
THÈSE NO 3423 (2006)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE à LA FACULTÉ informatique et communications

Institut d'informatique fondamentale

SECTION D'informatique

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

M.Sc. in Computer Engineering and Information Science, Bilkent University, Turquie
et de nationalité ukrainienne

acceptée sur proposition du jury:

Lausanne, EPFL
2006

Prof. S. Spaccapietra, directeur de thèse
Prof. A. Artale, rapporteur
Prof. N. Cullot, rapporteur

Prof. A. Wegmann, rapporteur

Semantic validation
in spatio-temporal schema integration

Anastasiya SOTNYKOVA

Abstract

Semantic Validation in Spatio-Temporal
Schema Integration

This thesis proposes to address the well-know database integration problem with
a new method that combines functionality from database conceptual modeling tech-
niques with functionality from logic-based reasoners. We elaborate on a hybrid -
modeling+validation - integration approach for spatio-temporal information integra-
tion on the schema level. The modeling part of our methodology is supported by
the spatio-temporal conceptual model MADS, whereas the validation part of the
integration process is delegated to the description logics validation services. We
therefore adhere to the principle that, rather than extending either formalism to try
to cover all desirable functionality, a hybrid system, where the database component
and the logic component would cooperate, each one performing the tasks for which
it is best suited, is a viable solution for semantically rich information management.

First, we develop a MADS-based flexible integration approach where the in-
tegrated schema designer has several viable ways to construct a final integrated
schema. For different related schema elements we provide the designer with four
general policies and with a set of structural solutions or structural patterns within
each policy. To always guarantee an integrated solution, we provide for a preserva-
tion policy with multi-representation structural pattern. To state the inter-schema
mappings, we elaborate on a correspondence language with explicit spatial and tem-
poral operators. Thus, our correspondence language has three facets: structural,
spatial, and temporal, allowing to relate the thematic representation as well as the
spatial and temporal features. With the inter-schema mappings, the designer can
state correspondences between related populations, and define the conditions that
rule the matching at the instance level. These matching rules can then be used in
query rewriting procedures or to match the instances within the data integration
process. We associate a set of putative structural patterns to each type of popu-
lation correspondence, providing a designer with a patterns’ selection for flexible
integrated schema construction.

Second, we enhance our integration method by employing validation services of
the description logic formalism. It is not guaranteed that the designer can state
all the inter-schema mappings manually, and that they are all correct. We add
the validation phase to ensure validity and completeness of the inter-schema map-
pings set. Inter-schema mappings cannot be validated autonomously, i.e., they are
validated against the data model and the schemas they link. Thus, to implement
our validation approach, we translate the data model, the source schemas and the
inter-schema mappings into a description logic formalism, preserving the spatial
and temporal semantics of the MADS data model. Thus, our modeling approach
in description logic insures that the model designer will correctly define spatial and

iii

temporal schema elements and inter-schema mappings. The added value of the com-
plete translation (i.e., including the data model and the source schemas) is that we
validate not only the inter-schema mappings, but also the compliance of the source
schemas to the data model, and infer implicit relationships within them. As the
result of the validation procedure, the schema designer obtains the complete and
valid set of inter-schema mappings and a set of valid (flexible) schematic patterns
to apply to construct an integrated schema that meets application requirements.

To further our work, we model a framework in which a schema designer is able
to follow our integration method and realize the schema integration task in an
assisted way. We design two models, UML and SEAM models, of a system that
provides for integration functionalities. The models describe a framework where
several tools are employed together, each involved in the service it is best suited for.
We define the functionalities and the cooperation between the composing elements
of the framework and detail the logics of the integration process in an UML activity
diagram and in a SEAM operation model.

iv

Version Abrégée

Validation Sémantique pour l’Intégration
de Schémas Spatio-Temporels.

Ce travail de recherche aborde la problématique d’intégration de base de données
et propose une nouvelle méthode qui allie les techniques de modélisation conceptuelle
de bases de données avec les capacités de raisonnement des logiques de descrip-
tion. Nous avons élaboré une approche hybride - modélisation+validation - pour
l’intégration de données spatio-temporelles au niveau du schéma. La partie modélisa-
tion de notre méthodologie est réalisée avec le modèle conceptuel pour données
spatio-temporelles, MADS, et la partie de validation du processus d’intégration
est déléguée aux services de raisonnement des logiques de description. En effet,
plutôt que d’étendre l’un ou l’autre formalisme et essayer d’offrir toutes les fonc-
tionnalités souhaitées, nous considérons que un système hybride où le composant
base de données et le composant logique coopèrent, chacun accomplissant les tâches
pour lesquelles il est le plus adapté, est la solution la plus appropriée pour la gestion
sémantique de l’information.

Nous avons développé une approche flexible d’intégration où le concepteur du
schéma intégré dispose de plusieurs manières valides pour construire un schéma
intégré final. Pour chacun des éléments des schémas en correspondance, nous pro-
posons ainsi au concepteur quatre politiques générales d’intégration avec, pour cha-
cune, un ensemble de solutions structurelles (ou de patterns structuraux). Afin de
pouvoir toujours offrir au concepteur une solution pour l’intégration de ses schémas,
nous avons prévu une politique particulière appelée politique de conservation re-
posant sur le pattern de multi-représentation. Pour formuler les mappings inter-
schémas, nous avons défini un langage de correspondances incluant des opérateurs
spatiaux et temporels. Ainsi, notre langage de correspondances possèdant trois
facettes: structurale, spatiale, et temporelle, il permet de relier non seulement la
représentation thématique des données mais aussi leurs propriétés spatiales et tem-
porelles. A l’aide des mappings inter-schémas, le concepteur peut spécifier les cor-
respondances entre les populations reliées, et définir les conditions qui régissent la
mise en correspondance des données au niveau instance. Ces règles peuvent alors
être employées lors les procédures de re-écriture de requêtes et pour apparier les
instances lors du processus d’intégration de données. Nous avons associé à chaque
type de correspondance entre des populations un ensemble de solutions structurelles
putatives, fournissant au concepteur une sélection de patterns pour la construction
d’un schéma intégré flexible.

Nous avons considéré que, utilisant un modèle conceptuel spatio-temporel ex-
pressif, le concepteur de schéma est capable de spécifier ses mappings inter-schéma
manuellement. Cependant il n’était pas acceptable de considérer que le concepteur

v

serait capable d’énoncer tous les mappings, et que ces mappings seraient tous cor-
rects. Pour pallier ce problème, nous avons adjoint notre méthode d’intégration une
étape de validation permettant d’assurer la validité et l’intégrité de l’ensemble des
mappings inter-schémas. Les mappings inter-schémas ne peuvent pas être validés
de façon autonome, ils sont validés relativement au modèle de données utilisé et
aux schémas qu’ils mettent en correspondance. Ainsi, lors de la validation, nous
traduisons tout d’abord le modèle de données MADS, puis les schémas sources et
les mappings inter-schémas en une logique de description préservant la sémantique
spatiale et temporelle du modèle MADS. Cette étape de validation permet de cer-
tifier que le concepteur du schéma a défini correctement les éléments spatiaux et
temporels du schéma ainsi que les mappings inter-schémas. La valeur ajoutée de la
traduction complète (c.-à-d., incluant le modèle de données et les schémas sources)
est que nous validons non seulement les mappings inter-schémas, mais également la
conformité des schémas sources au modèle de données, et que cela permet d’inférer
des liens implicites entre les schémas sources. A l’issue de la validation, le concep-
teur de schéma obtient un ensemble complet et valide de mappings inter-schémas, et
un ensemble de patterns schématiques (flexibles) valides qu’il peut ensuite appliquer
pour construire le schéma intégré répondant aux exigences de son application.

Finalement, nous avons aussi proposé un modèle décrivant une architecture dans
laquelle le concepteur de schéma peut appliquer notre méthode d’intégration et être
assisté lors de l’intégration de ses schémas sources. Nous avons réalisé le modèle de
cette architecture à l’aide de deux formalismes différents, le formalisme UML et le
formalisme SEAM. Ces modèles décrivent une architecture dans laquelle plusieurs
outils sont utilisés conjointement, chacun étant employé pour le service pour lequel
il est le plus adapté. Enfin, nous avons défini les fonctionnalités entre les éléments
composants de l’architecture, comment ils coopèrent, et nous avons détaillé la logique
du procédé d’intégration dans un diagramme d’activité UML et dans un diagramme
d’operation de SEAM.

vi

Acknowledgements

This thesis sums up my research efforts as a member of EPFL’s database labora-
tory (LBD), led by Professor Stefano Spaccapietra who was my advisor throughout
my doctoral student years.

It takes many months, marked by endless doubts and the occasional finding,
before a PhD thesis attains its final shape. The proverbial Ariadne’s thread for
me was my advisor’s critical eye; it was him who would emphatically ask the very
same final question at all intermediate presentations: ”What are the contributions
of what you just presented ?”. And, by ”contributions”, he would mean something
new and original within a research topic which had been thoroughly studied for a few
decades already. Professor Christine Parent possessed the uncanny ability to point
out even the slightest mismatch between my argumentations and other people’s.
Thanks to her input, I was able to change my vantage point on the subject and see
that actually the semantics of boundaries, objects, properties, relationships, and of
other phenomena is highly dependent on how we abstract the world.

Working as a member of the team of LBD members, I am thankful to my col-
leagues who were openly sharing their academic experience and supporting my ideas;
they helped me step in a land which is ”outside of databases,” and the result of that
is the present work, which merges two different scientific approaches. To me, LBD
was a laboratory with a balanced atmosphere, nourishing the creativity of its mem-
bers and shaping them personally and professionally.

This work would not have been possible without the infrastructure provided by
the Swiss Federal Institute of Technology and the support of the Swiss National
Research Foundation. The top-notch school’s facilities fostered my research, my
teaching and my self-development activities. EPFL provided an ideal framework for
me to show and discuss my work in front of a highly competent jury, which provided
me with invaluable comments and feedback.

In the ”outside” world, my friends provided great support; with them I had
many of life’s important conversations and they generously shared their passions
with me. Being a pathfinder in the labyrinth of formal approaches, I was getting my
inspiration from a beautiful mountain view, from a high-speed descent in a white-
gleaming valley, from traveling with the fascinating argentinean music far away
from the real world, or from eating delicious haute cuisine creations. Many thanks
to all of you who kept asking me ”How is your thesis going on ?”, and to whom
(and therefore to myself!) I ended up explaining the particularities of conceptual
modeling and integration. And, of course, my family deserves a special thanks for
their faith in me – and my mother for her inexhaustible source of joie de vivre which
has always been and will be a driving force in many of my endeavors.

vii

viii

Contents

1 Introduction 1
1.1 General Context of the Study . 1
1.2 Motivations . 4
1.3 Outline of the Thesis . 5

2 Relevant Research Areas: State of the Art 7
2.1 Interoperable System Architectures 7

2.1.1 Interoperable System Components 9
2.1.2 Mediator-based systems . 10
2.1.3 Agent-based systems . 11
2.1.4 Summary . 13

2.2 Ontologies and Conceptual Models 15
2.2.1 Ontologies vs Conceptual Schemas 16
2.2.2 The MADS Conceptual Model as a Common Data Model . . . 17

2.3 Inter-Schema Mappings . 18
2.3.1 Mapping discovery. 19
2.3.2 Inter-schema correspondences. 19
2.3.3 Querying. 20
2.3.4 Semantic enrichment. 20

2.4 Validation Approach in Integration Procedures 21
2.4.1 Reasoning in Description Logic 22
2.4.2 Description Logics . 23
2.4.3 Description Logics with Concrete Domains. 26

2.5 Chapter Summary . 30

3 Integration of Spatio-temporal Database Schemas 31
3.1 The Context of the Methodology: Terms and Techniques 32
3.2 Introduction to the MADS data model 34

3.2.1 Structural dimension . 34
3.2.2 Spatial dimension . 35
3.2.3 Temporal dimension . 36
3.2.4 Constrained relationships . 37
3.2.5 Multiple Representations with Multiple Perceptions in MADS 39

ix

3.3 Motivating Examples . 41
3.4 Integration Methodology . 45

3.4.1 Pre-integration . 45
3.4.2 Inter-schema Mappings . 45
3.4.3 Choosing a structural policy. 59
3.4.4 Integrated schema composition 65

3.5 Chapter Summary . 66

4 Validation: Theory 69
4.1 Validation in ALCRP(D) . 71

4.1.1 Description Logic ALCRP(D) 71
4.1.2 Spatio-Temporal Concrete Domain 72

4.2 MADS schemas in ALCRP(D) . 73
4.2.1 Spatio-temporal features . 73
4.2.2 Inter-schema mappings . 74
4.2.3 Structural solution for the integrated schema 78
4.2.4 Composing the Integrated Schema 82

4.3 Chapter Summary . 84

5 Validation: Practice 85
5.1 MADS data model in SHIQ logic . 88
5.2 Data Model Definition in OWL . 93

5.2.1 Structural Dimension. 93
5.2.2 Spatial Dimension. 105
5.2.3 Temporal Dimension. 109
5.2.4 Constrained relationships. 111
5.2.5 Representation Dimension. 116

5.3 Schema Definition in OWL . 118
5.4 Inter-schema Mappings Definition in OWL 126
5.5 Chapter Summary . 133

6 System Modeling Issues 135
6.1 UML modeling . 135

6.1.1 Use Case introduction and definitions 135
6.1.2 Use Case: ICATool . 137
6.1.3 Robustness diagram for the ICATool 139
6.1.4 Activity diagram for the ICATool 140

6.2 SEAM modeling . 143
6.3 Chapter Summary . 148

7 Conclusions and Future Issues 149
7.1 Contributions of the Thesis . 149
7.2 Future Directions . 150

x

List of Figures

1.1 State of affairs. 2
1.2 Integrated solution. 3

2.1 Generic Structure of an Interoperable System. 10
2.2 Mediator-based approach. 10
2.3 Agent-based approach. 12
2.4 Kinds of ontology from [Gua98]. 15
2.5 Spatial Relationships Transitions. 27
2.6 Allen’s interval relationships. 28

3.1 MADS structural notation. 34
3.2 MADS dimensions: structural. 35
3.3 MADS basic hierarchy of spatial abstract data types. 36
3.4 MADS dimensions: structural & spatial. 36
3.5 MADS basic hierarchy of temporal abstract data types. 37
3.6 MADS dimensions: structural & spatial & temporal. 37
3.7 MADS dimensions: topological relationship. 38
3.8 Perception varying object type Round Cross. 39
3.9 Two mono-perception object types linked with the correspond inter-

representation link. 40
3.10 Schema S1: Park Administration. 41
3.11 Schema S2: Road Administration. 42
3.12 Schema T1 : A City for Tourists. 42
3.13 Schema T2 : A City for Tourists. 43
3.14 Integration Methodology. 45
3.15 Modeling Concept Sets for the same object. 47
3.16 Population relationships. 47
3.17 Sample integration patterns. 48
3.18 Cadastral plans. 50
3.19 Structural patterns for the disjoint operator between the populations

of the related modeling concept sets. 50
3.20 A fragment of Lausanne city map. 51
3.21 Structural patterns for the intersection operator between the popula-

tions of related modeling concept sets. 52
3.22 Structural patterns for the inclusion operator between the populations

of related modeling concept sets. 54
3.23 Structural patterns for the equality operator between the populations

of related modeling concept sets. 55
3.24 Another structural pattern: partition multiple specification. 55
3.25 IC compatibility verification. 60
3.26 Validation block diagram for two object types A and B with a common

attribute c. 61

xi

3.27 Integrated solutions obtained with different patterns. 64
3.28 A fragment of a domain ontology. 66

4.1 Integration phases. 70
4.2 Topological relationships. 73
4.3 Population relationships and corresponding DL expressions. 75
4.4 Schematic solutions under the intersection relation between the pop-

ulations of the source schemas for integrated schema Tint. 80
4.5 Multi-representation solutions under the intersection relation between

the populations of the source schemas for integrated schema Tint. . . 82
4.6 Multi-representation solution for bus lines and bus stops in an Tint. . 83

5.1 A non-conforming to the SADT hierarchy schema element. 86
5.2 Integrity constraint for the ternary relationship along from Figure 3.10 99
5.3 Decomposed ternary relationship along from Figure 3.10 99
5.4 Transformation for relationships with attributes. 105
5.5 OWL: Geo types for basic spatial instances. 106
5.6 OWL: spatial data types hierarchy. 108
5.7 OWL: temporal data types hierarchy. 110
5.8 OWL: Interval temporal type. 111
5.9 MADS: topological relationships, validity table. 112
5.10 OWL: adjacent topological property. 113
5.11 MADS: synchronization relationships, validity table. 114
5.12 Disjoint synchronization relationship 115
5.13 Temporal equal property. 115
5.14 Perception stamps T1 and T2 with the corresponding classes 117
5.15 Perception stamps t1 and t2 with the corresponding classes 118
5.16 Some spatial classes from schema T1 from Figure 3.13 defined in

Protégé OWL. 119
5.17 OpenTime attribute of the Museum object type from Figure 3.13 mod-

eled in Protégé. 120
5.18 Schema T1 in Protégé. 122
5.19 Schema T2 in Protégé. 123
5.20 Validation for the <owl:equivalentClass> condition. 128
5.21 Constraint for the topological properties. 129

6.1 The Use Case for the ICA Tool. 138
6.2 Robustness Diagram Elements. 139
6.3 Robustness Diagram Rules. 140
6.4 Robustness Diagram for the ICATool. 141
6.5 Activity Diagram for the ICATool. 142
6.6 Business Level Model . 144
6.7 Operation Level Model . 144
6.8 BPMN elements. 145

xii

6.9 BP diagram for the ICATool. 147

List of Tables

2.1 How a ’building’ object can be represented. 8
2.2 Spatial and Interval Relationships . 29

3.1 Integration Phases . 32
3.2 MADS topological relationships. 38
3.3 MADS synchronization relationships. 39

4.1 Conceptual model element description 81

5.1 Structural Dimension - MADS vs OWL 105
5.2 Spatial Dimension - MADS vs OWL 109
5.3 Temporal Dimension - MADS vs OWL 111
5.4 Constrained relationships - MADS vs OWL 116

xiii

xiv

Chapter 1

Introduction

1.1 General Context of the Study

This thesis proposes to address the well-know database integration problem with a
new method that combines functionality from database conceptual modeling tech-
niques with functionality from logic-based reasoners. Let us first illustrate the ben-
efits of database integration by describing a typical imaginary situation where data
is shared among different organizations. Let us assume an institution InstA re-
quires acquiring additional information to make its database DataA conform with
the latest administrative instructions. The traditional scenario to implement such
an update is depicted in Figure 1.1 and is described as follows:

• the additional data required by the institution is already digitized in database
DataB, owned and used by another organization InstB;

• the data formats used by InstB and InstA are different because the information
systems used by these institutions were designed separately; DataA and DataB
are quite probably incompatible;

• DataA and DataB might be overlapping, but there is no global knowledge on
what information is available in both data sets;

• under the condition that the owner of the needed data is known, these data
can be exchanged by means of communication devices such as telephone, fax
or e-mail.

In such a situation InstA might decide to conduct its own data acquisition in-
dependently from InstB, or request available data from InstB. In both cases, the
acquired data should be (re)modeled and merged with the DataA data set. A data
acquisition procedure organized in such a way repeatedly requires considerable time
and human resources.

On the other hand, these two institutions might have chosen an integrated data
management solution, which is shown in Figure 1.2. This solution is characterized

1

2 CHAPTER 1. INTRODUCTION

@

Road

InstB

DataA

InstA

Physical

DataB

Weather
MapsMaps

Statistics

Means
Exchange

Data

System output

Leisure

Support
DecisionMapsMaps

Geographical
Information System

System output

Geographical
Information System

Figure 1.1: State of affairs.

by the existence of a common view over the data in DataA and DataB. Under this
assumption, the participating institutions can obtain the following advantages:

• the integrated data set, let us call it DataAB, is available to both institutions
via an adopted common data model. This makes data sharing much easier.
InstB can benefit from the information collected by InstB and vice versa;

• the process of building DataAB includes a process of data cleaning by compar-
ison, aimed at removing errors and improving the quality of the data sets. The
process of data cleaning can be seen as a preliminary step or as a by-product
in the move towards creating an ontology for the involved institutions;

• the integration process also includes a conceptual schema design phase. A con-
ceptual schema conveys the user understanding of the universe of discourse of
the application. This conceptual representation is an important achievement
in itself as it holds the semantics of the data and is invariant to system imple-
mentation. The common conceptual schema (usually denoted as the federated
schema) offers a global and complete view of the participating data sets;

• the initial systems and data sets are preserved for local usage; thus, all the
existing applications remain operational;

• the functionality of the new federated Geographical Information System (GIS)

1.1. GENERAL CONTEXT OF THE STUDY 3

fully includes the functionalities of the former GISs and may be augmented
by additional features;

• allowing Web access to the cleaned and semantically clear DataAB set provides
for more features. For example, an on-line implementation may include a Map-
on-demand feature, in which a user may define a required map type, based on
a variety of information available through the DataAB set, to be generated for
him/her on-line.

Geographical

Weather
MapsMaps

Information System

Statistics

Phisical Maps

Geographical
Information System

Road
Maps Decision

Support

Leisure

System output

System
Federated Geographical Information

Phisical
Maps Maps

Weather Maps
Road
Maps Decision

Support

Leisure

Statistics

System output

Additional User−Requested Features

Seasonal

Maps
Leisure

Seasonal

Maps
Roads’ Condition

Implementation
Independent
Modeling

Data cleaning

Conceptual Modeling

Domain Ontology

Value−Added Features

System output

Natural Risks
Analysis and
Prevention

Figure 1.2: Integrated solution.

Looking at the human dimension, the construction of an integrated data set and
a federated GIS on top of existing systems requires not only designer skills but also
active participation and willingness by the users of the local systems. Nevertheless,
the investment in building integrated data sets is justified by an improvement in
the collaboration between institutions, as they establish a common data set and
vocabulary during the federated conceptual schema design process.

Our vision of a viable way for transparent and meaningful processing of het-
erogeneous spatio-temporal data is to put data semantics at the foundation of the
integration process. In this thesis we present and correlate various means of in-
tegration, showing how they can be organized as components of the mediation
level of an inter-operable system. Because our target domain is the integration

4 CHAPTER 1. INTRODUCTION

of spatio-temporal databases, the integration method we propose relies on the use
of a powerful spatio-temporal conceptual data model. Using as example several
spatio-temporal schemas, the thesis develops an integration methodology based on
semantic inter-schema mappings and multiple integration policies.

1.2 Motivations

At the dawn of the Information System (IS) design era, when the volumes of infor-
mation managed by applications were calculated in megabytes, the modeling of the
semantics (from the Greek semantikos, or ’significant meaning’) of the data was not
a crucial issue. Very often, the conceptual modeling steps were just omitted. This
attitude to the system modeling process was determined by specificities of small-
scale systems design. Due to simple data structures, the content of a data set or a
(relational) database could be understood, for example, from the names of the tables
or the names of the fields. The effort needed for conceptual modeling, and the time
spent in it, were considered inefficient, if not useless, compared to the expected little
time needed to intuitively understand the content of a data set by just examining
the names in the database structure. Another property of systems of that time,
nowadays called legacy Information Systems, was their mostly local usage and a
relatively short life cycle. Information Systems’ users were able to actually consult
the system designer in case of problems or misunderstandings. In other words, there
was a popular feeling that the complexity of the conceptual knowledge could be
managed at the human scale and on an intuitive level.

