, we assume a quasistatic evolution of the system in
the sense that every evolution is considered as a series of equilibrium states.
Let us note that the time derivatives of the state variables do not appear in
the definition of the state.

3.2.1 First and second principles of thermodynamics

The first principle of thermodynamics in its local form states that
there is a convex state function, called the internal energy U = U(S,E,Ep, D),
such that

U̇ = S : Ė + P ext
Q (t) (3.24)

where S is the total stress tensor and P ext
Q is the heat supply to the element

of volume. U represents the internal energy per unit volume and we assume
no chemical exchanges.
As U is a state function, it exists:

− T ∈ ∂SU
− Sp

U ∈ −∂EpU
− W D

U
∈ −∂DU

(3.25)
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such that
U̇ = T Ṡ +∇EU : Ė− Sp

U
: Ėp −W D

U
Ḋ (3.26)

where ∇EU ∈ ∂EU is a subgradient of U with respect to E. The state
function values T , Sp

U and W D
U

are given by the so-called state laws (3.25)
and are in this case the temperature, the plastic stress and the damage energy,
respectively.

In the case of non-differentiability of the internal energy, the partial
derivatives must be calculated with the formalism of convex analysis (e.g.
[Rockafellar, 1970, Curnier, 2001]). The set belonging symbols are justified
by potentially multi-valued derivative results. If U is differentiable, they are
replaced by simple equalities.

The state laws play the role of the generalized forces (dual variables)
associated to the state variables (primal variables) in the sense of developed
powers. Combining equations (3.24) and (3.26) we have:

U̇ = T Ṡ +∇EU : Ė− Sp
U

: Ėp −W D

U
Ḋ = S : Ė + P ext

Q (t) (3.27)

The second principle of thermodynamics states that in the absence of
external heat supply (P ext

Q ≡ 0) the entropy rate always is a non-negative
function

Ṡ =: I(t) ≥ 0 (3.28)

defined as the internal entropy production.
Together with equation (3.27), we have

I(t) =
1

T

{
(S−∇EU) : Ė + Sp

U
: Ėp + W D

U
Ḋ
} ≥ 0 (3.29)

Let us define the elastic stress deriving from U by:

Se
U

:= ∇EU (3.30)

and the viscous stress deriving from U by:

Sv
U := S− Se

U (3.31)

Therefore, the internal entropy production and the second principle
can be written as:

I(t) =
1

T

{
Sv

U : Ė + Sp
U : Ėp + W D

U Ḋ
} ≥ 0 (3.32)

Let us define the mechanical dissipation ϕ as:

ϕ(Ė, Ėp, Ḋ,S,E,Ep, D) := TI(t) = Sv
U

: Ė + Sp
U

: Ėp + W D

U
Ḋ (3.33)
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Assuming that the temperature is a positive quantity, the mechanical dissi-
pation satisfies

ϕ = Sv
U

: Ė + Sp
U

: Ėp + W D

U
Ḋ ≥ 0 (3.34)

Furthermore, the mechanical dissipation vanishes at the origin (Ė = 0, Ėp =
0, Ḋ = 0).

Instead of using the internal energy as thermodynamical potential, it
is equivalent to use the free energy Ψ of the element system. They are related
through a partial Legendre transform:

Ψ = U − TS (3.35)

In this formulation, the temperature plays the role of the thermodynami-
cal variable: Ψ = Ψ(T,E,Ep, D). The state functions are then obtained by
derivation of the free energy potential.
In the case of isothermal processes, the temperature does not appear explic-
itly in the free energy potential.

In summary, the internal energy U or the free energy potential Ψ
allows to define the state laws as functions of the state variables. A non-
negative mechanical dissipation guarantees that the second principle of ther-
modynamics is satisfied. However, the evolution of the internal state variables
Ep and D remains undetermined. To compensate for this lack, we must in-
troduce the generalized dissipative forces associated to the rates of the state
variables Ė, Ėp and Ḋ.

3.2.2 Dissipation potential

Following [Moreau, 1970], let us admit the existence of a potential,
called the dissipation potential Φ, depending on the rates of the state vari-
ables Ė, Ėp, Ḋ and eventually on the state variables as parameters:

Φ = Φ(Ė, Ėp, Ḋ ; S,E,Ep, D) (3.36)

Furthermore, let us assume that Φ is convex in Ė, Ėp and Ḋ, non-negative
and zero at the origin in the rate variables space. The variables appearing
after the semicolon symbol (;) in the list of arguments of Φ are taken as
parameters.
The generalized dissipative forces Sv

Φ,Sp
Φ and W D

Φ associated to Ė, Ėp and Ḋ
are respectively defined by the complementary laws:

Sv
Φ ∈ ∂ĖΦ and Sp

Φ ∈ ∂ĖpΦ and W D

Φ ∈ ∂ḊΦ (3.37)
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Although not fully general, complementary laws deriving from a dissipation
potential define a fairly broad class of material behaviour, the so-called gener-
alized standard materials ([Halphen and Nguyen, 1974, Halphen and Nguyen,
1975]).

The complementary laws can be expressed as flow rules of the inter-
nal variables by taking the Legendre-Fenchel transform of the dissipation
potential:

Φ∗(Sv
Φ,Sp

Φ, W D

Φ ; S,E,Ep, D) := sup
Ė,Ėp,Ḋ

[
Sv

Φ : Ė + Sp
Φ : Ėp + W D

Φ Ḋ+

− Φ(Ėp, Ḋ ; S,E,Ep, D)
] (3.38)

Expressed in terms of the dual dissipation potential Φ∗, the complementary
laws take the form

Ė ∈ ∂Sv
Φ
Φ∗ and Ėp ∈ ∂Sp

Φ
Φ∗ and Ḋ ∈ ∂W D

Φ
Φ∗ (3.39)

In order to determine uniquely the constitutive behaviour of the ele-
ment system (in particular of its internal state variables), the formalism of
generalized standard materials also called hypothesis of normal dissipativity
provides a systematic method for deriving simple constitutive behaviours. It
links the mechanical dissipation ϕ to the dissipation potential Φ by finding

Sv ≡ Sv
U ∩ Sv

Φ and Sp ≡ Sp
U ∩ Sp

Φ and W D ≡W D

U ∩W D

Φ (3.40)

Remark 3.1 The conditions of convexity of Φ (or equivalently of Φ∗), of
non-negativeness and to be zero at the origin together with the assumption of
normal dissipativity guarantee that the second principle of thermodynamics
is satisfied a priori.

To see it, let us assume that Φ is convex in Ėp and Ḋ. Then

Φ(Ė1, Ė
p
1, Ḋ1) ≥ Φ(Ė0, Ė

p
0, Ḋ0) + ∂ĖΦ(Ė0, Ė

p
0, Ḋ0) : (Ė1 − Ė0)+

+ ∂ĖpΦ(Ė0, Ė
p
0, Ḋ0) : (Ėp

1 − Ėp
0)+

+ ∂ḊΦ(Ė0, Ė
p
0, Ḋ0)(Ḋ1 − Ḋ0) ∀ Ė0, Ė1, Ė

p
0, Ė

p
1, Ḋ0, Ḋ1

where the parametric dependence on the state variables has been omitted for
clarity. If we choose Ė1 = 0, Ėp

1 = 0 and Ḋ1 = 0, we have:

0 ≥ Φ(Ė0, Ė
p
0, Ḋ0)− Sv

Φ : Ė0 − Sp
Φ : Ėp

0 −W D

Φ Ḋ0 ∀ Ė0, Ė
p
0, Ḋ0

as Φ(0, 0, 0) = 0 by hypothesis. The assumption of normal dissipativity
allows us to write:

0 ≥ Φ(Ė0, Ė
p
0, Ḋ0)− ϕ(Ė0, Ė

p
0, Ḋ0)
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Finally, the non-negativeness of the dissipation potential leads to:

ϕ(Ė0, Ė
p
0, Ḋ0) ≥ Φ(Ė0, Ė

p
0, Ḋ0) ≥ 0 ∀ Ė0, Ė

p
0, Ḋ0

Thus, the second principle is satisfied.

Remark 3.2 Convexity of Φ is sufficient but not necessary for defining its
conjugate Φ∗. Indeed, the Legendre-Fenchel transformation remains mean-
ingful provided the function Φ is finite at least at one point and minorised
by an affine function (e.g. [Hiriart-Urruty and Lemaréchal, 1996, Curnier,
2001]). [Panagiotopoulos, 1981] examined the case of non-convex potentials.

Remark 3.3 The existence of Φ is related to the symmetry of the generalized
dissipative forces with respect to the flow variables ([Curnier, 2005]).

Remark 3.4 When the dissipation potential depends on the velocities alone
(Φ = Φ(Ė, Ėp, Ḋ)), the dissipation surfaces Φ = Φ0 are stationary in veloci-
ties space. This is no longer true when Φ depends also on the state variables
as parameters (Φ = Φ(Ė, Ėp, Ḋ ; S,E,Ep, D)). In that case, the potential
or the dissipation surfaces must be considered at a given time t and all con-
clusions deriving from the generalized standard materials formalism remain
unaffected ([Ziegler et al., 1974, Ziegler, 1983]).

In summary, the state and the quasistatic evolution of the element
system is completely determined by two thermodynamical potentials. From
the internal energy U (or the free energy Ψ) we get the state laws associated
to the state variables of the system. The complementary laws are obtained
from the dissipation potential Φ. Equivalently, the flow (or evolution) rules
of the internal state variables are dictated by the dual dissipation potential
Φ∗. The behaviour of the system is uniquely determined by finding the
intersection of the state laws with the complementary laws.

3.2.3 Plastic yield and damage threshold functions

For clarity reasons, we omit the parametric state variable dependence
of the dissipation potential in the following. We restrict ourselves to rate-
independent processes. In this case, Φ is a positively homogeneous function of
degree one in Ėp and Ḋ and the dual dissipation potential is non-differentiable
(e.g. [Lemaitre and Chaboche, 2001]).

We decompose the dissipation potential and its dual potential in a
plastic and damage part (i.e. we uncouple plasticity and damage):

Φ(Ėp, Ḋ) = Φp(Ėp) + ΦD(Ḋ)
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Thank to this decoupling, the total dual dissipation potential is just the sum
of the plastic and damage ones:

Φ∗(Sp, W D) = Φp∗(Sp) + ΦD∗(W D)

An equivalent way to write the flow rules (3.39) consists to define the plastic
yield and damage threshold functions Y p(Sp) and Y D(W D) whose convex sets
Y p = 0 and Y D = 0 have Φp∗ and ΦD∗ as indicator functions, respectively:{

Φp∗ = 0 if Y p ≤ 0 =⇒ Ėp = 0

Φp∗ = +∞ if Y p > 0 ⇐= Ėp �= 0

and {
ΦD∗ = 0 if Y D ≤ 0 =⇒ Ḋ = 0

ΦD∗ = +∞ if Y D > 0 ⇐= Ḋ �= 0

Therefore, it is equivalent to write

Ėp ∈ ∂SpΦ∗ ⇐⇒ Ėp = Λp ∂Y p

∂Sp
, Y p ≤ 0 , Λp ≥ 0 , ΛpY p = 0 (3.41)

and

Ḋ ∈ ∂W DΦ∗ ⇐⇒ Ḋ = ΛD
∂Y D

∂W D
, Y D≤ 0 , ΛD≥ 0 , ΛDY D = 0 (3.42)

where Λp and ΛD are plastic and damage Lagrangian multipliers, respectively.
The second form of (3.41) or (3.42) is referred to as the Kuhn-Tucker form
in optimization.

In this particular case, the plastic strain flow direction is normal to
the criterion Y p = 0 in stress space, and plasticity is said to be associated.

3.3 Rheological models
The objective of theoretical rheology of materials is to provide a lim-

ited number of mathematical models describing different classical consti-
tutive behaviours which are independent of the microscopic structure. A
class of constitutive behaviour (elastic, unilateral, viscous, plastic, viscoelas-
tic, elastoplastic, . . .) is therefore associated to a specific rheological model
(spring, thrust, dashpot, pad and their principal combinations).

In the following, we present some basic rheological elements. We de-
rive their constitutive laws using the thermostatics and generalized standard
materials formalisms presented in the previous Section. Then, we show how
these elements can be connected in order to describe a larger variety of con-
stitutive behaviours.
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3.3.1 Basic rheological behaviours

Hooke’s elasticity

A purely elastic behaviour is modeled by a spring (Figure 3.2). In this case,
the strains are fully reversible and the dissipation is identically zero. The
state of the system is completely determined by the strain tensor E (in a
regular way). In linear elasticity, the free energy potential is quadratic (and
convex):

Ψ(E) =
1

2
E : SE (3.43)

where S = S
T and positive definite is the fourth-order elasticity tensor

(Young’s modulus ε in one dimension). As no internal variable is necessary
to describe a purely elastic material, the dissipation potential is identically
zero:

Φ ≡ 0 (3.44)

The unique state law is simply derived from the twice differentiable free
energy potential:

S = ∇EΨ = SE (3.45)

Therefore, the constitutive law can be written as S(E) = SE, with S the
second-order stress tensor. There is no complementary law in this case.
The inverse law can be found from the dual free energy potential Ψ∗:

Ψ∗(S) =
1

2
S : C S (3.46)

where C = S−1 is the compliance tensor. We get the inverse state law E(S)
by derivation of Ψ∗:

E = ∇SΨ∗ = C S (3.47)

S

E

S

E

ε

Figure 3.2: 1D rheological element and constitutive law of a linear elastic material.
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Isotropic symmetry. An isotropic elastic material is characterized by only
two constants. The elasticity tensor can be written as:

S = λ(I⊗ I) + 2μ(I⊗ I) (3.48)

where λ and μ are the bulk and shear Lamé coefficients, I the second-order
identity tensor and ⊗, ⊗ tensorial products defined in Appendix A.
In this case, there is a unique orthogonal decomposition of S into a hydro-
static and a deviatoric part:

S = S + S
′ (3.49)

with
S = κ(I⊗ I) (3.50)

S
′ = 2μ(I⊗ I− 1

3
I⊗ I) (3.51)

and κ is the compressibility modulus

κ =
3λ + 2μ

3

The compliance tensor is given by:

C = −ν

ε
(I⊗ I) +

1 + ν

ε
(I⊗ I) (3.52)

where ε is Young’s modulus and ν Poisson’s ratio. We have the following
relations between the elastic constants:

λ =
νε

(1 + ν)(1− 2ν)
, μ =

ε

2(1 + ν)

ε =
μ(3λ + 2μ)

λ + μ
, ν =

λ

2(λ + μ)

and the restrictions: −2
3
μ < λ <∞, 0 < μ <∞, 0 < ε <∞ and−1 < ν < 1

2
.

The limit case ν = 1
2

stands for an incompressible material. The equipotential
Ψ∗ = Ψ∗

0 represents an ellipsoid (or a cylinder for ν = 1
2
) in the space of

principal stresses.
The compliance tensor can also be decomposed into:

C = C + C
′ (3.53)

Remark 3.5 When the material does not have isotropic symmetry, the or-
thogonal decomposition of the elasticity tensor in a purely hydrostatic part,
accounting for volume changes, and a deviatoric part, for shape changes, is
not unique ([Sutcliffe, 1992]).
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Transverse isotropic symmetry. A transverse isotropic material is char-
acterized by five elastic constants. The elasticity tensor can be written as:

S = λabAa ⊗Ab + μa[Aa⊗ I + I⊗Aa] (3.54)

with a, b = 1, 2, A1 = I and A2 = m⊗m ([Curnier et al., 1995]). The vector
m is the direction normal to the transverse isotropy plane (||m|| = 1). Note
that [Zysset, 1994] uses a slightly different expression than (3.54) which pro-
vides another definition and physical interpretation of the shear coefficients
μa.
The relations with the usual elastic constants (e.g. [Ting, 1996]) for trans-
verse isotropy are (with m = e3):

λ = λ11 μ = μ1

λ3 = λ11 + λ12 μ3 = μ1 + μ2

λ33 = λ11 + 2λ12 + λ22

Orthotropic symmetry. An orthotropic material is characterized by nine
independent elastic constants. The elasticity tensor can be expressed as:

S = λabAa ⊗Ab + μa[Aa⊗ I + I⊗Aa] (3.55)

with a, b = 1, 2, 3, A1 = I−A2−A3 = k⊗k, A2 = m⊗m and A3 = n⊗n
([Curnier et al., 1995]). λab and μa are bulk and shear Lamé-like coefficients.
The directions of orthotropy are defined by the orthonormal vectors k, m
and n.
The compliance tensor is defined in terms of the orthotropic engineering
constants:

C = −νab

εa
Aa ⊗Ab +

1 + νaa

2εa
[Aa⊗ I + I⊗Aa] (3.56)

where εa are Young’s like elastic moduli and νab Poisson’s like ratios and the
hyperelasticity or major symmetry

νab

εa
=

νba

εb
(3.57)

holds. The more usual shear moduli Gab ≡ μab are defined by:

2μab := μa + μb , a �= b (3.58)

When represented as symmetric six-dimensional square matrices (Subsection
3.1.4) expressed in the frame of the corresponding material symmetry, the
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aforementioned elasticity tensors S become:

S
ISOT =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ
λ λ + 2μ λ
λ λ λ + 2μ

2μ
2μ

2μ

⎤
⎥⎥⎥⎥⎥⎥⎦

S
TRAN =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ3

λ λ + 2μ λ3

λ3 λ3 λ33 + 2μ3

μ + μ3

μ + μ3

2μ

⎤
⎥⎥⎥⎥⎥⎥⎦

S
ORTH =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ11 + 2μ1 λ12 λ13

λ12 λ22 + 2μ2 λ23

λ13 λ23 λ33 + 2μ3

μ2 + μ3

μ3 + μ1

μ1 + μ2

⎤
⎥⎥⎥⎥⎥⎥⎦

The stiffness matrices of materials with different symmetry planes have other
structures ([Ting, 1996]).

Halfspacewise linear elasticity. When the elastic behaviour of a material
is different in tension and compression, we can use a piecewise formulation
of elasticity (Figure 3.3). This is achieved by dividing the strain space into
tensile and compressive domains by means of a hyperplane n(E) = 0. A
tensile state is then characterized by n(E) ≥ 0 and a compressive one by
n(E) < 0 ([Curnier et al., 1995]).
Using two distinct elasticity tensors, S+ and S−, the free energy potential for
halfspacewise linear elasticity is:

Ψ(E) =

{
1
2
E : S+ E if n(E) ≥ 0

1
2
E : S− E if n(E) < 0

(3.59)

To ensure that the resulting state law remains continuous, a compatibility or
continuity condition must be imposed on S+ and S−:

S+ − S− = sN⊗N (3.60)

where N is the unit normal tensor to the interface hyperplane n(E) = 0.
(3.60) expresses that the jump in the elasticity tensor across the interface is
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normal to the interface. It can be shown ([Curnier et al., 1995]), that:

n(E) = N : E (3.61)

The state law which derive from Ψ is:

S ∈ ∂EΨ =

{
S+ E if n(E) ≥ 0

S− E if n(E) < 0
(3.62)

S

E
ε+

ε−

Figure 3.3: 1D constitutive law of a halfspacewise linear elastic material.

The components of the tensor N depend on the symmetry of the
elasticity tensors. For an isotropic material, we have:

N =
1√
3

I

In that case, the hyperplane can also be written: n(E) = 1√
3
TrE.

For orthotropic symmetry, we have:

N = αaAa

where
αa =

√
(λ+aa − λ−aa)/σ , σ = λ+bb − λ−bb

and λab, Aa defined in (3.55).
The continuity condition (3.60) leads to:

λ+ab − λ−ab =
√

(λ+aa − λ−aa)(λ+bb − λ−bb)

The shear coefficients μa are the same in tension and compression.
In stress space, the interface is given by:

m(S) = M : S with M = C+ N or C− N (3.63)
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where C+ and C− are the tensile and compressive compliance tensors, re-
spectively. They must satisfy the compatibility condition

C+ − C− = eM⊗M with e = −s/(1 + sM : N) (3.64)

The inverse law reads:

E(S) =

{
C+ S if m(S) ≥ 0

C− S if m(S) < 0
(3.65)

Orthotropic morphology-based elasticity (Zysset-Curnier model).

For general orthotropic materials, experimental identification of the nine
elastic constants is delicate. Theoretical models relating the elastic prop-
erties of a porous material and its geometric symmetry have been devel-
oped ([Cowin, 1985, Zysset and Curnier, 1995]). The good results obtained
by Zysset ([Zysset, 1994]) for the elastic constants of compact bone extrapo-
lated from those of trabecular bone show the relevance of using morphology-
based elasticity for cortical bone. A review of morphology-based elasticity
relationships for human trabecular bone can be found in [Zysset, 2003].

In order to characterize the solid microstructure of an elastic porous solid,
one has to find relevant geometric measures of its local structure. One of
the most important quantity describing such a material is the solid volume
fraction or porosity (noted further as ρs).
Structural anisotropy can be described by means of a second-order fabric
tensor :

M̂ := mi mi ⊗mi (3.66)

where i = 1, 2, 3 ([Kanatani, 1984, Cowin, 1985]). The eigenvectors mi pro-
vide the normal directions of the symmetry plane whereas the eigenvalues mi

reflect the extent of anisotropy. If two eigenvalues are equal, the underlying
symmetry is transverse isotropy whereas when all three eigenvalues degener-
ate, isotropic symmetry is considered. The tensors Mi = mi ⊗mi are called
the structural tensors. The fabric tensor is normalized by

det (M̂) = 1 (3.67)

which provides M̂ = I when the three eigenvalues degenerate into unity.
With the help of the fabric tensor and its spectral decomposition, it is
possible to approximate a scalar-valued function characterizing the body
[Boehler, 1987]. A morphological orientation distribution function, like vol-
ume fraction or mean intercept length, can be expanded in a convergent



50 • 3 THEORETICAL SOLID MECHANICS BACKGROUND

Fourier series ([He and Curnier, 1995]).
Restricting this expansion to the second-order, assuming that the mechanical
anisotropy of the material is identical to that of the single microstructural
property ρs and assuming a homogeneity property for ρs and M̂ with respect
to the elastic constitutive law, [Zysset, 1994, Zysset and Curnier, 1995] pro-
vide a full derivation of a simplified elastic law. The resulting compliance
tensor is:

C =
1

εi

Mi ⊗Mi − νij

εi

(Mi ⊗Mj + Mj ⊗Mi) +
1

μij

(Mi⊗Mj + Mj ⊗Mi)

(3.68)
with i �= j and where the orthotropic engineering constants are:

εi = ε0 ρ v
s m2w

i (3.69)

νij = ν0
mw

i

mw
j

(3.70)

μij = μ0 ρ v
s mw

i mw
j (3.71)

The constants ε0, ν0 and μ0 represent the extrapolated elastic constants of
the plain isotropic material. Thus, the orthotropic elasticity of the porous
material is approximated by the constants ε0, ν0 and μ0, the exponents v, w,
the volume fraction ρs and the fabric tensor M̂.

Hertz’s unilateral behaviour

A unilateral constraint is modeled by a thrust (Figure 3.4). In this case,
the stress depends only on the applied strain (singular dependence). The
dissipation potential is identically zero:

Φ ≡ 0 (3.72)

S

E

S

E

Figure 3.4: 1D rheological element and constitutive law of a unilateral thrust.

If we assume the aforementioned partition of strain space into ten-
sile and compressive domains, (Equation (3.61)), and a unilateral stop in
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compression, the free energy is:

Ψ(E) = IR+(n(E)) (3.73)

with IR+ the indicator function of R+.
The state law which derive from the free energy potential is:

S ∈ ∂EΨ =

⎧⎪⎨
⎪⎩

∅ if n(E) < 0

]−∞, 0] if n(E) = 0

0 if n(E) > 0

(3.74)

where the singleton 0 is abbreviated by 0.

Newton’s viscosity

A purely viscous process is modeled by a dashpot (Figure 3.5). In this case,
the constitutive behaviour is dissipative and rate-dependent (regular depen-
dence). The strains are purely irreversible and the free energy is identically
zero:

Ψ ≡ 0 (3.75)
The state of the system is uniquely determined by the strain rate tensor Ė.
In linear viscosity, the dissipation potential is a quadratic function:

Φ(Ė) =
1

2
η Ė : Ė (3.76)

where η > 0 is the viscosity coefficient. The dissipative stress associated to
Ė is derived from the dissipation potential:

S = ∇ĖΦ = η Ė (3.77)

Therefore, the complementary law is S(Ė) = η Ė, with S the second-order
stress tensor.

S

Ė

S

Ė

η

Figure 3.5: 1D rheological element and constitutive law of a linear viscous element.
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Tresca’s plasticity

A purely plastic dissipative process associated with permanent strains is
modeled by a plastic pad (Figure 3.6). In this case, the constitutive law
is rate-dependent. If the dependence is singular (dependence on the sign of
the plastic strain rate but not on its norm), the plastic processes will be
referred to as rate-independent. The strains are purely irreversible and the
free energy is identically zero:

Ψ ≡ 0 (3.78)

The state of the system is uniquely determined by the plastic strain rate ten-
sor Ėp. An example of dissipation potential for a plastic behaviour without
hardening is the positively homogeneous of degree one function:

Φ(Ėp) := σp
√

Ėp : G Ėp (3.79)

where G is a fourth-order tensor associated to the shape of the plastic cri-
terion and σp > 0 the radius of the convex elastic domain (e.g. [He and
Curnier, 1994]). In one dimension, the dissipation potential reduces to
Φ(Ėp) = σp|Ėp|.

Sp

Ėp

Sp

Ėp

σp

−σp

Figure 3.6: 1D rheological element and constitutive law of a plastic element.