Nowadays, the issues in Information Systems’ design and exploitation have shifted.
Modern ISs manage terabytes of distributed heterogeneous data, servicing diverse
application domains that include nearly all aspects of everyday life. Computeriza-
tion ranges from book and music private archives to digital descriptions of entire
countries including satellite maps and detailed cadastral plans. Data collection pro-
cess becomes more and more available thus encouraging data owners to share their
data and provide services based on the collected data. Clearly, the boom in infor-
mation flow and exchange mandates that the description of the data content should
now be presented in an expressive semantic form, so that it could be understood by
other humans or computer agents. Due to the diversity and the multitude of data
sources, in many organizations the question of collaborative data usage becomes
crucial. Some examples are the reuse of different statistic data collected by different
hospitals; a system managing driving license holders data across several countries;
or a system that allows for a collaborative administrative data usage concerning the
same land (or country). All these examples assume that there is a way to integrate
the underlying data sets at the instance and schema levels. Given the complexity of
data, caused by the diversification of the services provided by ISs, there is a need
for powerful integration methodologies. Knowing only the name of database tables
and attribute descriptions is no longer enough to convey the semantics of the pop-

1.3. OUTLINE OF THE THESIS 5

ulation of a database. Integration methodologies should be driven by and focused
on the semantics of the data sets, with the semantic description shifted up to the
conceptual level.

In general, the semantics of a database is described by a conceptual model, which
we therefore regard as a core element in integration methodologies. This argument
is even more evident if we consider the domain of geographic applications, where
the data describing given geographic phenomena are collected and used for quite
different purposes by different data owners. Designing an integration methodology
for geo-data requires that an expressive conceptual model be used as the common
data model. This common model should allow representing a variety of features
characterizing geo-data and geo-applications, including those currently managed
by Geographical Information Systems (GIS). Such features include, for example,
space-varying object properties (e.g., the depth of a lake), evolution of geo-objects
in time (e.g., reconstruction of a road network), various relationships enriched with
topological and synchronization semantics (e.g., a school should be located inside
a residential area, and construction of that school should be finished before the
residential area is put into operation).

Such complex relationships and data properties suggest another distinctive prop-
erty of integration methodologies for complex data. An automated process to dis-
cover correspondences between different data sets would require a very sophisticated
and resource consuming heuristics to lead to high precision results. This last obser-
vation again highlights the need for a very expressive conceptual model to provide
for a precise and human-understandable way of expressing data descriptions and
correspondences’ definitions. Notwithstanding, verification and deduction processes
should be used to validate the data description and the correspondences provided
by the designer of an integrated system.

1.3 Outline of the Thesis

We start our thesis by overviewing architectures for inter-operable system in Chap-
ter 2. We position our methodology as adhering to the federated information sys-
tems approach. Accordingly, our integration process results in an integrated schema
that is called a global schema in a federated system. By choosing the federated sys-
tem approach, we also conform to one of the important operational particularities
of ISs: durability. In a federated system, the component legacy applications and
data remain functional, which facilitates the acceptance and transition to the new
system (for the users of the legacy systems). In our methodology we thus do not
consider the data integration level, the methodology is designed for the conceptual
schema level.

We develop in Chapter 3 a flexible integration approach where the integrated
schema designer has several viable ways to construct a final integrated schema. For
different related schema elements we provide the designer with four general policies

6 CHAPTER 1. INTRODUCTION

and with a set of structural solutions or structural patterns within each policy. To
always guarantee an integrated solution, we provide for a preservation policy with
multi-representation structural pattern.

To state the inter-schema mappings, we elaborate in Section 3.4.2 a correspon-
dence language whose syntax is based on the syntax of the common data model.
With the inter-schema mappings, the designer can state correspondences between
related populations, and define the conditions that rule the matching at the in-
stance level. These matching rules can then be used in query rewriting procedures
or to match the instances within the data integration process. We associate a set of
putative structural patterns to each type of population correspondence, providing
a designer with a patterns’ selection for integrated schema construction. The cor-
respondence language has three facets: structural, spatial, and temporal, allowing
to relate the thematic representation as well as the spatial and temporal features.
We provide an algorithm that checks the completeness of the set of inter-schema
mappings.

Employing an expressive common data model, we assume that the schema de-
signer is knowledgeable enough to state the inter-schema mappings manually. But
we cannot assume that the designer states all the mappings, and that they are all
correct. To cope with this issue, we propose in Chapter 4 a validation approach
to ensure validity and completeness of the inter-schema mappings set. Validation
calls for using another data modeling approach that, contrary to conceptual models,
was developed to provide for an inference mechanism. We couple conceptual models
with description logics, employing each approach for the purpose it is best suited
for, i.e., conceptual modeling for semantically rich data description, and description
logic to use its inference mechanisms for validation of manually stated assertions.

Inter-schema mappings cannot be validated autonomously, i.e., they are validated
against the data model and the schemas they link. Thus, to implement our validation
approach, we translate the data model, the source schemas and the inter-schema
mappings into a description logic formalism, cf. Section 5. The added value of the
complete translation (i.e., including the data model and the source schemas) is that
we can validate not only the inter-schema mappings, but also the compliance of the
source schemas to the data model, and infer implicit relationships within them. As
the result of the validation procedure, the schema designer obtains the complete and
valid set of inter-schema mappings and a set of valid (flexible) schematic patterns
to apply to construct an integrated schema that meets application requirements.

In Chapter 6 we describe system modeling issues. We consider two system
modeling approaches, UML and SEAM. We design high level system diagrams, i.e.,
Use Case and Activity in the UML notation, and Business and Operation Organi-
zational Level models in SEAM notation. We compare the two approaches by the
comprehensibility and traceability of system diagrams. Chapter 7 concludes the
thesis and outlines prospective developments for our integration methodology.

Chapter 2

Relevant Research Areas: State of
the Art

There are several domains that are relevant to the design of an integration methodol-
ogy. In this chapter, we first describe the system architectures that were considered
for the choice of the final integrated solution (Section 2.1). Then, we continue with
the discussion on the two most widely used data modeling approaches: conceptual
modeling and modeling with ontologies, where we argue that the two approaches
are complementary to each other (Section 2.2). Different inter-schema mapping ap-
proaches are presented in Section 2.3; we choose the composing data models and
services that best suit what we intend to do in our methodology and then design a
hybrid approach that exploits their strong features. One of the innovative features
of our methodology is the validation support during the integration process. There-
fore, we describe available validation services in Section 2.4. Finally, in Section 2.4.3
we discuss the formalisms we use to represent spatial and temporal data, based on
their suitability for our validation purposes.

2.1 Interoperable System Architectures

Interoperability arises as a problem in heterogeneous systems where different data
resources coexist and there is a need for meaningful information sharing in the sys-
tem. The heterogeneity of the data can be due to semantic, syntactic, and structural
differences of the data sources. One of the demonstrative realms of diversity of data
representation is the spatio-temporal domain. In the spatio-temporal domain the
same objects can be represented (and are represented) from multiple and greatly di-
verse points of view. For example, a building can be represented from four different
points of view as shown in Table 2.1.

Because of the larger diversity of its users and usages, spatio-temporal data het-
erogeneity is usually higher than thematic data heterogeneity. Traditional databases
serve a restricted community of users, still most frequently within a single organiza-
tion. Their users tend to use a common vocabulary and tend to use some common

7

8 CHAPTER 2. STATE OF THE ART

Table 2.1: How a ’building’ object can be represented.

Purpose of representation User
Architectural style and its fitting in the
neighborhood environment

Urban planning ad-
ministration

Robustness of the construction of the
building and the materials it is built of

Rescue crew of the city

Condition of the building and suitability
for living in it

Renovation construc-
tion company

Location and dimensions of the building Cadastral department
of the city administra-
tion

information. This makes semantic matching easier than for geographical databases,
where users of the same database share very little vocabulary and few information
from one application to the other. Thus, establishing correspondences between at-
tribute value domains, for example, is definitely insufficient to solve the semantic
matching issue for geographical data sets. An adequate amount of integration work
has to be done before we can establish correspondences on the attribute domain
level. As illustrated for example in Table 2.1, to propose rules by which it can be
inferred that the two or more different data representations portray the same object
from the real world is a challenge. Such rules, or correspondence assertions, are an
appropriate means to identify common populations, and common spatial, and/or
temporal features of objects from different applications. Derivation of semantically
driven correspondence assertions is feasible if the data model used for the application
domain is sufficiently semantically expressive to convey the knowledge on which the
derivation process relies. This implies that the application data should be remodeled
or pre-integrated at the conceptual level1 in a semantically rich model. Such a model
is called Common Data Model (CDM). A CDM should have a minimal number of
concepts while being sufficient to capture the semantics of the application domain
and tasks to which it is dedicated.

We introduce the research domain of interoperability by presenting a generic
view on interoperable systems and proceeding by refining the scope of possible ar-
chitectures to agent-based and mediator-based systems as these two architectures
are most widely adopted by the research community. In Section 2.1.1 we discuss the
main features that can be accomplished within each architecture and point to the
one that is more suitable for our domain of interest. Within this architecture in Sec-
tion 2.2.1 we define the system components for which we contribute some proposals
of our own.

1as the implementation independent level

2.1. INTEROPERABLE SYSTEM ARCHITECTURES 9

2.1.1 Interoperable System Components

Generally, an interoperable system consists of three main components as shown in
Figure 2.1. At the foundation level there are heterogeneous legacy data sources. The
mediation level supports exchange of queries and results between legacy data sources
and applications. At the application level the interaction with the users is carried
out [GMZB99].

Without the ’Value-Added Services’ layer, the structure presented would be an
ordinary information system architecture designed for a particular group of users
operating a specific set of data sources. Nowadays, modern information systems in-
creasingly address information and knowledge acquisition issues over heterogeneous
data sources [GEFK99, She99], and traditional simple architectures are no longer an
answer for an information system architecture. An information system with an inter-
mediate level between ’USERS’ and ’SOURCES’ levels is called mediated. The media-
tion level provides the users with services based on the data previously collected and
operated for other purposes, and within other information systems, entitling such
systems to be defined as interoperable. In the literature many different implementa-
tions of the mediation level can be found [QL94, AOTT98, BBB+98, CR99, AM99].
The components emerging from these implementations are the following:

• application ontology - a structure containing concepts and their hierarchy for
the application domain;

• agents - intelligent components that can serve different purposes in the sys-
tem, for instance, locating appropriate data sources in a distributed system,
matching user requests with the services available;

• translators - components that translate user queries into queries to a CDM;

• wrappers - components that translate the heterogeneous source data into data
manageable via a CDM;

• integrators - components that perform integration of heterogeneous data sources
based for example on an ontology, or a CDM;

• mediator - a complex component that provides the application level with trans-
parent access and processing over a set of heterogeneous source data.

The mediation level can incorporate a set of different components. The choice of
these components and functionality at the mediation level is driven by the intended
objective of the system. In the sequel we will present two system architectures that
support very different functionality: mediator-based [AOTT98] and agent-based
[FPNB99] systems.

10 CHAPTER 2. STATE OF THE ART

Value−Added Services

USERS

Mediation Level

Foundation Level

Application Level

SOURCES

Figure 2.1: Generic Structure of an Interoperable System.

2.1.2 Mediator-based systems

In a mediator-based system it is assumed that there is a component to which all the
user’s queries are addressed, where these queries are processed, and where the results
of these queries are sent back to users. This component plays the mediation role
between the users and data sources and maintains the global vision of the system
[Wie92]. The mediator-based system that we have chosen as illustrative example is
presented in [AOTT98].

Figure 2.2 shows a simplified architecture of the system. As the basis for data
integration, a CDM was used. The authors have chosen the object-oriented data
model whose capabilities in modeling semantics and relationships were suitable for
the application area.

Database GIS

User 2 User NUser 1

Mediator

Ontology

Wrapper

Gateway

Schema integrator

Data
dictionary

UI, tools

Semi−
structured
data

Front−end interface

Figure 2.2: Mediator-based approach.

The local schemas of component databases are translated into the CDM and are
enriched semantically if necessary. The federated schema is a schema constructed in

2.1. INTEROPERABLE SYSTEM ARCHITECTURES 11

CDM based on the user specifications on the subset of data of interest to them. Thus,
the users view the system as a single database containing the data they requested.
User queries are directed to the mediator component of the system where the queries
are decomposed and then translated to the local schema query languages. Although
the technique described in the paper suits the application requirements, the authors
do not address issues such as semantic conflicts resolution and integrity constraints
management. In addition, a disadvantage of the system is that the component
databases are not operable locally and that the data sources updates are done as
well globally. Presenting the system capabilities the authors mention that:

. . . the schema integrator provides facilities for integrating the schema
exported from the component databases into the federated schema. It
needs to generate mapping between the exported and federated schemas
and must have a reasonable capability for detecting conflicts between
data. . .

However, no real example of the schema integrator functionality is given in the paper.
The authors propose the use of a mapping table2 for matching object representations.

2.1.3 Agent-based systems

As an example of an agent-based architecture we consider the InfoSleuth system
presented in [FPNB99]. InfoSleuth is a distributed system where the data sources
and the users reside on different sites and are connected by sets of different agents.
System agents communicate on the basis of a system ontology, which is the only
global component of an agent based system. Ontology is a specification of how to
represent the objects, concepts and other entities that are assumed to exist in some
domain of interest and the relationships that hold among them [dic]. The InfoSleuth
ontology does not represent a global structural vision of the system data sources but
only the set of terms the system is aware of.

In an agent system three main agent types can be pointed out [FPNB99]:

• User agent - maintains the user state and provides the system interface that
enables the user to communicate with the system independently of the user
location.

• Resource agents - translate queries and data stored in some external data
repository between their local forms and their representation (data model) in
the system.

• Broker agents - match requests for services from user agents with resource
agents that can provide them.

2which can be seen as a simplified ontology

12 CHAPTER 2. STATE OF THE ART

User
Agent

User
Agent

User
Agent

Agent

Agent
Resource

Agent
Resource

ontology

Resource

Broker
matchmaking
process

query

query

result

result

result

query advertises

advertises

advertis
esuser agent

user agent

user agent

resource

resource

resource resource

Broker
Agent

Value
mapping

Agent

Agent
Ontology

Agent

Agent
Broker

Agent
Broker

Agent
Broker

Broker

Figure 2.3: Agent-based approach.

• Resource,Ontology, and Value Mapping agents - are the means of interoper-
ability of the system.

All the types of heterogeneity, i.e., structural, syntactic and semantic, are solved
by resource agents and value mapping agents in InfoSleuth based on the developed
ontology. The value mapping agents map query terms to and from the common
value domain which is defined by the system ontology. The common value domain
reduces heterogeneity only in terms of allowed attribute values but not in terms of
data representation. Users query and view data in whichever value domain they
prefer, and their user agents perform the value mapping necessary to communicate
with other agents in the common value domain. To perform a value mapping a user
agent contacts a value mapping agent. Thus, all the operations related to data inter-
operability are done through consultation with the ontology of the system. Referring
to Figure 2.3, it can be seen, that the functionality of the user and value mapping
agents is similar to that of the query translator. On the other hand, a resemblance
can be found in wrapper’s in Figure 2.2 and the resource agent functionalities.

The partial knowledge of the available data and its location is maintained by
broker agents. The information stored by broker agents is partitioned in a way that
the whole set of broker agents ’knows’ about all the data available in the system3.
The system ontology stores the hierarchy of the data the system is aware of. When
the user queries the system, it is the broker agent(s) functionality that determines
whether the data requested can be found in the system data sources. The user does
not have a global view of the system data and does not know whether his/her request
can be met. The partition of the knowledge and communication between the broker

3Depending on the system design redundancy may be allowed or even required.

2.1. INTEROPERABLE SYSTEM ARCHITECTURES 13

agents ensures that the user agents and the resource agents are fully connected, e.g.,
any user can potentially reach any resource.

As it follows from the system description the users are assumed to pose SELECT-
type queries. This system does not allow UPDATE-type queries. The broker agents
are oriented towards locating requested data, matching the semantic and syntactic
information of the user agent and a data source. Done automatically, the matchmak-
ing process restricts the amount of semantic information that agents can operate.
The last observation together with the absence of a global vision of the system limits
the application area of agent-based systems.

2.1.4 Summary

Comparing the approaches presented above, we bear in mind the following charac-
teristics of an intended interoperable system:

• at the foundation level there are heterogeneous spatio-temporal data sources;

• at the application level there are users with their vision of the universe of
discourse;

• users expect transparent operations on geo-data stored in different formats,
with different resolutions, and for different purposes.

Let us first briefly summarize the pivotal characteristics of the two approaches to
make our reasoning about their applicability to spatio-temporal domain more clear.

• Agent-based

– the system ontology is the only global component in the system,

– the users do not have a global view of the system,

– updates are allowed on the local level and may not reflect the system
ontology.

• Mediator-based

– a mediator stores the schemas of component databases and the relation-
ships between them or a federated schema of the system depending on
the implementation,

– users have a schematic partial or global view of the system,

– updates are theoretically allowed from both the global and local levels,
but with no clear methodology for update propagation, the global con-
sistency of the system is an open question.

• Desired interoperable system characteristics

14 CHAPTER 2. STATE OF THE ART

– a global schema is constructed based on semantic and syntactic informa-
tion, conflicts are resolved at the global level;

– consistency of the data is ensured during the integration process;

– updates are allowed from the global level as well as from the local level,
consistency of the component databases is ensured by an update propa-
gation mechanism.

The agent-based system is hardly a viable way to accomplish such a task. Agents
are more oriented towards determining the location of data sources in a distributed
system: the data sources available are heterogeneous in the sense that different ob-
jects are stored in different locations. Whereas, dealing with the spatio-temporal
data it is also likely that the same phenomena would be presented in different ways.
Consequently, to establish a relation between different objects, a semantically based
methodology should be employed which requires semantically rich integration plat-
form. Semantic information carried by agents in the InfoSleuth system is not suffi-
cient for integration of spatio-temporal objects.

Moreover, in the spatio-temporal domain the global vision of the data and data
structure are indispensable properties of the system. An attempt to augment the
broker agents with more semantic information would lead to an increase in the sys-
tem response time and therefore to a decline in the system performance. Another
feature of the agent-based system architecture is that the matching process is auto-
matic, which is potentially incompatible with spatio-temporal integration process.
This advantageous feature of the agent-based architecture is not yet applicable to
the spatio-temporal domain. To the best of our knowledge, there is no methodology
which would support an automatic matching process for spatio-temporal objects
modeled within different applications.

More features that can be adopted in the spatio-temporal domain are borne by
the mediator-based approach. The example given in Table 2.1 suggests that for
integration purposes the data sources should be implemented or translated (on the
conceptual or physical level) into a model which allows to express diverse semantic
aspects of the data objects. In addition there should be an expressive language
which allows to define interrelations of spatio-temporal object types. In Section 3.4
we present our integration methodology in more detail.

One of the common system components in Figure 2.2 and Figure 2.3 is the system
ontology. The notion of ontology in not unambiguously perceived by the database
community, whereas ontology plays a key role and for particular implementations is
the only mean of integration of the system data sources. In the following section we
present a notion of ontology and conceptual models as the next level of abstraction
of an application area.

2.2. ONTOLOGIES AND CONCEPTUAL MODELS 15

2.2 Ontologies and Conceptual Models

Guarino [Gua98] distinguishes several levels of ontology, as shown in Figure 2.4.
The top-level ontology is a representation of the ’truth’, i.e., the representation of
the real world however, no specific use is implied in it. The top-level ontology is
the most generic type of ontology where concepts like space, time, matter, object
are presented. The taxonomy of top-level ontologies is the simplest one from the
structural point of view, as the only relation that is used for top-level ontologies
is subsumption. Thus, a top-level ontology has a non-cyclic tree structure without
multiple inheritance. An example of such ontology can be found in [GW00b].

APPLICATION ONTOLOGY

 DOMAIN ONTOLOGY TASK ONTOLOGY

TOP−LEVEL ONTOLOGY

Figure 2.4: Kinds of ontology from [Gua98].

The reasoning behind constructing a top-level ontology lies in the four meta-
properties borne by the things of the real world. These meta-properties are: rigidity,
identity, unity, and dependence, as described in detail in [Gua98] and [GW00a]. In
brief, identity is related to the problem of distinguishing a specific instance of a
certain class from other instances by means of a characteristic property, which is
unique for it. A rigid property is a property that inherently always holds for all the
instances of a class. For example, assume two classes PERSON and STUDENT.
From the point of view of rigidity, PERSON is rigid - all the instances of this
class are of PERSON type, on the other hand, STUDENT is not rigid - the same
individual can be STUDENT in one context, and non-STUDENT in another. From
the previous example we can conclude that rigid classes supply the identity, and non-
rigid ones just carry an identity. Unity is related to the problem of distinguishing the
parts of an instance from the rest of the world by means of a unifying relation that
binds them together. An example identity query would be ’What is this country?’
and a unity query would be ’Does this canton belong to this country?’. If existence
of an instance of a class implies a necessary existence of an instance in another class,
then the former possesses the dependence meta-property. An example would be a
CANTON class that implies existence of a COUNTRY class. Ascription of those
properties to classes imposes certain constraints on the positional relationship of
these classes in the top-level ontology. For example, one of the imposed structural
constraints is that a dependent class cannot subsume the class it depends on. The
role of the top-level ontology is to formalize the real world in a widely sharable,

16 CHAPTER 2. STATE OF THE ART

multidisciplinary way to be used further as the pattern for different domain and
task ontologies. For the spatio-temporal domain, the top-level ontology is one of the
subjects of research and agreement of the Open Geodata Consortium [OGI].

When an ontology contains some domain specific concepts or concepts related
to general features of an application we step down the ontology hierarchy. Such an
ontology is a subjective, refined representation of the same concepts as in the top-
level ontology. Domain and task ontologies already can be used in the integration
process.

2.2.1 Ontologies vs Conceptual Schemas

Domain and task ontologies contain the classes that are further used in the concep-
tual schemas. When we start to model the roles of the domain ontology classes and
methods associated to them, we are at the level of application ontology, the most
specific and application dependent type of ontology. The main thread through-
passing the structure shown in Figure 2.4, is that domain, task, and application
ontologies are structurally compliant with the top-level ontology.

The objective of conceptual modeling is to represent application data together
with the rules of the application domain. In other words, conceptual models allow
to represent the user understanding of the universe of discourse. The task of de-
signing a modern information system becomes more complex with the progress of
information technology and with the users becoming more demanding for the func-
tionality of the information systems. In such circumstances conceptual modeling
gains in importance, as it is the starting point for understanding of the user needs.
The most important properties that a conceptual model should have are: abstrac-
tion, non-ambiguity, ease of understanding and verification, and implementation
independence [JM00]. The last property implies that a conceptual model should be
expressive enough so that the same conceptual schema would be valid even when
software paradigms were upgraded or replaced. Conceptual schemas, being the rep-
resentation of the user perception of the application domain, constitute a good basis
for integration of heterogeneous domain sources in an interoperable system.