The complementary law associated to Ėp is obtained by derivation of Φ:

Sp ∈ ∂ĖpΦ =

⎧⎪⎪⎨
⎪⎪⎩

σp GĖp√
Ėp : G Ėp

if Ėp �= 0

{
Sp | √Sp : G−1 Sp < σp

}
if Ėp = 0

(3.80)

The dual dissipation potential Φ∗ is obtained via the Legendre-Fenchel trans-
form:

Φ∗(Sp) = I[0, σp](
√

Sp : G−1 Sp) (3.81)
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where I[0, σp] is the indicator function of [0, σp]. By derivation of Φ∗, we get
the flow rule:

Ėp ∈ ∂SpΦ∗ =

⎧⎪⎪⎨
⎪⎪⎩

0 if
√

Sp : G−1 Sp ∈ [0, σp[

Λp G
−1 Sp√

Sp : G−1 Sp
if
√

Sp : G−1 Sp = σp

∅ if
√

Sp : G−1 Sp > σp

(3.82)

where Λp ∈ [0, +∞[.
We note that Np(Sp) := G

−1 Sp√
Sp : G−1Sp

represents the (non-unitary) outward

normal of the convex elastic domain. Plastic flow occurs if and only if Sp

reaches the boundary of the elastic domain and the flow direction is governed
by Np(Sp). Once again, the scalar quantities appearing in the right-hand side
of (3.80) and (3.82) are to be considered as singletons.
The flow rule can also be written in the Kuhn-Tucker form:

Y p(Sp) :=
√

Sp : G−1 Sp − σp (3.83)

Ėp = Λp ∂Y p

∂Sp
, Λp ≥ 0 , Y p ≤ 0 , ΛpY p = 0 (3.84)

where Y p(Sp) is the plastic yield function of the plastic pad (Figure 3.7).

Y p(Sp)

Λp = ||Ėp||

Figure 3.7: Illustration of the plastic flow rule.

The tensor G−1 is related to the shape of the plastic criterion in stress
space. When an isotropic material exhibits a plastic yield stress related to
the shear elastic energy, we can choose (e.g. [Lemaitre and Chaboche, 1985,
Lemaitre and Chaboche, 2001]):

G
−1 = C

′ (3.85)

where C
′ is the deviatoric part of the isotropic compliance tensor. Such

materials obey the well-known von Mises plastic criterion. In the space of
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principal stresses, the yield function (3.83) delimits a cylinder of radius σp

centered around the trisectrix of the frame {Sp
11, S

p
22, S

p
33} as axis (Figure 3.8).

Another classical model for isotropic plasticity is Tresca’s criterion.
It relates the plastic yield stress to the elastic shear stress. In the space of
principal stresses, Tresca’s criterion is represented by a straight prism with
hexagonal base inscribed in von Mises cylinder (Figure 3.8).
The yield function of Tresca’s plastic criterion reads:

Y p(Sp) := σ1(S
p)− σ3(S

p)− σp (3.86)

where
Sp = σi ni ⊗ ni

is the spectral decomposition of Sp with σ1 ≥ σ2 ≥ σ3.

 

Sp
11

Sp
22

Ėp

Sp

Y p(Sp) = 0

elastic
domain

Von Mises

Tresca

Figure 3.8: Plane stress cross-sections of von Mises and Tresca’s plastic criteria
and the normal flow rule.

When the material does not have isotropic symmetry, the equivalent
of the von Mises or Tresca plastic criterion is delicate to formulate. As the
elasticity tensor cannot be uniquely decomposed into a purely hydrostatic
and deviatoric part, the physical interpretation of such a criterion is difficult.
One simple way to formulate an anisotropic plastic criterion (e.g. [Hill, 1950,
Curnier, 1980, Zysset, 1994]) is to choose:

G
−1 = C (3.87)

In the space of principal stresses, the yield function delimits an ellipsoid asso-
ciated to the elasticity tensor (Figure 3.9). In this case, a plastic deformation
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does not occur at constant volume. For an orthotropic material, the axes of
the ellipsoid coincide with the directions of orthotropy in stress space.

A plastic behaviour with hardening requires the introduction of an
internal state variable describing the plastic strain history of the material
and the evolution of the initial plastic criterion. The hardening variable can
be the accumulated plastic strain or a damage variable for example.
We will not formulate a model of plasticity with hardening here, but we
will include it (Chapter 4) when combining plastic and damage rheological
elements together.

z

xy

0
0
0

Sp
11

Sp
22

Sp
33

Sp
11

Sp
22

elastic
domain

plastic
surface

Figure 3.9: Anisotropic plastic criterion Y (Sp) =
√

Sp : CSp − σp = 0 and its
intersection with the plane Sp

33 = 0.

Rate-independent damage

A damage process is modeled by an elastic spring with a degradable elasticity
(Figure 3.10). Damage is a pure dissipative phenomenon affecting the elastic-
ity of the material (or a part of it). There is a large variety of damage models
and each requires the introduction of an internal state variable related to the
strain history of the material (e.g. [Krajcinovic, 1989, Lemaitre, 1996]).

When the damage process is supposed to be perfectly "isotropic", a
scalar damage variable D is sufficient to define the state of the system (in
addition of the total strain tensor E) i.e. the Lamé constants are damaged the
same way. In the case of an anisotropic damage process, a tensorial damage
variable must be used (e.g. [He and Curnier, 1995]).

Let us assume that damage reduces all elastic constants of the elas-
ticity tensor by the same amount (perfectly "isotropic" damage) and that
the elasticity is linear. The free energy of the simplest damage model can be
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S

E

S

E

ε (1−D)ε

Figure 3.10: 1D rheological element and constitutive law of a rate-independent
damage element.

written as:
Ψ(E, D) =

1

2
(1−D)E : SE (3.88)

where S is the undamaged elasticity tensor and D ∈ [0, 1[.
Thus, the state laws are:

S = ∇EΨ = (1−D) SE (3.89)

W D

Ψ = ∂DΨ =
1

2
E : SE (3.90)

We see that (1−D) represents the decrease of the tangent elastic modulus. If
D = 0 the material is undamaged whereas if D → 1 the material is completely
damaged ([Kachanov, 1958]). As D is a dimensionless scalar variable, we see
that its conjugate variable W D

Ψ is an energy (hence its notation). Let us note
that the damage energy W D

Ψ is independent of D in that case.

We can define a damage criterion stating that damage accumulates
beyond a certain threshold i.e. whenever the energy W D

Ψ reaches a certain
value h(D) (h increases from h(0) = h0 > 0 to h(D → 1) = +∞ typically).
Let us assume that no repair process takes place in the evolution of the
material, and define the following dissipation potential:

Φ(Ḋ; D) := φ(Ḋ; D) + IR+(Ḋ) (3.91)

where φ(Ḋ; D) := h(D)Ḋ and IR+ the indicator function of R+. Ψ and Φ
are illustrated in Figure 3.11 for the one-dimensional case.
We find the complementary law by deriving Φ:

W D

Φ ∈ ∂ḊΦ =

⎧⎪⎨
⎪⎩

∅ if Ḋ < 0

]−∞, h(D) ] if Ḋ = 0

h(D) if Ḋ > 0

(3.92)
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Figure 3.11: Free energy and dissipation potential of the damage element plot-
ted for ε = 1000. The dashed line of the right-hand side graph represents the
contribution of the indicator function in Φ (see (3.91)).

The dual dissipation potential is obtained via the Legendre-Fenchel transform
of Φ:

Φ∗(W D

Φ ) = I[−∞,h(D)](W
D

Φ ) (3.93)

The associated evolution rule reads:

Ḋ ∈ ∂W D
Φ

Φ∗ =

⎧⎪⎨
⎪⎩

0 if W D
Φ ∈ ]−∞, h(D)[

[0, +∞[ if W D
Φ = h(D)

∅ if W D
Φ > h(D)

(3.94)

In order to calculate W D, we use the fact that the damaged reversible
elastic energy must be equal to the damaged irreversible dissipative work
according to a series mounting of the two damage mechanisms typical of a
generalized standard material, i.e. find:

W D = W D

Ψ ∩W D

Φ

We can define the damage threshold function

Y D(W D) := W D − h(D) (3.95)

and write the evolution rule in the Kuhn-Tucker form:

Ḋ = ΛD
∂Y D

∂W D
= ΛD (3.96)

ΛD ≥ 0 , Y D ≤ 0 , ΛDY D = 0 (3.97)

A less conventional manner to define the damage threshold criterion
is to consider the stress of the damageable spring instead of its energy. Let
SD be this stress. In our case we have

SD ≡ S = (1−D) SE (3.98)
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The following relation links W D to SD:

W D =
SD : C SD

2(1−D)2
(3.99)

In analogy with a plastic criterion, let us define a damage threshold function
of the form:

Y D(SD, D) =
√

SD : F SD − rD(D) (3.100)
where F is a fourth-order tensor associated with the shape of the damage
criterion in stress space and rD(D) > 0 its radius.
In strain space we have:

Y D(E, D) = (1−D)
√

SE : F SE− rD(D)

The dissipation potential now reads:

Φ(Ḋ;E, D) = h(E, D)Ḋ + IR+(Ḋ) (3.101)

with
h(E, D) =

rD2(D)

2(1−D)2

E : SE

SE : F SE
(3.102)

The complementary laws (3.92) and (3.94) still have the same structure, as
well as (3.95), but h depends now on E and D.
Let us focus on the damage mode (Ḋ > 0). In that case we have:

W D

Ψ =
1

2
E : SE =

rD2(D)

2(1−D)2

E : SE

SE : F SE
= h(E, D) = W D

Φ

thus
(1−D)2

SE : F SE = rD2(D)

or equivalently: √
SD : F SD − rD(D) = 0

We see that introducing a parametric dependence of the state variable
E in the dissipation potential, we get a more general damage criterion that
is not reduced to a single scalar damage criterion. In particular, it is possible
to define a halfspacewise damage criterion that accounts for distinct ten-
sile and compressive threshold stresses in tension and compression without
introducing a further internal state variable.

Remark 3.6 The energy based and the stress based formulations of the dam-
age criterion are equivalent if and only if F = C and rD(D) = (1−D)

√
2h(D).

Remark 3.7 A rate-dependent damage process can be modeled by changing
the dissipation potential (3.91). This is done by choosing a function φ which
is no longer homogeneous of degree one in Ḋ, but of a higher order typically.
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3.3.2 Coupling of basic rheological models

The simplest way to connect the rheological elements described in the
foregoing Section is to place them either in series or in parallel. Then, the
rheological equation of a complex model is derived from the equations of the
rheological elements by adding the deformations if the coupling is in series,
and by adding the stresses if the coupling is in parallel.

Classical rheological models are one-dimensional and scalars. They
can be extended into three dimensions by replacing the scalar uniaxial strains
and stresses by three-dimensional triaxial tensor ones. A limitative character-
istic of rheological models is that they exclusively involve addition of strains
and stresses i.e. very simple linear operations. One-dimensional models can-
not take into account rheological inhomogeneities with structural configura-
tion of elastic, viscous and plastic phases or the effect of internal cohesion.

In order to give a rational basis for the realistic union of phenomeno-
logical and structural points of view, two-dimensional or even three dimen-
sional rheological models are required. They can represent accurately the
body structure of the material like the orientation and proportion of dif-
ferent elements. The main idea is to divide a unit representative area (or
volume) into rheological regions, to introduce the necessary state variables
and to define the cohesion between the different regions (Figure 3.12). The
state law of the resulting model can then be derived from the state laws of
the basic elements.

Sx

Sx1

Sx2

Sy

Sy1
Sy2

(2D)

Lx1 Lx2

Ly1

Ly2

Figure 3.12: 2D rheological model for fibre-reinforced viscoelastic material.
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We studied only one-dimensional rheological elements in this thesis,
but the reader is referred to [Sobotka, 1984] for a complete treatment of two-
and three-dimensional models. We now examine two simple cases of elasto-
plastic bodies using the serial and parallel arrangements of basic rheological
elements. The framework of generalized standard materials is used.

Serial coupling

A rheological model of an elasto-plastic body without hardening consists of
the Hookean elastic spring coupled in series with Tresca’s plastic pad (Figure
3.13).
As the elements are connected in series, we assume the usual additive strain
decomposition ([Prandtl, 1924, Reuss, 1930, Green and Naghdi, 1965], e.g.
[Lemaitre and Chaboche, 1985, Lemaitre and Chaboche, 2001]):

E = Ee + Ep (3.103)

where E is the total, Ee the elastic and Ep the plastic strain. We choose the
independent variables E and Ep as the state variables of the system.

The elastic energy of the spring is the only component of the free
energy potential:

Ψ(E,Ep) =
1

2
(E− Ep) : S (E−Ep) (3.104)

The state laws which derive from the free energy are:

S = ∇EΨ = S (E−Ep) (3.105)

Sp
Ψ = −∇EpΨ = S (E− Ep) (3.106)

S

E
Ee Ep

S

E

Figure 3.13: 1D serial mounting for an elasto-plastic body and its constitutive
law.
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We choose the following dissipation potential associated to the plastic
element:

Φ(Ėp) = σp
√

Ėp : S Ėp (3.107)

The complementary law associated to Ėp reads:

Sp
Φ ∈ ∂ĖpΦ =

⎧⎪⎨
⎪⎩

σp S Ėp√
Ėp : S Ėp

if Ėp �= 0

{Sp
Φ |
√

Sp
Φ : C Sp

Φ < σp} if Ėp = 0

(3.108)

The flow rule is found with the dual dissipation potential

Φ∗(Sp
Φ) = I[0, σp](

√
Sp

Φ : C Sp
Φ) (3.109)

and reads:

Ėp ∈ ∂Sp
Φ
Φ∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if
√

Sp
Φ : C Sp

Φ < σp

Λp C Sp
Φ√

Sp
Φ : C Sp

Φ

if
√

Sp
Φ : C Sp

Φ = σp

∅ if
√

Sp
Φ : C Sp

Φ > σp

(3.110)

with Λp ∈ [0, +∞[ a rate-like plastic multiplier.
As Sp

Ψ = S, we can simplify (3.110) in the case of plastic flow:

Ėp =
Λp

σp
(E−Ep) (3.111)

In order to find the expression of the plastic multiplier Λp, we must rewrite
the flow rule (3.111) in its incremental form. To this end, let us start with a
given trial strain state E ,Ep

0 such that the trial plastic stress Sp
T := S (E−Ep

0)
lies outside the convex elastic domain. That means that:

Y p(Sp
T) :=

√
Sp

T : C Sp
T − σp > 0

We must find the final plastic strain Ep such that Sp = S (E − Ep) satisfies
Y p(Sp) = 0 and obeys the incremental flow rule:

Ep −Ep
0 =

λp

σp
(E−Ep) (3.112)

with λp a stress-like plastic multiplier. Thus

Ep =
σp

λp + σp
Ep

0 +
λp

λp + σp
E
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or
S (E− Ep) =

σp

λp + σp
S (E−Ep

0)

Equivalently, we have:

Sp =
σp

λp + σp
Sp

T
(3.113)

The final plastic stress Sp is therefore collinear to the trial plastic stress Sp
T.

Thus, its projection on the convex elastic domain is radial ([Wilkins, 1964,
Moreau, 1979]).
With (3.113), we finally get:

σp =
√

Sp : C Sp =
σp

λp + σp

√
Sp

T : C Sp
T

or
λp =

√
Sp

T : C Sp
T − σp (3.114)

If Ep
0 = 0, we have:

Ep =

(
1− σp

√
E : SE

)
E (3.115)

In fact, one can show that this solution remains valid for all further plastic
strain increments.

Parallel and serial coupling

Another rheological model of an elasto-plastic body without "isotropic" hard-
ening consists of an elastic spring coupled in series with an elasto-plastic
complex formed by an elastic spring placed in parallel with a plastic pad
(Figure 3.14).

S

E
Ee Ep

S

E

Figure 3.14: 1D serial and parallel mounting for an elasto-plastic body and its
constitutive law.

For the elements connected in series, we assume the same additive
decomposition as (3.103):

E = Ee + Ep (3.116)
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The total strain E and the internal variable Ep (plastic strain) determine
uniquely the state of the system.

The elastic energies of the two springs compose the free energy potential:

Ψ(E,Ep) =
1

2
(E− Ep) : S (E− Ep) +

1

2
Ep : SEp (3.117)

where the same elasticity tensor S is assumed for both springs for simplicity.

The state laws which derive from the free energy are:

S = ∇EΨ = S (E− Ep) (3.118)

Sp
Ψ = −∇EpΨ = S (E− 2Ep) (3.119)

We choose the same dissipation potential as (3.107) associated to the plastic
element:

Φ(Ėp) = σp
√

Ėp : S Ėp (3.120)

Thus, the complementary laws (3.108) and (3.110) remain unchanged.
In that case, the incremental flow rule reads:

Ep − Ep
0 =

λp

σp
(E− 2Ep)

with λp a stress-like plastic multiplier. The radial return projection algorithm
leads to:

λp =
1

2
(
√

Sp
T : C Sp

T − σp)

and we find that, in the plastic mode, the plastic strain satisfies

Ep =
1

2

(
1− σp√

Sp
T : C Sp

T

)
E





Chapter 4

Formulation of one-dimensional
laws

In this Chapter, original one-dimensional constitutive laws for corti-
cal bone are formulated. Firstly, two rate-independent models are presented.
Secondly, viscosity is added to damage accumulation in order to account for
rate-dependent processes. Finally, the predictions and differences of each
model are discussed.

The formalism of generalized standard materials presented in the pre-
vious Chapter is applied to a specific one-dimensional rheological setup in
which all variables are scalar. All models look like the second elasto-plastic
body discussed in Subsection 3.3.2. However, the elastic spring mounted in
parallel is replaced by an elastic damageable spring of appropriate stiffness
(Figure 4.1). It is characterized by distinct tensile and compressive dam-
age threshold stresses. The only difference between the rate-independent
and rate-dependent models lies in their dissipation potential which govern a
different evolution of damage accumulation.

4.1 Rate-independent models

In this Section, we present in detail two rate-independent one-dimen-
sional elastic plastic damage constitutive laws for cortical bone. The first
rate-independent damage model, abbreviated by RI, is characterized by only
one internal damage variable. Being the simplest, this model will serve as a
basis for the three-dimensional generalization of the damage law for cortical
bone. The second, the RI± damage model, requires two distinct damage
variables (one for tensile and one for compressive damage) and leads to finer
predictions of the experimental stress-strain curves.

65
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Remark 4.1 By rate-independent, we mean rate-independency of the norm
of a velocity (strain or stress rate) but not of its sign.

4.1.1 RI theoretical formulation

Rheological setup

As mentioned before, the rheological setup of the one-dimensional (rate-
independent and rate-dependent) constitutive laws is that of an elastic plastic
damage body. It includes a primary elastic spring in series with a dam-
age element that is composed of a secondary elastic spring undergoing rate-
independent (or rate-dependent) damage in parallel with a rate-independent
plastic pad (Figure 4.1). The damageable spring is endowed with distinct
tensile and compressive damage threshold stresses.

 Ep

E

S

SS

EpE-Ep

Ėp

εD

εD := 1−D
D ε0

ε0

σp

-σp

σD
+

-σD
−

Figure 4.1: One-dimensional rheological setup for both rate-independent and
rate-dependent damage models.

Variables and material constants definitions

As cortical bone tissue is known to have an elastic plastic damage behaviour
at low strain rates (e.g. [Cowin, 2001]), the introduction of two internal
state variables is necessary in order to take into account its past history and
dissipative processes. On the one hand, plasticity requires the definition of a
plastic strain. On the other hand, damage can be expressed by an internal
damage state variable (e.g. [Lemaitre, 1996]).
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We adopt the usual strain partition for an elasto-plastic material body:

E = Ee + Ep (4.1)

where E denotes the total strain, Ee the elastic and Ep the plastic strain
([Prandtl, 1924, Reuss, 1930, Green and Naghdi, 1965], e.g. [Lemaitre and
Chaboche, 2001]).
The amount of damage experienced by the body is quantified by the single
damage variable D and represents its intact stiffness reduction. D = 0 is for
an intact material (undamaged), whereas D → 1 is for a totally damaged
material.
Hence, the RI damage model can be characterized by three independent vari-
ables (among which two are internal state variables):

• E ∈ R the total strain,

• Ep ∈ R the plastic strain and

• D ∈ [0, 1[ the damage variable.

Their dual variables are respectively the total stress S, the plastic stress Sp

and the damage energy W D (dual in the sense that their scalar or duality
product SĖ, SpĖp and W DḊ represents their power).

Moreover, the material constants have to be defined. The intact (or
initial) elastic stiffness of cortical bone is denoted by ε0 > 0 and modeled by
the primary linear elastic spring.
In addition, three damage-dependent functions express the plastic and dam-
age dissipative processes. They will appear in the formulation of the dissi-
pation potential.
Firstly, a plastic hardening function σp(D) ≥ 0 is defined in order to express
the plastic yield stress evolution with increasing damage.
Secondly, two damage hardening functions σD

+(D) > 0 and σD
−(D) > 0 ac-

count for the tensile and compressive damage behaviours, respectively.
Motivated by experimental identification (Chapter 5), we assume the

following exponential hardening functions for the plastic yield and damage
threshold stresses, respectively:

σp(D) = χp
(
1− exp (−lD)

)
(4.2)

σD

±(D) = σD

0±
(
1 + χD

(
1− exp (−kD)

))
(4.3)

χp ≥ 0 and l > 0 are plastic hardening coefficients. σD
0± > 0 are the initial

tensile and compressive damage threshold stresses, respectively. χD ∈ R

and k > 0 are damage hardening parameters. Therefore, six constants fully
characterize the RI nonlinear behaviour of cortical bone.
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Free energy potential and conjugate stresses

The nonsmooth convex free energy potential of the rheological model is:

Ψ(E, Ep, D) =

{
1
2
ε0(E − Ep)2 + 1

2
ε0

1−D
D

Ep2 + I[0,1[(D) if D > 0
1
2
ε0E

2 + I{0}(Ep) if D = 0
(4.4)

with ε0 > 0, I[0,1[ the indicator function of [0, 1[, and I{0} the indicator func-
tion of {0}. The potential is shown in Figure 4.2.
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Figure 4.2: RI free energy potential Ψ(E,Ep,D), plotted for E = 0 and ε0 = 1.

The state laws which derive from the free energy potential are:

SΨ ∈ ∂EΨ =

{
ε0(E −Ep) if D ∈ ]0, 1[

ε0E if D = 0
(4.5)

Sp
Ψ ∈ −∂EpΨ =

{
ε0E − ε0

Ep

D
if D ∈ ]0, 1[

R if D = 0
(4.6)

W D

Ψ ∈ −∂DΨ =

{
1
2
ε0

Ep2

D2 if D ∈ ]0, 1[

[0,∞[ if D = 0
(4.7)

For convenience, let us define the stress in the damageable spring:

SD := SΨ − Sp
Ψ ∈

{
ε0

1−D
D

Ep if D ∈ ]0, 1[

R if D = 0
(4.8)

We recall that the scalar quantities appearing in the right-hand sides of (4.5)
to (4.8) are to be considered as singletons. This will not be repeated for
similar encountered expressions.
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Remark 4.2 We see that the elastic stiffness of the damageable spring is
εD := ε0

1−D
D

creating a singularity for D = 0. This means that it becomes
infinitely rigid when D = 0 and that the plastic pad cannot slide as long as the
total damage yield threshold is not reached. This specific choice guarantees
also the plastic unloading slope being equal to ε0(1−D), which allows a simple
interpretation of D: it measures the reduction of the intact stiffness.

The complementary free energy is obtained via the Legendre-Fenchel trans-
form:

Ψ∗(S, Sp, W D) := sup
E,Ep,D

[SE − SpEp −W DD −Ψ(E, Ep, D)]

We find:

Ψ∗(S, Sp, W D) =
1

2

S2

ε0
−
(|S − Sp| − √2ε0W D

)2
2ε0

(4.9)

It can be checked that ∂SΨ∗ = E, −∂SpΨ∗ = Ep and −∂W DΨ∗ = D.
When D = 0, the dual potential reduces to:

Ψ∗(S, Sp, W D) =
S2

2ε0

(4.10)

Therefore, we obtain ∂SΨ∗ = E, −∂SpΨ∗ = 0 and −∂W DΨ∗ = 0, which is
consistent with the implication D = 0⇒ Ep = 0 associated with I{0}(Ep) of
the potential Ψ(E, Ep, D) when D = 0.
The complementary free energy is shown in Figure 4.3.
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Figure 4.3: RI complementary free energy potential Ψ∗(S, Sp,W D), plotted for
S = −1 and ε0 = 1.
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Dissipation potential and flow rules

The nonsmooth convex dissipation potential is defined by:

Φ(Ėp, Ḋ; E, Ep, D) := Φp(Ėp; D) + ΦD(Ḋ; E, Ep, D) (4.11)

with
Φp(Ėp; D) := σp(D)|Ėp| (4.12)

and
ΦD(Ḋ; E, Ep, D) := φ(Ḋ; E, Ep, D) + IR+(Ḋ) (4.13)

where

φ(Ḋ; E, Ep, D) :=

{
h+(D)Ḋ if Ep > 0 or Ep = 0 and E ≥ 0

h−(D)Ḋ if Ep < 0 or Ep = 0 and E < 0
(4.14)

and h±(D) :=
σD2
± (D)

2ε0(1−D)2 is a damage-dependent energy and IR+ is the

indicator function of R+.
We recall that in contrast with the variables Ėp and Ḋ, the arguments ap-
pearing after the semicolon symbol (;) are only parameters (Subsection 3.2.2,
Remark 3.4).
The dissipation potential illustrated in Figure 4.4 for Ep > 0 and Ep < 0.
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Figure 4.4: RI dissipation potential Φ(Ėp, Ḋ;E,Ep,D), plotted for σp(D) = 2,
h+(D) = 1 and h−(D) = 4. (a) Ep > 0 and (b) Ep < 0.

Remark 4.3 From (4.13), we see that the function φ, and thus Φ, is not
continuous along Ep = 0. However, this discontinuity has no incidence on
the consequences of the generalized standard material formalism because Ep

is only a parameter.
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The aforementioned hardening function σp(D) represents the sym-
metric yield stress of the plastic pad and the functions σD

±(D) are the ten-
sile/compressive threshold stresses of the damageable spring, respectively.
Their dependency on D express the increase of stress during plastic flow and
damage evolution.

Remark 4.4 In (4.2), we note that σp(0) = 0. This choice was made for
convenience and in order to transfer all initial stresses on the initially rigid
damageable spring. Thus, as S = Sp + SD, the initial total damage stress is
equal to the initial partial damage stress i.e. ±σp(0)± σD

±(0) = ±σD
0±, + for

tensile and − for compressive damage, respectively.

The constitutive equations which derive from the dissipation potential are:

Sp
Φ ∈ ∂ĖpΦ =

⎧⎪⎨
⎪⎩

−σp(D) if Ėp < 0

[−σp(D), σp(D)] if Ėp = 0

σp(D) if Ėp > 0

(4.15)

and

W D

Φ ∈ ∂ḊΦ =

⎧⎪⎨
⎪⎩

φ′(E, Ep, D) if Ḋ > 0

]−∞, φ′(E, Ep, D)] if Ḋ = 0

∅ if Ḋ < 0

(4.16)

where φ′ is the derivative of φ with respect to Ḋ:

φ′(E, Ep, D) =

{
h+(D) if Ep > 0 or Ep = 0 and E ≥ 0

h−(D) if Ep < 0 or Ep = 0 and E < 0
(4.17)

We see that h± (defined in (4.14)) represent the tensile/compressive qua-
sistatic damage energy thresholds, respectively.