An ontology is the representation of real world without bearing in mind any appli-
cation of this representation; conceptual schemas are implementation independent
representations of the application area, containing users vision of the application
domain. The link between an ontology and a conceptual schema is that the con-
ceptual schema of an application domain should be structurally compliant with the
ontology for the same domain. Nevertheless, in our research we base our approach
only on domain ontologies and conceptual schemas without making any reference
to a top-level ontology as we are not aware of the existence of an approved top-
level spatio-temporal ontology. In the following section we discuss the choice of the
spatio-temporal common data model.

In our integration methodology, presented in Section 3.4, we chose a conceptual
representation as the starting point for matching heterogeneous data sources. The

2.2. ONTOLOGIES AND CONCEPTUAL MODELS 17

choice of an appropriate conceptual model depends on the completeness of represen-
tation allowed by it, its formal semantics and its simplicity of use and interpretation.

2.2.2 The MADS Conceptual Model as a Common Data
Model

Applications manipulating geo-data are difficult to model due to the particularity
and complexity of the spatial and temporal components. More facets of real-world
entities have to be considered, e.g., location, form, size, time validity; more links are
relevant, e.g., spatial, temporal links; several spatial abstraction levels often need
to be represented. Thus, modeling spatio-temporal databases requires advanced
facilities [SPV00], such as the following.

• Objects with complex structure (e.g., composition/aggregation links, general-
ization links), at least equivalent to those supported by current object-oriented
models. This should achieve full representational power in terms of data struc-
tures;

• Alternative geometry features to support both discrete and continuous views
of space, representations at different scale/precision, multiple viewpoints from
different users;

• Spatial objects with one or several geometries associated to different resolu-
tions or user points of views;

• Temporal objects with complex life cycles that allow users to create, suspend,
reactivate, and eventually delete objects;

• Timestamped attributes that record their past, present, and future values;

• Spatio-temporal concepts for describing moving and deforming objects;

• Explicit relationships to describe structural links as well as spatial links (such
as adjacency, inclusion, spatial aggregation) and synchronization links (such
as before, during). The knowledge of the topological links between real-world
entities is an essential requirement for applications.

• Causal relationships describing the causes and effects of changes that happen
in the real world.

The model must also allow defining schemas that are readable and easy to under-
stand. A key element for achieving this double objective is the orthogonality of the
structural, temporal, and spatial dimensions of the model (and more generally of
the concepts of the model). Thus, whatever the concept of the model, e.g., object,
relationship, attribute, aggregation, the spatial and temporal dimensions may be
associated to it.

18 CHAPTER 2. STATE OF THE ART

In our research we use the MADS conceptual data model [PSZ99, PSZ06] as the
common data model (CDM). MADS stands for Modeling of Application Data with
Spatio-temporal features. In [PSZ99], the authors analyze different spatio-temporal
data models along the axes of expressiveness, simplicity and comprehensiveness, for-
malism, and user friendliness, making the conclusion that none of the existing models
satisfied all the requested criteria. MADS includes a set of predefined spatial and
temporal Data Types (DTs) that are used for describing the spatial and temporal
extents of the spatio-temporal elements of schemas. Spatiality and temporality may
be associated to object and relationship types, aggregation links, and attributes.
The fact that MADS structural, spatial, and temporal domains are orthogonal en-
tails that spatial and temporal features can be freely added to any schema designed
in MADS.

2.3 Inter-Schema Mappings

Information sharing between heterogeneous information sources is a great challenge
which has been the focus of various works but still remains an open problem. The
earliest investigations addressed database schemas integration, i.e., merging a set of
given schemas into a single global schema ([BLN86, EP90, SL90, PS98]). This prob-
lem has been studied since the early 1980s. It arises in building a database system
that comprises several distinct databases and in designing the schema of a database
from the local schemas supplied by several user groups. The integration process re-
quires establishing semantic correspondences between the component schemas and
then using the matches to merge schema elements.

Enabling the cooperation of heterogeneous information systems is not easy to
achieve because related knowledge is most likely described in different terms and
using different assumptions and different data structures. Heterogeneity may arise
from syntactic, structural and semantic differences in the data sources. Syntactic
heterogeneity may come from the use of diverse database models (e.g. object ori-
ented vs. relational), structural heterogeneity arises from different conceptual choices
during the database modeling phase (e.g., modeling something as an object, as a
relationship, or as an attribute), and semantic heterogeneity deals with differences
between the terms used to represent information and their intended meaning. Het-
erogeneity is even higher for spatio-temporal data, due to the existence of two very
different paradigms for data representation, known as the raster mode (space is
represented through images) and the vector mode (space is represented as sets of
localized objects). Moreover, spatio-temporal data may be represented using differ-
ent granularities or levels of detail for the spatial and/or temporal features. Also,
for geographical data, we have to consider topological relationships between objects,
temporal evolution and synchronization relationships.

Irrespectively of the system architecture, being able to recognize corresponding
information in heterogeneous data sets and to describe the mappings in between is

2.3. INTER-SCHEMA MAPPINGS 19

a fundamental task to enable the cooperation. A large number of papers have inves-
tigated various facets of mappings, such as mapping discovery, mapping definition
or mappings usage.

2.3.1 Mapping discovery.

Works on mapping discovery aim at providing heuristics to find corresponding el-
ements in different information systems. Such works basically rely on similarity
measures. This topic is particularly important when considering cooperation be-
tween ontologies where automatic discovery of mappings is crucial due to the huge
number of concepts. M. Ehrig and Y. Sure [ES04] propose a methodology combin-
ing different similarity measures for identifying mappings between two ontologies.
A. Doan et al [DMDH04, DMDH02] propose a system, GLUE, that apply machine
learning techniques to improve the mapping discovering process. However, com-
plex mappings have proven difficult to extract and the mapping discovery procedure
certainly requires human feedback. R. Dhamankar [DLD+04] presents a promising
system, iMAP, for the discovery of complex mappings between database schemas.
However, mapping discovery between heterogeneous schemas describing spatial data
still remains an open issue.

2.3.2 Inter-schema correspondences.

Complementary to those approaches, other research works [CL93, CdGL+98, CdGL01,
DPS98] do not consider the mapping discovery phase and focus on formalisms to
specify and use inter-schema knowledge. From a conceptual perspective, inter-
schema knowledge identifies elements (or sets of elements) in two schemas that to
some extent, describe the same (or related) facts in the real world, and specifies to
what extent the data instances and their type definitions relate to each other (i.e.,
what is identical, what is similar, what is different). This inter-schema knowledge
can then be used to build the integrated schema and to provide for an integrated
access to the data sources. The four works presented below follow this objective us-
ing different languages. A formalism relying on a logic-based language is proposed
by T. Catarci and M. Lenzerini in [CL93]. The language they propose is used to de-
scribe both schemas and inter-schema knowledge. The reasoning mechanism of the
language can then be used to check inter-schema consistency (i.e., the correctness
of the cooperative information system) and to support integrated access to data.
D. Calvanese et al. [CdGL+98] present an architecture for information integration.
A Description Logic called DLR which includes concepts and n-ary relationships is
used to describe the database schemas, to specify the inter-schema knowledge and
reasoning services that are used during the integration process. The same language,
DLR, is proposed by D. Calvanese et al. in [CdGL01] to define mappings in a
general framework for ontology integration. These mappings allow the mapping of
a concept in one ontology to a view, i.e., a query in another ontology. Finally, T.

20 CHAPTER 2. STATE OF THE ART

Devogele et al. [DPS98] propose a complete methodology for spatial database inte-
gration based on three phases: schemas preparation, correspondences investigation,
and integration. The authors also provide an algebraic data manipulation language
(algebra for complex objects) to describe inter-schema correspondences that fully
supports the description of correspondences between the spatial features of data.

2.3.3 Querying.

Once mappings are formally defined, one should be able to use them for query an-
swering and reasoning [MBDH02]. D. Calvanese et al. [CdGL01] discuss various
approaches for specifying mappings (global- and local-centric approaches) and, for
each approach, analyze the complexity of query answering. The authors conclude
that mappings should be defined using suitable mechanisms based on query lan-
guages. In [HIMT03], A. Halevy et al. express mappings between data sources on
a pairwise basis and define inclusion and equivalence relationships between views of
each schema. An algorithm enabling queries to go through mappings in order to find
data is also proposed. The article ”Data Integration: A Logic-Based Perspective” by
Diego Calvanese and Giuseppe De Giacomo [CG05] discusses semantic-integration
issues in this context, using description logics. It describes an integration architec-
ture where there is a global ontology that contains the information common to the
ontologies that need to be integrated. The authors use the power of description
logics to answer queries posed in terms of the global ontology with data from local
ontologies. They propose a new subset of description logics called DL-Lite, which
retains a useful subset of primitives but yields good complexity characteristics.

2.3.4 Semantic enrichment.

In order to reconcile semantic heterogeneity, more semantic information about data
is needed. Various proposed approaches add extra information to data either through
the specification of meta-data, or through the explanation of the context of data
or, more generally, by using descriptions stored in ontologies. Meta-data describe
the content of the underlying data in an easily understandable way. Contexts are
more complex descriptions specifying the domain of the source data. Ontologies,
by definition, provide an encoded representation of a shared understanding of terms
and concepts in a given domain and community. They serve as semantic references
for users or applications that accept to align their interpretations of the semantics
of their data to the interpretation stored in the ontology. Ontologies are actually
extensively proposed as a means to overcome interoperability problems [WVV+01].
This is the focus of the work of F. Fonseca et al. in [FDC03]. In their framework,
conceptual schemas of geographical databases are mapped to spatial ontologies that
are considered as the formal representation of the spatial semantics. The objective
in describing such mappings is to enrich the conceptual schema descriptions and
thus, to improve the integration of database conceptual schemas.

2.3. VALIDATION APPROACH 21

F. Hakimpour and A. Geppert in [HG02] propose a database integration ap-
proach that employs formal ontologies merging. Source ontologies (one per database
source) are merged by a reasoning system that finds semantic similarity relations
between the various definitions used for each concept. An Ontology-based Schema
Integrator builds the global schema of the integrated database using the source
schemas and the mappings found during the ontology merging process.

F. Fonseca et al. in [FEAC02] propose an Ontology-Driven GIS system which
plays the role of a system integrator. The idea is to provide access to data by brows-
ing through ontologies. The architecture is based on four main components namely
the ontology server, the ontologies, mediators and applications that give access to
the information sources. The ontology server is the central component providing
the connection between the ontologies, the applications and the information sources.
The integration is partly realized by the mediators: when the information system is
queried, the mediators extract parts of information necessary to generate a complete
instance from the ontologies and the information sources.

Our methodology focuses on the cooperation of spatio-temporal databases. In
this respect, our objective is to propose a complete methodology for the integration
of spatio-temporal conceptual schemas. Our approach relies on two well-known for-
malisms: conceptual models and description logics. Spatio-temporal conceptual
schemas to be integrated are specified using the MADS conceptual data model
[Mur02] which has rich spatio-temporal semantics. Reasoning services of descrip-
tion logics are then used to check the consistency of the mappings that guide the
construction of the integrated schema. Compared to the papers presented above,
our proposal falls within the scope of approaches that aim at defining a formalism
or methodology to specify and use inter-schema knowledge. We do not tackle the
issue of mapping discovery as we assume that a set of inter-schema correspondences
given by the designer is completed by an inference engine, nor do we consider the
subject of query rewriting which is out of the scope of this thesis.

2.4 Validation Approach in Integration Procedures

Once we know correspondences between two sources, we want represent them in a
machine-processable way and validate them. Researchers have developed a number
of ways to represent mappings declaratively. Some examples include representing
mappings as instances in an ontology of mappings, defining bridging axioms in first-
order logic to represent transformations, and using views to describe mappings from
a global ontology to local ontologies. As we stated earlier, we adhere to a hybrid
approach where we exploit two data modeling formalisms: conceptual modeling
and modeling with description logic, the latter being used for its formal reasoning
support.

22 CHAPTER 2. STATE OF THE ART

2.4.1 Reasoning in Description Logic

Description logics (DL) are a family of knowledge representation languages which
can be used to represent the terminological knowledge of an application domain
in a structured and formally well understood way. The name description logic
refers, on the one hand, to concept descriptions used to describe a domain and,
on the other hand, to the logic-based semantics which can be given by a translation
into first-order predicate logic. Description logic was designed as an extension to
frames and semantic networks, which were not equipped with a formal logic-based
semantics. Description logic was given its current name in the 1980s. Previous to
this it was called (chronologically): terminological systems, and concept languages.
Today description logic has become a cornerstone of the Semantic Web for its use in
the design of ontologies. The first DL-based system was KL-ONE, by Brachman and
Schmolze [BS85]. Some other DL systems came later, such as BACK [Pel91], KRIS
[BH91], CLASSIC [BBMHR91], LOOM [Mac94], FaCT [Hor98] and lately RACER
[RAC] and KAON2 [Sem05].

The basic inference on concept expressions in Description Logics is subsumption,
typically written as C v D. Determining subsumption is the problem of check-
ing whether the concept denoted by D (the subsumer) is considered more general
than the one denoted by C (the subsumee). In other words, subsumption checks
whether the first concept always denotes a subset of the set denoted by the sec-
ond one. For example, one might be interested in knowing whether Old Building v
Tourist Attraction. This kind of the relationship is verified based on the relationships
defined in the terminology. Another typical inference on concept expressions is con-
cept satisfiability, which is the problem of checking whether a concept expression
does not necessarily denote the empty concept. In fact, concept satisfiability is a
special case of subsumption, with the subsumer being the empty concept, meaning
that a concept is not satisfiable.

In DLs, a distinction is drawn between the TBox (terminological box) and the
ABox (assertional box). In general, the TBox contains sentences describing concept
hierarchies (i.e., relationships between concepts) while the ABox contains ground
sentences stating where in the hierarchy individuals belong (i.e., relationships be-
tween individuals and concepts). For example, the statement ”(1) Every employee
is a person” belongs in the TBox; while the statement ”(2) Bob is an employee”
belongs in the ABox. Note that logically, the TBox/ABox distinction is of no sig-
nificance in the sense that in first-order logic (which subsumes most DLs), the two
”kinds” of sentences are not treated differently. When translated into first-order
logic, a subsumption axiom like (1) is simply a conditional restricted to unary pred-
icates (concepts) with only variables appearing in it, a sentence of this form is not
privileged or special over sentences in which only constants (”grounded” values)
appear like (2).

The primary reason for the distinct representation of the ABox and TBox is that
the separation can be useful when describing and formulating decision procedures for

2.4. VALIDATION APPROACH 23

various DLs. For example, a reasoner might process the TBox and ABox separately,
in part because certain key inference problems are tied to one but not the other,
e.g., classification is related to the TBox, instance checking to the ABox. Another
example is that the complexity of the TBox can greatly affect the performance of
a given decision procedure for a certain DL, independently of the ABox, and thus
having a way to talk about that specific part of the knowledge base is useful. The
secondary reason is that the distinction can make sense from the knowledge base
modeler’s perspective. It is plausible to distinguish between the terms/concepts in
the real world, i.e., class axioms in the TBox, and particular manifestations of those
terms/concepts, i.e., instance assertions in the ABox.

2.4.2 Description Logics

The basic elements in a description logic are primitive concepts, primitive roles, the
universal concept > and the bottom concept ⊥. A concept is an unary predicate
ranging over the domain of individuals. The meaning of a concept is the set of
individuals. Complex concepts and roles can be built from primitive ones using
available description logic constructors. The terminology defines relevant concepts
of the domain and their properties. Then individuals occurring in the domain are
described using this terminology [BCM+03].

ALC is a minimal Description Logic including full negation and disjunction, i.e.,
it is propositionally closed. Basic description logic constructors or syntax, as found in
ALC [BH91] are: ¬C (negation), C uD (conjunction), ∀R.C (value restriction) and
∃R.> (limited existential quantification) where C and D are concepts and R is a role.
In order to define the semantics of the ALC concepts we consider the interpretations
I that consist of a non-empty set ∆I (the domain of the interpretation) and an
interpretation function, which assigns to every concept C a set CI ⊆ ∆I and to
every atomic role R a binary relation RI ⊆ ∆I ×∆I . The interpretation function is
extended to concept descriptions by the following inductive definitions:

>I = ∆I

⊥I = ∅
(¬CI) = ∆I \ CI

(C u D)I = CI ∩ DI

(∃R.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ RI ∧ y ∈ CI}
(∀R.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ RI → y ∈ CI}

The ALCR+ [Sat96], also referred as S description logic is an extension of ALC
with transitive roles. Likewise, the other letters are used for various features of
description logics ([BCM+03], pp.494-495). The letter H adds role hierarchies, and
the letter I adds inverse roles. ALCF extends ALC with functions. Unqualified
number restrictions and nominals are added by N and O. The former allows stating
that any individual is related to at most (or at least) n individuals by a given role.

24 CHAPTER 2. STATE OF THE ART

This way, the functionality of relations can be specified. Nominals allow for explic-
itly enumerating the members of a concept. The description logic SHIQ [HST00]
corresponds to the ALCQHIR+ logic that extends ALCR+ with inverse roles, role
hierarchies and qualified number restrictions (≥ n R.C and ≤ n R.C). Qualified
number restrictions play an important role for representing and for reasoning about
conceptual models because they add the ability to model cardinalities of relation-
ships [BCdG01]. The semantics of the above mentioned extensions are as follows:

qualified number restrictions
(∃≥nR.C)I =

{
x ∈ ∆I |] | {y | (x, y) ∈ RI ∧ y ∈ CI} |≥ n

}
(∃≤nR.C)I =

{
x ∈ ∆I |] | {y | (x, y) ∈ RI ∧ y ∈ CI} |≤ n

}
inverse roles

(R−)I = {(x, y) ∈ ∆I ×∆I | (y, x) ∈ RI}
role transitivity axiom

(R+)I =
⋃

i≥1(R
I)i

roles hierarchy axiom
(R v S)I= RI ⊆ SI

Description logics described above are capable to represent only binary roles,
whereas in many real world situations, a role is required to link several concepts.
An extension to the description logics with n− ary roles is proposed in [CdGL97].
The description logic DLR is a proper generalization of the ALCQI description
logic. The basic technique used in DLR, is reification which allows the reduction of
the logical implications in DLR to logical implications in ALCQI [BCM+03].

Another type of the DL extension which is relevant to our work is the ability
to deal with complex or composed roles such an extension is described in [HLM99],
and concrete domains. Extending descriptions logics with concrete domains is a
way to introduce new data types such as integer or rational, or to deal with specific
dimensions of objects such as spatial or temporal features. Datatypes are added
by the suffix (D). The ALC(D) [BH91] description logic extends the ALC DL by
concrete domains and predicates on these domains. Some examples of the concrete
domains are the integers, the reals, sets of temporal intervals, or sets of spatial
regions; predicates include equality, temporal overlapping, and spatial disjointness.
Formally, a concrete domain consists of a set such as the natural numbers, and a set
of predicates such as binary ”<” and the ternary ”+”. The definition of a concrete
domain given in [BH91] is as follows:

definition 1 A concrete domain D is a pair (∆D, ΦD), where ∆D is a set and ΦD
is a set of predicate names. Each predicate name P ∈ ΦD is associated with an arity
n and n-ary predicate PD ⊆ ∆n

D.

To illustrate definition 1, let us present the definition of the numerical domain Q
(from [Lut03]). The set ∆Q is the rational numbers Q; the set of predicates ΦQ is:

- unary predicates PQ for each P ∈ {<,≤, =, 6=,≥, >} and each q ∈ Q with
(Pq)

Q = {q′ ∈ Q | q′ P q};

2.4. VALIDATION APPROACH 25

- binary comparison predicates <,≤, =, 6=,≥ and >;

- ternary predicates + and ∓ with (+)Q = {(q, q′, q′′) ∈ Q3 | q + q′ = q′′} and
(∓)Q = Q3 \ (+)Q;

- a unary predicate >Q with (>Q)Q = Q and a unary predicate ⊥Q with
(⊥Q)Q = ∅.

An approach to extend concept languages (preceding name for description logics)
with concrete domains was proposed in [BH91]. The main properties of such an
extension of a concept language as stated in [BH91] are:

• the extension should have a formal declarative semantics which is as close as
possible to the usual semantics employed for concept languages;

• it should be possible to combine the existing inference algorithms for concept
languages with well-known reasoning algorithms in the concrete domain in
order to get the appropriate algorithms for the extension;

• the approach should provide for extending concept languages by various con-
crete domains rather than constructing a single ad hoc extension for a specific
concrete domain. The formal semantics as well as the combination of the
algorithms should already be treated on this schema level.

In [BH91], authors describe the combination of the ALC language with concrete
domains. One of the concrete domains discussed in the paper is based on the Allen’s
interval calculus [AKPT91] as concrete domain AL. The ∆AL consists of intervals,
and the ΦAL is built from Allen’s basic interval relations with the help of logical
connections.

Description logic ALCRP(D) specifically developed for reasoning about qual-
itative relations, and topological relations in particular, is described in [HLM99].
Description logic ALCRP(D) extends ALC(D) by introducing defined roles that are
based on the role-forming predicate operator over concrete roles (for details refer to
Section 4.1). The paper proposes restrictedness criterion for the ALCRP(D) logic
to guarantee its decidability. To demonstrate the expressiveness of the ALCRP(D)
logic it is applied to the modeling of the spatial domain with the S2 concrete do-
main. The ∆S2 consists of regions and the ΦS2 contains the RCC-8 relationships
between regions as defined in [RCC92]. The authors as well sketched the definition
of a temporal concrete domain based on Allen’s Interval Algebra. The idea of using
the same language and to extend it to cope with different aspects of modeled objects
by means of concrete domains, is similar to the notion of dimensions in the MADS
model that was introduced in Section 2.2.2. In MADS, if an object type is declared
to have a temporal extent, than a set of predefined synchronization relationships
that this object type can participate in, is associated to it. As noted in [AL04],
the paradigm underlying the presentation of temporal conceptual knowledge in a

26 CHAPTER 2. STATE OF THE ART

description logic with temporal concrete domain, is quite different form a ’classical’
temporal DL representation, like the T L-ALCF description logic, [AF98]. The lat-
ter is better suited to model objects whose properties vary over time; whereas in the
former approach, objects are associated with a fixed temporal extent that can be
understood as their lifespan during which, all of their properties remain constant.
If we now consider qualitative spatial logics, we find that the recent research adopts
the principles of the Spatial Logic based on Regions and Connections proposed in
[RCC92]. The logic proposed by Randell, Cui, and Cohn in [RCC92], is defined
for regions as its atomic arguments, and a set of connections now known as RCC-8
relationships. Essentially, what is defined in the [RCC92] is now referred as the
spatial concrete domain. We present in more detail the two domains, spatial and
temporal, in the following section.

2.4.3 Description Logics with Concrete Domains.

Spatial domain.

The spatial concrete domain in description logics is based on the Randell’s Re-
gion Connection Calculus RCC [RCC92]. The RCC is an interval logics for reason-
ing about space. The basic part of the logics assumes a primitive dyadic relation:
C(r1, r2) reads as ’r1 connects with r2’. It is defined on regions; it is reflexive and
symmetric over the defined basic set of the spatial dyadic relationships. The theory
also supports a set of functions that define boolean composition of regions, and a
set of topological functions that allow for the explicit representation of the interior,
the closure, and the exterior.

RCC-8 contains eight jointly exhaustive and pairwise disjoint base relationships
between spatial regions. The RCC-8 is sufficiently expressive for various application
purposes, Geographic Information Systems (GISs) is one of the prominent domains
[WZ00]. The RCC-8 is decidable. The basic relationship set of the RCC-8 is defined
as follows, with r1 and r2 being two regions:

• DC(r1, r2) - r1 and r2 are disconnected;

• EC(r1, r2) - r1 is externally connected to r2;

• PO(r1, r2) - r1 partially overlaps r2;

• EQ(r1, r2) - r1 is identical with r2;

• TPP (r1, r2) - r1 is a tangential proper part of r2;

• TPP−1(r1, r2) - r2 is a tangential proper part of r1;

• NTPP (r1, r2) - r1 is a non-tangential proper part of r2;

• NTPP−1(r1, r2) - r2 is a non-tangential proper part of r1;

2.4. DLS WITH CONCRETE DOMAINS. 27

The main reasoning task for RCC-8 can be formulated as follows:

”Given a finite set Σ of spatial formulas, decide whether Σ is satisfi-
able in a topological space, i.e., whether there exists a topological space
I and an assignment α in it such that I |=α Σ.”

[WZ00] shows that the satisfiability problem for RCC-8 is decidable even augmented
with the following boolean functions: sum(r1, r2); Us - universal spatial region;
compl(r1) - complement of r1; prod(r1, r2) - intersection of r1 and r2; diff(r1, r2) -
difference of r1 and r2.

A transitivity table for the theory is defined as follows. Given a particular theory
Σ supporting a set of mutually exhaustive and pairwise disjoint dyadic relationships,
three individuals r1, r2, and r3 and a pair of dyadic relationships R1 and R2 selected
from Σ such that R1(r1, r2) and R2(r2, r3) the transitive closure R3(r1, r3) represents
a disjunction of all possible dyadic relationships holding between r1 and r3 in Σ.
Figure 2.5 shows the transitions allowed in the RCC-8.

r2

r1

DC

r1

r2

r1

r2

r1

r2

r2

r1

r1

r2

r1

r2

r2

r1

EC PO

TPP
-1

TPP

EQ

NTPP

NTPP
-1

Figure 2.5: Spatial Relationships Transitions.

In [HLM99], authors define spatial domain S2 using the RCC-8 relationships as
follows:

- unary predicates is-region with is-regionS2=∆S2 and its negation is-no-region
with is-no-regionS2=∅;

- a binary predicate inconsistent-s-relation with inconsistent-s-relationS2=∅;
- the 8 basic predicates dc, ec, po, tpp, nttp, tppi, nttpi and eq that correspond

to the RCC-8 relationships and are defined as follows. Let r1 and r2 be two
regions then, (r1, r2) ∈ dcS2 iif (r1, r2) ∈ DC; (r1, r2) ∈ ecS2 iif (r1, r2) ∈ EC;
. . . ; (r1, r2) ∈ eqS2 iif (r1, r2) ∈ EQ.

- for each distinct set p1, . . . , pn of basic predicates, when n ≥ 2, an additional
predicate of arity 2 is defined. The predicate has the name p1-p2-. . . -pn and,
(r1, r2) ∈ p1-p2-. . . -pn

S2 iif (r1, r2) ∈ p1
S2 ∨ (r1, r2) ∈ p2

S2 ∨ . . .∨ (r1, r2) ∈ pn
S2

28 CHAPTER 2. STATE OF THE ART

To form unique predicate names, the following canonical order is imposed -
dc, ec, po, tpp, nttp, tppi, nttpi, eq.

For representing and reasoning about spatial objects, spatial description logics have
been proposed in the literature. Qualitative spatial reasoning in description logic is
based on topological RCC-8 relationships [CH01],[GN02]. A family of description
logics called ALCIRCC suitable for qualitative spatial reasoning on various granu-
larity is discussed in [Wes02]. The satisfiability problem of these logics is addressed
considering the role axioms derived from the RCC composition tables. Inverse and
disjoint roles are also needed to capture the semantics of theses relationships.

Temporal domain.

In temporal description logics, time modeling approaches vary in several ways [AF01].
The unit of time in temporal logics can be either a point or an interval, classifying
logics as point-based or interval-based temporal logics. The time can either be im-
plicit or explicit to the logic language. With implicit time, logic formulæ describe
event sequences in a state-change style of representation; in explicit logic languages,
formulæ are built using temporal operators. Further, with the explicit temporal
syntax, a temporal logic can either adopt external or internal point of view on tem-
poral objects. If described externally, a temporal object is associated with a series
of ”snapshots” in different moments of time, that describe the states of this object
in these moments (or intervals). In the case of the internal representation, the lan-
guage can be seen in a modular way where two different logics are combined, i.e.,
while an atemporal part describes the static of the objects, the temporal part relates
different statics object descriptions creating the dynamics in the representation. De-
scription logics with concrete domains follow the internal representation, and they
are more suitable to describe properties of temporal objects (e.g., intervals) rather
than properties of objects varying in time [AL04].

< >

m mi

o oi

s si

d di

f fi

i j

j

j

j

j

j

Figure 2.6: Allen’s interval relationships.

The concrete temporal domain in description logics is based on the Allen’s inter-
val calculus [AKPT91], Figure 2.6 shows interval relationships over some temporal

2.4. DLS WITH CONCRETE DOMAINS. 29

structure, as defined in [All83]. The most important property of the Allen’s interval
relationships is that they are jointly exhaustive and pairwise disjoint, i.e., for each
temporal structure (T,≺) and (t1, t2) ∈ T , there exists exactly one relation r such
that t1 r t2. A concrete domain T can now be defined as follows: In [HLM99],
authors define spatial domain S2 using the RCC-8 relationships as follows:

- unary predicates is-interval with is-intervalT =∆T and its negation is-no-interval
with is-no-intervalT =∅;

- a binary predicate inconsistent-t-relation with inconsistent-t-relationT =∅;
- the 13 basic predicates < (before), > (after), m (meets), mi (met-by), o (over-

lap), oi (overlapped-by), d (during), di (contains), b (starts), bi (started-by),
f (finishes), fi (finished-by), = (equal) that correspond to the Allen’s relation-
ships and are defined as follows. Let t1 and t2 be two intervals then, (t1, t2) ∈
<T iif (t1, t2) ∈ before; (t1, t2) ∈ >T iif (t1, t2) ∈ after; . . . ; (t1, t2) ∈ =T iif
(t1, t2) ∈ equal.

- for each distinct set p1, . . . , pn of basic predicates, when n ≥ 2, an additional
predicate of arity 2 is defined. The predicate has the name p1-p2-. . . -pn and,
(t1, t2) ∈ p1-p2-. . . -pn

T iif (t1, t2) ∈ p1
T ∨ (t1, t2) ∈ p2

T ∨ . . . ∨ (t1, t2) ∈ pn
T To

form unique predicate names, the following canonical order is imposed - <, >,
m, mi, o, oi, d, di, b, bi, f, fi, =.

A note on spatial and temporal relationships. If we consider the definition
1 of a concrete domain applied to spatial and temporal concrete domains, we note
that the sets ∆D of these domains are different, i.e., the set of spatial regions, and
the set of intervals respectively; but the set ΦD of predicates are similar. Indeed,
for each spatial relationship from Figure 2.5 we can find a corresponding interval
relationship from Figure 2.6, with the transitions table from Figure 2.5 being valid for
the (substituted) temporal intervals as well. Table 2.2 lists these correspondences.

Table 2.2: Spatial and Interval Relationships

Spatial Relationship Interval Relationship
DC(r1, r2) <(i,j) or >(i,j)

EC(r1, r2) m(i,j) or mi(i,j)

PO(r1, r2) o(i,j) or oi(i,j)

TPP(r1, r2) b(i,j) or f(i,j)

TPP−1(r1, r2) bi(i,j) or fi(i,j)

EQ(r1, r2) =(i,j)

NTTP(r1, r2) d(i,j)

NTTP−1(r1, r2) di(i,j)

30 CHAPTER 2. STATE OF THE ART

2.5 Chapter Summary

This thesis advocates a hybrid approach to database schema integration. In this
chapter we have presented the data modeling approaches that we employ in our
methodology: conceptual modeling and description logic. Conceptual models origi-
nate from the database world, provide a clearer representation of the content of the
user universe of discourse, and more efficient management for large data sets. DL
approaches provide better reasoning capabilities and new knowledge inference from
explicitly defined knowledge.

We adopt the mediator-based federated architecture with a global schema that is
constructed to meet user requirements for each of the related schemas’ elements. We
design a methodology for spatial and temporal data that are best described on the
conceptual level with an expressive data model. Thus, we employ a conceptual data
model that captures spatio-temporal features of the source schemas and allows for
their integration through a set of inter-schema mappings. The modeling part of our
methodology is supported by the spatio-temporal conceptual model MADS, whereas
the validation part of the integration process is delegated to the description logics
validation services. This validation phase for spatio-temporal schemas and inter-
schema mappings is the original feature of our methodology. We therefore agree that,
rather than extending either formalism to try to cover all desirable functionality,
a hybrid system, where the database component and the logic component would
cooperate, each one performing the tasks for which it is best suited, is a viable
solution for semantically rich information management [SPVC04]. Our proposal
contributes to the area of research on the following original topics:

• the proposed methodology, based on description logics reasoning mechanisms,
conceptual modeling and integrity constraints, is hybrid and thus innovative;

• we are dealing with spatio-temporal data which, to the best of our knowledge,
has not yet been adequately covered;

• we are using reasoning mechanisms of description logics in order to validate
the set of inter-schema mappings and the source schemas.

We detail our methodology designed for the MADS conceptual model in Chapter
3, and we show how we enhance the methodology with the reasoning services of the
description logics in Chapter 4.

Chapter 3

Integration of Spatio-temporal
Database Schemas

In this chapter we present our methodology for spatio-temporal database schemas’
integration. In our approach we adopt the principles of federated systems where
the integration work is done on the schema level leaving the populations untouched.
In other words, we propose a methodology to integrate conceptual schemas but not
the instances though, we provide the schema integrator with mappings that allow
for instance matching. We have developed our methodology for the spatio-temporal
data model MADS (Modeling of Application Data with Spatio-temporal features,
[PSZ06]), and can it can be considered as an additional feature for modeling spatial
and temporal data in the MADS data model. Our integration methodology provides
for a flexible integration process with several ways to construct a final integrated
schema thus, it results in a schema tuned for the application needs.

As described in Section 2.3, there are three essential types of conflicts to be
resolved during the integration: syntactic, semantic, and structural conflicts. For
each type, there are several possible ways to resolve the conflicts. When a method-
ology for integration is proposed it should include solutions for all the types of
conflicts. Table 3.1 lists the integration phases, conflicts and the approaches that
we have chosen to reconcile the differences in the databases schemas. Following the
three-step integration process described in the literature, we realized that we could
propose definite, application independent solutions only for the first two phases. For
syntactic conflicts, i.e., when data involved in the integration process are logically
designed with different approaches, e.g., relational, object-oriented, we propose to
remodel the application in MADS conceptual model. For semantic conflicts, i.e.,
when the same real world facts serve different purposes for different disciplines and
they have nothing in common or when the same objects are called differently in dif-
ferent disciplines, resolution in our methodology is done by establishing inter-schema
mappings or Inter-schema Correspondence Assertions (ICAs). In more details ICAs
are presented in Section 3.4.2. Structural policy taken during the third phase is
dependent on the application goals and on the designer perception of the result of

31

32 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

.

Table 3.1: Integration Phases

Integration phases Conflicts Methods
Pre-integration syntactic, structural Modeling in MADS
Inter-schema mappings semantic MADS correspondence

language
Choosing a structural structural Schematic patterns
policy and integrity constraints
Integrated schema MADS XML language
composition

integration. In addition, different structural patterns have their merits and short-
comings which might not be clear to the designer. Therefore, there is a need of an
intermediate step in which the designer is guided through different possible struc-
tural policies. Generally, having two entity types A and B independently of the
semantic correspondences existing between them, the resulting schematic solutions
can be different, thus, adding another dimension to the set of the decisions to be
taken during the integration process. In Section 3.4.3 we present in more details this
intermediate phase called ’Choosing a structural policy’. The results of this phase
allow to resolve structural conflicts before designing an integrated schema.

3.1 The Context of the Methodology: Terms and

Techniques

For what cases this methodology is applicable. The methodology could be
applied in a wide range of situations. The scenario where all the phases of the
methodology are maximally exploited is when the same set of real-world objects is
modeled from different perspectives and there is a need to combine these different
representations; in other words if the populations of the schemas are equivalent and
the goal is to provide a common view on their schemas giving access to some or the
whole information contained in the source populations. However, the methodology
is not limited to the situations where there are common instances in the schema
populations; all types of inter-schema mappings can be stated and used in the inte-
gration process in the case of disjoint populations.

The methodology is designed for complex domains such as spatial and tempo-
ral; in consequence, the syntax of the inter-schema mappings includes spatial and
temporal operators and the reasoning services are tuned for such type of data. The
methodology is applicable for the thematic data as well, i.e., the data that do not
have spatial or temporal features.

3.1. TERMS AND TECHNICS 33

Which data model to choose. For our methodology we have chosen a very ex-
pressive conceptual data model. To minimize the need for computer aided support
at the phase of the discovery of the inter-schema mappings, we base the very first
step of the methodology on a model that is semantically powerful, and thus, easily
understood by the schema designers. In our methodology we assume that the de-
signer possesses some knowledge in the application domain, but we do not demand
our designer to be a domain expert.

Where the process is manual, where automated. Among the integration
phases shown in Table 3.1 there are manual, semi-automated and automated. For
the very first phase we assume that the conceptual schemas are already translated
into the MADS model and we do not consider this translation as part of the method-
ology. It could be done manually or translated by an engine that provides for such
a service. Then, the initial inter-schema mappings are stated manually. The rest
of the inter-schema correspondences is proposed for the evaluation for the designer
according to the algorithm presented in Section 3.4.3. Once the designer stated all
the mappings, this set of mappings together with the schemas are translated into
DL by a tool. Additional, application specific integrity constrains that had not been
included in the MADS schemas are then added manually directly in the DL editor.
The validation of the schemas, and the inter-schema mappings is automated and
verified by the reasoner included in the DL editor. Utilization of a reasoner also
allows for completion of the set of the inter-schema mappings because a DL rea-
soner deduces all valid subsumption for the model. Integrated solutions that will be
proposed for the designer depend on the results of the validation procedure. If the
model is not validated then some integrated solutions involving merging of object
types will not be possible.

What is the result. As the result of all four integration phases from Table 3.1 the
schema designer will be able to construct an integrated schema based on the complete
and valid set of the inter-schema mappings. The reasoning service employed in the
methodology ensures there is no local integrity constraint that is violated in the
global schema. After the validation procedure the designer has the complete and
valid set of the inter-schema mappings, and a set of valid integrated solutions for
each population correspondence. As one of the advantages of the methodology we
underline that the designer is provided with several valid structural patterns and he
can choose one that meets the integration application needs.

How to use these results in practice. The direct application of the method-
ology is in adopting the results in the design of valid integrated schemas. As a
by-product we can see the production of the domain ontology. By translating the
schemas and the inter-schema mappings into a DL-based language, which in our
case is the Ontology Web Language (OWL) supported in the Protégé editor, we
create an ontology of the spatio-temporal domain. This ontology can be enlarged

34 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

with more applications, i.e., MADS schemas and inter-schema mappings translated
into OWL language of Protégé. The schemas themselves and the mappings contain
the information that is used for ontology creation. The ontologies created in the
course of the integration process of several schemas can further be used as domain
ontologies for new spatio-temporal applications.

In the sequel, we first present the common data model MADS, in Section 3.2;
four MADS schemas that are used as motivating examples are presented in Sec-
tion 3.3. The integration methodology is detailed in Section 3.4. Section 3.4.2
describes our assumptions and presents the first level semantic correspondences. In
Section 3.4.2 semantic correspondences for domain values are described. In Section
3.4.3, we introduce our approach to integrity constraints formulation, and present
an integrity checking algorithm based on the set of semantic correspondences and
integrity constraints. Section 3.4.4 presents the final phase of our approach.

3.2 Introduction to the MADS data model

In Chapter 2.2 we have discussed the place and the role of conceptual models in
system engineering. In this section we make a detailed introduction to the MADS
conceptual model, and present its main features that allow for semantically rich
modeling of spatio-temporal data. There are four dimensions along which proper-
ties for the modeled domain can be independently added. These dimensions are:
structural, spatial, temporal, and representation. In the following sections we de-
scribe each of those dimensions and show how four different property types can be
added to the same schema elements.

3.2.1 Structural dimension

Structurally, MADS is an object+relationship data model. It allows schema de-
signers to represent basic concepts from extended entity-relationship modeling, e.g.,
object type, relationship or association type, IsA link, attributes, and methods. Fig-
ure 3.1 shows MADS structural notation. Object and relationships bear an identity

FlowerBed

FBNumber 1:1 Str

Planted 1:1 DATE

FlowerType 1:n

 Color 1:1 Str

 Season 1:n Str

1:n 0:n
meetObject Type

Attribute , cardinality , type

Complex attribute

Association Type

Cardinalites

Generalisation /

Specification Link
1:n 1:n

meet
Cardinalites

m(1:n) m(1:n)

Multi - association Type

meet

Figure 3.1: MADS structural notation.

3.2. MADS DATA MODEL 35

and may have attributes. The attributes in MADS are mono-valued or multi-valued,
simple or complex, i.e., composed of other attributes. MADS relationship types are
n-ary (n ≥ 2), i.e., they have two or more roles (each role is a link between the rela-
tionship type and a given object type), and may be cyclic (two or more roles linking
the same object type). Two kinds od relationships provide the basic constructs to
link objects together [PSZ05]:

. Association. This is the most common kind of relationship. Roles bear usual
(minimum, maximum) cardinalities for the number of relationship instances
that object instances of the linked type may participate into.

. Multi-association. This is the most general kind of linking construct. Where-
as each role of an association instance links exactly one instance of the linked
object type, each role of the multi-association instance links a non-empty set of
instances of the linked object type. Consequently, each role bears two pairs of
(minimum, maximum) cardinalities. A first pair is the traditional one that de-
fines for each object instance, how many relationship instances it can be linked
to via the role. The second, additional, pair defines for each relationship in-
stance, how many object instances it can link with this role. Its minimum
cardinality value is at least 1 (in the case when the maximal cardinality is also
1, the multi-association becomes an association).

Example. The following picture shows an example MADS schema where only struc-
tural MADS notation is used. The schema has two object types RoadSection and
CrossRoad related through a relationship type meet. The natural language expla-
nation of the modeled phenomena is very close to the schematic notation i.e., the
modeled objects are road sections, some of them meet crossroads. A road section
can begin or end with 0 to n crossroads and a crossroad can be composed of m to n
road sections, where m≥2; this condition is constrained by the cardinalities of the
meet relationship.¦

RoadSection

RSID 1:1 Int

NumLanes 1:1 Int

Surface 1:1 Real

Services 1:n Str

CrossRoad

RouCId 1:1 Int

Name 1:1 Str

meet
0:n m:n

RoundCross

RecCId 1:1 Int

Name 1:1 Str

RectCross

Figure 3.2: MADS dimensions: structural.

3.2.2 Spatial dimension

MADS predefined Spatial ADTs (SADTs) are: point, line, oriented line, simple area,
simple geo, point set, line set, oriented line set, complex area, complex geo, geo. The

36 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

spatial data types hierarchy is shown in Figure 3.3. Figure 3.3 also shows the icons
denoting each SADT. The most generic SADT is geo, which generalizes the simple-

geo

simple geo s complex geo c

point simple area complex area � point set

line line set

oriented line oriented line set

Figure 3.3: MADS basic hierarchy of spatial abstract data types.

geo and complex-geo SADTs with the semantics: ’this element has a spatial extent’
and without any commitment to a specific SADT. These three SADT are abstract
and they are never instantiated. The spatiality of an element may either be defined
precisely e.g., point, oriented line, or left undetermined, e.g., geo.

Example. The MADS schema in Figure 3.2 can be enriched with the spatial dimen-
sion. As Figure 3.4 shows, a road section can be modeled with a geographic domain
of the line spatial type, a crossroad with the geographic domain of the geo spatial
type. Consistently with the hierarchy of the SADT, RoundCross and RectCross are
modeled respectively with the simple area and line set spatial data types.¦

RSID 1:1 Int

NumLanes 1:1 Int

Surface 1:1 Real

Services 1:n Str

RoadSection � CrossRoad

RouCId 1:1 Int

Name 1:1 Str

meet
0:n m:n

RoundCross �

RecCId 1:1 Int

Name 1:1 Str

RectCross �

Figure 3.4: MADS dimensions: structural & spatial.

3.2.3 Temporal dimension

Temporal ADTs (TADTs) support timestamping, i.e., associating a time-frame to
a fact. Timestamping is the traditional way of modeling temporal information.
Timestamped attribute values allow expressing when a value was, is, or will be

3.2. MADS DATA MODEL 37

holding in the real world as perceived by the application (valid time) or when it was
known in the database (transaction time). Timestamped objects and relationships
express information on their life cycle: when an object or relationship was created,
suspended, reactivated, or deleted. Object and relationship timestamps are also
based on either valid time or transaction time. Currently, MADS supports valid
time. Figure 3.5 shows the MADS hierarchy of temporal data types.

time

simple time s complex time c

interval instant instant set interval set

Figure 3.5: MADS basic hierarchy of temporal abstract data types.

Example. We use the same schema as in the previous examples. We can associate
temporal properties with the elements of the schema. In the following example the
RoadSection entity type is modeled as a temporal element, meaning that it has the
temporal extent with no commitment to a specific TADT. Its attributes are modeled
with the interval temporal semantics.¦

RSID 1:1 Int

NumLanes 1:1 Int

Surface 1:1Real

Services 1:n Str

©RoadSection
 CrossRoad

RouCId 1:1 Int

Name 1:1 Str

meet
0:n m:n

RoundCross �

RecCId 1:1 Int

Name 1:1 Str

RectCross �

Figure 3.6: MADS dimensions: structural & spatial & temporal.

The spatiality/temporality of an application is reflected by the existence of spa-
tial/temporal entities, but also by the existence of space- and time-related relation-
ships between these entities. Is important to be able to explicitly describe space-
related relationships in conceptual schemas. This enriches the schema, allowing
these relationships to be named and described with attributes and methods.

3.2.4 Constrained relationships

MADS constrained relationship types are relationship types that convey spatial
and temporal constraints on the objects they link. MADS includes topological
and synchronization relationships as built-in constrained relationship types. For

38 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

RSID 1:1 Int

NumLanes 1:1 Int

Surface 1:1Real

Services 1:n Str

©RoadSection
 CrossRoad

RouCId 1:1 Int

Name 1:1 Str

meet
0:n m:n

RoundCross �

RecCId 1:1 Int

Name 1:1 Str

RectCross �

Figure 3.7: MADS dimensions: topological relationship.

example, a topological relationship type adjacent may be defined to link object
types CrossRoad and RoadSection, expressing that the geometry of a road section
does not intersect but is adjacent to the geometry of a crossroad.1 The list of MADS
predefined topological relationship types and the associated icons is shown in Table
3.2. Every MADS topological relationship type is characterized by its spatial type,
which is visually represented by an icon.