The dual dissipation potential is obtained via the same Legendre-
Fenchel transform:

Φ∗(Sp, W D; E, Ep, D) := sup
Ėp,Ḋ

[
SpĖp + W DḊ − Φ(Ėp, Ḋ; E, Ep, D)

]

As the dissipation potential is separate in Ėp and Ḋ and as these variables
are independent (uncoupled, mounted in parallel), the conjugate of the sum
is simply the sum of the conjugates. Thus, we find:

Φ∗(Sp, W D; E, Ep, D) = I[−σp(D),σp(D)](S
p) + I[−∞,φ′(E,Ep,D)](W

D) (4.18)

The dual dissipation potential is shown in Figure 4.5 for Ep > 0 and Ep < 0.
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The flow rules of the internal variables Ep and D are found from the
dual dissipation potential (inverse complementary laws):

Ėp ∈ ∂SpΦ∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∅ if Sp < −σp(D)

]−∞, 0] if Sp = −σp(D)

0 if − σp(D) < Sp < σp(D)

[0, +∞[ if Sp = σp(D)

∅ if Sp > σp(D)

(4.19)

and

Ḋ ∈ ∂W DΦ∗ =

⎧⎪⎨
⎪⎩

0 if W D ∈ ]−∞, φ′(E, Ep, D)[

[0, +∞[ if W D = φ′(E, Ep, D)

∅ if W D > φ′(E, Ep, D)

(4.20)

The partial Legendre-Fenchel transform is illustrated in Figure 4.6 for
a positive value of the parameter Ep.
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Figure 4.5: RI dual dissipation potential Φ∗(Sp,W D;E,Ep,D), plotted for
σp(D) = 2, h+(D) = 1 and h−(D) = 4. (a) Ep > 0 and (b) Ep < 0.
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Plastic yield and damage threshold functions

A more classical but equivalent way to express the plastic and damage criteria
resulting from (4.15) and (4.16) is to define their corresponding yield and
threshold functions in stress or strain space.
On the one hand, the plastic yield function can be defined as:

Y p(Sp; D) := |Sp| − σp(D) (4.21)

and the plastic criterion defining the elastic domain as:

Y p(Sp; D) ≤ 0 (4.22)

On the other hand, we write the damage threshold function as:

Y D(W D; E, Ep, D) :=

∣∣∣∣(1−D)
√

2ε0W Dsign(Ep)−σD
+(D)− σD

−(D)

2

∣∣∣∣+
− σD

+(D) + σD
−(D)

2
(4.23)

where sign(Ep) = sign(E) for Ep = 0, and define the damage criterion de-
limiting the undamaged domain by:

Y D(W D; E, Ep, D) ≤ 0 (4.24)

In terms of the damage stress SD defined in (4.8), this criterion can be ex-
pressed as −σD

−(D) ≤ SD ≤ σD
+(D) or:

SD2 − (σD

+(D)− σD

−(D)
)
SD − σD

+(D)σD

−(D) ≤ 0 (4.25)
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Equation (4.24) or (4.25) can be interpreted as a one-dimensional Tsai-Wu
criterion ([Tsai and Wu, 1971]). The damage criterion is also equivalent to:

Y D(SD; E, Ep, D) =

=

{ 1
σD
0+
|SD| − rD(D) ≤ 0 if Ep > 0 or Ep = 0 and E ≥ 0

1
σD
0−
|SD| − rD(D) ≤ 0 if Ep < 0 or Ep = 0 and E < 0

(4.26)

with rD(D) := 1 + χD
(
1 − exp (−kD)

)
for exponential hardening. The for-

mulation (4.26) can be interpreted as a bimodular or halfplanewise damage
criterion and will be generalized to three dimensions (Chapter 6). The initial
plastic and damage criteria and their corresponding evolution with increasing
damage are illustrated in Figure 4.7 for Ep > 0 and Ep < 0.
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Figure 4.7: Evolution of the initial shape (D = 0) of the plastic and damage
criteria with increasing damage (D1 < D2 < D3).

4.1.2 Numerical algorithm

In this Subsection, we formulate the algorithm used for the numerical
implementation of the one-dimensional RI damage model. In particular, the
integration of the flow rules (4.19) and (4.20) is explained.

Time integration algorithm with projection

In order to implement it in a finite element mechanical analysis program, the
elastic plastic damage evolution law needs to be discretized in time. To this
end, let us divide the overall time interval [0, TFINAL] into NSTEPS intervals
of equal length τ := TFINAL

NSTEPS
.
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Furthermore, let us start with an initial strain state E0, Ep
0 , D0 for

any given time instant t = nτ , n = 0, . . . , NSTEPS. To this state corresponds
the unique initial stress state S0, Sp

0 , W D
0 defined by the state laws (4.5),

(4.6) and (4.7), respectively (unique when D0 �= 0). This state is supposed
to be plastically and damageably admissible in the sense that it satisfies both
plastic and damage criteria:

Y p(Sp
0 , D0) ≤ 0 and Y D(W D

0 ; E0, E
p
0 , D0) ≤ 0 (4.27)

Given a new total strain E, consider the trial strain state E, Ep
0 , D0 (to

which corresponds the trial stress state ST = S(E, Ep
0), Sp

T = Sp(Ep
0 , D0),

W D
T = W D(Ep

0 , D0)), which may violate the yield and threshold conditions
(4.27). If D0 = 0, then Sp

T and W D
T

are undefined. Thus, the yield and
damage criteria cannot be tested. The undetermination can be lifted by
defining a global equivalent criterion which depends on the trial total stress
(Remarks 4.2 and 4.4):

Y (ST) :=

{
ST − σD

0+ if ST ≥ 0

ST + σD
0− if ST < 0

The purpose of the algorithm is to find the final strain state E, Ep, D
(and corresponding final stress state S, Sp, W D) which is admissible. At
the projection point, the conjugate variables Sp and W D are well defined in
the case D0 = 0 and normality of the flow rule is guaranteed through the
incremental process.

Before presenting the final algorithm, we explain the final values taken
by the internal state variables in the case D0 �= 0 for the three distinct
evolution modes of the model (elastic, plastic and damage). To this end, we
use the formalism of generalized standard materials (i.e. find Sp

Ψ ∩ Sp
Φ and

W D
Ψ ∩W D

Φ ). Then, for each mode, we present the tangent operators required
in a load driven simulation.

Internal variables evolution

a) Elastic mode: Y p(Sp
T, D0) ≤ 0 and Y D(W D

T ; E, Ep
0 , D0) ≤ 0

In that case, Ėp=0 and Ḋ = 0. Thus, we just have Ep = Ep
0 and D = D0 .

b) Plastic mode: Y p(Sp
T, D0) > 0 and Y D(W D

T
; E, Ep

0 , D0) ≤ 0

In that case, we have Ėp �= 0 and Ḋ = 0. Thus D = D0.
Let us focus on the tensile case (Ėp > 0). The radial return algorithm
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([Wilkins, 1964, Moreau, 1979]), or projection of the final plastic stress on
the convex elastic set leads to Sp = σp(D) (e.g. [Simo and Hughes, 1999,
Curnier, 1993]). Thus

Ep = D

(
E − σp(D)

ε0

)
(4.28)

In the compressive case (Ėp < 0), σp(D) has to be replaced by −σp(D).

c) Damage mode: Y p(Sp
T, D0) > 0 and Y D(W D

T
; E, Ep

0 , D0) > 0

In that case, Ėp �= 0 and Ḋ �= 0. Once more, let us focus on the tensile case
(Ėp > 0). Equation (4.28) still holds as Sp = σp(D).
Furthermore, the evolution rule (4.16) imposes that W D = h+(D). Thus

1

2
ε0

Ep 2

D2
=

σD2
+ (D)

2ε0(1−D)2

or equivalently

ε0
1−D

D
Ep = σD

+(D) (4.29)

In order to find the values of Ep and D, we have to solve simultaneously (4.28)
and (4.29) where E is assumed to be known (predicted). By substituting
(4.28) into (4.29), we get:

f(D) := ε0(1−D)

(
E − σp(D)

ε0

)
− σD

+(D) = 0 (4.30)

where f : [0, 1[→ R.
In order to find the value of D, we have to solve f(D) = 0 . In the compressive
case (Ėp < 0), σp(D) has to be replaced by −σp(D) and σD

+(D) by −σD
−(D),

respectively.
In the tensile case, the derivative of f reads:

f ′(D) = −ε0E + σp(D)− (1−D)σp′(D)− σD

+
′(D) (4.31)

We can use the generalized Newton method ([Alart and Curnier, 1991]) to
solve this C0 nonlinear equation:

Dj+1 = Dj − f(Dj)

f ′(Dj)
with j = 0, 1, 2, . . . (4.32)



4.1 RATE-INDEPENDENT MODELS • 77

Incremental linearization algorithm

For a uniform deformation test with homogeneous stress state, a situation
occurring in a single finite element (Section 6.3), the problem is equivalent to
the following local problem: find E such that the equation of force equilibrium
is satisfied i.e.:

S(E, Ep, D)− S̄ = 0

where S̄ denotes the imposed stress. We also use the generalized Newton
method to solve this problem:

Ei+1 = Ei + dEi with i = 0, 1, 2, . . . (4.33)

where
dEi = −S(Ei, Ep, D)− S̄

dS
dE

(Ei, Ep, D)
(4.34)

where dS
dE

is the total stress derivative with respect to the strain. That means
that the determination of E requires the computation of the tangent opera-
tor dS

dE
. Its analytical expression is derived in the following.

Remark 4.5 Unfortunately the graph of the stress-strain response function
is convex in compression and concave in tension which is a situation where
the Newton method may diverge (cycle) without some kind of additional con-
trol (Figure 4.8). Cycling is easily detected by checking the sign of two suc-
cessive iterates Si ·Si+1 < 0 a situation called stress reversal. One way
to prevent cycling, is to set the subderivative S

′
λ(E

i) (or derivative S ′(Ei) if
differentiable) to the elastic slope ε0 as soon as a stress reversal is detected.

S

E

σp(D)

−σp(D)

Ei

Ei+1

Si

Si+1

ε0

ε0(1−D)

Figure 4.8: Illustration of a reversal situation of the generalized Newton method.
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Tangent operator computation

We now compute the tangent operator required by the generalized Newton
method (4.33) for the three evolution modes of the model.

a) Elastic mode: Y p(Sp
T, D0) ≤ 0 and Y D(W D

T
; E, Ep

0 , D0) ≤ 0

As Ėp = 0 and S = ε0(E −Ep), we have:

dS

dE
= ε0 (4.35)

b) Plastic mode: Y p(Sp
T, D0) > 0 and Y D(W D

T ; E, Ep
0 , D0) ≤ 0

If Ėp > 0 (tensile case), then Sp = σp(D). From (4.6), we have:

Ep = D

(
E − σp(D)

ε0

)

Thus, the total stress can be rewritten as S(E, D) = ε0(1−D)E + Dσp(D).
In the compressive case, σp(D) has to be replaced by −σp(D).
As Ḋ = 0, we have:

dS

dE
= (1−D)ε0 (4.36)

c) Damage mode: Y p(Sp
T, D0) > 0 and Y D(W D

T ; E, Ep
0 , D0) > 0

Once more, let us focus on the tensile case (Ėp > 0). As in the plastic mode,
we have:

S = S(E, D) = ε0(1−D)E + Dσp(D) (4.37)

From
dS

dE
=

∂S

∂E

dE

dE︸︷︷︸
=1

+
∂S

∂D

dD

dE
(4.38)

we get:
dS

dE
= ε0(1−D) + (−ε0E + σp(D) + Dσp′(D))

dD

dE
(4.39)

We still have to determine dD
dE

.
Let us rewrite the function f defined in (4.30) as a function of the two
variables E and D. Then, we have:

ḟ(E, D) =
∂f

∂D
Ḋ +

∂f

∂E
Ė (4.40)
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As ḟ = 0, (4.40) leads to
dD

dE
= −∂f/∂E

∂f/∂D
(4.41)

On the one hand, ∂f
∂D

has been calculated in (4.31) and was denoted by f ′(D).

On the other hand,
∂f

∂E
= ε0(1−D) (4.42)

The tangent operator of the damage mode is finally obtained by combining
(4.39), (4.41), (4.42) and (4.31).
In the compressive case (Ėp < 0), σp(D) has to be replaced by −σp(D) and
σD

+(D) by −σD
−(D), respectively.

Remark 4.6 From (4.39) and (4.42), we see that dS
dE

vanishes if D → 1 lead-
ing to a divergence of Newton’s algorithm. In a tensile load driven simulation
with S = S̄ and in the case of damage growth implying that max (S̄) > σD

0+,
we have:

S̄ = Sp + SD = σp(D) + σD

+(D)

For the exponential hardenings defined in (4.2) and (4.3), we get:

S̄ = σD

0+ + χp
(
1− exp (−lD)

)
+ χDσD

0+

(
1− exp (−kD)

)
For k = l and χp + χDσD

0+ = 0, S̄ = σD
0+. Thus in that case dS

dE
= 0 and the

simulation cannot be executed.
Suppose that k = l and χp + χDσD

0+ �= 0. Then

S̄ = σD

0+ + (χp + χDσD

0+)
(
1− exp (−kD)

)
As 0 < D < 1, we derive the following consistency conditions:{

max (S̄) < σD
0+ + (χp + χDσD

0+)
(
1− exp (−k)

)
χp + χDσD

0+ > 0
(4.43)

The last condition expresses that we cannot simulate a softening of the to-
tal stress in a load driven experiment which is obvious for stability reasons.
Analog conditions can be derived for the compressive case.

Remark 4.7 Due to the choice of the nonlinear hardening functions (4.2)
and (4.3), there is no analytical solution S(E) available even in a simple
ramp test. If linear functions were chosen, an analytical solution would be
available.
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Algorithm formulation

The elastic plastic damage algorithm of the RI model is described in Boxes 1,
2, 3a, 3 and 4 (Table 4.1). The order in which the two different trial stresses
are calculated is important. As damage can occur only if the plastic pad is
sliding, the first stress to be tested is the one in the plastic pad. This stress
depends on the total strain whereas the stress in the damageable spring does
not.

The features and simulation results of the RI model will be discussed
in detail together with the other models in Section 4.3.

The major drawback of the RI model is that the damaged reloading
curve is not collinear with the origin as it seems to be the case for cyclic me-
chanical tests carried out on both bovine and human cortical bone (Subsec-
tion 2.2.1, [Kotha and Guzelsu, 2003, Zioupos, 2002, Fondrk et al., 1999b,
Fondrk et al., 1988]), and on trabecular bone as well ([Keaveny et al., 1999]).
This motivates the following alternative (Subsection 4.1.3).

BOX 1 − State variables initialization, time and strain
Newton loop

1. Set n = 0, Ep
0 = 0, D0 = 0

E0 = 0 if stress driven

2. FOR n = 1 TO N , DO:

3. Set i = 0, E0
n = En−1 if stress driven

E0
n = En if strain driven

4. WHILE | dEi| > TOL, DO:
Goto BOX 2

Table 4.1: One-dimensional RI elastic plastic damage algorithm
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BOX 2 − Elastic-plastic predictor

1. Find elastic predictor

Set Ep = Ep
n−1, D = Dn−1

Compute S = ∂EΨ(Ei
n, E

p, D), dS
dE

2. IF D �= 0, THEN compute trial plastic stress:

Sp
T,n = −∂EpΨ(Ei

n, E
p
n−1, Dn−1)

ELSE:

Goto BOX 3a

END IF.
3. Check for plastic process

IF Y p(Sp
T,n, Dn−1) ≤ 0, THEN:

Goto BOX 4

ELSE:

Set D = Dn−1

Project Sp
T,n on Y p(Sp, D) = 0

Compute S = ∂EΨ(Ei
n, E

p, D), dS
dE

Goto BOX 3

END IF.

BOX 3a − Initial damage predictor

1. Check for damage process

IF Y (S) ≤ 0, THEN:

Goto BOX 4

ELSE:

Project S by solving simultaneously

Y p(Sp, D) = 0 and

Y D(W D, Ei
n, E

p, D) = 0

Compute S = ∂EΨ(Ei
n, E

p, D), dS
dE

Goto BOX 4

END IF.

Table 4.1: (continued)
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BOX 3 − Damage predictor

1. Compute trial damage energy

W D
T,n = −∂DΨ(Ei

n, E
p
n−1, Dn−1)

2. Check for damage process

IF Y D(W D
T,n, E

i
n, E

p
n−1, Dn−1) ≤ 0, THEN:

Goto BOX 4

ELSE:

Project simultaneously

Sp
T,n on Y p(Sp, D) = 0 and

W D
T,n on Y D(W D

n , Ei
n, E

p, D) = 0

Compute S = ∂EΨ(Ei
n, E

p, D), dS
dE

Goto BOX 4

END IF.

BOX 4− Total strain correction, state variables update

1. Total strain correction

IF stress-driven, THEN:

Compute dEi = − dS
dE

−1
(S − Sn)

Set Ei+1
n = Ei

n + dEi

ELSE:

Set dEi = 0

END IF.
Set i← i + 1 END DO. (i-loop)

2. Update state variables

Set En = Ei
n, Sn = S

Set Ep
n = Ep, Dn = D

Set n← n + 1 END DO. (n-loop)

Table 4.1: (continued).
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4.1.3 RI± theoretical formulation

The rate-independent model with two internal damage variables, ab-
breviated by RI±, allows for finer simulations, but its complexity is slightly
increased. In this model, the damage state is described by a tensile (D+)
and a compressive (D−) damage variable.

The main motivation for the formulation of this model is that it guar-
antees a damaged reloading collinear with the origin (Subsection 2.2.1).

Nevertheless, the differences with the RI model are not drastic. Thus,
we only present the major and necessary differences in order to understand
this new model.

Rheological setup

The rheological setup of the RI± damage model is the same than the RI one
(Figure 4.1).

Variables and material constants definitions

The total strain E ∈ R and the plastic strain Ep ∈ R still describe the
deformation state of the system.
New tensile and compressive damage variables, denoted by D+ ∈ [0, 1[ and
D− ∈ [0, 1[ respectively, replace D. Actually, the total damage state of the
system can be interpreted by the amount D+ + D−.
Isotropic plastic hardening is no longer considered in this model. Two new
exponential plastic hardening functions are defined:

σp
+(D−) = χp

(
1− exp (−lD−)

) ≥ 0 (4.44)

and
σp
−(D+) = χp

(
1− exp (−lD+)

) ≥ 0 (4.45)
The exponential damage hardening functions are analogously defined by:

σD

±(D+, D−) = σD

0±
(
1 + χD

(
1− exp

(−k(D+ + D−)
)))

(4.46)

Remark 4.8 We see that the tensile (resp. compressive) plastic yield stress
depends only on the compressive (resp. tensile) damage variable. This argu-
ment added to the condition that D+ (resp. D−) evolves only during the
tensile (resp. compressive) damage mode guarantee a damaged reloading
collinear with the origin. This is included in the new dissipation potential.

Remark 4.9 The damage threshold stresses are chosen to depend on the
sum of both damage variables which describe the total damage state of the
system.
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Free energy potential and conjugate stresses

The new nonsmooth convex free energy potential of the RI± model is:

Ψ(E, Ep, D+, D−) =

=

⎧⎨
⎩

1
2
ε0(E − Ep)2 + 1

2
ε0

1−(D++D−)
D++D−

Ep2 + IΔ(D+, D−) if D+ + D− > 0

1
2
ε0(E −Ep)2 + I{0}(Ep) if D+ + D− = 0

(4.47)
with Δ = [0, 1[×[0, 1[, IΔ the indicator function of Δ and I{0} that of {0}.
Remark 4.10 We note that Ψ is invariant with respect to a permutation
of D+ and D−. The distinct tensile and compressive behaviours of cortical
bone tissue will be included in the definition of an asymmetric dissipation
potential.

The state laws which derive from the free energy potential are:

SΨ ∈ ∂EΨ =

{
ε0(E − Ep) if D+ + D− > 0

ε0E if D+ + D− = 0
(4.48)

Sp
Ψ ∈ −∂EpΨ =

{
ε0E − ε0

Ep

D++D−
if D+ + D− > 0

R if D+ + D− = 0
(4.49)

W
D+

Ψ ∈ −∂D+Ψ =

{
1
2
ε0

Ep2

(D++D−)2
if D+ + D− > 0

[0,∞[ if D+ + D− = 0
(4.50)

W
D−
Ψ ∈ −∂D−Ψ =

{
1
2
ε0

Ep2

(D++D−)2
if D+ + D− > 0

[0,∞[ if D+ + D− = 0
(4.51)

We see that the stress in the damageable spring is:

SD := S − Sp ∈
{

ε0
1−(D++D−)

D++D− Ep if D+ + D− > 0

R if D+ + D− = 0
(4.52)

Thus, the stiffness of the damageable elastic spring is ε0
1−(D++D−)

D++D−
.

Dissipation potential and flow rules

The new nonsmooth convex dissipation potential is defined by:

Φ(Ėp, Ḋ+, Ḋ−; E, Ep, D+, D−) := Φp(Ėp; D+, D−) +

+ ΦD(Ḋ+, Ḋ−; E, Ep, D+, D−)
(4.53)
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with
Φp(Ėp) := σp

−(D+)DR+(Ėp) + σp
+(D−)DR−(Ėp) (4.54)

and

ΦD(Ḋ+, Ḋ−; E, Ep, D+, D−) := φ(Ḋ+, Ḋ−; E, Ep, D+, D−)+IR+×R+(Ḋ+, Ḋ−)
(4.55)

where

φ(Ḋ+, Ḋ−; E, Ep, D+, D−) :=

:=

{
h+(D+, D−)Ḋ+ if Ep > 0 or Ep = 0 and E ≥ 0

h−(D+, D−)Ḋ− if Ep < 0 or Ep = 0 and E < 0

and h±(D+, D−) :=
σD2
± (D+, D−)

2ε0(1− (D+ + D−))2 .

DR± are the distance functions to R± representing the positive or negative
parts respectively, and IR+×R+ is the indicator function of R+ × R+. The
plastic and damage dissipations (Φp and ΦD) are different in forward and
backward plastic strain rate.

By a Legendre-Fenchel transformation of Φ, we find the dual dissipa-
tion potential:

Φ∗(Sp, W D+, W D−;E, Ep, D+, D−) =

= Φp∗(Sp; D) + ΦD∗(W D+ , W D−; E, Ep, D+, D−)
(4.56)

with
Φp∗(Sp; D) := I[−σp

−(D+),σp
+(D−)](S

p)

and

ΦD∗(W D+, W D−; E, Ep, D+, D−) :=

:=

{
I[−∞,h+(D+,D−)] if Ep > 0 or Ep = 0 and E ≥ 0

I[−∞,h−(D+,D−)] if Ep < 0 or Ep = 0 and E < 0

The associated flow rules (inverse complementary laws) are:

Ėp ∈ ∂SpΦ∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∅ if Sp < −σp(D+)

]−∞, 0] if Sp = −σp(D+)

0 if − σp(D+) < Sp < σp(D−)

[0, +∞[ if Sp = σp(D−)

∅ if Sp > σp(D−)

(4.57)
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and, if Ep > 0 or Ep = 0 and E ≥ 0, then Ḋ− = 0 and

Ḋ+ ∈ ∂W D+Φ∗ =

⎧⎪⎨
⎪⎩

0 if W D+ ∈ ]−∞, h+(E, Ep, D+, D−)[

[0, +∞[ if W D+ = h+(E, Ep, D+, D−)

∅ if W D+ > h+(E, Ep, D+, D−)

(4.58)

whereas if Ep < 0 or Ep = 0 and E < 0, then Ḋ+ = 0 and

Ḋ− ∈ ∂W D−Φ∗ =

⎧⎪⎨
⎪⎩

0 if W D− ∈ ]−∞, h−(E, Ep, D+, D−)[

[0, +∞[ if W D− = h−(E, Ep, D+, D−)

∅ if W D− > h−(E, Ep, D+, D−)

(4.59)

Remark 4.11 The kinematic complementarity relation Ḋ+Ḋ− = 0 (Ḋ+ ≥
0, Ḋ− ≥ 0) follows from the definition of the dissipation potential and its
parametric dependence on Ep (distinguishing tensile and compressive states).

Numerical implementation

The numerical algorithm of the RI± damage model can easily be generalized
from the RI model. The resulting algorithm has the same structure as the
one presented in Table 4.1 upon replacing the hardening functions (4.2) and
(4.3) by their RI± counterparts (4.44), (4.45) and (4.46).

4.2 Rate-dependent models
In this Section, two rate-dependent models based on the RI and

RI± models are presented. They account for rate-dependent damage pro-
cesses. Since our experiments and other investigators show that viscoelastic
effects are relatively small at physiological strain rates, we choose to include
rate-dependent effects only during damage accumulation mechanisms (e.g.
[McElhaney, 1966, Fondrk et al., 1988]).

As the rate-dependent models are similar to the rate-independent
ones, we present only their major new characteristics.

4.2.1 RD damage model formulation

Rheological setup

The rheological model is identical to the rate-independent setup. The only
difference lies in the damage evolution rule deriving from a power comple-
mentary dissipation potential.
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Variables and material constants definitions

The rate-dependent model with one damage variable (abbreviated by RD)
shares the same three independent variables as the RI model: E, Ep and D.
Furthermore, the plastic and damage hardening functions are identical. How-
ever, rate-dependent damage accumulation requires the introduction of two
new material constants: an exponent N and a viscosity parameter ζ .
Therefore, nine constants fully characterize the RD damage model (ε0, χp, l,
σD

0+, σD
0−, χD, k, N and ζ).

Free energy potential and conjugate stresses

The free energy potential and the conjugate stresses are the same as in the
RI model.