Table 3.2: MADS topological relationships.
Spatial
type

Icon Definition

disjunction gt the linked objects have spatially disjoint geometries

adjacency gt geometry sharing without common interior

crossing e sharing of some part of interior such that, the dimen-
sion of the shared part is strictly inferior to the higher
dimension of the linked objects

overlapping gt sharing of some part of interior such that, the dimen-
sion of the shared part is equal to the dimension of the
linked objects

inclusion gt the whole interior of one object is part of the interior
of another object

equality w sharing of the whole interior and of the whole envelope
(for spatial objects of the same dimension)

Example. In Figure 3.7 the meet relationship type is enriched with the semantics
of the the adjacency topological relationship. In this example we cannot add any
type of synchronization semantics to the meet relationship because of object type
CroosRoad that has no temporal extent. ¦

Synchronization relationships allow specifying constraints on the life cycles of the
participating objects. They allow in particular, to express constraints on schedules

1The choice of the relationship depends on the application, instead of adjacent, crosses relation-
ship could be used if it conveys the semantics of the application.

3.2. MADS DATA MODEL 39

of processes. MADS built-in synchronization relationships are shown in Table 3.3.

Table 3.3: MADS synchronization relationships.
Temporal type Icon Temporal type Icon
equal during
meets starts
overlaps finishes
before

3.2.5 Multiple Representations with Multiple Perceptions
in MADS

Multiple representation has been added in MADS as an additional orthogonal di-
mension. Multiple representation allows the definition in the same schema of several
representations for the same real world object. Those multiple representations may
be the consequence of diverging requirements during the database design phase or,
in the particular context of spatial data, of the description of data at various levels
of detail.

To allow users to retrieve specific representations from the set of existing ones,
these representations have to be distinguishable and denotable. To this extent,
perception stamps are added on data, whether they are object type instances or
attribute values, meta-data, object or relationship type definitions or attribute def-
initions. Stamps are vectors of values characterizing the context of each perception,
e.g., spatial resolution, viewpoint. Object and relationship types may be perception-
varying types and thus have a different set of attributes according to the considered
perception.

Example. In Figure 3.8, the object type RoundCross is a multi-representation type
with two definitions, one for stamp t1 with the attribute Roads, and one for stamp
t2 with the attribute Name; attribute RouCId exists for both stamps t1 and t2. As
we mentioned above, the perception stamps can be added on the level of attributes
as well as on the type or relationship levels. As an example, in Figure 3.8 the

t2�

 RoundCross

 t1,t2

t2 : Name 1:1 Str

t1,t2 : RouCId 1:1 Int

t1 : Roads 1:n Str

t2

 t2 ² t2 �

 RoadSection

t2

t2 : RSId 1:1 Int

t2 : NumLanes 1:1 §

t2 : Surface 1:1 §

t2 : Services 0:n §

meets
0:n3:n

Figure 3.8: Perception varying object type Round Cross.

40 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

RoundCross object type has only structural dimension for the stamp t1, and be-
comes a spatial type under the stamp t2 with simple area as its spatial type. For
the perception with the stamp t2, the RoundCross object type is related through a
topological relationship meets to another spatial object type RoadSection. The re-
lationship meets in this schema is a constrained relationship, one of the constraints
is the spatiality of the related object types. In general, relationship types may hold

Figure 3.9: Two mono-perception object types linked with the correspond
inter-representation link.

several different semantics according to the representation and, for instance, be a
topological relationship in one representation and a synchronization in another.

There is also a specific inter-representation semantics that may be applied to
both associations and multi-associations to denote that the linked object types de-
scribe instances that are different representations of the same real world object. As
shows Figure 3.9, the same real world objects are modeled with RoundAbout object
type in a schema with the stamp t1 and as RoundCross object type in a schema with
the stamp t2. The inter-representation relationship type correspond links two mono-
perception object types. The cardinality of this relationship states that for each
instance from the class RoundAbout, there exist exactly one instance of the Round-
Cross type; and there may be at most one instance of the RoundAbout type for each
instance of the RoundCross type. These cardinality constraints of the correspond re-
lationship convey the information on how the populations of the related object types
are related; with the cardinalities as in Figure 3.9, the population of RoundAbout is
included in the population of the RoundCross. Besides the relationship between the
sets of instances, or populations, the inter-representation semantics does not induce
any constraints between the linked objects. ¦

We have introduced the basic elements of the MADS data model, in the sequel
we use the structural, spatial, temporal, and multiple representation features to
define the syntax and semantics for the inter-schema mappings - a crucial element
in our integration methodology. The schema elements that we used to illustrate the
MADS dimensions will be further reused in our example schemas.

3.3. MOTIVATING EXAMPLES 41

3.3 Motivating Examples

We use several schemas to illustrate different parts of the integration methodology.
First, two schemas S1 and S2 are shown in Figures 3.10 and 3.11. We have used parts
of these schemas in the previous section to introduce MADS modeling dimensions.
Schema S1 is part of a schema for a park administration of a city. The objects this
park administration is interested in are the green plantations within the city area,
their geometries, types, e.g., flower bed, park, field. As well there are bordering
objects included in the schema, e.g., roundabouts, built-up areas. For these objects,
the park administration merely needs to know their names, e.g., roundabout, or
their geometry, e.g., road, water body, build-up area. Schema S2 is a part of a road
network schema for road management department of the same city. The focus of this
schema is the detailed representation of road network elements, their classifications
and the relationships among them. Both schemas model real world elements geo-
graphically located in the same area - a city, thus, the populations of these schemas
have some common instances providing an integration ground.

FBNum 1:1 Str

FlowerType 1:n Int

Planted 1:1 °

Responsible 1:1 Str

Period 1:1

Responsible 1:n Str

Period 1:n

PNum 1:1 Str

Type 1:n Str

Purpose 1:n Str

LastClean 1:1

FNum 1:1 Str

Type 1:1 Int

along

along

RANum 1:1 Str

Name 1:1 Str

Roads m:n Str

S1

0:1

1:1
1:n

1:n

1:n

0:nRAum 1:1 Str

1:n

FlowerBed § Park Field

Green s
Plantation

NonPlanted s
Area

Built-up

Area

Water

Body

Road

GPAlong
Roads

RoundAbout

InsidePA

Figure 3.10: Schema S1: Park Administration.

There are some concepts used in these schemas which are peculiar to the MADS
data model. For example, the GreenPlantation object type being non-temporal can
have temporal attributes, illustrating the concept of orthogonality of the structural,
temporal, and spatial dimensions of MADS data model. FlowerBed object type has
multi-valued attribute FlowerType with 1:n cardinality to illustrate that MADS is an
object+relationship data model where attributes with multiple values are allowed.
From the point of view of MADS spatial domain ontology, the IsA hierarchy of
spatial types is coherent.

42 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

RouCId 1:1 Int

Name 1:1 Str

meet

Name 1:n Str

RID 1:1 Int

RSID 1:1 Int

NumLanes 1:1 Int

Surface 1:1 Real

Services 1:1 Str

gives access

composed

S2

0:n

1:1

RecCId 1:1 Int

Name 1:1 Str

0:1
0:n

0:n
m:n

 Road �
 Section

Cross
Road

 Rect

 Cross

 Round �
 Cross

Equipment

Road

Figure 3.11: Schema S2: Road Administration.

Another example that we reference throughout the thesis comprises two database
schemas (Figures 3.12 and 3.13) designed by two tourist offices describing the same
geographical area, e.g., the city of Paris. The difference in the purposes of these
schemas are not as clear as it was for the schemas S1 and S2. The purpose of the
schema T2 is to provide tourists with information on the closest stops of Boats, Bus,
Metro, and/or Tram to the tourist sites. Schema T1 describes the transport means
and the tourist sites of the city.

TransportMean

Enterprise 1:1 Str

§ TouristPlace �

Name 1:1 Str

Museum

Curiosity

Monument

Style 1:1 Str

City

Name 1:1 Str

cover

T1

locatedIn Station •

StationName 1:1 Str

1:1

1:n

decomposedIn

 CityBorough �

Name 1:1 Str

1:n 1:1
run

 Bus Metro

busStops

Stop •

StopName 1:1 Str

stopServes � stationServes �

metroStops

 BusLine �

BusNum 1:1 Str

 MetroLine �

MetroNum 1:1 Str

1:n

1:1

1:n

1:1

1:n

2:n 1:n

1:n

0:n

1:n

0:n

1:1

0:n

1:1

stationAccess

stopAccess

Figure 3.12: Schema T1 : A City for Tourists.

The schema T1 models a cadastral division of the city, where the city is decom-

3.3. MOTIVATING EXAMPLES 43

posed in several city boroughs; and some of the urban services available for tourists,
e.g., public transport means precising in which city borough the transport stops
are located. The transport means are modeled by the object types Bus and Metro;
the bus and metro stops are modeled as spatial object types Stop and Station, each
Stop or Station has a spatial extent of type point. The city boroughs are also mod-
eled by spatial object types, this allows for a topological relationships stopAccess
and stationAccess between the Stop and CityBorough, and Station and CityBorough
respectively. These relationships convey the semantics of spatial inclusion, this infor-
mation is made explicit by the type of the topological relationship. The cardinalities
of the stopAccess and stationAccess relationships state that each transport stop is
spatially (or geographically) located in exactly one city borough and that a city bor-
ough can have none or several transport stops located in it. Schema T1 also models
information about the geometry of the bus and metro lines. Spatial object types
BusLine and MetroLine have spatial extensions of type line which allows storing the
coordinates of the bus and metro routes. As it was mentioned in Section 3.2, the
spatial and temporal dimensions in the MADS model are orthogonal, meaning that
any of the elements of a schema can have one or more dimensions associated with
it. In the schema T1, object type TouristPlace is an example of the spatio-temporal
type. It has the spatial extension of type simple area and a temporal one of type
interval. The subtypes of the TouristPlace inherit the spatial and temporal proper-
ties of their ancestor. The element of the schema that has the largest number of
relationships is the CityBorough object type, this suggests that this element is the
focus of the schema. Rephrasing the latter statement, the focus of the schema T1

is the description of the city cadastral division; following the relationships of the
CityBorough object type the user can find the information on what are the transport
stops in the given city borough, what are the transport lines crossing it, what are
the tourist attractions that can be found in it.

Boat

Type 1:1 Str

Season 1:4 Str

StartFrom 1:1 Str

Monument

Devotion 1:1 Str

Material 1:1 Str

Construct 1:1 §

Theatre

Buildings 1:n Str

Troupe 1:n Str

Season 1:n §

Walk �

Season 1:4 Str

Curiosity 1:n Str

Difficulty 1:1 Str

Start 1:1 •

cover

TouristSite �

Name 1:1 Str

District 1:1 Str

Stop •

Name 1:1 Str

TimeTable m:n Str

boatBy

along �TransportLine �

TimeTable m:n Str

Zones 2: 2 Str

Museum

Description 1:1 Str

Exhibition 0:n Str

OpenTime

 summer 1:1 §
 winter 1:1 §

Bus

Number 1:1 Int

Terminus 2:2 Str

Service 1:1 Str

Metro

Color 1:1 Str

Terminus 2:2 Str

Name 1:1 Str

Tram

Number 1:1 Int

Terminus 2:2 Str

ConstrDate 1:1 °

busBy metroBy tramBy

River �

Name 1:1 Str

Road �

Code 1:1 Str

Type 1:1 Str

NbLanes 1:1 f(�)

Underground � Rails �

ConstrDate 1:1 §
LastControl 1:1 °

T2 is_close

1:n

0:n

1:n

m:n

1:n

m:n

1:n

m:n

2:n 1:n 0:n 1:n

Figure 3.13: Schema T2 : A City for Tourists.

If we consider the the schema T2 at a closer look we note that it has a different

44 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

focus. Tourist attractions that compose the population of the TouristSite object type
are those that are accessible by the public transport network. TouristSite object type
has spatial extension of type simple area, Stop object type has spatial extension of
type point. According to the cardinalities of the relationship is close, i.e., 1:n for the
TouristSite object type, all the instances of the TouristSite are located on a certain
distance from a transport stop. The subtypes of the TouristSite inherit its spatiality
except for the Walk subtype for which the spatial extent is redefined to the oriented
line type. In the hierarchy of the TouristSite object type the orthogonality of the
structural, spatial, and temporal dimensions appears in several object types. The
thematic object type Theatre has a temporal attribute Season of type IntervalSet,
this attribute specifies the dates of the current theater season. The Monument
spatial object type with the temporal attribute Construct is another example of the
combination of the spatiality on the type level with the temporality on the attribute
level.

Contrary to the schema T1, in the schema T2 we do not distinguish the types of
the stops; what is important is whether a tourist attraction is accessible by any type
of public transport. If it is accessible, i.e., if it is in the population of the TouristSite
object type, then an intuitive user request would follow ’What is the transport
means to use to get to this attraction?’. In the schema T2, there are four types
of public transport means: tram, metro, bus, and boat. In the schema, these four
types are modeled as spatial object types with the line spatial extension. There are
application constraints for the transport line objects. For example, each transport
line must have at least two stops along its trajectory, these stops are the terminus
stops; each transport line has two zones (that may be the same) associated with
it, these zone are identified by the names of the city boroughs where the terminus
stops for a given transport line are located. In addition to the transport services, the
schema models the means that provide for these transport services. For example,
trams run on the rails, the object type Tram has a relationship tramBy to the object
type Rails. An instance of Rails is a segment of the rail network that provides for a
certain tram itinerary, with the geometry of the itinerary included in the geometry
of the rail segment. As seen from the above description, the schema T2 is a tourist-
oriented schema, the data are modeled with one of the tourist scenario, where the
system user is a tourist, and she/he wants to visit some places accessible by public
transport means.

Note that populations of some elements of the schemas T1 and T2 are related.
For example, the populations of the object types Museum of the schema T2 and
Museum of the schema T1, where the former is included in the latter. Recall that
the T2 models the tourist attractions reachable be the public transport, whereas
the T1 models all the tourist sites, thus, all the museums reachable by the public
transport will also be the instances of the more general population of all museums.
The same discussion is true for the populations of the Monument object types of the
two schemas. On the parent level, i.e., TouristSite and TouristPlace, the populations
intersect. The former object type has more subtypes than the latter and therefore,

3.4. INTEGRATION METHODOLOGY 45

there are instances of the TouristSite object type that do not have corresponding
instances in the population of the TouristPlace. An example is the Walk object type
of the schema T2.

3.4 Integration Methodology

To recall our integration methodology, we show in Figure 3.14 its four composing
phases. We detail in this section each of the integration phases: Pre-Integration,

Pre-integration - source schemas

definition in the MADS data model

Inter-schema mappings

definition

Choosing a structural policy and

a structural patterns for each of

the related elements

Composition of the integrated

schema

In the MADS data model

Phase 1

Phase 2

Phase 3

Phase 4

Figure 3.14: Integration Methodology.

Inter-Schema Mappings, Structural Policy, and Integrated Schema Composition, and
illustrate the integration process with the example schemas from Figures 3.10 and
3.11.

3.4.1 Pre-integration

During the pre-integration phase the heterogeneous database schemas are translated
into MADS model. In other words, in our approach MADS model is used as the
common data model [AOTT98] for spatio-temporal data. The translation process
itself is out of the scope of our work, but given the existence of the MADS XML
schema such a translation should not be resource-consuming. We assume that the
application schemas have been already translated to MADS diagrams either with
the help of a tool or manually.

3.4.2 Inter-schema Mappings

Complete set of the Inter-schema Correspondence Assertions (ICAs) or inter-schema
mappings contains following elements:

46 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

• relationship between populations of the local or source schemas - Schema pop-
ulation Correspondences;

• complete set of the inter-schema mappings between differently represented
objects including their identifiers - Property semantic Correspondences and
Matching Rules;

• integrity constraints that together with possible structural patterns are used
for validation of a proposed integrated schema.

The set of ICAs consists of inter-schema mappings between populations, domain
values and identifiers, and a set of integrity constraints. The mappings are expressed
in logical languages, using the following sets: set of schema concept names, denoted
as V ; the set of operators, denoted as O; optional set of user-defined functions F ;
an integrity constraint is a formula in a first-order logic language augmented with
spatial and temporal predicates.

Schema population Correspondences

Formally, the language for Schema population Correspondences (SCs) denoted as
LSC is defined as follows:

LSC = {VSC ,OSC}, with the syntax

[σ{SelectExpr}]MCS OperatorSC [σ{SelectExpr}]MCS;

where VSC is the subset of V that contains object and relationship type names
but not the attribute names; an MCS or Modeling Concept Sets is a subset of VSC ,
i.e., the names of object and relationship types that have corresponding types in an-
other local schema. An MCS includes a part of the conceptual schema that models
the object involved in the correspondence. An MCS can contain 1 to n elements, it
can be either a single entity or relationship type, or a set of connected entity and
relationship types. An example of different MCSs where schema elements shown in
this figure convey the same information is shown in Figure 3.15. We used different
concepts of the data model to express the same information thus, demonstrating
that the designer can choose, without any information loss, a representation that
meets some design goal, e.g., simplifies further integration process, or emphasizes a
crucial element of a schema. We choose MCS as an atomic element of the SC expres-
sion because given the expressiveness of MADS model and the entity-relationship
approach in general, the same object can equally be modeled by different concep-
tual primitives, for example, as shown in Figure 3.15. As the atomic element of the
correspondence expression, the MCS gives the flexibility to the schema designer to
not consider the structural conflicts till the phase where the integrated schema will
be composed. The existence of a correspondence between two populations does not

3.4. INTEGRATION METHODOLOGY 47

:

1 1:

a 1

1 1:

a 21

a

:a 3
0 1:

1 1:

a

3

211

a

1

0

a

:

0 1:

1 1:

0 1:a 2

0 1:

1 1:

a
a 21

1

1 1:a 3

0 1

1

0

:

A

a 1

MCS 2

MCS 1 = 1

MCS 3

A’ A’’

MCS
A’

A’’

1

 = 3

a 1

 = 2MCS

MCS 3

2

a)

b)

c)

22

22

22

Figure 3.15: Modeling Concept Sets for the same object.

necessarily lead to the merging of the schema fragments that model these popula-
tions. The structural patterns that can be applied within the different population
relations will be described in the sequel of this section.

A

BPop()

Pop()A

Pop()

Pop()B
B

Pop()A

A

Pop()

Pop() Pop()B

Figure 3.16: Population relationships.

The set of operators for SC expressions denoted as OSC , contains the following
elements: {∩, ⊂, ≡, ∅}. Graphically, the relationships between two populations can
be as shown in Figure 3.16. The Pop(A) and Pop(B) are populations of entity types
A and B that are not necessary modeled by a single entity or relationship type, we
assume that they are modeled by MCSs.

The choice for the σ operator depends on the possibility to define a condition
that selects a subset that correspond to the included (or overlapped) population
from the inclusive (or overlapped) one. The usage of an SelectExpr refines the in-
clusion or overlapping relationship and allows a clearer correspondence between the
populations. In case of a population correspondence with a σ operator, the relation
between the selected populations can be changed to ≡ (equivalence) if the SelectExpr
is precise enough to exactly select corresponding populations from overlapped ones,
or a sub-population of the inclusive one that corresponds to the included one.

48 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

The correspondences between the populations are the first expressions to state
within our integration process. In some situations the operator chosen for the cor-
respondence is a hypothesis, with the degree of belief depending on the domain
knowledge of the integrated schema designer. If none of the operators can be cho-
sen for sure, i.e., the relation between populations is not known, than the disjoint
relation should be considered as the initial hypothesis. As it will be demonstrated
in the sequel, this choice can be made more precise in the course of the integration
process. The disjoint operator describes the weakest degree of the overlapping of the
populations, that guarantees that the process of precising would have the entropy of
1. Already at the level of the SCs, which are the most general correspondences, we
can outline possible structural patterns that can be applied to the schema fragments
modeling related populations. Putative structural patterns that can be applied to

correspond
0:1

Minimal policy

A

 a

 c

B

 b

 c

A B

 a

 b

 c

A U B

 c

A

 : a

 : c

Fusion Union

Multiple representation

with perception varying

type

Preservation policy

B

 : b

 : c

0:1

AB

 : a

 : b

 : c

 Multiple representation with inter-representation association.

A

 a

 c

B

 b

 c

A B

Non-exhaustive policy

Multiple Spesification

1:n

A

 : a

 : c

B

 : b

 : c

1:n

 Multiple representation with inter-representation multi-association.

correspond
0:1 0:1

A U B

 c

A

 a

B

 b

A - B

A B

B - A

Maximal/exhaustive policy

Generalisation-partition

Figure 3.17: Sample integration patterns.

construct an integrated schema are grouped under four policies: minimal, preserva-
tion, non-exhaustive, and maximal. These four policies reflect four possible goals
that a schema designer may have while constructing the integrated representations
for the related schemas’ elements. Figure 3.17 shows different structural patterns
for two object types A and B with one common attribute c. We assume that there
are common instances in both populations: Pop(A) and Pop(B).

3.4. INTEGRATION METHODOLOGY 49

The fusion pattern assumes merging of the populations of both object types A
and B with all their attributes preserved. It means that every instance of the new
integrated object type will have attributes coming from both A and B representa-
tions. With the fusion pattern we do not distinguish the origin of the attributes
in the resulting integrated object type. To make such a distinction we can apply
the attribute stamping by adding representation stamps for each element. In our
example we added the α and β stamps to the object types A and B respectively.
The application of this pattern results in a perception varying type. With the union
pattern, only the common attribute c is retained in the resulting object type. The
population of an object type obtained with the fusion, stamping, or union patterns
is the union of two composing populations. The three patterns described above are
applied if the integration policy is to propose a minimal structural solution, i.e., a
schema with minimal number of elements.

Another integration policy that we call the preservation policy, has the multi-
ple representation with the inter-representation (multi-)association [Van01] as its
structural solutions. This structural solution preserves the initial representations of
object types A and B and relates them through the inter-representation association
or multi-association link. These two types of links differ in the cardinalities of the
elements related through them. In the case of an association link, the individual
instances are related; in the case of the multi-association link, the related elements
are sets of instances. The second set of cardinalities defines the cardinalities of the
sets that are related through the multi-association link. A schema element designed
with this multiple representation pattern has at least two representations that can
differ in their viewpoints and resolutions, where the viewpoint describes user needs,
and the resolution specifies the level of details of the representation. These two com-
ponents define the perception stamp, i.e., perception stamps α and β would have
two fields < viewpoint, resolution >.

The non-exhaustive policy provides the structural patterns for the situation when
the designer wants to represent only the representative parts of the populations, i.e.,
in case of the intersection of the populations (Figure 3.16) there are three represen-
tative parts - the intersecting subpopulation and the two sub-populations proper to
the Pop(A) and Pop(B); in case of the inclusion, there are two representative sub-
populations - the intersecting population and the proper Pop(B) sub-population.
With this policy, the designer would compose an object type for each representative
sub-population.

The last integration policy that the schema designer may have in mind is a
maximal policy, i.e., to construct a most detailed integrated schema with a large
number of object and relationship elements. For such a policy, the designer can
apply the generalization-partition pattern. With such a structural solution, the
populations of both object types are preserved. In addition, the new subtypes of
the related populations are instantiated.

The structural patterns shown in Figure 3.17 are applied to the modeling con-
cept sets that are involved in the population correspondences. Schema designer

50 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

may decide to apply the same structural pattern within each schema population
correspondence and therefore he/she would follow the same policy for all the related
elements, or the designer can vary the patterns and possibly the policies for the
related elements. To illustrate structural solutions for different SC operators, we
will use a rectangle with doubled side lines to depict a MCS, which can be seen
as a complex object type. Pop(MCS1) stands for population of a given MCS with
a shorter form - Pop1. For the examples in the following sections we assume that
MSC1 is equal to the object type A from Figure 3.17, and the MSC2 is equal to the
object type B from the same figure.