Dissipation potential and flow rules

The new nonsmooth convex dissipation potential is defined by:

Φ(Ėp, Ḋ; E, Ep, D) = Φp(Ėp; D) + ΦD(Ḋ; E, Ep, D) (4.60)

with
Φp(Ėp; D) := σp(D)|Ėp| (4.61)

and
ΦD(Ḋ; E, Ep, D) := φ(Ḋ; E, Ep, D) + IR+(Ḋ) (4.62)

where

φ(Ḋ; E, Ep, D) := 1
2ε0(1−D)2

[
Nζ2

N+2

(
|Ep|

(1−D)D

)2/N

Ḋ(N+2)/N+

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2NζσD
+ (D)

N+1

(
|Ep|

(1−D)D

)1/N

Ḋ(N+1)/N + σD2
+ (D)Ḋ if Ep > 0 or Ep = 0 and E ≥ 0

2NζσD− (D)

N+1

(
|Ep|

(1−D)D

)1/N

Ḋ(N+1)/N + σD2
− (D)Ḋ if Ep < 0 or Ep = 0 and E < 0

⎤
⎥⎥⎥⎦

and IR+ is the indicator function of R+.
The complementary laws are derived without difficulty from the dissipation
potential:

Sp
Φ ∈ ∂ĖpΦ =

⎧⎪⎨
⎪⎩

−σp(D) if Ėp < 0

[−σp(D), σp(D)] if Ėp = 0

σp(D) if Ėp > 0

(4.63)
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and

W D

Φ ∈ ∂ḊΦ =

⎧⎪⎨
⎪⎩

φ′(Ḋ; E, Ep, D) if Ḋ > 0

]−∞, φ′(0; E, Ep, D)] if Ḋ = 0

∅ if Ḋ < 0

(4.64)

where φ′ is the derivative of φ with respect to Ḋ:

φ′(Ḋ; E, Ep, D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2ε0

(
ζ
( |Ep|

(1−D)D

)1/N
Ḋ1/N+σD

+ (D)

1−D

)2

if Ep > 0 or Ep = 0 and E ≥ 0

1
2ε0

(
ζ
( |Ep|

(1−D)D

)1/N
Ḋ1/N+σD

− (D)

1−D

)2

if Ep < 0 or Ep = 0 and E < 0

Remark 4.12 We note that φ′(0; E, Ep, D) = φ′(E, Ep, D), previously de-
fined as the quasistatic damage energy threshold of the RI model in (4.17).
As the function φ′ depends on Ḋ, damage accumulation is rate-dependent in
this model. The damage energy W D no longer needs to be projected on the
quasistatic damage energy but obeys the evolution rule (4.64).

Remark 4.13 For D = 0 and thus Ep = 0, the ratio |E
p|

D tends to the finite
value |E|, which is consistent with the choice σp(0) = 0 (see (4.28)).

The dual dissipation potential is obtained via the Legendre-Fenchel trans-
form:

Φ∗(Sp, W D; E, Ep, D) = Φp∗(Sp; D) + ΦD∗(W D; E, Ep, D) (4.65)

with
Φp∗(Sp; D) := I[−σp(D),σp(D)](S

p)

the indicator function of [−σp(D), σp(D)] and

ΦD∗(W D; E; Ep, D) :=

{
φ∗

+(W D; Ep, D) if Ep > 0 or Ep = 0 and E ≥ 0

φ∗
−(W D; Ep, D) if Ep < 0 or Ep = 0 and E < 0

where

φ∗
±(W D; Ep, D) :=− 2

(N + 1)(N + 2)

(1−D)D

|Ep|
[
h±(D)− (N + 1)W D+

+ N
√

h±(D)W D

]
DN

R−

(
(1−D)

√
2ε0W D − σD

±(D)

ζ

)
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and h±(D) defined in (4.14).
The flow rules of the internal variables Ep and D are found from Φ∗ (inverse
complementary laws):

Ėp ∈ ∂Sp
Φ
Φ∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∅ if Sp < −σp(D)

]−∞, 0] if Sp = −σp(D)

0 if − σp(D) < Sp < σp(D)

[0, +∞[ if Sp = σp(D)

∅ if Sp > σp(D)

(4.66)

and

Ḋ ∈ ∂W D
Φ

Φ∗ =

⎧⎪⎨
⎪⎩

(1−D)D
|Ep| DN

R−

( |SD|−σD
+ (D)

ζ

)
if Ep > 0 or Ep = 0 and E ≥ 0

(1−D)D
|Ep| DN

R−

( |SD|−σD
− (D)

ζ

)
if Ep < 0 or Ep = 0 and E < 0

(4.67)
where DR− is the distance function to R− and Remark 4.13 is enforced.

Remark 4.14 In (4.67), we used the equivalence:

(1−D)
√

2ε0W D = |SD|

Remark 4.15 In contrast with the RI model, we see from (4.67) that the
damage evolution rule allows for a stress overshoot in the damageable spring.
The damage variable evolves according to a power law governed by the ex-
ponent N and the viscosity factor ζ as in the cumulative damage model for
bone fracture proposed by [Carter and Caler, 1985].

The partial Legendre-Fenchel transform is illustrated in Figure 4.9 for Ep >
0, N = 18 and ζ = 35. We note that a high exponent N approximates a
plastic behaviour; this is referred to as a pseudo-plastic behaviour.

4.2.2 Numerical algorithm

The numerical implementation of the RD model differs from the RI
version only in the damage mode. The formulation of the elastic and plastic
modes remains unchanged. Once again, the formalism of generalized stan-
dard materials is applied.
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Figure 4.9: Illustration of the partial Legendre-Fenchel transform of Φ, plotted
for Ep > 0, h+(D) = 1.9, N = 3 and ζ = 35.

Internal variables evolution

Damage mode: Y p(Sp
T, D0) > 0 and Y D(W D

T ; E, Ep
0 , D0) > 0

In this case, Ėp �= 0 and Ḋ �= 0. (4.28) still holds as Sp = ±σp(D) but
the evolution rule of D is dictated by (4.67). The time derivative can be
approximated to the first order by the backward Euler rule ([Hughes and
Taylor, 1978]):

Ḋ 
 D −D0

τ
(4.68)

Combining (4.28) with (4.67), we get:

D −D0

τ
− 1−D∣∣∣E ∓ σp(D)

ε0

∣∣∣
⎛
⎝ε0(1−D)

∣∣∣E ∓ σp(D)
ε0

∣∣∣− σD
±(D)

ζ

⎞
⎠

N

= 0 (4.69)

This nonlinear equation has to be solved for D as E is assumed to be known
(predicted).
Let us define the function f± : [0, 1[→ R by

f±(D) :=
∣∣∣E ∓ σp(D)

ε0

∣∣∣(D −D0)+

− τ(1−D)

⎛
⎝ε0(1−D)

∣∣∣E ∓ σp(D)
ε0

∣∣∣− σD
±(D)

ζ

⎞
⎠

N (4.70)
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with f+ and the upper sign symbols for Ep > 0 or Ep = 0 and E ≥ 0 and f−
and the lower sign symbols for Ep < 0 or Ep = 0 and E < 0, respectively.
The derivative of f± reads:

f ′
±(D) =

∣∣∣E ∓ σp(D)

ε0

∣∣∣+ E ∓ σp(D)
ε0∣∣∣E ∓ σp(D)
ε0

∣∣∣
(
∓σp′(D)

ε0

)
(D −D0)+

+ τ

⎛
⎝ε0(1−D)

∣∣∣E ∓ σp(D)
ε0

∣∣∣− σD
±(D)

ζ

⎞
⎠

N

+

− τε0(1−D)
N

ζ

⎛
⎝ε0(1−D)

∣∣∣E ∓ σp(D)
ε0

∣∣∣− σD
±(D)

ζ

⎞
⎠

N−1

·

·
⎡
⎣−∣∣∣E ∓ σp(D)

ε0

∣∣∣ + (1−D)
E ∓ σp(D)

ε0∣∣∣E ∓ σp(D)
ε0

∣∣∣
(
∓σp′(D)

ε0

)
− σD

±
′(D)

ε0

⎤
⎦

(4.71)

In order to find the value of D, we have to solve f±(D) = 0.
We use the generalized Newton method ([Alart and Curnier, 1991]) to solve
this nonsmooth C0 nonlinear equation

Dj+1 = Dj − f±(Dj)

f±′(Dj)
with j = 0, 1, 2, . . . (4.72)

Tangent operator computation

The tangent operators are unchanged in the elastic and plastic modes.

Damage mode: Y p(Sp
T, D0) > 0 and Y D(W D

T ; E, Ep
0 , D0) > 0

In this mode, dS
dE

is still given by (4.39) but dD
dE

reads:

dD

dE
= −∂f±/∂E

∂f±/∂D
(4.73)

where ∂f±
∂D

is given by (4.71) and

∂f±
∂E

=
E ∓ σp(D)

ε0∣∣∣E ∓ σp(D)
ε0

∣∣∣(D−D0)− τε0(1−D)2N

ζ

E ∓ σp(D)
ε0∣∣∣E ∓ σp(D)
ε0

∣∣∣ ·
·
(

ε0(1−D)|E ∓ σp(D)
ε0
| − σD

±(D)

ζ

)N−1
(4.74)
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Algorithm formulation

The algorithm has exactly the same structure as the one presented in Table
4.1. The only difference is the use of the generalized Newton method (4.72)
instead of (4.32) in order to find the adequate value of D in the damage
mode.

4.2.3 RD± damage model formulation

The extension of the RD model to a rate-dependent model with two
internal damage variables (abbreviated by RD±) is done exactly in the same
way as the rate-independent case. Thus, we will not formulate it in this
Subsection.

We recall that the few changes to be done are to introduce tensile and
compressive damage variables, to make use of the same free energy potential
as (4.47) and the same dissipation potential as (4.60) where the plastic and
hardening functions must be replaced by (4.44), (4.45) and (4.46).

The state laws are then obtained by the usual method of generalized
standard materials. As for the RI± model, the RD± leads to a damaged
reloading collinear with the origin, a lack of the RD model.

4.3 Discussion and comparison of the models

Firstly, in order to visualize and understand the different evolution
modes of the models, we carry out a cyclic loading-unloading numerical ex-
periment. Secondly, we show that the rate-independent models can be viewed
as the quasistatic limit of the rate-dependent ones.

4.3.1 Loading-unloading cycles

In a typical loading-unloading simulation, the algorithm of our consti-
tutive laws for cortical bone can go through three main evolution modes. For
clarity of the discussion, we assume a strain driven pure tensile saw tooth like
cyclic test (Figure 4.10). Two successive cycles of same magnitude carried
out on the RI and RI± damage models are illustrated in Figure 4.11 (a) and
(b), respectively.
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Figure 4.10: Pure tensile strain driven saw tooth like test.
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Figure 4.11: Stress-strain diagrams of the three evolution modes of cortical bone:
(E) Initial and subsequent elastic mode, (P) plastic mode and (D) damage mode.
Both graphs are plotted for ε0 = 24.4GPa and k = l = 14. Further left-hand side
material constants are: σD

0+ = 48MPa, χp = 18MPa and χD = 50; right-hand
side: σD

0+ = 32MPa, χp = 50MPa and χD = 85.6.

Initial linear elastic mode (E)

For an intact tissue, the plastic strain and the damage variable are supposed
to be initially equal to zero. Thus, the plastic yield stress is also zero and
immediately reached as stress increases. However, as long as the damage
threshold stress has not been reached, the damageable spring mounted in
parallel with the plastic pad behaves like a rigid bar. Thus, it prevents the
sliding of the plastic pad.
In this initial elastic mode, only the primary spring of stiffness ε0 governs the
evolution of the system.

Damage mode (D)

Once the initial damage threshold stress is reached, both plastic strain and
damage increase. The damageable spring is no longer rigid and the plastic
pad begins to slide in the tensile direction.
In the rate-independent case, the trial elastic stress of the damageable spring
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is projected on the updated damage threshold surface to give the final dam-
aged stress. In the rate-dependent case, the value of the damage variable
is regulated by the rate-dependent evolution rule. In the case of the two
damage variables models, only the tensile damage variable increases.
In both cases, the plastic stress is simultaneously projected on the positive
plastic surface to give the final plastic stress: a non-zero stress in the case of
the one damage variable models and a zero stress for the ± models.
This plastic and damage mode of cortical bone tissue is assigned to the gen-
eration and growth of microcracks.

Subsequent linear elastic mode (E)

As soon as the total stress decreases, like during the unloading phase, the
stress in the damageable spring drops below its damage threshold. Further-
more, the stress in the plastic pad also decreases below its positive plastic
yield point. Thus, the plastic pad remains fixed until its stress reaches its
negative plastic yield point and begins to slide in the opposite direction.
In this subsequent elastic regime, only the primary spring of stiffness ε0 ac-
counts for the evolution of the system.
The length of the elastic unloading phase is directly proportional to the
value of the positive and negative plastic yield stresses. In the ± models,
the positive plastic yield stress remains equal to zero as it depends only on
the compressive damage variable. Thus, the length of the subsequent elastic
mode is half of the length of the models with one damage variable which
undergo an isotropic plastic hardening. This particular feature ensures a
damaged reloading in a second loading cycle to be collinear with the origin
(Figure 4.11 (b)).

Plastic mode (P)

Once the negative plastic yield stress is reached, the plastic pad begins to
slide in the compressive direction. This mode has a slope of (1−D)ε0 on the
stress-strain curve, giving an intuitive interpretation of the damage variable.
It represents the reduction of the intact elastic stiffness.
This plastic mode is attributed to a microcrack sliding mode.

Second loading cycle

During the second loading cycle, the material will first undergo the linear
elastic regime, then the plastic mode (with the plastic pad sliding in the
tensile direction). For the rate-independent models, if the reloading cycle is of
same magnitude as the first, the plastic mode will reach the adaptation stress
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level reached before, and thus not accumulate further damage. However,
for the rate-dependent models, little damage is accumulated because the
quasistatic damage threshold stress is smaller than the viscous threshold
stress level reached during the previous cycle.
The final unloading phase is composed of a subsequent elastic mode followed
by a plastic mode.

4.3.2 Quasistatic limit

To see that the rate-independent models are the quasistatic limit of
the rate-dependent ones, let us focus on the tensile damage mode of the RD
model. The same conclusions can be drawn for the RD± model and for the
compressive damage mode without additional difficulty.
In such a case, W D > h+(D) (or equivalently SD > σD

+(D)) and the internal
variable D evolves according to the function:

Ḋ =
(1−D)D

|Ep|
( |SD| − σD

+(D)

ζ

)N

(4.75)

where |SD| = (1−D)
√

2ε0W D. The plot of Ḋ against W D is shown in Figure
4.12 for various exponents N . We see that all curves pass through the points

of coordinates W D = 1
2ε0

(
ζ+σD

+ (D)

1−D

)2

:= g+(D) and Ḋ = (1−D)D
|Ep| .

0
0

 

Ḋ

W D

(1−D)D
|Ep|

h+(D) g+(D)

N = 0

N = 1
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N = 18

Figure 4.12: Tensile rate-dependent flow rule of D plotted for various exponents
N .

We have the following result:

lim
ζ→0

g+(D) = h+(D) =
σD2

+ (D)

2ε0(1−D)2
(4.76)
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The limit (4.76) means that the rate-dependent damage model tends to the
rate-independent damage model for ζ → 0, allowing thus no rate-dependent
damage stress overshoot. This statement remains true for all N .

4.3.3 Final considerations

For all four models, a range of mechanical tests were successfully sim-
ulated covering both strain and stress driven constant step (relaxation and
creep), monotonic ramp, saw tooth like cycles, cyclic sine both in tension
and/or compression.

The Newton integration scheme used to overcome the nonlinearity
of the stress-strain law under stress control shows asymptotically quadratic
convergence (in the absence of a damage state change).

The algorithm used to calculate the rate-dependent accumulation of
damage (implicit time integration scheme of the RD and RD± models) is
robust.



Chapter 5

Identification of one-dimensional
laws

We carried out a series of in vitro uniaxial mechanical tests on bovine
cortical bone specimens in order to identify the different constants charac-
terizing our one-dimensional constitutive laws. The tests included tensile or
compressive ramps, tensile or/and compressive saw tooth cycles and finally
creep, all tests being conducted along the principal direction of the bone
fibers. In order to examine the behaviour of cortical bone subject to strain
rates ranging from the quasistatic domain to the physiological one, strain
rates varying from 4.6 · 10−5 to 10−2s−1 were selected.

Artefacts associated to inhomogeneous boundary conditions were avoi-
ded using dumbbell (or "dogbone") specimens. Thus, we expect a good
quantitative evaluation of the plastic and damage processes.

Cortical bone, like most biological tissues, show a high variability in
its properties from one individual to another and within the same individual.
This is essentially due to different densities, porosities and degrees of miner-
alization. The purpose of our mechanical tests was not to develop a rigorous
identification procedure involving large statistics, but rather to prove the
relevance of the proposed models.

5.1 Uniaxial tests

5.1.1 Materials and methods

Specimen preparation

Fresh bovine femurs were obtained from a local slaughterhouse and stored at
−20oC within one hour. Then, the diaphyses were isolated with a Metabo
band-saw (Metabowerke GmbH) and cut into cylindrical cylinders of 50 mm
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length. After cleaning the marrow, 7-8 mm thick slices were extracted from
the cylinders with an EXAKT 300 CL band-saw (EXAKT Vertriebs GmbH)
along the longitudinal direction of the fibers. The parallelepiped-like speci-
mens were then dried in an oven at 40oC for 24 hours. Finally, the blocks
were milled down into cylindrical specimens with dimensions 44×5 mm (Fig-
ure 5.1 Left).

Prior to testing, each specimen was weighed and then thawned in a
physiological saline solution for two hours at room temperature (∼ 22oC).
Finally, the weight of the wet specimen was determined just before the test.
The effects of drying and re-wetting the specimens on the mechanical proper-
ties of cortical bone are small and can probably be ignored ([Currey, 1988a]).
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Figure 5.1: Cortical bone specimen geometry and schematic experimental setup.

Mechanical testing

Uniaxial tests were carried out on a 5848 Instron electromechanical mi-
crotester (Instron Corp.). The specimens were fixed on customised grips
specially adapted to the size of our specimens (Figure 5.1 Right). Force was
measured using a 2 kN Instron load cell. Displacement was measured using
a calibrated SANDNER EXA15-2o extensometer (SANDNER-Messtechnik
GmbH) of L = 15 mm gauge length directly attached to the central part of
the specimen. Drying of the specimen during all the testing procedure was
prevented using a moist gauze placed around the specimen. The gauze was
regularly kept wet during the testing using a physiological solution spray.
All tests were carried out at room temperature (∼ 22oC) under displace-
ment control (except for creep tests). Data were recorded on an appropriate
computer acquisition system.
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Imposed schedules

Different schedules were imposed including tensile or compressive ramps,
tensile or/and compressive cycles and finally creep tests. Strain-driven tests
were carried out at different strain rates ranging from 4.6 · 10−5 to 10−2s−1.
Each test was repeated five times using five different specimens. We tested
a total of 90 specimens.

Single ramp tests. A series of tensile or compressive ramps were carried
out up to rupture of the specimens at three different strain rates (Figure 5.2
a)). The imposed rates were Ė0 = 4.6 · 10−5s−1, Ė1 = 3.4 · 10−4s−1 and
Ė3 = 3.4 · 10−3s−1. A total of 30 specimens were tested this way.

Cyclic tests. Four kinds of cyclic tests were carried out. The first two
schedules were exclusive tensile or compressive saw tooth like displacements
of increasing amplitude (Figure 5.2 b)). A single ramp was finally applied
in the opposite direction up to rupture of the specimen. The strain rate
for this series was Ė0 = 4.6 · 10−5s−1. The other two schedules consisted
of saw tooth like cyclic tests combining tension and compression (Figure
5.2 c)). In the first series (at Ė0 = 4.6 · 10−5s−1, Ė1 = 3.4 · 10−4s−1 and
Ė4 = 10−2s−1), we began with a tensile part (Figure 5.2 c)), whereas in the
second (at Ė0 = 4.6 · 10−5s−1, Ė2 = 10−3s−1 and Ė4 = 10−2s−1) with a
compressive one. In order to verify the absence of damage accumulation for
an already reached strain (or stress) level, all cycles were repeated twice. A
total of 40 specimens were tested this way.
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b) tensile saw teeth

0.002
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0.002
c) tension-compression saw tooth cycle

Figure 5.2: Uniaxial tensile strain schedules. The compressive counterparts are
obtained by a symmetry with respect to the time axis.
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Creep tests. Tensile creep tests were carried out at two stress levels:
106 MPa and 113 MPa. The stress levels of the compressive creep tests were
a slightly higher in modulus: −113 MPa and −120 MPa. The mentioned
creep stresses were reached in 10 s with a linear ramp, then held constant
during 90 s. At the end, stress was decreased to zero in 10 s and then main-
tained at this level during 90 s (Figure 5.3). A total of 20 specimens were
tested this way.

Stress

10s 100s
t

113 MPa

Figure 5.3: Tensile creep schedule.

Elasticity. Prior to each test, we carried out twelve saw tooth precondi-
tioning cycles in the elastic range in order to measure the longitudinal initial
elastic modulus. Only the last two cycles were used for its evaluation. To this
end, we imposed a displacement corresponding to a force of approximately
100 N (or a stress of 14 MPa).

All strain-driven uniaxial tests are summarized in Table 5.1 and the
stress-driven ones in Table 5.2.

Loading schedule Strain rate Number of specimens
Single tensile ramp Ė0, Ė1, Ė3 N = 15

Single compressive ramp Ė0, Ė1, Ė3 N = 15

Tensile cycles (final compr. ramp) Ė0 N = 5

Compr. cycles (final tensile ramp) Ė0 N = 5

Tensile-compressive cycles Ė0, Ė1, Ė4 N = 15

Compressive-tensile cycles Ė0, Ė2, Ė4 N = 15

Table 5.1: Overview of the 70 strain-driven uniaxial tests.

Loading schedule Creep stress Number of specimens
Tensile creep 106 MPa, 113 MPa N = 10

Compressive creep −113 MPa, −120 MPa N = 10

Table 5.2: Overview of the 20 uniaxial creep experiments.
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5.1.2 Preliminary discussion

For all mechanical tests, we observed a large quantitative scatter of
the measurements. This is common to all biological tissues and can be ex-
plained by two main arguments.

Firstly, it is obvious that due to very different loading conditions, in-
trinsic shapes and functions, the mechanical, microstructural and chemical
properties of a given tissue will vary from one location to another within the
same body. In addition, living tissues have the remarkable property to adapt
their structure to their function, leading thus to heterogeneous mechanical
properties.

Secondly, all aforementioned properties vary greatly from one indi-
vidual to another. They are altered by age, sex, genetic material, physical
activity, illness, and external living conditions.

Identification of constitutive laws describing the behaviour of biologi-
cal tissues is therefore a difficult task. A major goal for the biomechanicists
of this century is to build a huge database founded on a minimum set of
physiological variables like age, sex, weight, . . . which allows to predict the
value of the parameters of certified constitutive laws. Due to the lack of
information about the origin of our specimens and their limited number, this
was not attempted in this study.

5.2 Results

All experiments carried out on cortical bone specimens delivered the
expected constitutive behaviour qualitatively described in Subsection 2.2.1
except in compression. Although the dumbbell geometry of the traction
specimens ensures reliable measurements avoiding inhomogeneous boundary
effects, the small section of the specimens added to heterogeneities facilitated
its buckling and rupture in compression.

Most tensile fractures occurred in horizontal fracture patterns (Figures
5.4a) and b)), whereas most compressive ones in 45o oblique fracture patterns
(Figures 5.4 c) and d)). In some few cases, the specimen broke at the knives
of the extensometer but most fractures occurred away from the knives, either
near the knives or in the middle of the specimen. However, the recorded pre-
fracture stress-strain curves were qualitatively very similar in all cases.
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Figure 5.4: Fracture patterns: a) and b) macroscopically flat, transverse plane,
c) and d) oblique plane.

Selected experimental results for the quasistatic behaviour of cortical
bone at Ė = 4.6 ·10−5s−1 are presented in Figure 5.5a) to f). The results are
expressed in terms of stretch H := (Lt−L)/L and nominal stress P := p̄/A,
where L and Lt are the initial and actual gauge lengths, p̄ the load and A the
initial specimen area. Tests at higher strain rates are shown in Figure 5.6 a)
to f). At this point, we wish to thank R. Balet ([Balet, 2005]) for carrying
out and providing us the tests at higher strain rates. We now briefly discuss
qualitatively the main characteristics of the recorded stress-strain curves.

5.2.1 Elasticity

All elastic preconditioning cycles (for example Figure 5.5 f)) suggest
that the same longitudinal elastic modulus holds in tension and compres-
sion. Symmetric elastic properties have also been found for trabecular bone
([Keaveny et al., 1994, Zysset, 1994]).
Although the apparent tangent traction modulus of cortical bone is known
to have a strong dependence on strain rate ([McElhaney, 1966]), we find no
significant correlation for our range of velocities (Figure 5.6 a) and b)).

5.2.2 Damage threshold stress or elastic limit

All tests reveal a disymmetry between the compressive and the tensile
damage threshold stresses (Figures 5.5a) to f) and 5.6a) to f)). We find that
in magnitude, the longitudinal compressive threshold stress is approximately
1.4 times higher than the tensile one (Figures 5.5 c-d) vs 5.5 e-f)). This
result agrees well with previous investigations on bovine cortical bone (e.g.
[Reilly and Burstein, 1975, Cowin, 1989]).
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In contrast with the longitudinal elastic modulus, damage threshold
stresses show a stronger rate-dependence. A higher strain rate results in a
higher damage threshold stress (Figure 5.6 a) and b)). However, a strict
comparison between these curves must be done carefully because of the large
scatter of the results.

5.2.3 Hardening or damage behaviour

The damage behaviour of cortical bone is very similar to a hardening
plastic state leading to permanent strains (Figures 5.5 a) to f)). Reduction
of the initial elastic modulus visible during the unloading phase (Figures 5.5
c), e-f), and 5.6 c) to f)) reveals a plastic damaging mode (later on called
damaging mode).

Our results suggest that the material response is dominated by time-
dependent effects above the damage threshold stress, whereas below it, the
behaviour is primarily linear viscoelastic, with time effects playing only a
secondary role. This corroborates the study of [Fondrk et al., 1988] and jus-
tifies the need for rate-dependent damage accumulation mechanisms as the
ones taken into account in our rate-dependent models. For small velocities,
the slope of the damaging mode is of small magnitude (Figure 5.5 a) to f)),
whereas for increasing strain rates, the slope of the damaged curve increases
(Figure 5.6 a) to f)).

Due to experimental instabilities, our compressive threshold stresses
coincides almost with the compressive ultimate stresses. Rupture of the spec-
imen, mainly by buckling, occurs shortly after this point (Figures 5.5b-c), e-f)
and 5.6 b), e)). Thus, we do not observe the compressive damaging mode
which is clearly visible in the tensile counterpart. Nevertheless, successful
compressive experiments carried out on cortical bone show a similar damage
behaviour in tension and compression (Figure 5.6 f), [Reilly and Burstein,
1975]). These instabilities lead to near values for the tensile and compressive
ultimate strains which is not usual for cortical bone ([Cowin, 1989]).
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Figure 5.5: Stress-strain curves of the uniaxial tests at Ė = 4.6 · 10−5s−1: a) and
b) single ramps, c) and d) tensile/compressive cycles and e) and f) cycles mixing
tension and compression.
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Figure 5.6: Stress-strain curves of the uniaxial tests at various strain rates: a)
and b) single ramps, c) to f) cycles mixing tension and compression.
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5.3 Identification

In order to properly identify the constants of our one-dimensional
constitutive laws for bovine cortical bone, we carried out the average of all
responses for a given test. Then, we chose the nearest and most representa-
tive test to be identified.

We recall that the elastic mode of our one-dimensional models is de-
scribed by the initial Young’s modulus ε0. Damage-dependent hardening
functions account for the plastic and damage evolution modes.

If exponential hardening is assumed for both plastic and damage cri-
teria, the hardening functions are characterized by six parameters: σD

0±, χp,
χD, k and l.

This Section is divided into two parts. Firstly, we identify the seven
parameters of the two uniaxial rate-independent constitutive laws for cor-
tical bone. Secondly, the two additional constants ζ and N defining rate-
dependent damage are identified for both rate-dependent models.

In view of the large quantitative scatter between each test, probably
due to specimen density, porosity and mineralization scatter, we insist on
the fact that identification is done in the sense of a good qualitative agree-
ment retaining the main features of the material behaviour. Paying too much
attention to exact curve fitting is irrelevant.

5.3.1 Identification of the rate-independent laws

We proceed now to the identification of the seven aforementioned ma-
terial constants and discuss the ability of the models to fit the experimental
curves. We base the identification of the rate-independent constitutive laws
upon the lowest strain rate (Ė = 4.6·10−5 s−1).

Elasticity. The overall mean longitudinal intact elastic modulus is ε0 =
24.4 ± 1.4 GPa which lies in the range of other authors findings (e.g. [Reilly
and Burstein, 1975, Cowin, 1989]).

Damage threshold stresses. Plastic and damage thresholds are difficult
to define because plastic and damage modes appear progressively. Therefore,
there are several ways to define the elastic limit of a stress-strain curve.

It can be defined as the point of maximal curvature in a monotonic
tension (or compression) test. Another arbitrary way but which gives realis-
tic estimations is the conventional 0.2% strain offset criterion. In that case,
the threshold point is defined as the point from which we get 0.2% permanent
strain if we unload a perfectly plastic material (starting from zero strain).
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However, our initial damage threshold stresses σD
0± = σD

±(D = 0) have
a slightly different meaning. The experiments suggest that it is more realistic
to choose a low damage threshold stress and to assume a high exponential
hardening law (accumulating little damage for low stress levels) instead of
the usual high damage threshold stress and low hardening. Making this
choice, the identified tensile and compressive damage threshold stresses are:
σD

0+ = 48 MPa, σD
0− = 80 MPa for the RI model and σD

0+ = 32 MPa,
σD

0− = 53 MPa for the RI± model, respectively.

Hardening constants. The identified hardening constants of the RI model
are χp = 18.0 MPa, χD = 50.0 and k = l = 14. We find χp = 50.0 MPa,
χD = 85.6 and k = l = 14 for the RI± model.

Predicted stress-strain curves. The numerical stress-strain curves pre-
dicted by the RI and RI± models are compared to the experimental results
in Figure 5.7 a) to f). We recall that H = (Lt − L)/L is the stretch whereas
P = p̄/A is the nominal stress. A summary of the identified material con-
stants for the rate-independent models is given in Table 5.3.

Remark 5.1 Due to inherent scatter of biological tissues, Figure 5.7 e) is
obtained with a slightly higher value of χD (χD = 85) and Figure 5.7 f) with
χp = 40 MPa and χD = 115. The values of the other parameters remain
unchanged.

5.3.2 Identification of the rate-dependent laws

Adding rate-dependency to damage accumulation induces a new rheo-
logical behaviour in the models. Therefore, the identified damage parameters
of the rate-independent models must be adapted in order to take into account
this new effect.

Elasticity. As only damage behaviour is supposed to be rate-dependent,
the value of the initial longitudinal elastic modulus ε0 remains unchanged
(ε0 = 24.4± 1.4 GPa).

Damage threshold stresses. For RD, identification provides the values
σD

0+ = 1.0 MPa and σD
0− = 4.3 MPa, whereas for the RD± model, we find

σD
0+ = 1.0 MPa and σD

0− = 1.9 MPa.
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Figure 5.7: Experimental against predicted stress-strain curves of the one-
dimensional RI and RI± models (strain rate Ė = 4.6 · 10−5 s−1). Models pa-
rameters: RI: ε0 = 24.4GPa, σD

0+ = 48MPa, σD
0− = 80MPa, χp = 18MPa,

χD = 50, k = l = 14; RI±: ε0 = 24.4GPa, σD
0+ = 32MPa, σD

0− = 53MPa,
χp = 50MPa, χD = 85.6, k = l = 14. (Curve 5.7 e) obtained with χD = 85 and
5.7 f) with χp = 40MPa and χD = 115 respectively).
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Hardening constants. We find χp = 18.0 MPa, χD = 21.6 for RD and
χp = 40.0 MPa, χD = 90.6 for the RD± model, respectively. For both
models, we find k = l = 14.

Damage viscosity coefficients. The exponent N describing the damage
accumulation power law reads N = 18 for RD and N = 5 for the RD±
model, respectively. Identification of the viscosity coefficients ζ provides
ζ = 18 MPa · s1/18 for RD and ζ = 160 MPa · s1/5 for the RD± model,
respectively.

The high exponents are characteristic of a "pseudo-plastic" type of
damage evolution i.e. almost rate-independent. This corroborates Remark
5.2 and the cumulative damage model for bone fracture proposed by [Carter
and Caler, 1985].

Predicted stress-strain curves. The simulation results of the rate-depen-
dent models do not differ qualitatively from the rate-independent ones. Some
are shown in Figure 5.9 and discussed later. A summary of the identified
material constants for the rate-dependent models is given in Table 5.3.

Remark 5.2 Let us note that identification of the uniaxial test mixing ten-
sion then compression (the equivalent of Figure 5.7 e)) required higher values
of χD (χD = 50 for RD and χD = 125 for the RD± model, respectively).

units RI RI± RD RD±
ε0 [GPa] 24.4 24.4 24.4 24.4

σD
0+ [MPa] 46 32 1.0 1.0

σD
0− [MPa] 80 53 4.3 1.9
χp [MPa] 18 50 18 40
χD [-] 50.0 85.6 21.6 90.6
k [-] 14 14 14 14
l [-] 14 14 14 14

N [-] - - 18 5
ζ [MPa · s1/N ] - - 135 160

Table 5.3: Overview of the identified material constants of the two rate-
independent and the two rate-dependent one-dimensional damage models.
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5.3.3 Creep tests

As other materials, the tensile and compressive creep behaviour of
cortical bone exhibits three successive stages. However, our creep tests were
not creep-fracture tests. Therefore, the third stage is absent from our creep
curves (Figure 5.8 a) to d)). The primary stage where strain rate decreases
progressively is associated to the transient response of the specimen to the
applied load. The secondary stage where strain rate remains approximately
constant is the proper creep behaviour of the material. The third stage where
strain rate increases rapidly (no present in our tests) leads to fracture of the
specimen. Thus, time to failure has not been investigated in this series of
tests.

The experimental results of the tensile and compressive creep tests (at
113 MPa and −120 MPa, respectively) are compared to the simulations of
the RD and RD± models in Figures 5.8 a) to d).
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Figure 5.8: Experimental creep tests compared to the predictions of the RD and
RD± models (stretch versus time diagrams).
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Figure 5.9: Strain-rate dependence of the numerical RD model.

5.4 Discussion

Our own uniaxial cyclic mechanical tests confirm the presence of the
three main modes of deformation of cortical bone described in Subsection
2.2.1: the elastic, plastic and damage deformation regimes are clearly iden-
tified. The agreement between the numerical and experimental results show
that plastic and damage mechanisms are closely related. The microstruc-
tural interpretation of the three modes is reinforced: an instantaneous linear
elastic regime due to bone cohesion, a rate-dependent damage accumulation
mode where microcracks are generated and a mode of sliding with friction
at the microcracks. Plasticity and damage in bone may be associated with
slipping between mineralized collagen fibrils or even between collagen fibers
and hydroxyapatite platelets and caused by shear failure of the organic ma-
trix ([Keaveny et al., 2001]).

All four proposed constitutive laws successfully reproduce the main
features of cortical bone’s behaviour: the intact elastic reloading phase, a
stiffness reduction and an increasing energy dissipation. Let us discuss now
some specific points.

Damage thresholds and damage mode

The very low values found for the initial tensile and compressive threshold
stresses, associated to an exponential hardening and a power law damage evo-
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lution rule shows that the true elastic domain of cortical bone is extremely
small. However, all models slightly underestimate the observed damage hys-
teresis of the early cycles mixing tension and compression (Figures 5.7 e) and
f)).

The models with one damage variable generally overestimate damage
accumulation as can be seen in Figures 5.7 c) and e) (they overestimate the
stiffness reduction). This is accentuated for the creep tests as can be seen
in Figures 5.8 a) and c) i.e. the permanent strains resulting from tensile
and compressive overloadings are underestimated. However, the ± models
lead to better results (Figures 5.8 b) and d)). Generally, we see that pos-
itive permanent strains observed after compressive unloadings are globally
underestimated by our models. This may be due to a viscosity of the plastic
deformation.

During successive overloading cycles of same magnitude carried out
on trabecular bone, [Keaveny et al., 1999] observed that all reloading curves
approached the extrapolated envelope of the previous cycles. Furthermore,
they found that the damaged reloadings were collinear with the origin. All
our models predict the first feature, but only the models with a distinct ten-
sile and compressive damage variable guarantee a damaged reloading which
is collinear with the origin (Figures 5.7 d) and f)).

Plastic mode

The uniaxial piecewise linear behaviour of damaged bone observed by [Kotha
and Guzelsu, 2003, Zioupos, 2002] (Subsection 2.2.1) was present in all our
tensile cyclic overloading experiments. This mode is clearly different than
the response of undamaged bone (e.g. Figure 5.5 c)).

Our models do not predict the observed stiffening of the plastic mode
occurring when crossing from the tensile to the compressive part of the stress-
strain diagram (and the softening going from the compressive to the tensile
part, respectively). It is emphasized that it is not an experimental artefact.
This behaviour may be explained by the closing of cracks and has also been
observed in concrete ([Ortiz, 1985]). A model with different elastic damage
in tension and compression would be required to take into account this ob-
served behaviour.

Viscous effects

The creep tests give evidence of the viscous nature of damage accu-
mulation mechanisms in cortical bone. The rate-dependent models predict
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strain rate in the secondary stage with good accuracy. They also predict a
stress limit under which creep deformation stops and does not lead to failure.

Rate-dependent effects of the RD model can be seen in Figures 5.9 a)
and b) where the strain rate has been increased by a factor 10 between two
successive tests. The qualitative shape of the predicted stress-strain curves
does not change by adding rate-dependency to damage accumulation. This
is in agreement with previous experimental investigations ([Carter and Caler,
1985, Fondrk et al., 1988]) and our own ones. Thus, in this study, we con-
firm that the viscoelastic effects are relatively small at physiological strain
rates. However, the experimental creep tests shown Figure 5.8 demonstrate
the presence of moderate viscoplastic effects which are not included in our
rate-dependent models.

The increase of the (usual) damage threshold stress and ultimate stress
with increasing strain rate agrees well with our experimental measures and
with the findings of [McElhaney, 1966]. The same result holds for the RD±
model.

Failure

We repeat that inhomogeneous boundary effects were avoided using dumbbell
specimens. This ensured reliable measurements of uniaxial displacements of
the specimens. Use of waisted specimens is of primary importance for accu-
rate identification of the material constants.

Of course, successful damage compression tests would probably affect
the identified material constants σD

0−, χp and χD (and N and ζ for the rate-
dependent models). Perhaps a modification of the model involving distinct
material properties in tension and compression (χp

±, χD
±, N±, ζ±) instead of a

single ones (χp, χD, N, ζ) would improve the fitting.
The lateral force exerted by the knives and the weight of the very

small extensometer was close to 1 N . Even if this force was small, it may
have induced local damage leading to failure of the specimens which broke
at the knives.

Macroscopic failure of the material always corresponds to a localiza-
tion of the damage process. The fracture zone varied in our uniaxial tests
because of the inhomogeneities of cortical bone and inhomogeneous stress
distribution in the section of the specimens. Nevertheless, even if waisting
of the specimen was not sufficient to force the failure process in the middle,
the recorded stress-strain curves before failure seem to be independent of the
fracture zone.

The specimens which broke in tension exhibited a macroscopically flat,
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transverse fracture plane. Scanning electron micrographs actually reveal an
extremely rough, irregular fracture surface ([Caler and Carter, 1989]). This
fracture process can be attributed to osteon pullout, fiber elongation, and sep-
aration of lamellae from each other failing at cement lines. The compressive
fracture patterns are markedly different than that of the tensile ones. The
fracture plane is oblique to the specimen axis. Scanning electron micrographs
show that the fracture crosses through the osteons themselves at an oblique
angle exposing the concentric layers in steps ([Caler and Carter, 1989]). The
ends of the lamellae are drawn out and folded over. We see that the ex-
tremely complex damage accumulation mechanisms and fracture processes
in bone involve all hierarchical levels of its structure. The remarkable abil-
ity of our models to predict the macroscopic uniaxial damaged behaviour of
bone justifies the continuum approach used in this study.

In summary, novel mechanical tests carried out on bovine cortical
bone mixing tension and compression were made and confirm the three main
deformation regimes of cortical bone in tension. Its mechanical behaviour
is very different from traditional engineering materials such as metals, wood
and concrete. The tests allowed successful identification of the material con-
stants characterizing the one-dimensional laws. Even though all constitutive
ingredients are not included in the models, they faithfully reproduce accu-
mulation of plastic strains, reduction in elastic modulus and time-dependent
effects for arbitrary one-dimensional loading histories. As bone tissue ex-
hibits an anisotropic behaviour, multiaxial tests are needed to formulate
robust constitutive equations. Nevertheless, we emphasize that the constitu-
tive laws developed in this work describe the behaviour of cortical bone under
conditions of interest, i.e. cyclic overloading at physiological strain rates.



Chapter 6

Three-dimensional law:
formulation and implementation

In this Chapter, we generalize the rate-independent (RI) damage model
to three dimensions. It is based on only two internal state variables. The
scalar plastic strain Ep is replaced by a symmetric second-order tensor Ep,
and for simplicity, the damage variable D remains a scalar quantity. Thus,
in this model, damage affects equally all constants of the fourth-order elastic
stiffness tensor of cortical bone (isotropic damage).

This last assumption is not realistic even for a linear elastic dam-
ageable material (e.g. [Ladevèze, 1993, He and Curnier, 1995]) but is rea-
sonable for proportional loading. Damage induced material anisotropy may
be characterized by a symmetric second-order or even fourth-order tensor
(e.g. [Lubarda and Krajcinovic, 1993, Zhu and Cescotto, 1995, Carol et al.,
2001a]).

This Chapter is divided into four parts. In the first part, the three-
dimensional elastic plastic damage constitutive law for cortical bone is for-
mulated. The corresponding algorithm is described in the second part. In
the third part, the finite element method used for spatial discretization, the
linear iteration method for solving nonlinearities and the finite difference
method for time discretization are briefly described. Finally, the numeri-
cal implementation is validated through some elementary simulations in the
fourth part.
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6.1 Theoretical formulation

6.1.1 Rheological setup and variables definition

Rheological setup

The coupling of the three-dimensional basic rheological elements composing
the model is one-dimensional (in series and parallel). The rheological setup
is similar to the one-dimensional mounting (Figure 6.1).
In this model, the elastic stiffness of the primary linear spring is a symmetric
fourth-order tensor S. In analogy with the one-dimensional RI model, the
stiffness of the damageable spring is chosen to be equal to SD := 1−D

D
S.

The damage threshold criterion includes distinct tensile and compressive
threshold stresses whereas the plastic yield criterion is based on the sym-
metric intact elastic compliance tensor for simplicity.

 Ep
33

E33

S33

E33-Ep
33

SD
22

SD
33

Sp
22

Sp
33

ε33

S

SD := 1−D
D S

Figure 6.1: Rheological setup of the three-dimensional constitutive law for cortical
bone.

Variables and material constants definition

Three independent variables describe the rheological model:

• the total strain E ∈ Sym,

• the plastic strain Ep ∈ Sym and

• the damage variable D ∈ [0, 1[
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where Sym denotes the space of symmetric second-order tensors.
As in the one-dimensional case, we use the usual strain partition E = Ee+Ep

with Ee the elastic strain ([Prandtl, 1924, Reuss, 1930, Green and Naghdi,
1965], e.g. [Lemaitre and Chaboche, 2001]).

If we assume orthotropic linear elasticity, nine material constants char-
acterize the stiffness tensor S of the primary spring (without counting the
three constants of the principal directions of symmetry). Five constants are
sufficient if we consider transverse isotropic symmetry (plus two for the di-
rections). We recall that S is symmetric and positive definite.

The plastic yield criterion is also characterized by a fourth-order ten-
sor. It delimits a convex elastic domain in plastic stress space. Furthermore,
a plastic hardening function is needed in order to describe its evolution with
increasing damage.

The same holds for the three-dimensional damage threshold criterion.
The non-damaging states are enclosed in a convex non-damaging set, which
evolves with increasing damage according to its corresponding damage hard-
ening function.

In summary, the two yield and threshold functions and their domains
must be defined (as in Section 3.3):

Y p(Sp, D) ≤ 0

Y D(SD, D) ≤ 0

with Sp the stress in the plastic pad and SD that in the damageable spring,
respectively.

Remark 6.1 For conciseness of the report, we will not define the yield and
threshold functions here. Nevertheless, we can say that:

- if we choose the orthotropic Zysset-Curnier model for elasticity based on
volume fraction and fabric, i.e. extrapolating the elastic properties of tra-
becular bone to compact bone (Section 3.3),

- and, to simplify, the intact orthotropic elastic compliance tensor C = S−1

as a special fourth-order tensor describing the plastic yield criterion,

- a generalized Hill criterion for damage based on volume fraction and fab-
ric,

- and finally exponential plastic and damage isotropic hardenings,

then the number of necessary material constants is 18. This number reduces
to 17 for transverse isotropic symmetry.
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6.1.2 Free energy and dissipation potentials

Free energy potential

The nonsmooth convex free energy potential of the rheological model is:

Ψ(E,Ep, D) =

=

⎧⎨
⎩

1
2
(E−Ep) : S (E−Ep) + 1

2
1−D

D
Ep : SEp + I[0,1[(D) if D > 0

1
2
E : SE + I{0}(Ep) if D = 0

(6.1)

with I[0,1[ the indicator function of [0, 1[, I{0} the indicator function of {0}
and S the symmetric positive definite fourth-order elastic stiffness tensor.

The state laws which derive from the free energy potential are:

SΨ ∈ ∂EΨ =

{
S (E− Ep) if D ∈ ]0, 1[

SE if D = 0
(6.2)

Sp
Ψ ∈ −∂EpΨ =

{
SE− 1

D
SEp if D ∈ ]0, 1[

Sym if D = 0
(6.3)

W D

Ψ ∈ −∂DΨ =

{
1

2D2 Ep : SEp if D ∈ ]0, 1[

[0,∞[ if D = 0
(6.4)

For convenience, let us define the stress in the damageable spring:

SD := SΨ − Sp
Ψ ∈

{
1−D

D
SEp if D ∈ ]0, 1[

Sym if D = 0
(6.5)

The complementary free energy is obtained via the Legendre-Fenchel trans-
form:

Ψ∗(S,Sp, W D) := sup
E,Ep,D

[S : E− Sp : Ep −W DD −Ψ(E,Ep, D)]

With C = S−1, we find:

Ψ∗(S,Sp, W D) =
1

2
S : C S− 1

2

(√
(S− Sp) : C (S− Sp)−

√
2W D

)2

(6.6)

It can be checked that ∂SΨ∗ = E, −∂SpΨ∗ = Ep and −∂W DΨ∗ = D.
When D = 0, the dual potential reduces to:

Ψ∗(S,Sp, W D) =
1

2
S : C S . (6.7)
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Therefore, we obtain ∂SΨ∗ = E, −∂SpΨ∗ = 0 and −∂W DΨ∗ = 0, which is
consistent with the implication D = 0⇒ Ep = 0 associated with I{0}(Ep) of
the potential Ψ(E,Ep, D) when D = 0.

Dissipation potential

The nonsmooth convex dissipation potential is defined by:

Φ(Ėp, Ḋ;E,Ep, D) := Φp(Ėp; D) + ΦD(Ḋ;E,Ep, D) (6.8)

with
Φp(Ėp; D) := σp(D)

√
Ėp : S Ėp (6.9)

and
ΦD(Ḋ;E,Ep, D) := φ(Ḋ;E,Ep, D) + IR+(Ḋ) (6.10)

where

φ(Ḋ;E,Ep, D) :=

{
h+(E,Ep, D)Ḋ if n(E,Ep) > 0

h−(E,Ep, D)Ḋ if n(E,Ep) < 0

h± are the tensile/compressive quasistatic damage energy thresholds, respec-
tively, defined by

h±(E,Ep, D) :=

⎧⎪⎨
⎪⎩

rD2(D)
2(1−D)2

Ep : SEp

SEp : F±SEp if ||Ep|| > 0

rD2(D)
2(1−D)2

E : SE
SE : F±SE

if ||Ep|| = 0

n is the tension/compression criterion defined below and IR+ is the indicator
function of R+. We repeat that the variables appearing after the semicolon
symbol (;) in the dissipation potential are only parameters (Subsection 3.2.2,
Remark 3.4).

Distinct tensile and compressive threshold damage stresses are ob-
tained with a halfspacewise generalization of the Hill criterion. They appear
in φ through the functions h± and the hyperplane n(E,Ep) = 0 dividing
the strain space into tensile and compressive domains (previously defined for
halfspacewise linear elasticity in (3.61), [Curnier et al., 1995]). The fourth-
order tensors F± play the role of the tensile/compressive elastic stiffnesses
defined in Section 3.3 and define a non-symmetric non-damaging states set in
damage stress space. σp(D) and rD(D) are the radii of the plastic and dam-
age criteria, respectively. Their dependency with D expresses the increase of
stress during plastic flow and damage evolution. By analogy with the one-
dimensional RI model (Subsection 4.1.1), we define exponential hardening
functions:

σp(D) := χp
(
1− exp (−lD)

)
(6.11)
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rD(D) := R
(
1 + χD

(
1− exp (−kD)

))
(6.12)

χp, l are plastic and χD and k damage hardening parameters, respectively.
The constant R is an additional (redundant) parameter which could be in-
corporated in the definition of F±. It defines the initial radius of the damage
criterion. We note that the same choice σp(0) = 0 done in the RI model is
made.

The constitutive equations which derive from the dissipation potential are:

Sp
Φ ∈ ∂ĖpΦ =

⎧⎪⎨
⎪⎩

σp(D) S Ėp√
Ėp : S Ėp

if ||Ėp|| > 0

Sp | √Sp : C Sp − σp(D) < 0 if ||Ėp|| = 0

(6.13)

and

W D

Φ ∈ ∂ḊΦ =

⎧⎪⎨
⎪⎩

φ′(E,Ep, D) if Ḋ > 0

]−∞, φ′(E,Ep, D)] if Ḋ = 0

∅ if Ḋ < 0

(6.14)

where φ′ is the derivative of φ with respect to Ḋ, representing thus the
quasistatic damage energy thresholds h±.
The dual dissipation potential is obtained via the same Legendre-Fenchel
transform:

Φ∗(Sp, W D;E,Ep, D) := sup
Ėp,Ḋ

[
Sp : Ėp + W DḊ − Φ(Ėp, Ḋ;E,Ep, D)

]
We find:

Φ∗(Sp, W D;E,Ep, D) = I[0,σp(D)](
√

Sp : C Sp) + I[−∞,φ′(E,Ep,D)](W
D) (6.15)

The flow and evolution rules of the internal variables Ep and D are found
from the dual dissipation potential (inverse complementary laws):

Ėp ∈ ∂SpΦ∗ =

⎧⎪⎪⎨
⎪⎪⎩

∅ if
√

Sp : C Sp − σp(D) > 0

Λp C Sp√
Sp : CSp

if
√

Sp : C Sp − σp(D) = 0

0 if
√

Sp : C Sp − σp(D) < 0

(6.16)

with Λp ∈ [0, +∞[ and

Ḋ ∈ ∂W DΦ∗ =

⎧⎪⎨
⎪⎩

0 if W D ∈ ]−∞, φ′(E,Ep, D)[

[0, +∞[ if W D = φ′(E,Ep, D)

∅ if W D > φ′(E,Ep, D)

(6.17)
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6.1.3 Plastic and damage criteria

A more classical but equivalent way to express the flow and evolution rules
of the internal variables is to define their corresponding criteria in stress or
strain space and to associate them to adequate flow and evolution rules.

Plastic criterion

The relation (6.13) defines a convex elastic domain which can be character-
ized by the plastic yield function Y p(Sp, D) defined by:

Y p(Sp; D) :=
√

Sp : C Sp − σp(D) (6.18)

with σp(D) given in (6.11).

The flow rule and the convex elastic domain can be expressed as:

Ėp = Λp Np(Sp), Np(Sp) := ∂Y p

∂Sp (Sp)

Y p(Sp, D) ≤ 0, Λp ≥ 0, Λp Y p(Sp, D) = 0

(6.19)

The first line of equations is the associated flow rule which defines the plastic
strain rate direction as an outward normal (not unitary) to the convex elastic
domain in stress space. The second line of inequalities expresses the plastic
yield and consistency conditions (Kuhn-Tucker in optimization).