Disjoint Populations. An example of the situation when conceptually same ob-
jects are modeled by similar schemas but the populations of these schemas are
disjoint could be cadastral planning made by different organizations for different
cadastral parcels (Figure 3.18). As seen from the figure, the elements to model

Figure 3.18: Cadastral plans.

are the same: roads, buildings, land parcels. We can assume that analyzing those
cadastral plans different designers would make similar schemas. This assumption is
strengthened by the fact that these two schemas would be designed with the same
purpose - cadastral management.

There are several schematic patterns that can be applied to integrate the element
of the schemas that belong to disjoint populations. Figure 3.19 shows two possible

MCS

 a

 b

 c

Fusion Attribute stamping

MCS

 : a

 : b

 : c
Pop1
stamp <vp1,res1>

Disjoint populations, i.e., no common instances

Pop2
stamp <vp2,res2>

Figure 3.19: Structural patterns for the disjoint operator between the
populations of the related modeling concept sets.

structural solutions: fusion and perception varying type. In both cases the two

3.4. INTEGRATION METHODOLOGY 51

populations, Pop1 and Pop2 are merged, and the object types shown in Figure 3.19
model a population that consists of the Pop1 and the Pop2. In the case of disjoint
populations the impact of the application of either of these structural patterns is
identical, i.e., we can distinguish between elements originated from Pop1 or Pop2

either by a stamp or by a null value of one of the attributes. If the value of the
attribute a is null, then the instance is from Pop2 similarly, if the value of the
attribute b is null then the instance is from the Pop1. If now we consider the
pattern with the attribute stamping, we would follow the same reasoning, i.e., if we
are looking for the elements with the stamp α from the Pop1 , then the attribute
b will not be accessible and vice-versa for the elements with the stamp β. Other
patterns (cf. Figure 3.17) are not applicable because there are no common instances
in two populations.

As we mentioned earlier, the operator for the population correspondence could be
a hypothesis and, in the case when the schema designer disposes a weak knowledge
about the relationship between the populations, he/she should choose the disjoint
operator as the initial hypotheses. This operator can be made more precise, i.e.,
changed to a a more explicit one like overlap, include, or equal, based on the property
correspondences and a comparison of the values of key attributes in the related
populations. We will show in Section. 3.4.2 what are the conditions for possible
operator precision.

Overlapping Populations. As an example of a situation with overlapping pop-
ulations we could consider our first motivating example (Figures 3.10 and 3.11)
with two schemas made by a park administration of a city and by a road network
administration of the same city. Figure 3.20 illustrates this example by showing a

Figure 3.20: A fragment of Lausanne city map.

fragment of the city map of Lausanne, where different real world objects are of inter-
est for two different city administrations. The park administration is interested in
the green plantations within the city area as well the bordering objects, like roads or
built-up areas. The road administration models in details the road network elements
as well as adjacent objects. These adjacent objects can be parks, rivers, built-up

52 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

areas. Both administrations model real world elements geographically located in
the same area - the city, thus, the populations of the schemas designed by these
two administrations have some common instances that make schema populations
overlapping.

With the overlapping populations, i.e, the ∩ sign in the SC expression, the
designer may follow any of the policies and may apply any of the patterns shown
in Figure 3.17. Figure 3.21 illustrates which patterns should be applied to produce
different representation of the integrated population. Following the possible policies,

MCS

 a

 b

 c

Fusion Attribute stamping

MCS

 : a

 : b

 : c

Pop1
stamp <vp1,res1>

Overlapping populations, i.e, some common instances

Pop2
stamp <vp2,res2>

Pop2-Pop1

Pop1 Pop2

Pop1-Pop2

Pop1
stamp <vp1,res1> Pop2

stamp <vp2,res2>

Pop1 Pop2

MCS2

 b

 c

MCS

MCS1

 a

 c

Generalisation-partition

correspond
0:1MCS1

 : a

 : c

MCS2

 : b

 : c

0:1

 Multiple representation with inter-representation association.

a.

b.

c.

Figure 3.21: Structural patterns for the intersection operator between the
populations of related modeling concept sets.

the first solution (Figure 3.21.a) is to produce a minimal schema element as the
result of the integration procedure. For this the schema designer would apply the
fusion or the attribute stamping pattern. Contrary to the previous situation with
disjoint populations, here the result of the application of these patterns is different.
Under the fusion pattern, for the instances that belong to both populations we would
not be able to keep the information from which population that particular instance
originates. With the attribute stamping pattern, this information will be kept in the
integrated schema element. Another difference from the previous case with disjoint
populations, is that for the overlapping (sub)populations it is necessary to state
identical instances and eliminate duplicate values. For this last task the matching
rules are employed, we describe the matching rules in Section 3.4.2.

If the designer chooses to adhere to the maximal policy then as shown in Fig-
ure 3.21.b, he/she should apply the generalization-partition pattern. This pattern

3.4. INTEGRATION METHODOLOGY 53

explicitly defines the population that consists of the instances represented in both
populations, and two subtypes that represent the instances belonging only to one of
the populations. This pattern exploits the multi-inheritance paradigm of the MADS
data model. Similarly to the previous pattern, under the generalization-partition
pattern the matching rules are used to delimit the overlapping (sub)populations.
We should as well note that in the case of fusion of (sub)populations, e.g., applying
the generalization-partition or fusion pattern, the integrity constraint imposed on
the source schemas needed to be considered in order to produce a consistent inte-
grated schema. In Section 3.4.3 we present our vision on the role of the integrity
constraints in the integration process.

For the last, preservation, policy the structural solution is multiple representa-
tion with the inter-representation association with the cardinalities {0:1,0:1} (Figure
3.21.c), where the schema elements are stamped with the perception stamps α and
β, the association is stamped with both perception stamps. Such a representation
allows for keeping the initial populations, it does not require integrity check. Match-
ing rules can be added to such a schema element as auxiliary information to facilitate
user queries retrieving identical elements in both populations.

Inclusion of the Populations. An example of the inclusion of the populations
could be schemas that model the areas that are geographically included, i.e., a
canton and a country that contain this canton, or a district of a town and the whole
town. Possible structural solutions in the case of inclusion of the populations are
shown in Figure 3.22.

As in the case with disjoint populations, the first two structural patterns are
equal (Figure 3.22.a), i.e., with or without stamping we can distinguish the origin
of an instance. With the fusion pattern applied, those instances that have all three
attributes defined are the instances of both populations, and since the Pop2 is entirely
included in the Pop1 the former one can be entirely reconstructed from the integrated
representation. The generalization-partition pattern (Figure 3.22.b) in the case of
inclusion of the populations is reduced to one supertype with one subtype, where
the population of the subtype is equal to the the Pop2 instances with one inherited
attribute a from Pop1. For last policy, preservation, the structural pattern is shown
in Figure 3.22.c. Inclusion of the populations is stated by the cardinalities of the
association with the the cardinality for the included population is {1:1}, and for the
inclusive one the cardinality is {0:1}.

As it is seen from this and previous figures, there are two general approaches: to
divide the populations and provide separated models for different representations, or
to fuse them. The mining that would be done for a solution with fused populations,
either for a complete fusion or with the overlapped population fusion, is the same.
By the mining here we mean the discovery of the mappings between the attributes,
selection of the key attribute mappings among those, and the validation of the
mappings. Once these correspondences are stated and validated the computational
time to discover the identical instances by comparing the key attribute values, can

54 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

MCS

 a

 b

 c

Fusion Attribute stamping

MCS

 : a

 : b

 : c

Pop1

stamp <vp1,res1>

Inclusion of one population, i.e, all instances from one population

are represented as well in another.

Pop2

stamp <vp2,res2>

Pop1 Pop2

Pop1-Pop2

Pop1

stamp <vp1,res1>

Pop2

stamp <vp2,res2>

Pop1 Pop2

MCS1

 a

 c

MCS

 b

Generalisation-partition

correspond
0:1MCS1

 : a

 : c

MCS2

 : b

 : c

1:1

 Multiple representation with inter-representation association.

a.

b.

c.

Figure 3.22: Structural patterns for the inclusion operator between the
populations of related modeling concept sets.

be neglected. Thus, from the point of view of the complexity and the soundness of
the mapping discovery, all patterns with partial or complete fusion require the same
analysis.

Equality of the Populations. The equality of the population can be seen as the
extreme degree of overlapping of two populations, in comparison with disjointness,
intersection, and inclusion of the populations. In the case of the equality of the
populations, all instances are represented in both schemas. An example for such a
situation could be schemas made by two companies - competitors for a cadastral
management system for the same city or country.

Figure 3.23 shows the structural patterns for different policies that are applicable
in the case of equal populations. With the equal populations the structural solutions
can be total fusion or multiple representation. With the fusion or attribute stamping
pattern, in the result representation, all the instances would have all the attribute
with non-null values. In the multiple representation pattern, the cardinalities of
the association become {1:1} for both populations. The generalization-partition
pattern on the equal populations results in exactly the same representation as al-
ready obtained with the fusion pattern.

The set of structural patterns that we use for different policies is not exhaustive,
there are more possible patterns defined in [Dup94]. One of such patterns, partition

3.4. INTEGRATION METHODOLOGY 55

MCS

 a

 b

 c

Fusion Attribute stamping

MCS

 : a

 : b

 : c

Pop1

stamp <vp1,res1>

Equality of one population, i.e, all instances are represented in both

populations.

Pop2

stamp <vp2,res2>

Pop1

stamp <vp1,res1>

Pop2

stamp <vp2,res2>
correspond

1:1MCS1

 : a

 : c

MCS2

 : b

 : c

1:1

 Multiple representation with inter-representation association.

a.

b.

Figure 3.23: Structural patterns for the equality operator between the
populations of related modeling concept sets.

with multiple specifications, is shown in Figure 3.24. We had selected the patterns
for different policies keeping in mind two goals: to let the schema designer to have
all possible representations in the final integrated schema, and not to overburden
the choice of the designer. With the structural patterns shown in Figure 3.17, the
schema designer can construct any of the patterns listed in [Dup94]. As an example,
the structural pattern shown in Figure 3.24, is the generalization-partition pattern
without the generalized entity type. Additionally we have classified the patterns by
four policies thus narrowing the choice for the designer.

Pop2-Pop1

Pop1 Pop2

Pop1-Pop2

MCS2

 b

 c

MCSint

MCS1

 a

 c

Partition – multiple spesification

MCS1 MCS2

Pop1 Pop2 Pop2-Pop1Pop1-Pop2

Pop2Pop1

Figure 3.24: Another structural pattern: partition multiple specification.

As it was mentioned above, any solution that contains an entity type or MCS that
involves fusion of the populations, even a partial fusion, is equally computationally
complex to the total fusion solution which is the simpliest from the structural point
of view. By structural simplicity we mean the number of conceptual primitives used
for modeling, and the cardinality of the set of integrity constraints associated with
the representation. The number of mapping rules which defines the computation
complexity for a representation, would be the same in both cases, i.e., total or partial
fusion. The structural pattern that should be applied depends on the goals of inte-
gration and envisioned federated system functionality and data usage. Let us now

56 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

consider our motivating example and see what are the population correspondences
that exist between the two schemas from Figures 3.10 and 3.11.

Example. Population correspondences between the schemas shown in Figure 3.10
and 3.11 exist between crossroads, e.g., RoundAbout and RoundCross entity types;
and roads modeled as Roads entity types. The SCs are the following:

S1.RoundAbout ⊂ S2.RoundCross;
S1.Road ⊂ S2.Road;

Here we use the ⊂ operator, because population of S1.RoundAbout is only those
round crossroads that contain a flower bed inside, whereas population of S2.Round
Cross is all the round crossroads in the city. The same is true for road sections
modeled by the schemas, i.e., in the schema S1 the population of the object type
Road are the roads adjacent to some green plantations, whereas in schema S1 all
roads within the city are modeled.

According to the correspondences between the populations, the schema designer
has several structural patterns at his disposal, those are the patterns shown in Fig-
ure 3.22. Now, for two sets of related populations, the designer should state the
attribute correspondences. The structural pattern cannot be chosen based only
upon the correspondence between populations, the next essential factor is the in-
tegrability of the related populations. In other words, the possibility to state the
correspondences between the descriptions (attributes) of the related populations. In
the set of ICAs there are two types of correspondences that we call Property seman-
tic Correspondences and Matching Rules that are meant to assess ’integrability’ of
the schemas. ¦

Property semantic Correspondences.

With the Property semantic Correspondences the schema designer states the map-
pings between different representations for same instances. These correspondences
are formulated for all the types of the Schema population Correspondences includ-
ing disjoint, because the PCs relate conceptual representations of the objects. The
alphabet of the language for the PCs consists of the attribute names of the concep-
tual primitives that compose the MCSs involved in the SCs, in other words, the PCs
unfold the SCs expressions.

The language for property semantic correspondences denoted as LPC is defined
as follows:

LPC = {VPC ,OPC ,FPC}, with the syntax

[Function]AttributePath Operator [Function]AttributePath;

where VPC is a set of attribute paths. An attribute path is composed of the name

3.4. INTEGRATION METHODOLOGY 57

of a schema, the name of an entity or relationship types, and the attribute name.
The set of OPC includes the mathematical equality sign - = - for attributes having
comparable domain type; the sign for a mapping table -↔ - this mapping or look-up
table is user-defined; the set of spatial relationships - gt , gt , e , gt , gt , w -
that are used to relate the spatial extensions of the schemas; and the set of temporal
relationships - , , , , , , - to relate the timestamped elements
of the schemas.

The set of the Property semantic Correspondences is complete if for all the SCs
stated for the source schemas, all the pairs of elements (attributes) of MCSs involved,
are examined for the existence of a PC between them. In other words, the set of PCs
for related populations contains all the attributes that are found/stated as related.
Among the PCs there are mappings between the key attributes on one or several
MADS dimensions. These key mappings compose the set of matching rules that are
described in the next subsection.

Example. For our example schemas there are PCs that are caused by existence of
SC, and there are those that are due to overlay of the location or time dependence
of the objects modeled by the schemas.

S1.RoundAbout.Roads = S2.Road.Name;
S1.Road

w S2.RoadSection;
S1.FlowerBed gt S2.RoundCross;
S1.Park S2.RoundCross;

The last two PCs illustrate the situation when there is no population link between
two object types but there is a link between spatial and temporal attributes of these
entity types. This is an application specific information and it cannot be deduced
by any mapping discovery method. Spatial relationship between the FlowerBed and
the RoundCross indicates that a flower bed can lay inside a round about. The condi-
tion under which this assertion is true is defined by a corresponding matching rule
shown in the example hereafter. The last temporal relationship would correspond to
a situation when the road administration for security reasons decides to reconstruct
a park surrounded by roads to a round about, as less dangerous then the previous
layout or a crossroad. ¦

Matching Rules.

The Matching Rules are the rules that state the correspondences between instances
that are represented differently in source schemas. These rules involve identifier
attributes.

The language for matching rules denoted as LMR is defined as follows:

58 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

LMR = {VMR,OMR,FMR}, with the syntax

[Function]AttributePath Operator [Function]AttributePath;

where VMR is a set of key attribute paths, where a key attribute can be a primary
key or other attribute uniquely identifying instances. OMR is one of the following
equivalence operators including spatial and temporal equivalence {=,↔, w , } ;
FMR is a set of user-defined functions. On the level of the language alphabet and
the set of operators, the LMR is the subset of the LPC .

Example. The MRs corresponding to the PCs are the following:

S1.RoundAbout.RANum ↔ S2.RoundCross.RouCId;
S1.Road

w S2.RoadSection;
S1.InsideRA.RANum ↔ S2.RoundCross.RouCId;
S1.Park

w S2.RoundCross;

For Roads from S1 and RoadSections from S2 we do not have any other means
for matching instances than to compare their geometry. The last relationship says
that if the geometry of a park is equal to that of a round crossroad, then, accord-
ing to the PCS stated for temporal attributes of these two instances, the park was
reconstructed to the round crossroad.¦

Till now we have presented the languages for the inter-schema mappings, with
those languages the schema designer can state the correspondences between the pop-
ulations of the related modeling concept sets, the mappings between the attributes
including the spatial and temporal extensions of the MADS model. The correspon-
dences stated during this phase of the integration process are thus of two types:
extensional and intentional as defined in [CL93]. The extensional correspondences
that we employ in our methods are the same as in [CL93], but the set of operators for
intentional correspondences is much larger since we provide the mappings between
the attributes in three dimensions: structural, spatial, and temporal. The whole set
of semantic correspondences is needed to be proven complete so it could be used on
the next phase of the integration process. The completeness proof will be demon-
strated in Section 5 using the translation of the correspondences in description logics
format.

We would like to note that the set of variable names for each type of the corre-
spondences is defined during the pre-integration phase, i.e., the names that are used
in the expressions are the object, relationship, and attribute names taken from the
MADS schemas. This set of names composes the alphabet of a particular integra-
tion process. We can consider this alphabet as constant since we do not add new
names but take all of them from the designed schemas. This last remark allows us

3.4. INTEGRATION METHODOLOGY 59

to complete the definition of the correspondences language by defining its alphabet,
syntax, and semantics.

3.4.3 Choosing a structural policy.

As we have demonstrated in the previous section, structural patterns that can be
applied to construct an integrated schema element are conditioned by the type of the
SC between the related populations and the integration policy the schema designer
chooses to adhere. According to the integration policy, the schema designer has sev-
eral potential choices for the structural solution for the integrated representation of
the related modeling concept sets. There are two composite operations that need to
be done within the phase of choosing the applicable structural pattern. The first one
is to choose a structural pattern from the possible ones; and the second is to verify
that the schema element integrity holds under this structural pattern. Application
of a structural pattern entails structural transformation of the initial representations
therefore, the integrity of the resulting representation must be verified before this
structural pattern will be proposed for the designer as a valid one. The question to
be answered is, whether this transformation would lead to violation of the integrity
constraints imposed on one or several schemas’ elements. The algorithm presented
in this section checks the integrity for each schema element produced with a poten-
tial structural pattern. If the planned structural transformation is not valid for the
given integrity constraints, then the integrity constraints are weakened if it is co-
herent with the integrated schema usage, or another structural solution is proposed,
and the check is run again.

Integrity Constraints.

The integrity constraints represent the rules of the application domain, thus com-
posing an integral part of the conceptual representation of the application data.
A conceptual data model that includes the ICs notion allows for capturing and
preserving of an additional significant part of the application semantics.

An integrity constraint (IC) is a phrase in a logical language with the alphabet
supplied be the schema element names. The schemas supply the following com-
pounds of the ICs:

• Constant symbols - object and association type names, attribute and method
names, domain types, e.g., Road, FlowerType, TimeStamped. We consider these
symbols as constant because in the ICs for a given schema only these and no
other names are used.

• Function symbols that are expressed as AttName(EntType). For mono-valued
attributes, a function results in a variable from the attribute domain, for multi-
valued attributes, the result is a set of values, e.g., Geometry(Road) = Line,

FlowerType(FlowerBed) = {5,4,3}.

60 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

• Predicate symbols that are expressed as RelName(EntType1,EntType2), or
MADSPredicate(EntType1, EntType2), e.g., Meet(CrossRoad, RoadSection).

Following is an example with object and association types from Figure 3.10, of an
integrity constraint that cannot be expressed with the MADS primitives, and thus
requires some additional formalism to be added to the data model. The constraints
are expressed in three languages:

• in the natural language: if the area of a flower bed is more than 5 m2, then
some of the flowers planted in it should be white roses with corresponding value
of the attribute FlowerType = 3;

• in a logic language: ∀x, x ∈ Pop(FlowerBed) ∧ Area(x) > 5 →
3 ∈ FlowerType(x);

• in two algebras:
selection[(Area > 5)∧
(selection[FlowerType = 3]FlowerType 6= ∅)]FlowerBed = ∅;
selection[(Area > 5)∧ ¬∃t ∈ FlowerType(t = 3)]FlowerBed = ∅;

The compatibility of ICs is analyzed if the object types under constraints are
involved in a SC and according to the chosen structural policy and pattern the
schema designer decides to fuse (totally or partially) the populations of the source
schemas. The component ICs must be studied to deduce a common, global ICs
guaranteeing its consistency.

Exists ? Compatible ?

FBNum
FlowerType

Flower
Bed

Planted DATE

INT
REAL FBNum

Flower

Planted
INT
REAL

IC scopes Can be inferred

Park

PNum
Type
Purpose
Clean

INT

FlowerType

Parc

Bed

DATE

DATE

PId
Type
Usage INT

REAL

Net

REAL
INT

INT
TINST

and imposed ?

Figure 3.25: IC compatibility verification.

Graphical representation of the compatibility procedure is shown in Figure 3.25,
this figure illustrates the validity check algorithm that is presented in the following
subsection. Let us assume that there are two object types Parc and Park with equal
populations. Following a minimal integration policy, the schema designer had chosen
to construct an integrated object type by applying the fusion pattern (cf. Figure
3.17). Each object type has its integrity constraints. Let us assume that there is an

3.4. INTEGRATION METHODOLOGY 61

Exists

PC(A.c,B.c) ?
Exists IC(A.c) ?

yes no
Valid

Compatibility

Verification

Exists IC(B.c) ?

Object A,

attribute

A.c

Object B,

attribute

B.c

noValid

Compatible ?

Derive the

common IC for

A.c and B.c

Valid

yes

yes

Pop(B) valid

against IC(A.c) ?

Choose the

IC(A.c) as the

common IC

Valid

no

yes

noNon valid

yes

Non validno

Start

Figure 3.26: Validation block diagram for two object types A and B with
a common attribute c.

integrity constraint imposed on the Parc.Type attribute. Then, the integrity check
procedure would first look whether there is a property semantic correspondence
defined for the same attribute; if it exists, for example PC(Parc.Type, Park.Type)
then the next check is whether there is an integrity constraint imposed on the
Park.Type. If such a constraint exists, i.e., IC(Park.Type), then the compatibility
check on IC(Parc.Type) and IC(Park.Type) is run. If two integrity constraints are
found compatible, then the common integrity constraint is derived based on the
initial constraints. If they are not compatible, then the designer should choose
another pattern. If, on the other hand, there is an attribute of Park object type that
is involved in a PC, but there is no integrity constraint imposed on it, the validity
procedure will check whether the integrity constraint IC(Parc.Type) could be imposed
on the Park.Type attribute and therefore, be proposed as the common integrity
constraint for the integrated representation of two attributes. The same analysis
is done for integrity constraints of all types, i.e, domain constraints, constraints
between several attributes of the same object types, and constraints between the
attributes of different object types.

A block diagram in Figure 3.26 shows the validation procedure for two attributes
A.c and B.c, we always use the same object types A and B from Figure 3.17. Such
a procedure is run for all pairs of the attributes of the object types involved in a
SC. If the result of all runs is valid, then the pattern chosen by the designer is valid,

62 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

and can be applied for the integrated representation of the related object types. In
the following subsection we present the algorithm which is run for every population
correspondence expression. This algorithm insures the completeness and validity of
the set of inter-schema mappings defined within a population correspondence. As
its part it implements the block diagram shown above.

Compatibility Verification Algorithm.