We restricted ourselves to the simplest anisotropic model for plastic-
ity by choosing the elastic compliance tensor C to define the convex elastic
domain (e.g. [Curnier, 1980, Zysset, 1994]).

Damage criterion

The relation (6.14) can be interpreted as a threshold function defining a non-
damaging convex domain. For ||Ep|| > 0, we find:

Y D(W D;E,Ep, D) :=

:=

⎧⎪⎨
⎪⎩
√

2(1−D)2W D S Ep: F+SEp

Ep: SEp − rD(D) ≤ 0 if n(E,Ep) ≥ 0√
2(1−D)2W D S Ep: F−S Ep

Ep: SEp − rD(D) ≤ 0 if n(E,Ep) < 0

(6.20)
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and for ||Ep|| = 0, we have:

Y D(W D;E, 0, D) :=

:=

⎧⎪⎨
⎪⎩
√

2(1−D)2W D S E: F+S E
E: S E

− rD(D) ≤ 0 if n(E, 0) ≥ 0√
2(1−D)2W D SE: F−SE

E: S E
− rD(D) ≤ 0 if n(E, 0) < 0

(6.21)

which is strictly equivalent to:

Y D(SD; D) :=

{ √
SD : F+ SD − rD(D) ≤ 0 if m(SD) ≥ 0
√

SD : F− SD − rD(D) ≤ 0 if m(SD) < 0
(6.22)

with rD(D) defined in (6.12) and n(E,Ep) (resp. m(SD)) the function dividing
the strain (resp. damage stress) space into tensile and compressive domains,
(given by (3.61), resp. (3.63)). We recognize the form of the quadratic free
energy potential presented in (3.59) for halfspacewise linear elasticity. The
formulation (6.22) can be interpreted as a halfspacewise generalized Hill cri-
terion ([Hill, 1950]).

Let M̂ := mi Mi be the second-order fabric tensor of cortical bone
describing its structural anisotropy, previously defined for orthotropic mor-
phologic based elasticity (Section 3.3, Equation (3.66)). Mi := mi ⊗mi are
the structural tensors. Combining the orthotropic formulations of halfspace-
wise linear and morphology based elasticity, one gets the general forms of
the fourth-order tensors F± derived by [Zysset and Rincón, 2005]:

F+ =
3∑

i=1

1

(σ+
ii )

2
Mi ⊗Mi −

3∑
i,j=1

′ χ+
ij

(σ+
ii )

2
Mi ⊗Mj +

3∑
i,j=1

′ 1

2τ 2
ij

Mi⊗Mj (6.23)

F− =
3∑

i=1

1

(σ−
ii )

2
Mi ⊗Mi −

3∑
i,j=1

′ χ−
ij

(σ−
ii )

2
Mi ⊗Mj +

3∑
i,j=1

′ 1

2τ 2
ij

Mi⊗Mj (6.24)

where
∑′ denotes a sum on i �= j. σ+

ii (ρs, m1, m2, m3) and σ−
ii (ρs, m1, m2, m3)

are the uniaxial tensile and compressive strengths along the axis of index
i = 1, 2, 3, τij(ρs, m1, m2, m3) are the shear strengths in the plane of index
i, j = 1, 2, 3; i �= j, χ+

ij(ρs, m1, m2, m3) and χ−
ij(ρs, m1, m2, m3) are stress

interaction coefficients. Following the approach used in fabric elasticity
([Zysset and Curnier, 1995]), power functions are selected for the dependence
of the material properties with volume fraction and fabric eigenvalues:

σ+
ii = σ+

0 ρ p
s m2q

i σ−
ii = σ−

0 ρ p
s m2q

i τij = τ0ρ
p
s mq

i m
q
j

χ+
ij = χ+

0
m2q

i

m2q
j

χ−
ij = χ−

0
m2q

i

m2q
j

(6.25)
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where σ+
0 and σ−

0 are the uniaxial tensile and compressive strengths, τ0 is the
shear strength, χ+

0 and χ−
0 are interaction coefficients for a poreless (ρs = 1)

bone material with at least cubic symmetry (m1 = m2 = m3 = 1).
The continuity relation (3.60) (or (3.64)) between F+ and F− leads to:

χ−
0 + 1

(σ−
0 )2

=
χ+

0 + 1

(σ+
0 )2

(6.26)

For arbitrary volume fraction and fabric, positive definiteness conditions of
the fourth-order tensors lead to the constraints:

σ+
0 ≥ 0 σ−

0 ≥ 0 τ0 ≥ 0
1
2
≥ χ+

0 ≥ −1 1
2
≥ χ−

0 ≥ −1
(6.27)

Given volume fraction and fabric values, the set of six material con-
stants defining the halfspacewise damage criterion has been identified for
trabecular bone by [Rincón, 2003, Zysset and Rincón, 2005]. In view of the
similar composition and damage accumulation mechanisms of the extracel-
lular matrix of trabecular and cortical bone, we use the same values of the
identified parameters for cortical bone and change only the initial global
radius rD(0) of the criterion. This assumption should be verified on experi-
mental grounds.
The shape of the halfspacewise damage criterion is illustrated in Figure 6.2.
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Figure 6.2: Left: Shape of damage threshold criterion in the space of principal
damage stresses with respect to the orthotropic planes of symmetry of cortical bone
Right: its intersection with the plane SD

33 = 0. The hyperplane m(SD) = 0 divides
the damage stress space into tensile and compressive domains.
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6.2 Numerical algorithm

In order to implement it in a finite element mechanical analysis pro-
gram, the elastic plastic damage evolution law needs to be discretized in time
(e.g. [Doghri, 1993, Mahnken et al., 2000]).

6.2.1 Time integration algorithm with projection

Assume that we have an initial strain state to start with

E0,E
p
0, D0 (to which corresponds the initial stress state S0,S

p
0, W

D

0 )

and that this state is plastically and damageably admissible in the sense that
it satisfies both plastic and damage criteria:

Y p(Sp
0, D0) ≤ 0 and Y D(W D

0 ;E0,E
p
0, D0) ≤ 0

Given a new total strain E, integrating the flow rule consists of finding a new
plastic strain Ep and a new damage state variable D such that the final state
defined by:

E,Ep, D (and corresponding final stress state S,Sp, W D)

will also be plastically and damageably admissible i.e.

Y p(Sp, D) ≤ 0 and Y D(W D;E,Ep, D) ≤ 0

To this end, a trial state is first considered in the form:

E,Ep
0, D0 (and corresponding trial stress state ST,Sp

T
, W D

T
)

which can be non-admissible. The final state is then reached by projecting
the trial state on the convex plastic and damage sets enclosed by the corre-
sponding yield and threshold surfaces.

As in the one-dimensional case, Sp
T and W D

T are undefined for D0 = 0.
Thus, the following global damage criterion must be used to detect the onset
of damage:

Y (ST) :=

⎧⎨
⎩
√

ST : F+ ST − rD(0) if m(ST) ≥ 0
√

ST : F− ST − rD(0) if m(ST) < 0

As for the one-dimensional models, we divide the analysis into three steps.
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a) Elastic mode: Y p(Sp
T, D0) ≤ 0 and Y D(W D

T
;E,Ep

0, D0) ≤ 0

In this case, we simply have Ep = Ep
0 and D = D0 .

b) Plastic mode: Y p(Sp
T, D0) > 0 and Y D(W D

T
;E,Ep

0, D0) ≤ 0

In this case, we only must satisfy Y p(Sp, D) = 0. The relation between the
initial and new plastic strains is given by the incremental flow rule for dEp :

dEp = λp Np(Sp) (6.28)

where Np(Sp) is the normal of the plastic criterion evaluated at the final
unknown stress state Sp. Therefore it is an implicit projection algorithm (e.g.
[Curnier, 1993, Matzenmiller and Taylor, 1994, Simo and Hughes, 1999]).
As

Ep = Ep
0 + dEp (6.29)

and
D = D0 (6.30)

we have:

Sp = Sp
T −

1

D0
S dEp

Furthermore,

Np(Sp) =
C Sp

√
Sp : C Sp

=
C Sp

σp(D0)
(6.31)

thus

Sp
T

=

(
1 +

λp

D0 σp(D0)

)
Sp (6.32)

and √
Sp

T : C Sp
T =

(
1 +

λp

D0 σp(D0)

)√
Sp : C Sp︸ ︷︷ ︸
σp(D0)

We finally get the analytical expression for the plastic multiplier:

λp = D0 Y p(Sp
T
, D0) (6.33)

As the final plastic stress is collinear to the trial stress, the projection is
radial ([Wilkins, 1964, Moreau, 1979]).
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c) Damage mode: Y p(Sp
T, D0) > 0 and Y D(W D

T
;E,Ep

0, D0) > 0

In this case, we must satisfy simultaneously:{
Y p(Sp, D) = 0 and

Y D(W D;E,Ep, D) = 0

Once more, we compute the final plastic strain with the incremental flow rule
for dEp :

dEp = λp Np(Sp) (6.34)

We have
Ep = Ep

0 + dEp (6.35)

and
D = D0 + dD (6.36)

As

Np(Sp) =
C Sp

√
Sp : C Sp

=
C Sp

σp(D)
=

E− 1
DEp

σp(D)

we get

Ep =
D σp(D)

λp + D σp(D)
Ep

0 +
λpD

λp + D σp(D)
E (6.37)

and
Sp =

σp(D)

λp + D σp(D)
S (DE− Ep

0) (6.38)

Injecting the final plastic stress (6.38) in the plastic criterion, we get the
following expression for the plastic multiplier:

λp =
√

(DE− Ep
0) : S (DE−Ep

0)−D σp(D) (6.39)

The final damage state variable D remains to be found. To this end, we use
the projection of W D

T
(or equivalently of SD

T
) on the damage criterion.

With (6.37), we have:

SD =
1−D

λp + D σp(D)

(
λp

SE + σp(D) SEp
0

)
Let us define the function f± : [0, 1[→ R by:

f±(D) := SD : F± SD − rD2(D) =

=

(
1−D

λp + D σp(D)

)2 (
λp2

SE : F±SE + 2λpσp(D) SE : F±SEp
0+

+ σp2(D) SEp
0 : F±SEp

0

)− rD2(D)

(6.40)
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with F+ for m(SD
T
) > 0 and F− for m(SD

T
) < 0, respectively, and λp = λp(D)

given by (6.39). In order to find the value of D, we have to solve f±(D) = 0
where E is assumed to be known (predicted).
The derivative of f± reads:

f ′
±(D) = 2

(
1−D

λp + D σp(D)

)(−λp−(1−D)λp′−σp(D)−(1−D)D σp ′(D)

(λp + D σp(D))2

)
·

·(λp2 A + 2λpσp(D) B + σp2(D) C
)

+ 2

(
1−D

λp + D σp(D)

)2(
λpλp′ A+

+
(
λp′σp(D) + λpσp ′(D)

)
B + σp(D)σp ′(D) C

)
− 2rD(D)rD′(D)

(6.41)

where λp′ = dλp

dD
=

E: S(DE−Ep
0)√

(DE−Ep
0): S(DE−Ep

0)
−σp(D)−D σp ′(D), A = SE : F±SE,

B = SE : F±SEp
0 and C = SEp

0 : F±SEp
0.

We can use the generalized Newton method ([Alart and Curnier, 1991]) to
solve this nonsmooth C0 nonlinear equation:

Dj+1 = Dj − f±(Dj)

f±′(Dj)
with j = 0, 1, 2, . . . and D0 = D0 (6.42)

6.2.2 Incremental linearization algorithm

For a uniform deformation test with a homogeneous stress state, a
situation occurring in a single finite element (Section 6.3), the problem is
equivalent to the following local problem: find E such that the equation of
force equilibrium is satisfied i.e.:

S(E,Ep, D)− S̄ = 0

where S̄ denotes the imposed stress. We also use the generalized Newton
method to solve this problem:

Ei+1 = Ei + dEi with i = 0, 1, 2, . . . (6.43)

where
dEi = −P

−1(Ei,Ep, D)
(
S(Ei,Ep, D)− S̄

)
(6.44)

and P := dS
dE

is the total stress derivative with respect to the strain. That
means that the determination of E requires the computation of the tangent
operator P. Two different tangent operators can be defined depending on the
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type of flow and evolution rules which are linearized. The linearization of the
continuum rules leads to the continuous tangent operator whereas the lin-
earization of the incremental rules leads to the algorithmic tangent operator.
Their analytic expressions are derived in the following two Subsections.

6.2.3 Continuous tangent operator

In this Subsection, we compute the continuous tangent operator P :=
dS
dE

required by the Newton method (6.43) for the three evolution modes of
the model (Pe for the elastic, Pp for the plastic and PD for the damage mode,
respectively). The word continuous refers to a velocity-based definition of the
tangent operator (dE→ 0), opposed to an incremental definition. The con-
tinuum tangent operator corresponds to the linearization of the continuum
flow and evolution rules.

a) Elastic mode: case Ėp = 0 and Ḋ = 0

As dEp = 0 in this mode and S = S (E− Ep), we have dS = S dE . Thus

P
e = S (6.45)

b) Plastic mode: case Ėp �= 0 and Ḋ = 0

For this mode, we must find the relation dS = Pp dE for dEp �= 0 and
dD = 0. To this end, let us determine dEp(dE).
From Sp = SE− 1

D
SEp, we have:

dSp = S dE− 1

D
S dEp (6.46)

Furthermore, Y p(Sp, D) = 0. Thus

dY p = Np(Sp) : dSp = 0 (6.47)

where Np(Sp) := ∂Y p

∂Sp . Combining (6.46) and (6.47), we get:

Np(Sp) : S dE =
1

D
Np(Sp) : S dEp

The incremental flow rule imposes that dEp = λp Np(Sp). Therefore, we
have:

λp = D
Np(Sp) : S dE

Np(Sp) : SNp(Sp)
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or equivalently:

dEp = D
Np(Sp)⊗ SNp(Sp)

Np(Sp) : SNp(Sp)
dE (6.48)

As dS = S dE− S dEp, we finally get:

P
p = S−D

SNp(Sp)⊗ SNp(Sp)

Np(Sp) : SNp(Sp)
(6.49)

Remark 6.2 The plastic stiffness tensor is a rank-1 modification of the elas-
ticity tensor as usual, but this modification is scaled by the damage intensity
D.

c) Damage mode: case Ėp �= 0 and Ḋ > 0

For this mode, we must find the relation dS = PD dE for dEp �= 0 and
dD �= 0. To this end, let us determine dEp(dE).
From Sp = SE− 1

D
SEp, we have:

dSp = S dE− 1

D
S dEp +

dD

D2
SEp (6.50)

Furthermore, Y p(Sp, D) = 0. Thus

dY p = Np(Sp) : dSp +
∂Y p

∂D
dD = 0 (6.51)

Combining (6.50) and (6.51), we get:

Np(Sp) : S dE =
1

D
Np(Sp) : S dEp −

[
∂Y p

∂D
+

Np(Sp) : SEp

D2

]
dD

The incremental flow rule imposes that dEp = λp Np(Sp). Therefore, we
have:

Np(Sp) : S dE =
λp

D
Np(Sp) : SNp(Sp)−

[
∂Y p

∂D
+

Np(Sp) : SEp

D2

]
dD

(6.52)
dD is found by projection of SD on the damage criterion. As Y D(SD, D) = 0,
we have:

dY D = ND(SD) : dSD +
∂Y D

∂D
dD = 0 (6.53)

where ND(SD) := ∂Y D

∂SD . Furthermore, SD = 1−D
D SEp. Thus

dSD =
1−D

D
S dEp − dD

D2
SEp (6.54)
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Combining (6.53) and (6.54), we get:

dD =
1−D

D
ND(SD) : S dEp

ND(SD): SEp

D2 − ∂Y D

∂D

(6.55)

Using the incremental flow rule for dEp and injecting (6.55) into (6.52), we
get:

λp = (D Np(Sp) : S dE)
[
Np(Sp) : SNp(Sp)+

+ (1−D)
D2 ∂Y p

∂D
+ Np(Sp) : SEp

D2 ∂Y D

∂D
−ND(SD) : SEp

ND(SD) : SNp(Sp)
]−1

or equivalently:

dEp = D Np(Sp)⊗ SNp(Sp)
[
Np(Sp) : SNp(Sp)+

+ (1−D)
D2 ∂Y p

∂D
+ Np(Sp) : SEp

D2 ∂Y D

∂D
−ND(SD) : SEp

ND(SD) : SNp(Sp)
]−1

dE
(6.56)

As dS = S dE− S dEp, we finally get:

P
D = S−D

[
Np(Sp) : SNp(Sp) + (1−D)

D2 ∂Y p

∂D
+ Np(Sp) : SEp

D2 ∂Y D

∂D
−ND(SD) : SEp

·

·ND(SD) : SNp(Sp)
]−1

SNp(Sp)⊗ SNp(Sp)

(6.57)

Remark 6.3 The damage stiffness tensor is again a scaled rank-1 modifica-
tion of the elasticity tensor, but the scaling factor is more complicated. The
damage continuum tangent operator is symmetric.

6.2.4 Incremental tangent operator

The incremental or algorithmic form Pa of the continuous tangent
operator P has to be determined for any discretized computer implementation
of the constitutive law ([Simo and Taylor, 1985]). In that case, the total
strain increment dE does not tend to zero but must be computed as:

dE = d(E−Ep
0)

The old plastic strain is taken as a kind of origin. The incremental tangent op-
erator corresponds to the linearization of the incremental flow rule (or of the
incremental implicit projection algorithm) (e.g. [Hartmann and Haupt, 1993]).
Once again, we proceed in three steps.
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a) Elastic mode: case dEp = 0 and dD = 0

In this case, d(Ep − Ep
0) = 0 thus dS = S d(E−Ep

0).
As in the continuous case, we have:

P
e
a = P

e = S (6.58)

b) Plastic mode: case dEp �= 0 and dD = 0

As S = S(E−Ep), we have:

dS = S d(E− Ep
0)− S d(Ep − Ep

0) (6.59)

Furthermore, Sp = SE− 1
D

SEp. Thus

dSp = S d(E− Ep
0)−

1

D
S d(Ep − Ep

0) (6.60)

The incremental flow rule for dEp can be written as:

d(Ep −Ep
0) = d(λp Np(Sp)) = dλp Np(Sp) + λp

H
p(Sp)dSp (6.61)

where Hp(Sp) := ∂2Y p

∂Sp2 . Combining equations (6.60) and (6.61), we get:

dSp = Sa d(E− Ep
0)−

dλp

D
Sa Np(Sp) (6.62)

where Sa :=
[
C + λp

D
Hp(Sp)

]−1

.
As Y p(Sp, D) = 0, we have:

dY p = Np(Sp) : dSp = 0

Together with (6.62), we get:

dλp = D
Np(Sp) : Sa d(E− Ep

0)

Np(Sp) : Sa Np(Sp)

or
dSp = Sa d(E− Ep

0)−
Sa Np(Sp)⊗ Sa Np(Sp)

Np(Sp) : Sa Np(Sp)
d(E− Ep

0)

Furthermore, S = Sp + SD, where SD = 1−D
D SEp. Thus dS = dSp + dSD.

Equation (6.59) allows us to write:

dSD =
1−D

D
S d(Ep − Ep

0) =
1−D

D
S [d(E− Ep

0)− C dS]
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Thus, we finally get dS = (1−D) S d(E− Ep
0) + D dSp or:

P
p
a = (1−D) S + D

[
Sa − Sa Np(Sp)⊗ Sa Np(Sp)

Np(Sp) : Sa Np(Sp)

]
(6.63)

Remark 6.4 If λp = 0, then Sa = S and Pp
a = Pp, which is consistent with

the continuous description.

Remark 6.5 In the absence of the damageable spring, dS = dSp. Thus

Pa = Sa − Sa Np(Sp)⊗ Sa Np(Sp)

Np(Sp) : Sa Np(Sp)

which is the algorithmic tangent operator for perfect elasto-plasticity found
by [Rakotomanana et al., 1991] .

c) Damage mode: case dEp �= 0 and dD > 0

Once again, we have S = S (E−Ep), and:

dS = S d(E− Ep
0)− S d(Ep − Ep

0) (6.64)

thus
d(Ep −Ep

0) = d(E−Ep
0)− C dS (6.65)

On the one hand, Sp = SE− 1
D SEp. Thus

dSp = S d(E− Ep
0)−

1

D
S d(Ep − Ep

0) +
d(D −D0)

D2
SEp (6.66)

On the other hand, SD = 1−D
D

SEp. Thus

dSD =
1−D

D
S d(Ep − Ep

0)−
d(D −D0)

D2
SEp (6.67)

As Y D(SD, D) = 0 holds, we have:

dY D = ND(SD) : dSD +
∂Y D

∂D
d(D −D0) = 0 (6.68)

Combining (6.67) and (6.68), we get:

d(D −D0) =
D(1−D)ND(SD) : S d(Ep − Ep

0)

ND(SD) : SEp − ∂Y D

∂D
D2

(6.69)
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The normality flow rule for dEp can be written as:

d(Ep −Ep
0) = d(λp Np(Sp)) = dλp Np(Sp) + λp

H
p(Sp) dSp (6.70)

After some rearrangements, (6.66), (6.69) and (6.70) give:

dSp = Sad d(E−Ep
0)−

dλp

D
Sad (I− A)Np(Sp) (6.71)

where I is the symmetric fourth-order identity tensor,

Sad =
[
C + λp

D (I−A) H
p(Sp)

]−1

and A =
(1−D)Ep ⊗ SND(SD)

ND(SD) : SEp − ∂Y D

∂D
D2

.

Furthermore, as Y p(Sp, D) = 0, we have:

dY p = Np(Sp) : dSp +
∂Y p

∂D
d(D −D0) = 0 (6.72)

Together with (6.69) and (6.71) we get:

dλp =
D

α

[
Np(Sp) : Sad d(E− Ep

0)+

+
∂Y p

∂D
D(1−D)λp ND(SD) : S Hp(Sp) Sad d(E− Ep

0)

ND(SD) : SEp − ∂Y D

∂D
D2

] (6.73)

where

α = Np(Sp) : Sad (I− A)Np(Sp)− ∂Y p

∂D
D(1−D)·

· D ND(SD) : SNp(Sp)− λp ND(SD) : S Hp(Sp) Sad (I−A)Np(Sp)

ND(SD) : SEp − ∂Y D

∂D
D2

As S = Sp + SD, we have dS = dSp + dSD.
Injecting (6.65) and (6.69) into (6.67) and injecting (6.73) into (6.71), we
finally get the desired result:

P
D

a = S [I−A]−1[ (I− A)−D (I−C Sad)− D

α
C Sad (I− A) B ] (6.74)

where

B =
[
Np(Sp)⊗ Sad Np(Sp)+

+
∂Y p

∂D
D(1−D)λp Np(Sp)⊗ND(SD)

ND(SD) : SEp − ∂Y D

∂D
D2

S H
p(Sp) Sad

]
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Remark 6.6 If λp = 0, then Sad = S, B = Np(Sp) ⊗ SNp(Sp) and α =

Np(Sp) : SNp(Sp) − (1 − D)
Np(Sp): S Ep+ ∂Y p

∂D
D2

ND(SD): S Ep− ∂Y D

∂D
D2

ND(SD) : SNp(Sp), which

is consistent with the continuous description.

Remark 6.7 In the absence of the damageable spring ND(SD) = 0, thus
A vanishes and Sad = Sa. Thus PD

a = Pp
a which is the algorithmic tangent

operator for perfect elasto-plasticity.

Remark 6.8 The final algorithm has exactly the same structure than the
one-dimensional one presented in Table 4.1. Thus, it will not be repeated
here. Scalar strain and stress quantities must be replaced by the correspond-
ing second-order tensors and the scalar tangent operators by the algorithmic
fourth-order tangent operators. The plastic and damage yield and threshold
functions must be tested as mentioned in Subsection 6.2.1.

6.3 Finite element and linearization methods
In this Section, we briefly describe the finite element and linearization

methods used for the resolution of a boundary value problem. The notations
are largely inspired from [Curnier, 1993]. The finite element method (FEM)
is appropriate to solve a boundary value problem whenever the geometry is
complex and the linearization method (LIM) whenever the behaviour of the
material is nonlinear. Indeed, the strongly nonlinear problem presented in
Subsection 3.1.5 (the principle of virtual power) has to be solved numerically.

6.3.1 Finite element method

The FEM is based on a subdivision of the solid Ω into a finite number
NELE of elements connected at a finite number NODE of nodes (Figure 6.3).
The exact, continuous problem in space is then replaced by an approximate,
discrete problem which is more tractable and provides an approximate solu-
tion in space.

typical element typical node

Figure 6.3: FEM mesh.
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Approximating the solution in each element by a polynomial, the
method is based on finding a piecewise polynomial solution on the entire
domain. Substituting this approximate solution in the principle of virtual
power, we get a system of equations (generally, a system of nonlinear ordi-
nary differential equations in time) which is the discrete counterpart of the
continuous differential equation and whose solution is the nodal discrete so-
lution.

Instead of the principle of virtual power (3.23), finite element softwares
refer to the equivalent principle of virtual work. It is obtained by replacing
the virtual velocity ẙ by a virtual displacement w, which is kinematically
admissible but not necessarily dynamically admissible.
Approximating the virtual and real displacement functions by a series of
nodal basis functions, we get:

w(x, t) 
 bn(x)wn(t)

u(x, t) 
 bn(x)un(t), n = 1, NODE

where the summation convention is applied on the repeated indices, wn and
un are discrete values of the virtual and real displacements at node n, and
bn are piecewise polynomial basis functions equal to unity at node n and to
zero at all other nodes (Figure 6.4).

bn

x1

x2

n

1

Figure 6.4: Linear nodal basis function.

Substitution of these series expansions into the principle of virtual work leads
to the discrete weak form:∫

Ω

wn(t) · (bn(x)ρ(x, t)bm(x)üm(t)− bn(x)gt(x, t)
)

dV +

+

∫
Ω

wn(t) ·P(x, t)∇bn(x) dV −
∫

Γp

wn(t) · bn(x)p̄ dA = 0, ∀wn

(6.75)
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or equivalently to the discrete strong form:∫
Ω

(
bn(x)ρ(x, t)bm(x)üm(t)− bn(x)gt(x, t)

)
dV +

+

∫
Ω

P(x, t)∇bn(x) dV −
∫

Γp

bn(x)p̄ dA = 0, n = 1, NODE
(6.76)

Equation (6.76) represents the force equilibrium at node n. The discrete
nodal inertia, body, internal, and contact forces are easily recognized. Of
course, the displacement boundary conditions un = ūn are also discretized
for the relevant boundary nodes n.

Instead of building the equilibrium node by node, it is preferable to
adopt an element by element approach. The spatial subdivision of Ω allows
a computation of the virtual work (6.76) element by element according to
the rule: ∫

Ω

=

NELE∑
e=1

∫
eΩ

This approach assumes a localization of the nodes and variables. Let � and e
�

be the discrete global and local nodal position vectors, respectively, defined
by:

� = (x1, x2, . . . , xNODE)T

e
� = (ex1, ex2, . . . , exNOEL)T

where NODE is the total number of nodes and NOEL the number of nodes
composing the specific element e.
Arbitrary discrete global and local nodal vectors, like the aforementioned
position vectors, are related by a (3NOEL× 3NODE) localization matrix eL:

e
� = eL�

Within each element e, the virtual and real displacements are interpolated
between the NOEL nodes delimiting the element by means of polynomial shape
functions equal to unity at one node and to zero at the others:

ew(x, t) = eba(x)ewa(t)
eu(x, t) = eba(x)eua(t), a = 1, NOEL

where ew and eu are the localized virtual and real displacements and the
polynomial local basis functions eba are the restriction to the element e of
the global basis functions bn relative to the same node, relatively identified
by the global node number n or by the couple (e, a).
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With this new notation, (6.76) becomes an assembly of elementary contribu-
tions:

NELE∑
e=1

[eL]Tcn

∫
eΩ

(
ebc(x)ρ(x, t)eba(x)eüa(t)− ebc(x)gt(x, t)

)
dV +

+
NELE∑
e=1

[eL]Tcn

{∫
eΩ

P(x, t)∇ebc(x) dV −
∫

eΓp

ebc(x)p̄ dA

}
= 0

(6.77)

for n = 1, NODE. The scatter matrices eLT transform the elementary contri-
butions of the local force vectors into global force vectors.

The integration over the elementary domain eΩ is usually done by
transforming the element into an isoparametric element of fixed size and
shape. For example, an arbitrary hexahedral element is transformed into a
unitary cube (Figure 6.5).

x1

x2

x3

ξ1

ξ2

ξ3

1

1

1

-1

-1 -1

ξ = �x

Figure 6.5: Eight integration points three-dimensional isoparametric element.

In this process, the coordinates x are transformed into natural coordinates ξ
by:

x(ξ) = ba(ξ)xa

where ba are the natural basis function of the isoparametric element. Thus,
the local displacement vector can be written as:

eu(x, t) = eû(ξ, t) = eba(ξ)eua(t)

Numerical integration of the elementary forces is then carried out in the
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natural coordinates using an L-integration point Gauss formula:∫
Ωe

f(x) dV =

∫ +1

−1

∫ +1

−1

∫ +1

−1

f̂(ξ)j(ξ) dV̂ =

=

L∑
l=1

f̂(ξl)j(ξl)Ωl

where j is the determinant of the jacobian matrix of the isoparametric trans-
formation and Ωl are the weights associated to the integration points ξl.

Remark 6.9 If NDIM is the spatial dimension of the integration domain, we
remind that an L-integration point Gauss formula, with L = INDIM, integrates
exactly a polynomial of degree 2I − 1.

6.3.2 Linearization and finite difference methods

Linear iteration method

After discretizing the problem with the FEM, the resulting system of 3NODE
equations with 3NODE unknowns remains nonlinear and must be linearized in
order to be solved numerically. If the global nodal displacements are collected
in a vector � := (u1,u2, . . . ,uNODE)T, the system (6.77) can be rewritten as:

�(�) = 0

where � is the global nodal residual force vector.
The generalized Newton method [Alart and Curnier, 1991] can be used

to solve this set of nonlinear equations. The resulting linearization leads to
the iterative scheme:

�
i+1 = �

i − T
−1(�i)�(�i)

where T is the tangent stiffness matrix d�
d�

.

The computation and inversion of the tangent matrix at each iteration is
rather costly. However, when the initial state of the algorithm lies near the
solution, the quadratic rate of convergence of the method guarantees a low
number of iterations. In some applications, the modified Newton method,
i.e. keeping the same tangent matrix over several iterations, is preferable. A
convergence criterion mixing a force residual and a displacement increment
norm is used in our simulations. The one-dimensional full Newton linear
iteration method is illustrated in Figure 6.6.

Combining the FEM with the above described linear iteration method
allows to compute the tangent matrix T(�i) by assembling the contributions
of all the elements.
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r(u)

u

u0u1u2u∗

T 0
T 1T 2

Figure 6.6: One-dimensional illustration of the full Newton iteration method. In
the case of non-differentiability (e.g. in u = u1), a subgradient of r is chosen.

Finite difference method

In dynamics, the system of equations resulting from the space discretization
and linearization is a set of linear ordinary differential equations in time.
A further numerical approximation must be used in order to transform it
into a system of linear equations which can be solved exactly by standard
methods of linear algebra. Various schemes can be used for approximating
time derivatives and thus integrating differential equations in time. They are
referred to as finite difference methods. We will not describe them in detail
here, but the reader is referred to standard textbooks on numerical analysis
or numerical solid mechanics [Press et al., 1992, Curnier, 1993].

We just illustrate the main idea of the method by approximating a
first time derivative by the finite differences ratio:

u̇n+1 
 un+1 − un

tn+1 − tn

Solving an ordinary differential equation of the type:

u̇(t) = f(u(t), t)

u(0) = u0

suggests the two following explicit and implicit schemes:
un+1 − un

tn+1 − tn
= f(un, tn)

un+1 − un

tn+1 − tn
= f(un+1, tn+1)

known as the forward and backward Euler finite difference methods, respec-
tively. Both methods are of order 1, but only the latter is unconditionally
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stable. Methods of higher-order, like the Runge-Kutta family, can also be
used to solve first-order ordinary differential equations, but are computation-
ally more expensive.
For second-order ordinary differential equations, the Newmark methods are
particularly well adapted. However, in our applications, inertia effects will
be neglected.

In summary, the FEM allows a spatial discretization of the solid. Com-
bined with the linear iteration method, it overcomes the geometric and ma-
terial nonlinearities. Finally, the finite difference method carries out the time
discretization of the problem. Thus, the initial nonlinear continuous bound-
ary value problem deriving from the principle of virtual work is straightfor-
wardly approximated by a time and an iterative sequence of linear algebraic
problems.

6.3.3 ABAQUS stress and strain measures

All throughout this work, the material (total Lagrangian) description
was used. Thus, the undeformed configuration occupied by the body at the
time origin was used to define the strain, the stress and their rates.
The objective material stress measure S (material Piola-Kirchhoff-2 stress
tensor) and its conjugate (or dual) variable E (Green-St Venant or La-
grangian material strain tensor) were used to formulate the constitutive law.
This formulation is adequate for moderate strains and finite rotations.

In ABAQUS (Hibbitt, Karlsson & Sorensen, Inc.) and at large strains,
the stress measure is the Kirchhoff stress JT conjugate to the strain measure
whose rate is the rate of deformation:

D :=
1

2
(L + LT) with L = ḞF−1

namely
∫

D dt.
When considering large strains, one has to take care to use the proper stress
and strain measures together with the exact consistent (algorithmic) tangent
operator. Of course, for small strains applications, all measures coincide.
The following congruence relations between the different measures hold:

Cauchy stress (force per current area):

T =
1

J
FSFT

Kirchhoff stress:
JT = FSFT
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Power per unit reference volume (defined in Subsection 3.1.3):

S : Ė = JT : D (6.78)

Spatial strain rate:
D = F−TĖF−1

The ABAQUS exact consistent tangent operator PAB is defined through the
variation in Kirchhoff stress ([HKS, 2001]):

δ(JT) =: J PAB δD with δD = F−TδĖF−1

From (6.78), we get:

PAB =
1

J
[F⊗F] P

[
FT⊗FT

]
where P = dS

dE
is the material tangent operator (δS =: P δE).

In conclusion, if large volume changes and geometric nonlinearities
are considered, adequate strain and stress measures must be used in order
to ensure an objective formulation, and the consistent (algorithmic) tangent
operator in order to ensure rapid convergence.

6.4 Validation
In this Section, we present the validation of the three-dimensional

rate-independent constitutive law for cortical bone through some elemen-
tary simulations. In particular, we give the values of the material constants
defining the halfspacewise damage criterion, which agree with our uniaxial
mechanical tests.

The validation of the implementation of the three-dimensional consti-
tutive law was done in two steps.
Firstly, the three-dimensional algorithm has been implemented in the com-
mercial software Mathematica� (Wolfram Research, Inc) and submitted to
extensive testing.
Secondly, the model has been coded in a FORTRAN user subroutine UMAT-
DAMA3D and integrated in the commercial finite element software ABAQUS
(version 6.4, HKS, Inc., [Kari, 1993]). The material constants of the model
were then identified by direct comparison with our uniaxial experiments.
The validation was achieved by testing a single finite element with appro-
priate one-dimensional schedules and then boundary value problems were
chosen in order to check the convergence of the projection algorithms.



142 • 6 THREE-DIMENSIONAL LAW: FORMULATION AND IMPLEMENTATION

6.4.1 Material constants and one-dimensional tests

Transverse isotropic elasticity

We use the porous transverse isotropic elasticity described by volume fraction
and a second-order fabric tensor (Zysset-Curnier model, Section 3.3, Equa-
tion (3.68)). Table 6.1 summarizes the values of the constants of the plain
isotropic bone together with the exponents v and w characterizing its volume
fraction and anisotropy, respectively.

ε0 [GPa] μ0 [GPa] ν0 v w

15.75 5.28 0.32 2.0 1.0

Table 6.1: Volume fraction and fabric-based Zysset-Curnier elasticity model pa-
rameters (from [Zysset, 1994]).

They were identified by [Zysset, 1994] for bovine cortical bone. The resulting
elastic constants (defined in Section 3.3) are close to the ones measured by
ultrasound by [van Buskirk et al., 1981] and are compared in Table 6.2.

ε1 ε2 ε3 G12 G13 G23

A 10.2 GPa 10.2 GPa 20.0 GPa 4.7 GPa 4.7 GPa 3.4 GPa
B 11.6 GPa 14.6 GPa 21.9 GPa 5.29 GPa 6.29 GPa 6.99 GPa

ν12 ν13 ν23 ν21 ν31 ν32

A 0.320 0.228 0.228 0.320 0.448 0.448
B 0.302 0.109 0.205 0.380 0.206 0.307

Table 6.2: Technical elastic constants for bovine cortical bone: A values re-
sulting from the Zysset-Curnier model and B values measured by ultrasound by
[van Buskirk et al., 1981]. The third direction coincide with the long axis of the
bone.

The constants of the Zysset-Curnier model define the transverse iso-
tropic elastic compliance tensor C (and thus S = C

−1). The positiveness
of C was checked. The elastic stiffness tensor S plays the key role of the
intact elastic stiffness (primary spring of the model). Furthermore, its inverse
defines the convex elastic ellipsoid in plastic strain space associated to the
plastic yield criterion (Section 6.1).
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Halfspacewise damage criterion

As mentioned before, we use the same shape of the damage criterion as the
one identified for trabecular bone by [Rincón, 2003, Zysset and Rincón, 2005].
Its material constants are given in Table 6.3. In order to adapt it for cortical
bone, we change only its initial global radius by identifying the constant R
(Table 6.5) appearing in the associated damage hardening function (6.12).

σ−
0 σ+

0 τ0 χ−
0 χ+

0 p q
58.4 MPa 43.3 MPa 23.1 MPa 0.31 −0.28 1.32 0.56

Table 6.3: Material constants defining the halfspacewise damage criterion for
trabecular bone (from [Rincón, 2003, Zysset and Rincón, 2005]).

Volume fraction and fabric

We use the classical mean value of 0.9 for cortical bone volume fraction
that accounts for residual porosity associated with the vascular Havers and
Volkmann canals as well as the lacunae (e.g. [Cowin, 2001]) and the mean
values found by [Zysset, 1994] for fabric, with the normalization det(M̂) = 1:

ρs m1 m2 m3

0.9 0.894 0.894 1.252

Table 6.4: Volume fraction and fabric values (from [Cowin, 2001, Zysset, 1994]).

Plastic and damage hardening parameters

The identification with our own uniaxial data of bovine cortical bone exper-
iments provides:

χp l χD k R

0.12
√

MPa 14 5.12 14 0.33

Table 6.5: Identified plastic and damage hardening parameters, based on our own
uniaxial tests.

where χp, l, χD, k and R are the plastic and damage hardening parame-
ters of the corresponding exponential functions defined in (6.11) and (6.12),
respectively.
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One-dimensional tests

All uniaxial mechanical tests carried out on the one-dimensional RI model
were successfully simulated with the three-dimensional model making con-
fined traction experiments along the principal direction of the material (E11 =
E22 = 0, E33 = Ē33). In addition, confined traction tests along the other two
orthogonal directions were made. Finally, a pure shear experiment was sim-
ulated. Similar experiments were carried out under load control in order to
check the correctness of the algorithmic tangent operators. The schedules
were applied to a single linear 8-node brick finite element (Figure 6.7).

ū(t)
ū(t)12

3

Figure 6.7: One-dimensional confined traction experiment carried out along the
principal material direction and pure shear experiment of a single linear eight-node
brick element with one integration point.

Figures 6.8 (a) and (b) show the agreement between the one-dimen-
sional programming of the three-dimensional law and its three-dimensional
finite element implementation. The lateral stresses S11 and S22 are not shown
in Figure 6.8 (a) but are obviously non-zero in this confined traction exper-
iment. For the pure shear experiment, we get a pure shear state S31 �= 0,
S12 =S23 =0 and S11 =S22 =S33 =0 at the central integration point. We note
that the shear damage threshold stresses are symmetric (Figure 6.8 (b)).

6.4.2 Boundary values problems

Two classes of experiments were simulated. In the first class, we stud-
ied the traction and compression of a bar starting with one single finite ele-
ment (Figure 6.9 (a)) and ending with a cylindrical bar made of 800 elements.
In the second class, we discretized the geometry of the traction specimens in-
vestigated experimentally in Chapter 5 into 184 8-node brick linear elements
(Figure 6.9 (b)).
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(a) Confined traction test (b) Pure shear test

Figure 6.8: Numerical results for both one-dimensional and three-dimensional
implementation of the three-dimensional constitutive law for cortical bone. The
material constants used in these simulations are given in Tables 6.2, 6.3, 6.4 and
6.5.

ū(t)(a)

ū(t)(b)

Figure 6.9: Boundary values experiments: (a) pure traction and (b) cortical bone
specimen traction test.

For the first experiment, Figure 6.10 shows the differences between
the confined and the pure traction test (with shrinking of the element). In
the latter case, we see that the additional degrees of freedom (related to
zero lateral stresses) result in a lower longitudinal elastic modulus and thus
a higher damage threshold stress along the principal direction of the material.
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Figure 6.10: Confined and pure traction tests carried out on a single finite element
whose principal material direction is aligned along the direction of traction (for the
same material constants as those of Figure 6.8).

For the second experiment, the von Mises equivalent stress distribu-
tion in the specimen, defined as υ := ||3

2
S′|| where S′ is the deviatoric stress

tensor (S′ := S − 1
3
TrS I), is displayed in Figure 6.11. Although inappro-

priate for an orthotropic material, von Mises isotropic criterion still gives
an adequate image of the stress state intensity in such a material. In this
traction test, the material fibers are aligned along the direction of traction,
inducing a homogeneous stress state in the central part of the specimen.
Figure 6.12 shows the von Mises equivalent stress distribution in a speci-
men whose material fibers form an angle of 30o with the direction of trac-
tion. In both Figures, the deformed (or actual) configuration of the body is
scaled up by a factor 50. The inhomogeneous stress state induced by ma-
terial anisotropy leads to a well-known shape of the deformed configuration,
namely that of a buckling bar ([Timoshenko, 1968]).

In all simulations, the Newton integration scheme used to overcome
the nonlinearity of the stress-strain law under stress control showed quadratic
convergence in the neighborhood of the solution as it should. The same
statement holds for the damage implicit projection algorithm. For statically
admissible boundary conditions (for example total load not exceeding max-
imal reachable load), the three-dimensional algorithm has proven to behave
properly and can be used in large finite element applications.
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Figure 6.11: Traction test carried out on cortical bone specimen with material
fibers aligned along the direction of traction (deformation scale: 50).

Figure 6.12: Traction test carried out on cortical bone specimen with material
fibers forming an angle of 30o with the direction of traction (deformation scale:
50). The specimen twist is characteristic of orthotropy.





Chapter 7

Biomechanical application:
damage of a lumbar vertebra

In this Chapter, the developed three-dimensional rate-independent
constitutive law for cortical bone is used in a finite element mechanical anal-
ysis software in order to assess the mechanical state of a lumbar vertebra
under uniaxial load by means of two plano-parallel polymethyl methacrylate
(PMMA) plates. The vertebra is constituted of an external cortical bone
shell and an internal trabecular bone core. The same damage model is used
for both bone tissues but with different material constants. Thus, we warn
about the moderate clinical relevance of the simulation. The predictions
concerning the internal state of the lumbar vertebra are only illustrative and
are intended to show the potential of the novel three-dimensional law. Ex-
perimental investigations should be made in order to compare them to the
results of the simulations on solid grounds.

To begin, we describe the model of the lumbar vertebra. Then, we
present and discuss the results of the simulations. Damage accumulation is
visualized in terms of stress distribution in the body.

7.1 Model description

In this Section, we describe the finite element model investigated in
this biomechanical application of the three-dimensional constitutive law for
cortical bone tissue. As mentioned before, the bone under study is a lumbar
vertebra or rather vertebral body. Supporting the entire body, the vertebrae
are mechanically solicited at high loads in daily activities.

From an anatomical point of view, there are five lumbar vertebrae.
Each of them is separated from its neighbour by a cartilagenous disc (Figure

149
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7.1 Left). The anterior portion of the vertebra is called the vertebral body
(Figure 7.1 Right). The body provides the surface against which the discs
rest. The discs provide flexibility and are essential in absorbing shocks. They
also experience damage from fatigue and overloading conditions.

Figure 7.1: Human lumbar vertebrae and isolated vertebra (from the Northern
California Neurosurgery Medical Group, Inc.).

7.1.1 Origin and properties of the mesh

The mesh is based on quantitative computed tomography (QCT) scans
(μCT80, SCANCO Medical AG, Switzerland) carried out on the lumbar ver-
tebral body of an elderly woman (born in 1923). Structural density is derived
from color contrasts of the scan images. An automatic mesh generator (Hy-
perMesh, Altair Engineering, Inc.) was used to discretize spatially the verte-
bral body and the two surrounding PMMA plates. At this point, we wish to
thank Thomas Kitzler (TU-WIEN) for providing us the finite element mesh.
The resulting mesh (Figure 7.2) is formed of three parts including 87’676
elements and 156’122 nodes. The number and type of elements of each part
composing the mesh is summarized in Table 7.1.

Both cortical and trabecular bone elements are 10-node quadratic
tetrahedron elements (C3D10 in the ABAQUS, Figure 7.3 Left). The el-
ements composing the PMMA plates are 15-node quadratic triangular prism
elements (C3D15, Figure 7.3 Right). Unstructured meshes formed of tetra-
hedral elements have a drawback over structured meshes formed of ordered
hexahedral elements. Indeed, geometric orientations of a structured mesh
related to true material orientations are lost in unstructured meshes.
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Cortical Trabecular Cranial Caudal
bone shell bone heart PMMA plate PMMA plate

Number of el. 29’362 35’769 11’320 11’225
Element type C3D10 C3D10 C3D15 C3D15

Table 7.1: Number and type of elements composing each part of the finite element
mesh of the lumbar vertebral body.

PMMA polymer plates Cortical bone set

Trabecular bone set Principal material direction

Figure 7.2: PMMA plates, cortical and trabecular bone finite element sets.

Material orientations

For simplicity, the material directions of the elements were chosen to be uni-
form. The privileged direction of anisotropy of both cortical and trabecular
bone elements is the direction of the mechanical solicitation e3 (Figure 7.2).
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typical node

typical integration
point

Figure 7.3: 10-node quadratic tetrahedron element and 15-node triangular prism
element.

7.1.2 Material properties

Cortical and trabecular bone

Human cortical and trabecular bone is assumed to be porous transverse
isotropic and characterized by the constitutive law presented in Chapter 6.

Its porous transverse isotropic elasticity is described by volume frac-
tion and a second-order fabric tensor (Zysset-Curnier model, Section 3.3).
The extrapolated constants of the plain isotropic material are given in Ta-
ble 7.2 together with the exponents v and w characterizing the porosity and
anisotropy, respectively. The values are taken from [Zysset, 1994].

The seven material constants describing the fabric-based damage cri-
terion presented in Section 6.1 and identified for human trabecular bone
by [Zysset and Rincón, 2005] are summarized in Table 7.3. The plastic and
hardening parameters identified for bovine cortical bone in Subsection 6.4.1
are given in Table 7.4. We expect human bone to exhibit a very similar
behaviour due to a similar composition of their extracellular bone matrix.
Nevertheless, the values of these constants could be somewhat different and
should be more precisely identified in subsequent studies.

As mentioned before, bone is assumed to be homogeneous, for sim-
plicity. The extent of anisotropy given by the fabric eigenvalues is assumed
to be uniform for all bone elements. They are given in Table 7.5.

As we consider trabecular bone as porous cortical bone, mechanically
speaking (Subsection 6.4.1, [Carter and Hayes, 1977b, Zysset, 1994]), we as-
sume that the elastic, plastic and damage constants are scaled in consequence
by volume fraction, according to the scaling laws presented in Section 3.3 for
the Zysset-Curnier model, and in Section 6.1 for the damage criterion. Due to
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the lack of information concerning local volume fraction, it is also assumed
to be uniform for all bone elements of the mesh. Cortical and trabecular
bone volume fractions are given in Table 7.5. The 1 to 10 ratio is somewhat
arbitrary, for simplicity again.

ε0 [GPa] μ0 [GPa] ν0 v w

15.75 5.28 0.32 2.0 1.0

Table 7.2: Volume fraction and fabric-based Zysset-Curnier elasticity model pa-
rameters (from [Zysset, 1994]).

σ+
0 [MPa] σ−

0 [MPa] χ+
0 χ−

0 τ0 [MPa] p q

43.3 58.4 -0.28 0.31 23.1 1.32 0.56

Table 7.3: Volume fraction and fabric-based Zysset halfspacewise orthotropic
damage model parameters (from [Zysset and Rincón, 2005]).

χp [
√

MPa] l χD k R

0.12 14 5.12 14 0.33

Table 7.4: Plastic and damage hardening parameters.

m1 m2 m3 ρcort
s ρtrab

s

0.894 0.894 1.252 0.9 0.09

Table 7.5: Eigenvalues of the fabric tensor reflecting transverse isotropy, and
cortical and trabecular bone volume fraction.

PMMA polymer plates

The cranial and caudal PMMA plates are assumed to be isotropic and lin-
early elastic. Their elastic properties are given in Table 7.6.

ε [GPa] ν

3.0 0.3

Table 7.6: Young’s modulus and Poisson’s ratio of the two PMMA plates.
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Model under infinitesimal formulation

The infinitesimal formulation was used in this biomechanical application
(small transformations).

7.1.3 Boundary conditions

The vertebral body is vertically loaded through the intermediate of the cra-
nial PMMA plate (Figure 7.4). The caudal plate remains fixed whereas the
cranial plate is subject to a uniform distributed stress of 10 MPa, corre-
sponding to a load of approximately 9 kN . This is several orders of magni-
tude higher than the weight of the body. It is emphasized that this purely
compressive load does not correspond to in vivo conditions which involve in-
tervertebral discs and perhaps a bending load. In vitro experiments carried
out on vertebral bodies have shown that they can support forces higher than
600 kg ([Zysset, 2005]). This non-physiological high load should damage the
vertebral body and serve as a basis for showing the potential of our consti-
tutive law.

t

S̄33

−10 MPa

Figure 7.4: Boundary conditions imposed to the finite element model.

7.2 Results

The mechanical state of the lumbar vertebral body (of the trabecular
and cortical bone elements) are expressed in terms of:

• the von Mises equivalent stress, defined as υ := ||3
2
S′|| where S′ is the

deviatoric stress tensor (S′ := S− 1
3
TrS I)
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• the equivalent pressure stress, defined as π := −1
3
TrS

• the damage variable D, ranging from 0 to 1 (0 for an intact and 1 for a
completely damaged element)

• the normal anisotropic stress invariant, defined as n := Tr (M3S) and
representing the normal stress along the principal direction m3.

Approximately eight hours were necessary to a 8 processors (RISC
450 MHz, 8 Mbytes RAM pro processor) SGI Origin 2000 workstation to
achieve the simulation. The computation required ten time increments.
Within each increment, convergence of the projection algorithm was reached
in one single iteration for the elastic mode and typically three iterations for
the damaging mode.

In order to discuss more precisely the mechanical state of the lumbar
vertebral body, let us divide the cortical bone elements enclosing the trabec-
ular core into the cortical shell and the endplates. We define the cortical shell
as the cylindrical (vertical) part of cortical bone and the two endplates as
the horizontal plates of cortical bone in contact with the two PMMA plates.

The largest vertical displacement was of −1.2 · 10−1 mm and occurred
at an anterior cranial endplate node. The extrema of the equivalent von
Mises stress υ, pressure π, damage variable D and normal anisotropic stress
invariant n are given in Table 7.7.

υ [MPa] π [MPa] D n [MPa]

min 0.9 −33.4 0.0 −29.0
max 142.7 60.9 0.82 31.5

Table 7.7: Extrema of the equivalent von Mises stress υ, pressure π, damage
variable D and normal anisotropic stress invariant n of the trabecular and compact
bone finite element model.