To finally decide upon the structural pattern to be applied in the integration of
related MCSs we need to assess the proposed solution or integrability of the MCSs
involved into population correspondences.

We propose the algorithm that uses the set of local integrity constraints and
inter-schema mappings to check the schema integrity. This algorithm details the
procedure shown in Figure 3.25. We let the following assumptions:

• assume two conceptual schemas S1 and S2 with two sets of local integrity
constraints ICS1 and ICS2 ;

• S1 and S2 are valid against their local integrity constraints;

• the two sets ICS1 and ICS2 are complete;

• in the following algorithm we will use the entity types A and B from Figure
3.17 as elements of schemas S1 and S2 respectively;

• we denote the set of Schema population Correspondences between MCSs A
and B2 as SCAB; the set of property semantic correspondences as PCAB;
integrity constraints are denoted according to the schema element they invoke,
for example, a set of ICs on the attribute c is denoted as ICc or ICc(S1.A.c)
to precise the element invoked. The elements of these sets are distinguished by
additional indexes, for example an element of the PCAB is denoted as PCABi

;

• the set of inter-schema correspondence assertions is complete.

algorithm:

1. the schema designer proposes a population correspondence and a set of
inter-schema mappings within it. Based on our assumption of the comp-
leteness and validity of the local integrity constraints, the complet-
eness and validity of the population correspondence and the inter-
schema mappings are to be checked, go to 2.

2. Completeness check. If there is a correspondence between populations
of two entity or relationship types then, all possible pairs of their
attributes are proposed to the user as potentially related, go to 3.

2here we use A and B to denote MCSs to simplify the notation of the algorithm.

3.4. INTEGRATION METHODOLOGY 63

3. Validity check.

3.1 assume exists a SCAB1 between entity type A and B expressed as
S1.A operatorSC S2.B

3.2 if the set of PCAB is empty then goto 5
3.3 else

3.4 while the set of PCAB is not empty do

assume exists a PCABi on the common for A and B attribute c
expressed as S1.A.c operatorPC S2.B.c

3.5 while the set of ICc is not empty do

assume that in S1 there is an ICcj on attribute c expressed as
ICcj (S1.A.c)

3.6 if exists an ICck
(S2.B.c) then

3.7 if ICcj (S1.A.c) and ICck
(S2.B.c) are compatible then

continue (i.e., iterate on ICc or PCAB)
3.8 else PCABi or SCAB1 is wrong, goto 1
3.9 endif

3.10 else propose an ICck
(S2.B.c) to the user based on SCAB1 and

PCABi

3.11 if the ICck
(S2.B.c) is valid according to user validation

then continue (i.e., iterate on ICc or PCAB)
3.12 else goto 3.8
3.13 endif endif

3.14 enddo enddo

3.15 endif

3.16 goto 4

4. Global integrity constraints ICglobal. Once the set of mappings is com-
plete and valid, global integrity constraints can be derived based on
the sets of local integrity constraints and the mappings.

4.1 if exists PCABi expressed as S1.A.c operatorPC S2.B.c and

ICcj (S1.A.c) and ICck
(S2.B.c) then

ICglobal = ICcj (S1.A.c) operatorIC ICck
(S2.B.c)

4.2 endif

where, operatorIC depends on the operatorSC, operatorPC, and the integ-
ration policy chosen. Recalling the policies presented in Figure 3.17
under the Fusion pattern, the operatorIC is ∪ because the set of att-
ributes of the entity type AB is the union of the attributes of A
and B; the Union pattern requires the ∩ as the operatorIC because the
set of attributes of A ∪B is the intersection of those of A and B.

5. For object, relationship types or attributes representing the same real
world entities, but modeled with incomparable assumptions, the user is
proposed to apply multiple representation pattern.

64 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

end algorithm

Considering the implementation of the completeness and validity checks, we will
present our approach in Section 5. To implement these checks we employed the de-
scription logics reasoning services that provide an inference mechanism to complete a
model and validation algorithms. The term model in description logics is equivalent
to the term schema in conceptual modeling. To be able to use the description logic
services we have implemented the MADS model primitives and the sample schemas
as a description logic model. We will detail on this implementation in Section 5.

Example. Using our example and assuming that we need to make an integrated
schema based on the two input schemas we can obtain significantly different results.
They depend on the purpose of usage of the integrated schema. If the integrated
view is created for park administration, we might keep minimal information about
the crossroads and the resulting entity type would be modeled as shown in Figure
3.27.a. This entity type is obtained with the fusion technique, with loss of infor-
mation, i.e., the spatial features are dropped; with loss of precision, i.e., now the
cardinality of the link between RoundAbout and FlowerBed is 0:1; and finally with
no precise way to reconstruct geometry of crossroads, i.e., geometry can be approx-
imately derived form the geometry of flower beds. But, still, such a representation
suits the user needs. If, on the other hand, the integrated schema would be used by

RouCId 1:1 Int

Name 1:1 Str

inside

a) fusion pattern
 applied

RecCId 1:1 Int

Name 1:1 Str

Cross
Road

 Rect

 Cross

 Round �
 Cross

FBNum 1:1 Str
FlowerType1:n Int
Last 1:1

RANum 1:1 Str

Name 1:1 Str

Roads 1:n Str

0:1

0:1

RoundAbout

FlowerBed �

RANum 1:1 Str

InsideRA

RouCId 1:1 Int

Name 1:1 Str

RecCId 1:1 Int

Name 1:1 Str

 Flowered �
 Cross

 NonFlowered �
 Cross

FBNum 1:1 Str
FlowerType1:n Int
Last 1:1

FlowerBed �

1:1

1:1

b) generalization-partition pattern applied

Figure 3.27: Integrated solutions obtained with different patterns.

road administration or for both the divisions, we might want to preserve all the infor-
mation and maybe enrich a resulting schema with new entity or relationship types.

3.4. INTEGRATION METHODOLOGY 65

Figure 3.27.b shows the result obtained with the generalization-partition technique.
Regarding the temporal PC between Park and RoundCross, it can be modeled with
additional temporal transition relationship between these entity types. We did not
present this type of relationship in the thesis, but it is supported in MADS data
model.¦

By the completion of this phase, choosing structural patterns, the designer of
the integrated schema has valid structural solutions for the related representations
assured by the algorithm above; associated integrity constraints; and mappings for
all related elements of the schemas provided by the completeness of the set of the
inter-schema mappings. The last phase of the integration method is to compose
the integrated schema using the structural patterns chosen for all related schema
elements.

3.4.4 Integrated schema composition

The last phase of the integration method is the Integrated schema composition. The
automatic generation of an integrated schema is feasible if all the following conditions
are fulfilled:

• the set of inter-schema mappings is complete;

• the structural patterns are valid against the integrity constraints of the data
sources;

• the proposed integrated schema is valid against the new integrity constraints
imposed by the structural transformations.

The first condition is ensured upon the completion of the ICAs formulation phase,
validity of the proposed federated schema is checked on the Choosing a structural
pattern phase. The steps to generate a final federated schema are:

• to agree on the vocabulary for the integrated schema. Several approaches
could be considered, one is to choose a main or trusted schema among the
local schemas and use the names from this schema. Another approach could
be to use a domain ontology or a thesaurus to resolve naming heterogeneity.
For instance, assume that there is a semantic correspondence:

S1.Green ≡ S2.PleasureGround;

meaning that the populations of the two entity types Green and PleasureGro-

und are the same, and according to the schematic transformations these two
entity types are to be merged; then the designer could chose one of these
names; or having a domain ontology or a thesaurus at hands (Figure 3.28),

66 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

Park

Pleasure Ground

Green

Figure 3.28: A fragment of a domain ontology.

find that these two terms are descendents of the term park, and would chose
the former to name the integrated entity type;

• to ensure a complementary semantic integrity check, so that the integrated
schema is consistent with the expert perception of the application domain.
Automatization on this step means that the expert knowledge is formalized
and there is a method to compare the schema against the expert knowledge.
This can be done by means of the domain ontology, i.e., the generalization
and specialization links of the schema should conform the domain ontology
hierarchy of terms;

• to formulate the schema in MADS XML and visualize it in the MADS schema
editor. There are two XML files to be constructed - a file containing the con-
ceptual representation of the resulting schema, and a file containing screen
location of the schema elements for the MADS editor. Both file can be con-
structed automatically. The conceptual part is constructed based on the re-
sults of structural transformations and mappings defined for the related schema
elements. The graphical part can be calculated as follows: each element of the
schema is assigned a rectangle on the screen of the MADS editor, the size of
that rectangle is an average size of a graphical element of the MADS editor.
Further, the user of the schema can correct the location of the elements on the
screen.

3.5 Chapter Summary

In this chapter we have presented the theoretical foundations for the integration
methodology for database schemas extended with spatial, temporal, and represen-
tational dimensions. The methodology is based on the conceptual model that fea-
tures all the above stated dimensions. The core part of our method is the set of
inter-schema correspondence assertions that includes population relationships, at-
tribute mappings, and integrity constraints. For all the types of the inter-schema
correspondence assertions we have defined the correspondence languages with their
alphabets, syntaxes and semantics. The languages exploit the expressive power of
the underlying data model and allows for mappings along all its dimensions. The
inter-schema mappings can be stated between the schema elements with traditional

3.5. CHAPTER SUMMARY 67

domains like integer or character, or with original for our methodology spatial and
temporal domains.

Evolving from the relationships between real world sets of related objects our
methodology takes into account the relativism of conceptual representation and
employs the notion of the multiple concept sets to allow a schema designer an extra
flexibility in expressing the inter-schema correspondence assertions. The notion of
conceptual relativism embedded in the integration methodology allows for resolving
of structural discrepancy in the schemas by means of the data model itself. It
partially liberates the schema designer from composing complex correspondence
expressions and makes the resulting mappings’ set more expressive. The usage of
the conceptual relativism notion is coherent with the overall idea of integration
because it supports the assumption on the existence of different perceptions of the
same real world phenomena.

In our methodology we guide the schema designer towards constructing the inte-
grated schema that corresponds to the application needs. We propose to the designer
several structural policies and patterns that result in different integrated schema el-
ements. The designer is not constrained to choose the same policy or pattern for all
related populations, instead for each population correspondence he/she can choose
the most adapted structural solution. The set of structural patterns defined for the
integration process guarantees that there is always at least one patterns that can be
applied to produce a valid integrated schema element.

As another original feature, our methodology includes the validation phase where
the set of the inter-schema correspondence assertions is checked for the consistency,
and the putative structural patterns are validated against the integrity constraints
imposed on the source schemas. In this chapter we proposed the validity check al-
gorithm. As the result of the algorithm execution, the schema designer obtains the
answer on whether a fusion and therefore an application of a corresponding struc-
tural pattern is possible with the given relationship between populations, and the
inter-schema correspondence assertions stated in the previous integration phases.
The implementation of the completeness and compatibility checks of the algorithm
entails the application of a formal reasoning methods, and therefore requires an-
other data modeling approach enhanced with the reasoning services. We present
our integration methodology implemented with the validation support in the next
chapter. To enhance our integration methodology we have chosen the description
logic based data model for its formally-founded reasoning support.

68 CHAPTER 3. ST DATABASE SCHEMAS’ INTEGRATION

Chapter 4

Validation: Theory

Why validate. In the previous chapter we have described the data model and the
integration methodology that we have designed for that model. The methodology
features four main phases where 1) source schemas are translated into the MADS
model; 2) the inter-schema mappings are expressed in the MADS correspondence
language; then, 3) based on the set of the inter-schema mappings and integrity con-
straints, the structural solutions for related parts of the schemas are proposed to the
designer; and finally, 4) the integrated schema is composed. For all of these phases
we have proposed the theoretical foundations including the syntax and semantics
for the inter-schema mapping languages and, a predefined set of structural patterns
for different set relations between source schema populations. The integration pro-
cess is not automatic: the source schemas are translated into the MADS model by
the schema designer, the inter-schema mappings are stated manually, as well as the
integrity constraints associated with the source schemas. Thus, our methodology
requires a verification mechanism for the totality of the expressions stated manually.

In our methodology we validate the source schemas against the data model; the
inter-schema mappings against the semantics of the data model and the syntax of
the correspondence language; the compatibility of the integrity constraints imposed
on the related populations. In this chapter we present a validation mechanism our
methodology is enhanced with. We show how and where the reasoning engine is
plugged into our integration methodology to perform validation. This validation
phase alters the key points in our integration methodology if compared to other
approaches. We shift the emphasis on automation from the a priori discovery to the
a posteriori checking of the inter-schema mappings. By doing this, we take advantage
of the expressive power of the common data model for the source schemas description
and inter-schema mappings definition.

We now show in Figure 4.1 our enhanced integration approach where every man-
ual phase is supported by a validation operation ensuring data model and language
compliance. For the phase 1), we aim to verify the validity of the expressions of
the source schemas in the MADS model. The MADS data model itself and the
source schemas with integrity constraints are translated into a DL based language

69

70 CHAPTER 4. VALIDATION: THEORY

Source schemas definition in

MADS model

Inter-schema mappings

definition

Source schemas and integrity

constraints definition in DL

Mappings translation into DL

Mappings validation with the

source schemas in DL

Proposition of schematic

patterns based on the valid set

of mappings

Validation of the set of integrity

constraints corresponding to

the schematic patterns

Selection of valid schematic

patterns for the integrated

solution

Composition of the integrated

schema

MADS model Description Logics (DL)

Phase 1

Phase 2

Phase 3

Phase 4

Figure 4.1: Integration phases.

and the satisfiability of the resulting translated DL model is checked. In phase 2),
inter-schema mappings are added to the DL model in terms of elements of the source
schemas and mapping operators [SMS02]. If the resulting model is found satisfiable,
then the mappings are data model compliant and there are no contradictory map-
pings. Several possible ways to construct the integrated schema are then presented
to the schema designer. During the phase 3) these putative structural solutions
are checked for compatibility with the integrity constraints imposed on the schema
elements that are to be integrated. A successful satisfiability check signifies that
the populations of the related schema elements can be merged. If this check fails,
only the structural solutions that model the populations separately are applicable.
The final decision on the choice of the structural solutions is up to the designer
and/or a domain expert. By composing our integration method of the phases de-
scribed above, we ensure that the schema designer has sufficient knowledge about
the compatibility of the source schemas, i.e., valid inter-schema mappings and valid
structural solutions to construct a final integrated schema.

4.1. VALIDATION IN ALCRP(D) 71

4.1 Validation in ALCRP(D)

Theoretically, we are looking for the best suited description logic(s) for modeling
spatial and temporal data. As presented in Section 2.4.1, there are expressive de-
scription logics that provide for modeling of spatial and temporal data. In this sec-
tion, we first give a formal definition of the role-forming predicate in ALCRP(D)
description logic found in [HLM99], and then describe an approach that we adopt
to combine two concrete domains to model spatio-temporal data. As in MADS,
for data representation in logic we aim at the orthogonal representation, where the
spatial, temporal, and multi-representation dimensions are independent.

4.1.1 Description Logic ALCRP(D)

The concept language ALCRP(D) is a descendant of the ALC(D) (introduced in
Section 2.4.2) and it incorporates concrete domains which are relevant to our goal
of modeling spatial and temporal information (the definition of the concrete domain
is given earlier in Section 2.4.3). The ALCRP(D) extends the ALC(D) with the
role-forming predicate operator to express complex topological relationships between
elements of the concrete domain D = (∆D, ΦD). The definition of the role-forming
predicate is as follows (from [HLM99]).

definition 2 Let R and F be disjoint sets of roles and feature names where fea-
tures (functional properties) relate abstract objects from ∆I to concrete objects from
∆D. Any element of R∪F is an atomic role term. A composition of features (writ-
ten f1f2 . . . fn) is called a feature chain. If P∈ ΦD is a predicate name with arity
n + m and u1, . . . , un as well as v1, . . . , vm are feature chains, then the expression
∃(u1, . . . , un)(v1, . . . , vm).P (role-forming predicate operator) is a complex role term.
Let S be a role name and let T be a role term. Then S

.
=T is a terminological axiom.

This type of terminological axiom is also called role definition.

The semantics of the role-forming predicate is as follows:

(∃(u1, . . . , un)(v1, . . . , vm).P)I =
{(a, b) ∈ ∆I ×∆I | ∃x1, . . . , xn, y1, . . . , ym ∈ ∆D :
(a, x1) ∈ uI1 ∧ . . . ∧ (a, xn) ∈ uIn∧
(b, y1) ∈ vI1 ∧ . . . ∧ (b, ym) ∈ vIm∧
(x1, . . . , xn, y1 . . . , ym) ∈ PD}

Together with the role-forming predicate semantics, in the following section we will
use terminological axioms. In the most general case, terminological axioms have the
form:

C v D (R v S) or C ≡ D (R ≡ S)

72 CHAPTER 4. VALIDATION: THEORY

where C and D are concepts (and R, S are roles). Axioms of the first kind are called
inclusions, while axioms of the second kind are called equalities. The role inclusion
axiom was introduced in Section 2.4.2. The semantics of the concept axioms is
defined as follows:

(C v D)I = CI ⊆ DI

(C ≡ D)I = CI = DI

Using the ALCRP(D) description logic we can define MADS object types as
ALCRP(D) concepts, MADS attributes and relationships as ALCRP(D) roles, and
use the concrete domains with concrete (complex) roles to define MADS topological
and synchronization relationships.

4.1.2 Spatio-Temporal Concrete Domain

As we presented in Section 2.4.3, the concrete domains that we want to exploit for
our validation phase are the spatial and temporal domains. As in MADS, we aim at
modeling independently the terminological, spatial and temporal phenomena in the
frame of the same formalism. Thus, we aim at exploiting a description logic with a
combined, spatio-temporal domain. Contrary to the approaches where several logics
are combined together, like in [KLWZ04], we want to use the ALCRP(D) with a
combined domain D = S2 ⊕ T . The decisive property for concrete domains to be
combined, is the admissibility of the domains. Thus, the precondition for the com-
bination of logics with spatial and temporal concrete domains, is the admissibility
of their domains. The definition of the admissibility of a domain from [BCM+03]:

definition 3 A concrete domain D is admissible iif (i) the set of predicate names
ΦD is closed under negation, i.e., for every predicate P ∈ ΦD there is a ¬P ∈
ΦD and (ii) ΦD contains a name >D for ∆D, and (iii) the satisfiability problem
P n1

1 (x11, . . . , x1n1)∧ . . .∧P nm
m (xm1, . . . , xmnm) is decidable (m is finite, P ni

i ∈ ΦD, ni

is the arity of the P , and xjk is a concrete object).

In a description logic with a concrete domain, the concrete domain is a parameter
to the DL, and as proposed in [Lut02], the sets of the abstract and concrete features
are kept disjoint for a clearer algorithmic treatment. Furthermore, as it is shown
in [BH91], any two admissible concrete domains D1 and D2 which have disjoint
domain sets ∆D1 and ∆D2 , can be combined into a new concrete domain D1 ⊕ D2

as follows: (1) The domain ∆D1⊕D2 is the union of ∆D1 and ∆D2 and (2) the set of
predicates ΦD1⊕D2 is set to ΦD1 ∪ΦD2 . In the sequel, we describe logics with spatial
and temporal extensions that are used in our methodology to model spatio-temporal
data.

In particular, an appropriate concrete domain S2 is defined for polygons using
RCC8 relations as basic predicates of concrete domain as shown in Figure 4.2 (disjoint
stands for the DC RCC8 relationship, touching for EC, s overlapping for PO, t inside

4.2. MADS SCHEMAS IN ALCRP(D) 73

(t contains) for TPP, s inside (s contains) for NTPP, and equal for EQ). In [HLM99] it
is shown that the concrete domain S2 is admissible. Condition (i) of the admissibility
of the domain S2 is held the set of the RCC8 relationships is closed under negation.

aba b a b
a

b

a

b
a

b

disjoint touching s_overlapping t_contains
t_inside

s_contains
s_inside

equal

Figure 4.2: Topological relationships.

For temporal aspect, the concrete domain T is a set of time intervals and the
13 Allen relationships before (<(i,j)), after (>(i,j)), meets (m(i,j)), met-by (mi(i,j)),
overlaps (o(i,j)), overlapped-by (oi(i,j)), starts (b(i,j)), started-by (bi(i,j)), during
(d(i,j)), contains (di(i,j)), finishes (f(i,j)), finished-by (fi(i,j)), equal (=(i,j)), are used
as basic predicates describing the relationships between intervals. The combination
of S2 and T , S2 ⊕ T , defines a spatio-temporal concrete domain.

Thus, we now can exploit the ALCRP(S2 ⊕ T) expressive power to describe
source spatio-temporal schemas and inter-schema mappings.

4.2 MADS schemas in ALCRP(D)

4.2.1 Spatio-temporal features

Using ALCRP(S2 ⊕ T), we can define a concept that has a geometry with a spe-
cific concrete spatial role called hasArea. Further, using the hasArea feature, we can
specify topological relationships between spatial concepts. To define a concept as
a temporal concept we can use a specific concrete temporal role called hasDuration.
Depending on the cardinality of the role hasDuration it models different MADS tem-
poral types (cf. Figure 3.5), i.e., simple time with the cardinality 1:1, complex time
with the cardinality 1:n. Through this role, temporal relationships between concepts
can then be defined. For example, elements of the schema T1 in Figure 3.12 can be
described as follows.

A city has a name, it is decomposed in districts and it runs transport means:
City v ∀Name.String

u∀run.TransportMean ;

A tourist place has a name, it is a spatio-temporal object thus, it has a geome-
try and a temporality which are respectively specified by the concrete roles hasArea
of the domain Polygon and hasDuration of the domain Interval:

TouristPlace v ∀Name.String

74 CHAPTER 4. VALIDATION: THEORY

u∃hasArea.Polygon
u∃hasDuration.Interval ;

Museums are tourist places:
Museum v TouristPlace ;

Monuments are tourist places having a specific feature expressing their style, with
the cardinality stating that a monument has exactly one style:

Monument v TouristPlace
u∀Style.String

The object types City, Museum, Monument, TouristPlace, District, and Transport-
Mean are modeled as abstract concepts; the relationships decomposedIn, run, and
attributes Name, and Style are modeled as roles.

To define museums that are spatially connected to some monuments and whose
opening times overlap, we first define a spatial predicate connected (a and b are
two spatial instances) as the disjunction of elementary predicates, a spatial role spa-
tial connected based on the previously defined connected predicate, and a temporal
role duration overlaps. The role spatial connected (respectively duration overlaps) may
be used to link couples of objects whose spatiality (respectively life-cycle) satisfy the
connected (respectively overlaps) predicate. Then with these roles, we define such
museums, MuseumMonument, as follows:

connected(a, b)
.
= touching(a, b) ∨ s overlapping(a, b) ∨ t contains(a, b)

∨t inside(a, b) ∨ s contains(a, b) ∨ s inside(a, b) ∨ equal(a, b) ;
spatial connected

.
= ∃(hasArea)(hasArea).connected ;

duration overlaps
.
= ∃(hasDuration)(hasDuration).overlaps ;

MuseumMonument v Museum
u∃spatial connected.Monument
u∃duration overlaps.Monument ;

These descriptions combine not only abstract and concrete objects but also the
spatial and temporal concrete domains. This aspect ensures that reasoning can be
achieved according to the intended semantics of spatio-temporal objects.