The distributions of these quantities within the vertebral body are
shown in Figures 7.5 to 7.8, respectively.
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Figure 7.5: Von Mises equivalent stress υ [MPa] (q in the Figure).
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Figure 7.6: Pressure equivalent stress π [MPa] (p in the Figure).
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Figure 7.7: Damage variable D.
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Figure 7.8: Normal anisotropic stress invariant n [MPa].
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7.3 Discussion

The finite element mechanical analysis can help to understand injury
mechanisms and stress distribution patterns within vertebral bodies in clini-
cal evaluation of spinal injuries (e.g. [Mizrahi et al., 1993, Silva et al., 1998]).
We insist on the fact that the clinical relevance of this study is moderate for
several reasons. Firstly, there is a crucial lack of information concerning local
structural density and material orientations in the studied body. Secondly,
the assumption that the same damage model can be applied for both trabec-
ular and compact bone does not take into account the collapse of trabecular
bone observed in compression overloads. The objective of this study was
rather to demonstrate the applicability of the elastic plastic damage consti-
tutive law for bone tissue presented in the previous Chapter. Intensive ex-
perimental investigations should be carried out in order to properly identify
the material constants of the model, the fracture patterns and to validate the
simulation results. However, an exact vertebral body geometry associated to
realistic experimental conditions and plausible material constants may allow
us to draw some useful conclusions.

Due to the high resolution of the μCT scanner (82 μm), the shell thick-
ness should not be overestimated in our finite element model ([Liebschner et
al., 2003]). The mean value of the cortical shell thickness lies in the range of
0.18-0.6 mm ([Silva et al., 1994]). The reader should not be mislead by the
apparent high values of cortical shell thickness visible in the cross-sections
of Figures 7.5 to 7.8. Indeed, the cross-sections are actually not geometrical
planes but 1 mm thick layers of elements.

The largest von Mises stresses are experienced by the middle ante-
rior cortical shell elements (Figure 7.5). This may lead to the most common
type of vertebral compression fractures, namely the anterior wedge fracture
([Old and Calvert, 2004]). The distribution is approximately symmetric with
respect to the sagittal and transverse planes. The von Mises stresses are
weaker in the caudal and cranial endplates and their distribution is approx-
imately uniform and of small magnitude in the trabecular bone elements.

The equivalent pressure follows a similar distribution than the von
Mises stress distribution (Figure 7.6). High (positive or compressive) pres-
sures occur for the middle transverse shell elements, whereas low (negative or
tensile) pressures are found in the caudal and cranial endplate elements. Due
to the concave deformation of the endplates, large tension stresses are gen-
erated in the anterior regions of the cortical shell. The load is distributed to
the peripheral cortical shell through the bending effect. Similar results were
found by [Chen et al., 1999]. The pressure distribution is also uniform and
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of small magnitude within the vertebrae (in the trabecular bone elements).
Interestingly, important damage values are strongly localized and af-

fect mainly the anterior trabecular bone elements which are near the end-
plates (Figure 7.7). This suggests that the contribution of the trabecular
bone to the total load depends strongly on the location within the vertebra.
Near the endplates, the trabecular bone carries most of the load, whereas
toward the middle of the vertebra the load is more evenly distributed be-
tween the cortical shell and the trabecular bone. This result is confirmed
in the study of [Liebschner et al., 2001]. [Homminga et al., 2004] found that
for a healthy vertebra, the contribution of the trabecular core is larger than
in an osteoporotic case. This strong and localized accumulation of damage
may thus cause the anterior part of the vertebral body to crush, forming an
anterior wedge fracture.

The highest values of the normal anisotropic stress invariant are found
in the endplate elements (Figure 7.8). They confirm the tensile and compres-
sive stress patterns related to bending of the vertebral body.

Generally, ten times physiological loading happens only during ex-
traordinary severe trauma such as an automobile crash or a hard fall. How-
ever, we expect similar damage accumulation mechanisms and compression
fracture patterns at lower loads in cases of moderate or severe osteoporosis.
A uniform distribution of the load within the vertebra is usually the case in
healthy bones. Osteoporotic vertebrae exhibit an altered micro-architecture
which could result in an uneven distribution of the load, facilitating localized
damage. Furthermore, cyclic loading at lower amplitudes leading to fatigue
damage may also have similar damaging consequences. Indeed, most verte-
bral fractures have a gradual onset and remain clinically undetected. They
are thought to be the result of normal daily activities rather than traumatic
events ([Melton et al., 1992]). In that case, fatigue damage enters in com-
petition with bone remodelling processes and may lead to fractures if the
balance is not respected in the long term.

In conclusion, the proposed constitutive law for cortical bone has
been successfully applied to a real bone geometry and contains its main
behavioural characteristics, namely anisotropy and inhomogeneity, elasticity,
plasticity and damage which are closely related. Thus, it may be an efficient
and complementary tool for the prevention and treatment of osteoporotic
fractures (e.g. [Bono, 2003]).

It gives an useful insight into the damaging behaviour of a vertebra
and shows several features which would be occulted if a linear elastic be-
haviour were used (e.g. [Crawford et al., 2003]). The strong localization of
damage within the trabecular structure and permanent strains undergone
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after unloading the vertebra are two of them.

Another advantage of our model is that it may reasonably be ap-
plied to both compact and trabecular bone tissues (using different material
constants). This is mainly due to the similar chemical composition of both
tissues and to a formulation of the constitutive law based on volume fraction
and fabric. Nevertheless, the constitutive law for trabecular bone adopted in
this study did not include pore collapse for high overloading situations.



Chapter 8

Conclusion

The objective of this research was to develop new constitutive laws for
cortical bone with emphasis on cyclic overloads at physiological strain rates.
In order to reach this objective, we proceeded in five steps:

(i) Two original rate-independent one-dimensional theoretical models com-
bining elasticity, plasticity and damage are formulated in the framework
of generalized standard materials. They involve different tensile and com-
pressive damage threshold stresses.

(ii) These models are then extended into rate-dependent alternatives aiming
at a more realistic description of the damage behaviour of cortical bone.

(iii) A number of pilot in vitro uniaxial experiments have been carried out on
bovine cortical bone to check the relevance of the proposed models and
identify the material constants.

(iv) Motivated by the explanatory power of finite element analysis of whole
bones, a new three-dimensional elastic plastic damage law inspired by the
one-dimensional models is formulated. Its orthotropic elasticity and dam-
age is based on porosity and fabric whereas its rate-independent harden-
ing plasticity is based on the fourth-order orthotropic compliance tensor.
It takes into account distinct tensile and compressive damage threshold
stresses.

(v) This law is then implemented in a mechanical analysis software mainly
with the help of implicit projection algorithms and calculus of consistent
tangent operators. The potential of the law is demonstrated by means of
a finite element analysis of the compression of a vertebra.

163
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8.1 Summary of results

We now discuss in more details the main features and results of the
aforementioned contributions.

(i) The free energy potential of the first one-dimensional model is
based on two internal state variables: a scalar damage variable that repre-
sents the microcrack density and a plastic strain variable representing the
deformation associated with these microcracks. The damage variable has
another simple interpretation: it represents the stiffness reduction of bone.
The dissipation potential expresses rate-independent plasticity and damage
with distinct damage thresholds in tension and compression. The originality
of this model does not lie in the mounting of the rheological elements (which
is a straightforward variation of the classical standard model), but in the
choice of the stiffness of the damageable spring, of the plastic and damage
criteria and their respective evolution with damage.

An elastic spring with constant stiffness mounted in series accounts
for the unaltered response of the extracellular bone matrix. A plastic pad
accounts for plastic damage due to microcracks. Initially equal to zero, its
thresholds increase with the accumulated damage. A damageable spring ac-
counts for bone elastic damage due to microcracks. In short, damage results
into a decrease of elastic stiffness but an increase of plastic resistance.

This model approximates well the loading, unloading and reloading
sequence observed experimentally on cortical bone. Nevertheless, most ex-
periments exhibit a damaged reloading which is collinear with the origin. To
include this important feature in our law, the model is extended by replac-
ing the single damage variable by two independent damage variables (one in
tension and the other in compression). The originality of this new model lies
in a special form of kinematic plastic hardening which guarantees a damaged
reloading collinear with the origin. This constitutive law captures, for the
first time, the main features of the quasistatic mechanical behaviour of cor-
tical bone.

(ii) Rate-dependent effects were then taken into account in order to
formulate a more realistic constitutive law. As our experiments and others
have shown that viscoelastic effects are relatively small at physiological strain
rates, but that rate-dependent effects are more pronounced in the overloading
regime, we chose to include them only during damage accumulation. Thus,
the proposed models may not be appropriate for impact studies. Following
the ideas of [Carter and Caler, 1985] in their cumulative damage model for
bone fracture, the rate of damage accumulation of our rate-dependent models
is related to some high power of the damage threshold stresses.
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In summary, depending on the conditions of interest, we propose four
new one-dimensional constitutive laws for cortical bone which describe sat-
isfactorily its mechanical behaviour in tension or compression:

1. in monotonic quasistatic overloads;

2. in cyclic quasistatic overloads;

3. in monotonic overloads at physiological strain rates; and

4. in cyclic overloads at physiological strain rates, respectively.

(iii) A series of in vitro uniaxial mechanical tests were carried out on
bovine cortical bone to check the applicability of the proposed models and
to identify their material constants. Artefacts associated to inhomogeneous
boundary conditions were avoided using dumbbell specimens and thus allow-
ing for a good quantification of the overloading plastic and damage processes
in tension.

Purely tensile tests provided excellent results which could be related to
the predictions of the proposed models in a very satisfactory manner. Never-
theless, due to experimental instabilities, many of our compressive overloads
did not show the expected behaviour. Indeed, the small section of the spec-
imens (3 mm in diameter) added to inhomogeneities of cortical bone and
inhomogeneous stress distribution in the specimens facilitated their rupture
in compression. However, a few successful experiments of our own and sev-
eral ones carried out by others show a similar damaged behaviour in tension
and compression, a feature which is included in all our models.

The cyclic tests mixing tension and compression exhibited a feature
which is not included in our models. Indeed, the closing of cracks occur-
ring when crossing from the tensile to the compressive domain leads to a
stiffening of the observed material response. This has also been observed in
concrete and it is emphasized that it is not an experimental artefact. Thus,
an improvement of the models with different elastic damage in tension and
compression would be required to take this behaviour into account.

Identification of the material constants interestingly showed that the
true elastic domain of cortical bone is extremely small. Thus, it is more
realistic to choose low damage threshold stresses and to define exponential
hardening functions and power law damage evolution rules.

(iv) The three-dimensional law for cortical bone proposed in this the-
sis is based on a straightforward generalization of the one-dimensional rate-
independent model with a single damage variable. The rheological setup is
similar to the one-dimensional mounting and includes an original combina-
tion of existing three-dimensional elastic and damage models for bone.
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The elasticity of bone is described by the orthotropic porous model
based on a second-order fabric tensor and referred to as the Zysset-Curnier
model in the literature ([Zysset, 1994, Zysset and Curnier, 1995]). The rea-
sons why we chose this model lie in the reduced number of material constants
and its applicability to both cortical and trabecular bone. Furthermore, its
material constants have been carefully identified ([Zysset, 2003]).

The orthotropic stress-based damage criterion with different tensile
and compressive thresholds formulated by [Zysset and Rincón, 2005] is used.
This model was retained because it is also based on porosity and fabric involv-
ing thus a minimal number of material constants. Furthermore, its material
constants have been successfully identified for trabecular bone in multiaxial
testing by [Rincón, 2003, Zysset and Rincón, 2005].

A strong limitation of the proposed three-dimensional model lies in
the choice of the damage variable. Indeed, a scalar damage variable altering
isotropically all constants of the elastic tensor is a rather naive description
of the anisotropic damage processes occurring in bone. Even if it may be
appropriate for proportional loadings, high order tensorial damage variables
should be used for complex deformation paths.

(v) The numerical implementation of the three-dimensional law into a
mechanical analysis software was done in a straightforward manner. Implicit
(radial return) projection algorithms are used for plastic flow calculation and
the generalized Newton method is used to overcome the nonlinearities associ-
ated with damage evolution and hardening. Consistent (algorithmic) tangent
operators are derived in order to ensure rapid convergence of the global New-
ton algorithm. A large number of validation tests have proven the accuracy
and convergence of the final algorithm.

The biomechanical evaluation of a compression of a vertebra showed
the potential of the implemented model. The same constitutive laws were
used for cortical and trabecular bone, but with different porosities. The sim-
ulation results show a strong localization of damage within the trabecular
structure which may cause the anterior part of the vertebral body to crush.
Furthermore, if unloaded, the damaged vertebra undergoes permanent strains
which would be occulted if a linear elastic behaviour were used. Thus, taking
nonlinear material behaviour such as plasticity and damage into account can
help to understand injury mechanisms and stress distribution patterns within
vertebrae in clinical evaluation of spinal injuries. In conclusion, our numeri-
cal model represents a good compromise between complexity and realism for
the simulation of the mechanical behaviour of bone at the continuum level
and shows a promising potential.
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8.2 Perspectives
The perspectives of this research are multiple. Firstly, the one-dimen-

sional models can be improved further in order to describe realistically the
stiffening behaviour of cortical bone observed experimentally in tests mixing
tension and compression. Secondly, the formulation of the plasticity of the
three-dimensional model should be enhanced by changing its yield criterion
which does not describe plastic deformations at constant volume. Thirdly,
the hardening functions of the three-dimensional law must be adapted by
means of an appropriate kinematic hardening in order to guarantee a dam-
aged reloading collinear with the origin. Fourthly, viscous damage should be
included in its formulation to account for rate-dependent effects. Fifthly, a
viscoelastic component should be added to the models for impact studies in-
volving high strain-rate dependences. Finally, data must be collected about
the mechanical behaviour of bone under complex, time-dependent, multiax-
ial loading conditions in order to further validate and identify the proposed
models.

8.3 Summary of original contributions
To conclude, we recall the significant contribution of this thesis:

• Original one- and three-dimensional constitutive laws for cortical bone
are formulated in the framework of generalized standard materials. They
combine elasticity, plasticity and damage and reproduce faithfully the ex-
perimental mechanical behaviour of cortical bone in cyclic uniaxial over-
loads.

• The material constants of the one-dimensional models are identified on
experimental grounds with a method avoiding boundary effects.

• Implicit projection algorithms are formulated and consistent tangent op-
erators are computed in the cases of plasticity and damage.

• The biomechanical relevance of the three-dimensional model is evaluated
by simulating the compression of a vertebra.

The developed constitutive laws will hopefully contribute to evaluate frac-
ture risk in vivo and help to design orthopaedic implants. Note that one of
our one-dimensional model have been adapted and showed a very promising
potential for car crash simulations ([Jundt et al., 2005]).





List of symbols

Greek

α damage term
αa interface hyperplane coefficients
Γy boundary of Ω with prescribed displacement BC
Γp boundary of Ω with prescribed load BC
ε Young’s modulus
ε0 intact Young’s modulus
εa Young-like elastic moduli
εD damaged Young’s modulus
ε0 Young’s modulus for a poreless material
ζ viscosity factor of the power law damage evolution rule
η viscosity coefficient
κ compressibility modulus
λ bulk Lamé coefficient
λp plastic Lagrangian multiplier
Λp rate-like plastic Lagrangian multiplier
λD damage Lagrangian multiplier
ΛD rate-like damage Lagrangian multiplier
λab bulk Lamé-like coefficients
λ+ab tensile orthotropic elastic constants
λ−ab compressive orthotropic elastic constants
μ0 shear modulus for a poreless material
μ shear Lamé coefficient
μa shear Lamé-like coefficients
μab shear moduli
ν Poisson’s ratio
ν0 Poisson’s ratio for a poreless material
νab Poisson-like ratios
ξ natural coordinates
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ξl integration point natural coordinates
π pressure equivalent stress
ρ(x) density
ρa apparent density
ρs volume fraction or structural density
σi eigenvalues of Sp

σ+
0 uniaxial tensile strength for a poreless material

σ−
0 uniaxial compressive strength for a poreless material

σ+
ii uniaxial tensile strength along axis i

σ−
ii uniaxial compressive strength along axis i

σD
+(D) tensile threshold damage stress

σD
−(D) compressive threshold damage stress

σD
0+ initial tensile threshold damage stress

σD
0− initial compressive threshold damage stress

σp radius or plastic yield stress
τ time increment
τ0 shear strength for a poreless material
τij shear strength in the plane ij
υ von Mises equivalent stress
ϕ mechanical dissipation per unit volume
φ part of the damage dissipation potential
φ∗

+ tensile part of ΦD∗

φ∗
− compressive part of ΦD∗

Φ dissipation potential
Φp plastic dissipation potential
ΦD damage dissipation potential
Φ∗ dual dissipation potential
Φp∗ plastic dual dissipation potential
ΦD∗ damage dual dissipation potential
χp plastic hardening coefficient
χD damage hardening coefficient
χ+

0 stress interaction coefficient for a poreless material
χ−

0 stress interaction coefficient for a poreless material
χ+

ij stress interaction coefficients
χ−

ij stress interaction coefficients
Ψ free energy potential
Ψ∗ dual free energy potential
ω subset of Ω
∂ω boundary of ω
Ωl weight associated to ξl

Ω reference configuration (at time t = 0)
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Ωt present configuration (at time t)
eΩ subset of Ω occupied by element e
∂Ω boundary of Ω
∂Ωt boundary of Ωt

Latin

A initial specimen area
Aa second-order anisotropic basis tensors
A fourth-order damage tensor term
bn(x) global basis function
eba(x) local basis function
� solid body
B fourth-order damage tensor term
C(x, t) right Cauchy-Green material metric tensor
C fourth-order compliance tensor
C fourth-order hydrostatic compliance tensor
C

′ fourth-order deviatoric compliance tensor
(D) damage mode
D scalar damage variable
D0 initial damage
D(x, t) second-order spatial deformation velocity tensor
D+ scalar tensile damage variable
D− scalar compressive damage variable
D{.} distance function to {.}
dA elementary surface element
dV elementary volume element
dx original material fiber
dy actual material fiber
e compliance jump at the interface
ei canonical basis of R3

(E) initial and subsequent linear elastic mode
E scalar Green-St Venant Lagrangian material strain
Eij cartesian components of E
E(x, t) Green-St Venant Lagrangian material strain tensor
E0 initial scalar strain
E0 initial second-order strain tensor
Ee scalar elastic strain
Ee second-order elastic strain tensor
Ep scalar plastic strain
Ep second-order plastic strain tensor
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Ep
0 initial scalar plastic strain

Ep
0 initial second-order plastic strain tensor

f(D) damage solution function
f+(D) tensile damage solution function
f−(D) compressive damage solution function
F(x, t) deformation gradient
F fourth-order damage criterion tensor
F+ fourth-order tensile damage criterion tensor
F− fourth-order compressive damage criterion tensor
g+(D) tensile damage energy function
gt(Ω, t) resultant body force vector
gt(x, t) nominal body force vector
Gab shear moduli
G fourth-order plasticity criterion tensor
h(D) quasistatic damage energy threshold
h+(.) tensile quasistatic damage energy threshold
h−(.) compressive quasistatic damage energy threshold
H stretch
H(x, t) displacement gradient
Hp(Sp) fourth-order plastic hessian operator
I(t) internal entropy production
I{.} indicator function of {.}
I symmetric second-order identity tensor
j(ξ) jacobian of the isoparametric transformation
J(x, t) jacobian of the transformation
k damage hardening coefficient
k principal direction of orthotropy
l plastic hardening coefficient
L initial gauge length
Lt actual gauge length
L spatial velocity of the transformation
eL localization matrix
eLT scatter matrix
m(S) stress interface hyperplane
mi orthotropic eigenvalues
m principal direction of transverse isotropy or orthotropy
mi principal directions of orthotropy
m̈

t
(Ω, t) resultant inertial force vector

M unit normal tensor to the interface hyperplane m(S)
M̂ fabric tensor
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Mi structural tensors
n normal anisotropic stress invariant
n(E) strain interface hyperplane
n principal direction of orthotropy
n(x) outward normal vector
N exponent of the power law damage evolution rule
N unit normal tensor to the interface hyperplane n(E)
Np(Sp) outward normal of the plastic criterion in stress space
ND(SD) outward normal of the damage criterion in stress space
NDIM spatial dimension of the integration domain
NELE total number of elements
NODE total number of nodes
NSTEPS total number of time steps
p porosity exponent for fabric-based damage criterion
p̄ applied load
p(∂Ω, t) resultant contact force vector
p(x, t,n(x)) nominal stress vector
p̄ applied load
(P) plastic mode
P ext(t) external power of deformation
P inertia(t) inertial power of deformation
P int(t) internal power of deformation
P̊ ext(t) external virtual power of deformation
P̊ inertia(t) inertial virtual power of deformation
P̊ int(t) internal virtual power of deformation
P ext

Q heat supply to a volume element
P(x, t) first nominal Piola-Kirchhoff stress tensor
P fourth-order continuous tangent operator
Pe fourth-order elastic continuous tangent operator
Pp fourth-order plastic continuous tangent operator
PD fourth-order damage continuous tangent operator
Pe

a fourth-order elastic algorithmic tangent operator
P

p
a fourth-order plastic algorithmic tangent operator

PD
a fourth-order damage algorithmic tangent operator

PAB exact consistent ABAQUS tangent operator
q anisotropy exponent for fabric-based damage criterion
rD(D) radius of damage criterion
�(�) global nodal residual force vector
R real numbers
R+ positive real numbers
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R− negative real numbers
RD rate-dependent elastic plastic damage model
RD± RD model with two distinct damage variables
RI rate-independent elastic plastic damage model
RI± RI model with two distinct damage variables
s elasticity jump at the interface
S entropy
S scalar material Piola-Kirchhoff-2 stress
S0 initial stress
ST trial stress
SΨ scalar material stress deriving from Ψ
S̄ applied scalar stress
S ′

λ subderivative of S
Sij cartesian components of S
S(x, t) second material Piola-Kirchhoff stress tensor
SΨ second-order material stress tensor deriving from Ψ
S′ second-order deviatoric material stress tensor
SD scalar stress in the damageable spring
SD

0 scalar initial stress in the damageable spring
SD

T scalar trial stress in the damageable spring
SD second-order damageable spring stress tensor
SD

0 second-order damageable spring initial stress tensor
SD

T second-order damageable spring trial stress tensor
Se

U second-order elastic stress tensor deriving from U
Sp scalar plastic stress
Sp

0 scalar initial plastic stress
Sp

T scalar trial plastic stress
Sp

Ψ scalar plastic stress deriving from Ψ
Sp

Φ scalar plastic stress deriving from Φ
Sp second-order plastic stress tensor
Sp

0 second-order initial plastic stress tensor
Sp

T second-order trial plastic stress tensor
Sp

U second-order plastic stress tensor deriving from U
Sp

Φ second-order plastic stress tensor deriving from Φ
Sp

Ψ second-order plastic stress tensor deriving from Ψ
Sv

U
second-order viscous stress tensor deriving from U

Sv
Φ second-order viscous stress tensor deriving from φ

Sym space of symmetric second-order tensors
S fourth-order elasticity (stiffness) tensor
S fourth-order hydrostatic stiffness tensor
S′ fourth-order deviatoric stiffness tensor
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SISOT fourth-order isotropic stiffness tensor
STRAN fourth-order transverse isotropic stiffness tensor
SORTHO fourth-order orthotropic stiffness tensor
S+ fourth-order tensile stiffness tensor
S− fourth-order compressive stiffness tensor
Sa fourth-order plastic tensor term
Sad fourth-order damage tensor term
SD fourth-order damaged stiffness tensor
t time
T temperature
T(y, t) spatial Cauchy stress tensor
TFINAL total time of the simulation
T tangent matrix
u(x, t) displacement vector
un(t) displacement of node n
eu(x, t) local displacement
eua(t) local displacement of node a
eû(ξ, t) local natural displacement
ū(x, t) prescribed displacement
u∗ displacement solution of the Newton iteration method
� discrete global displacement vector
U internal energy per unit volume
v porosity exponent for fabric-based elasticity
v0 initial prescribed velocity
w anisotropy exponent for fabric-based elasticity
w(x, t) virtual displacement vector
wn(t) virtual displacement of node n
ew(x, t) local virtual displacement
ewa(t) local virtual displacement of node a
W D damage energy
W D

0 initial damage energy
W D

T trial damage energy
W D

U
damage energy deriving from U

W D
Ψ damage energy deriving from Ψ

W D
Φ damage energy deriving from Φ

W
D+

Ψ tensile damage energy deriving from Ψ
W

D−
Ψ compressive damage energy deriving from Ψ

W
D+

Φ tensile damage energy deriving from Φ
W

D−
Φ compressive damage energy deriving from Φ

xi reference position vector components
x reference position vector
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� discrete global reference position vector
e
� local reference position vector

yi(x, t) present deformed position vector components
y(x, t) present deformed position vector
ȳ prescribed position
ẙ virtual velocity
Y initial damage threshold function
Y p plastic yield function
Y D damage threshold function



Appendix A

3D calculus

In this Appendix we give some useful three-dimensional calculus for-
mulas. α, β, . . . are for scalars, a,b, . . . for vectors, A,B, . . . for second-order
tensors and A, B, . . . for fourth-order tensors.

Dyadic product

(a⊗ b)x = (x · b) a , ∀x (A.1)

(a⊗ b)(c⊗ d) = (b · c)(a⊗ d) (A.2)

(m⊗m)(m⊗m) = m⊗m if ||m|| = 1 (A.3)

(A⊗B)X = (X : B)A , ∀X (A.4)

Transpose

a ·Bc = BTa · c (A.5)

[A ⊗ B]T = B ⊗ A (A.6)

Scalar product

A : B = Tr (AT B) (A.7)

(A : BC )DE = (DE⊗BTA)C (A.8)

Norm

||a|| = √a · a (A.9)

||A|| =
√

A : A (A.10)
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Trace

Tr (A + B) = Tr (A) + Tr (B) (A.11)

Tr (αA) = α Tr (A) (A.12)

Tr (m⊗m) = ||m||2 (A.13)

Inverse (Richardson’s formula, [Noble and Daniel, 1988])

[A + a⊗ b]−1 = A−1 − (A−1a)⊗ (A−Tb)

1 + (A−1 a) · b =

= A−1 − A−1[a⊗ b]A−1

1 + (A−1 a) · b
(A.14)

Special tensorial products

(A⊗B)X = AXBT , ∀X (A.15)

(A⊗B)X = AXTBT , ∀X (A.16)

(A⊗B)X =
1

2
(AXBT + AXTBT) , ∀X (A.17)

A⊗B =
1

2
(A⊗B + A⊗B) (A.18)

A⊗A = A⊗A if A = a⊗ a (A.19)

(a⊗ b)⊗ (c⊗ d) = a⊗ c⊗ b⊗ d (A.20)

(a⊗ b)⊗ (c⊗ d) = a⊗ c⊗ d⊗ b (A.21)

Transpose

[A⊗B]T = AT⊗BT (A.22)

[A⊗B]
T

= BT⊗AT (A.23)
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