4.2.2 Inter-schema mappings

The inter-schema mappings are initially formulated in the MADS language, for de-
tails of the language the interested reader is referred to Section 3.4. We distinguish
several types of MADS inter-schema mappings. Firstly, there are mappings that
express the relationships between populations of schema elements that are inten-
tionally related. We use terms intentionally and extensionally in the same sense

4.2. MADS SCHEMAS IN ALCRP(D) 75

ba a b

a

b a

b

disjoint
 a b

intersect
c a b

Include
 a b

equal
a b

Figure 4.3: Population relationships and corresponding DL expressions.

as in [CL93], i.e., intentionally related object types share the schema level repre-
sentation; extensionally related object types share parts of their populations. We
call these mappings Schema population Correspondences or SCs. For the population
correspondences we apply the set operators shown in Figure 4.3. Intuitively, if an
SC is asserted, then an intentional correspondence is assumed, and the extensional
correspondence is defined by the SC operator. If the operator is disjoint, then there
are no common instances in the two populations, thus the set of the inter-schema
mappings only describes the intentional correspondences.

Further, the set of Property semantic Correspondences (PCs) details correspon-
dences between the descriptions of the schema elements involved in an SC. By the
description we assume the set of attributes, including identifiers. Again, depending
on the SC operator, the set of the PCs describes either the intentional correspon-
dences (case of the disjoint operator), or both intentional and extensional correspon-
dences. As the attributes and relationships in MADS can have spatial/topological
and(or) temporal/synchronization semantics, the set of PC operators includes spa-
tial operators (Figure 4.2) and a subset of Allen operators detailed in Section 2.4.1.
PCs that involve identifier attributes are called Matching Rules or MRs. In case of a
non-disjoint operator in the SC, the MRs are used to match identical instances. This
set of mappings, formulated for all intentionally and extensionally related schema
elements is then used for defining possible schematic patterns for an integrated
schema.

Schema population Correspondences.

Hereafter we use the two schemas, T1 and T2 from Figures 3.12 and 3.13 respectively
to illustrate the integration process. Analyzing the description of the two schemas
that is found in Section 3.3, the schema designer deduces that the populations of the
object types TouristPlaceT1 and TouristSiteT2 are not disjoint as we assume some mu-
seums and monuments are represented in both databases. The type of the relation-
ship between these object types is intersection because the subtypes of TouristSiteT2 ,
Theater and Walk, are not modeled in T1. And, there is a subtype of TouristPlaceT1

for which there is no corresponding subtype in TouristSiteT2 , i.e., the Curiosity sub-
type. The DL expression stating the SC as an the intersection of the populations of
TouristPlaceT1 and TouristSiteT2 is TouristPlaceT1 u TouristSiteT2 . The populations of
MuseumT1 and MuseumT2 , MonumentT1 and MonumentT2 are included in each other,
i.e., in description logics - MuseumT2 v MuseumT1 , and MonumentT2 v MonumentT1 .

76 CHAPTER 4. VALIDATION: THEORY

Property semantic Correspondences and Matching Rules.

With the Property semantic Correspondences (PCs), the schema designer states
the relationships between different representations (or part of representations) of
the intentionally or extensionally same object and relationship types. Thus, these
correspondences are formulated for all the types of the Schema population Corre-
spondences (SCs) including disjoint ones. The alphabet of the language for the PCs
consists of the attribute names of the schema elements involved in the SCs, in other
words, the PCs unfold the SCs expressions. We have presented in detail the syn-
tax and semantics of the property semantic correspondences and matching rules in
Section 3.4.

Here we adopt the notation introduced in [HLM99], thus the temporality (life-
cycle) of an object is translated into DL by the hasDuration property and, the spa-
tiality by using the hasArea property. We assume that museums in T1 have the role
hasDuration that models their temporality; in T2, the object type Museum has a
temporal attribute openTime thus, in T2, the museums have a role openTime whose
domain is a temporal domain. Let us assume that these two different modeling
solutions are meant to represent the same fact: a museum opening time. With such
an assumption, the solution in the schema T1 is less appropriate because the life-
cycle of a museum does not bear the same semantics as the opening time for the
same museum. To express the constraint that says that openTimeT2 of MuseumT2 is
temporally equal to the temporality of MuseumT1 we first have to define two roles
based on temporal predicates as in [HLM99] :

museum equal1
.
= ∃(openTimeT2)(hasDuration).equal ;

museum equal2
.
= ∃(hasDuration)(openTimeT2).equal ;

Then the constraint is defined as:

(MuseumT2 uMuseumT1) v (∃museum equal2.MuseumT2u
∃museum equal1.MuseumT1) ;

To express spatial equality of TouristPlaceT1 and TouristSiteT2 - both object types
have spatial extensions, we state the following expression in DL:

area equal
.
= ∃(hasArea)(hasArea).equal ;

(TouristPlaceT1 u TouristSiteT2) v
(∃area equal.TouristPlaceT1 u ∃area equal.TouristSiteT2) ;

The rest of the PCs for attributes of TouristPlaceT1 and TouristSiteT1 are:

monument equal1
.
= ∃(hasDuration)(constructT2).equal ;

monument equal2
.
= ∃(constructT2)(hasDuration).equal ;

MonumentT2 uMonumentT1 v ∃monument equal2.MonumentT2u
∃monument equal1.MonumentT1 ;

∀districtT2 .TouristSiteT2 v ∀nameT1 .CityBoroughT1 ;

∀nameT2 .TouristSiteT2 v ∀nameT1 .TouristPlaceT1 ;

4.2. MADS SCHEMAS IN ALCRP(D) 77

The set of the PCs is complete if for all the SCs stated for the source schemas,
all the pairs of elements (attributes) of object and relationship types involved, are
examined for the existence of a PC between them. In Section 3.4, we have proposed
the completeness check algorithm, which now can be performed by the DL reasoning
service. To complete the set of PCs that are initially proposed by the integrated
schema designer, an additional set based on the source schema descriptions and
the set of the inter-schema mappings, is inferred by the reasoner. Completeness
of reasoning means in this context that no valid deduction is left out by the infer-
ence engine. In the complete set of the PCs the designer can now state a subset
called Matching Rules (MRs). The MRs are the rules that state the correspondences
between instances that are represented differently in source schemas. These rules
involve identifier attributes. Matching rules are useful in order to find corresponding
instances during the data integration process. For our example, the MRs between
TouristPlaceT1 and TouristSiteT2 are those involving NameT2 , NameT1 attributes and
the spatiality of the object types.

TouristPlaceT1 u TouristSiteT2 v
∃area equal.TouristPlaceT1 u ∃area equal.TouristPlaceT2 ;

∀NameT2 .TouristSiteT2 v ∀NameT1 .TouristPlace ;

Validation in DL.

As it was mentioned above, we use DL reasoning services to check the satisfiability
of our DL model, i.e., the compatibility of the two source schemas, and the set of
inter-schema mappings expressed in DL. If our model is found to be unsatisfiable,
then the set of the inter-schema mappings should be reconsidered for unsatisfied
objects (Phase 2 in Figure 4.1). Unsatisfiability means that there are some concepts
that describe an empty set of instances. For our example an unsatisfiable model
would be detected for the following set of definitions:
Stops in StopT1 are spatially connected to bus lines in BusLineT1 ’s:

stopServesT1

.
= ∃(hasArea)(hasArea).s contains ;

StopT1 v ∃stopServesT1 .BusLineT1 ;

Stops in StopT2 are spatially connected to transport lines in TransportLineT2 ’s:

alongT2

.
= ∃(hasArea)(hasArea).s contains ;

StopT2 v ∃alongT2 .TransportLineT2 ;

Some stops are represented in both databases described by T1 and T2:

StopT1 v StopT2 ;

There is no transport line in TransportLineT2 that is spatially connected to a bus

78 CHAPTER 4. VALIDATION: THEORY

line in BusLineT1 :
area disjoint

.
= ∃(hasArea)(hasArea).disjoint ;

TransportLineT2 v ∃area disjoint.BusLineT1 ;

This model is invalidated by the reasoner based on the following inferences: firstly,
since BusLine and Stop from schema T1 are spatially connected then, TransportLine
and Stop from schema T2 are also spatially connected. Furthermore, some Stops
from T1 and T2 are the same, and consequently, some of the BusLineT1 are spatially
connected to TransportLineT2 . This last deduction of the reasoner contradicts the
last expression of the model above.

Upon completion of this phase, the schema designer has in hand a complete and
valid set of inter-schema mappings. We are now able to define a set of possible
structural solutions for the integrated schema from the Schema population Corre-
spondences. In the next phase (Phase 3 in Figure 4.1), different schematic patterns
are validated against the compatibility of integrity constraints for the integrated
solutions.

4.2.3 Structural solution for the integrated schema

As we have presented in Section 3.4.2, proposed schematic patterns for the inte-
grated schema suggest application of a particular structural transformation of the
schema elements involved in the inter-schema mappings (cf. Figure 3.17 in Sec-
tion 3.4.2). These structural transformations should be validated for the integrity
of the resulting schema. The question to be answered is, whether these transfor-
mations would lead to a violation of the integrity constraints imposed on one or
several schemas’ elements. If the planned structural transformation is not valid for
the given integrity constraints, then the integrity constraints are weakened, or an-
other structural solution is proposed, and the check is run again. To ensure the
meaningful integrated solution even for the cases of greatly diverse representations
of related data we employ the multi-perception solution consistently preserving the
initial representations on the integrated level.

In the following sections we consider the integration of two object types, Tourist
PlaceT1 , and TouristSiteT2 . We assume the following set of correspondences is stated
(as explained in Section 4.2.2):

area equal
.
= ∃(hasArea)(hasArea).equal ;

museum equal1
.
= ∃(openTimeT2)(hasDuration).equal ;

museum equal2
.
= ∃(hasDuration)(openTimeT2).equal ;

monument equal1
.
= ∃(hasDuration)(constructT2).equal ;

monument equal2
.
= ∃(constructT2)(hasDuration).equal;

Schema population correspondences:
(1) SharedTouristSite v TouristPlaceT1 u TouristSiteT2 ;
(2) MuseumT2 v MuseumT1 ;

4.2. MADS SCHEMAS IN ALCRP(D) 79

(3) MonumentT2 v MonumentT1 ;

Property semantic correspondences:
(4) MuseumT2 uMuseumT1 v ∃museum equal2.MuseumT2u

∃museum equal1.MuseumT1 ;

(5) MonumentT2 uMonumentT1 v ∃monument equal2.MonumentT2u
∃monument equal1.MonumentT1 ;

(6) ∀districtT2 .TouristSiteT2 v ∀nameT1 .CityBoroughT1 ;

Matching Rules:
(7) TouristPlaceT1 u TouristSiteT2 v ∃area equal.TouristPlaceT1u

∃area equal.TouristSiteT2 ;

(8) ∀nameT2 .TouristSiteT2 v ∀nameT1 .TouristPlaceT1 ;

Schematic Patterns.

The set of possible schematic patterns depends on the type of the SCs between
the related representations. As we described in Section 3.4, from the spectrum of
the structural patterns [Dup94], the integrated schema designer is provided with
several patterns for validation. These patterns are applied depending on the policy
chosen by the designer (cf. Section 3.4.2): fusion - the one resulting in the lowest
number of schema elements for the integrated schema; generalization-partition - the
one that produces the most detailed integrated schema; and two types of multi-
representations that relate source schemas without changing their structures. For
our example schemas, the population correspondence on TouristSite and TouristPlace
is intersect (as per assertion (1)), and hence the designer is provided with all four
patterns. The set of available patterns would be different for different operators in
the population correspondence expression. For example, with the disjoint operator,
the generalization-partition pattern is excluded as its application requires common
instances in related populations.

The first solution (Figure 4.4.a) is to extract the overlapping part of the pop-
ulations and model it as the subtype of the two source populations. This pol-
icy uses the multi-inheritance paradigm of the MADS data model. This pattern
is called generalization-partition. With this structural pattern, the population
of the SharedTouristSiteTint

is TouristPlaceT1 u TouristSiteT2 . The population of the
SharedTouristSiteTint

are those tourist sites (only of subtypes Museum and Monument)
that are close to a public transport stop, i.e., accessible by the public transport.

According to the schema population correspondences (1), (2) and (3), we have an
integrated representation for common entities SharedMonument and SharedMuseum
for schemas T1 and T2. The subtype Curiosity (as well as Theatre and Walk) is not
present as a subtype of SharedTouristSiteTint

because there are no entities of this type
neither in CuriosityT1 u TouristSiteT2 nor in the TouristSiteT2u ¬CuriosityT1 .

80 CHAPTER 4. VALIDATION: THEORY

Museum

Description 1:1 Str

Exhibition 0:n Str

OpenTime 1:n §

TouristSite �

Name 1:1 Str

Monument

Devotion 1:1 Str

Material 1:1 Str

Construct 1:1 §
Style 1:1 Str

Theatre

Buildings 1:n Str

Troupe 1:n Str

Season 1:n §

Walk �

Season 1:4 Str

Curiosity 1:n Str

Difficulty 1:1 Str

Start 1:1 •

Curiosity §

Name 1:1 Str

cover

T2

T1

T2 T1

§ TouristPlace �

Monument

Style 1:1 Str

TouristSite �

Theatre

Buildings 1:n Str

Troupe 1:n Str

Season 1:n §

Walk �

Season 1:4 Str

Curiosity 1:n Str

Difficulty 1:1 Str

Start 1:1 •

a)

b) locatedIn �
District �

Name 1:n Str
1:n 0:n

locatedIn �

District �

Name 1:1 Str

1:n

0:n

Curiosity

Museum

Shared
TouristSite �

Name 1:1 Str

SharedMuseum

Description 1:1 Str

Exhibition 0:n Str

OpenTime 1:n §

SharedMonument

Devotion 1:1 Str

Material 1:1 Str

Construct 1:1 §
Style 1:1 Str

cover

Figure 4.4: Schematic solutions under the intersection relation between
the populations of the source schemas for integrated schema Tint.

From the correspondence assertion stating that the name of the city borough
is equal to the district of the TouristSite (assertion (6)), the designer should decide
whether he chooses to keep the modeling solution of T1 - with an object type City-
Borough or District, or the modeling solution of T2 - with an attribute district. In
Figure 4.4.a, city boroughs are modeled by a spatial object type District with Name
attribute. The cardinality of the locatedIn relationship is preserved as it is in schema
T1 - a tourist site can be located in several city boroughs. Such a cardinality would
be required for example for the Opera de Paris theatre, that has two buildings, one
is in the 9eme city borough, and another in the 12eme. In schema T2 the cardinality
of the District attribute was 1:1, but preserving this cardinality would invalidate the
extension (population) of T1. Another solution for CityBorough would be to keep it
as a multi-valued attribute of TouristSite (as it is in T2), but since in T1 there are
relationships attached to the CityBorough object type, the designer should adhere
to the pattern shown in Figure 4.4.a. where the relationship locatedIn is linked to
TouristSite (as in the source schema T1 for the object type TouristPlace) and at-
tribute District is removed from TouristSite. Generally, if there are several structural
representations for the same real world phenomena, the designer should adhere to
a less restricted one. In the Table 4.1 we describe the restrictions over different
structural elements used in the MADS model as well as in any ER-based model.

Finally, we have to consider the correspondence assertions (4) and (5) about the
temporality of TouristPlace and the temporal attributes of Museum and Monument.

4.2. MADS SCHEMAS IN ALCRP(D) 81

Table 4.1: Conceptual model element description

Element Restrictions
Object type can have unlimited number of the relation-

ship types associated to it as well as any
number of attributes.

Relationship must have two object types associated to it;
type can have any number of attributes.
Attribute must have an object type as its container.

To be consistent with the schema T1, the temporality of TouristPlace should be
preserved. Considering the MADS model, several solutions are possible for the
temporal attributes openTime and construct: we could either remove them as the
temporality of TouristPlace is inherited in Museum and Monument, or define them
as derived attributes (derived from the inherited temporality) or finally, keep them
and add an integrity constraint. In Figure 4.4.a, we choose to present the second
possibility with derived attributes to keep the resulting schema more detailed.

The second possible structural pattern (Figure 4.4.b) is fusion where the pop-
ulations of the source schemas are merged. As previously, before giving the final
schema, the designer has to consider the correspondence assertions (6), (4) and (5).
The proposed solution for the CityBorough is the same as in the first pattern for
the same reasons. Considering the temporality of the TouristSite object type, the
situation and the proposed pattern are different from above: the temporality of
TouristPlaceT1 is migrated one level down (TouristPlace no longer has a temporality
but all its subtypes have one), because in T2 there are more subtypes for TouristSite
and not all of them have temporal attributes. In addition, usage of the redefined
temporal attributes OpenTimeTint

and ConstructTint
is more expressive for the schema

user than would be the inherited temporality (as it was in the source schema T1).

Finally, the third and fourth possible structural solutions are the multi-represen-
tations shown in Figure 4.5, where the initial representations and local integrity
constraints are preserved and no structural transformation is done. This pattern
can be applied in the situation where all other proposed patterns are invalidated.

Two possible modeling solutions may be considered: the designer could either
choose to link the different object types under consideration with a link holding the
specific inter-representation semantics (as in Figure 4.5.c) or integrate the different
representations in a multi-representation object type (as in Figure 4.5.d). The last
solution is structurally the same as the fusion but all the schema elements hold the
stamps characterizing the schema from where they come: t1 for elements described
in T1, and t2 for elements from T2. Thus, the object type TouristSite holds the
stamps t1, t2 as it is defined in both schemas (with a different name but the same
semantic) whereas Curiosity bears only the stamp t1 as it is only described in T1.
When considering the object Monument stamped t1, t2, its attributes Devotion and

82 CHAPTER 4. VALIDATION: THEORY

Museum

Description 1:1 Str

Exhibition 0:n Str

OpenTime 1:n §

TouristSite �

Name 1:1 Str

District 1:1 Str

Monument

Devotion 1:1 Str

Material 1:1 Str

Construct 1:1 §

Theatre

Buildings 1:n Str

Troupe 1:n Str

Season 1:n §

Walk �

Season 1:4 Str

Curiosity 1:n Str

Difficulty 1:1 Str

Start 1:1 •

cover

TouristPlace �
§

Name 1:1 Str

Museum

Curiosity

correspond

< == >

Monument

Style 1:1 Str

0:1 0:1
T2 T1

c)

Museum

Description 1:1 Str t2
Exhibition 0:n Str t2
OpenTime 1:n§ t t

TouristSite �

Name 1:1 Str t t

Monument

Devotion 1:1 Str t2
Material 1:1 Str t2
Construct 1:1 § t
Style 1:1 Str t1

Theatre

Buildings 1:n Str

Troupe 1:n Str

Season 1:n §

Walk �

Season 1:4 Str

Curiosity 1:n Str

Difficulty 1:1 Str

Start 1:1 •

Curiosity §

Name 1:1 Str

cover

locatedIn �
District �

Name 1:1 Str t

 1:n Str t

1:n 0:n

t2t2 t1

t1,t2 t1,t2

t1,t2 t1,t2

t2 t2 t2 t2

t2 t1

t1

t1

t1,t2

t1

t1,t2

T2

T1

T2 T1
d)

Figure 4.5: Multi-representation solutions under the intersection relation
between the populations of the source schemas for integrated schema Tint.

Material are stamped t2 as these attributes are only described in the schema T2,
Style is stamped t1 and finally Construct is defined in both schemas thus stamped
t1, t2. Moreover, the object District is stamped t1, t2 and its attribute Name has a
representation-varying definition: for t1 it is a mono-valued attribute and for t2 it
is a multi-valued attribute.

4.2.4 Composing the Integrated Schema

After the completion of the validation procedure for the DL integrated schema de-
scriptions, the designer of the integrated schema has valid structural solutions for
the related representations assured by the reasoning engine; associated integrity
constraints; and mappings for all related elements of the schemas provided by the
complete set of inter-schema mappings. In this last phase of the integration pro-
cess the designer can choose the integrated solutions for each related element of the
source schemas and compose the resulting integrated schema.

As it was shown in Section 4.2.3, for each set of mappings, a designer is provided
with one or more valid structural solutions (Figures 4.4 and 4.5 show possible struc-
tural solutions for TouristPlace and TouristSite object types). For the final integrated
schema, for each set of mappings for (at least) intentionally related object types, the
schema designer can choose one of the solutions following a criterion. This criterion
is application dependent and could be for example, the complexity of the structural
solution, or the type of links used, or the types of queries that will be processed
by the information system under development. Considering the structural solutions

4.2. MADS SCHEMAS IN ALCRP(D) 83

t1,t2

t1,t2

Boat

Type 1:1 Str

Season 1:4 Str

StartFrom 1:1 Str

TransportStop •

Name 1:1 Str

TimeTable m:n Str

boatBy

along

TransportLine �

TimeTable m:n Str

Zones 2: 2 Str

Bus

Number 1:1 Int

Terminus 2:2 Str

Service 1:1 Str

Metro

Color 1:1 Str

Terminus 2:2 Str

Name 1:1 Str

Tram

Number 1:1 Int

Terminus 2:2 Str

ConstrDate 1:1 °

busBymetroBytramBy

River �

Name 1:1 Str

Road �

Code 1:1 Str

Type 1:1 Str

NbLanes 1:1 f(�)

Underground �Rails �

ConstrDate 1:1 §
LastControl 1:1 °

1:n

0:n

1:n

m:n

1:n

m:n

1:n

m:n

2:n

1:n

 BusLine �

BusNum 1:1 Str

1:n

1:n

Stop •

StopName 1:1 Str

stopServes

correspond

< == >

correspond

< == >

0:1 0:1

0:1

1:1

t1

t1

t2

t2

t2

t2 t2 t2

t2 t2t2t2

Figure 4.6: Multi-representation solution for bus lines and bus stops in an Tint.

shown in Figures 4.4 and 4.5, the designer could choose the fusion as the least com-
plex one, i.e., the one with the lowest number of elements. As the solution for the
bus lines and bus stops representation, the designer could choose to adhere to the
multi-representation solution as shown in Figure 4.6, to avoid the invalidation of
the population of BusLineT1 object type (cf. the validation section above).

Let us now illustrate how the mappings can be used in an integrated database.
For the part of the schema shown in Figure 4.6 the following mappings for the Bus
and BusLine object types are relevant:

Schema population correspondences:
(1) BusT2 v BusLineT1 ;
Matching Rules within the Property semantic correspondences:
(2) ∀number.BusT2 v ∀busNum.BusLineT1 ;

Let us assume that we use an SQL like query language to query and maintain the
database. Mapping (1) requires insertions of an equal instance in the BusLine table
every time a new instance is inserted in the Bus table. The equality between the
instances of Bus and BusLine is defined by the mapping (2), i.e., the value of the
attribute busNum in BusLine must be equal to the value of the attribute number in
Bus. Then, the following code will be added to keep the integrated database valid:
CREATE TRIGGER busLine

AFTER INSERT ON Bus BEGIN

SELECT busNum FROM BusLine WHERE busNum = NEW.number

IF SQL%NOTFOUND THEN INSERT INTO BusLine VALUES(NEW.number) ;

ENDIF ;

END ;

84 CHAPTER 4. VALIDATION: THEORY

Now, every time an insert operation is executed on the Bus table, the trigger will
be fired to check the existence of an equal instance in the table BusLine, if it is not
found, an insert operation will be executed on the BusLine table, with the value of
the busNum attribute equal to the last inserted value of the number attribute.

4.3 Chapter Summary

We have described our approach with validation from the theoretical point of view.
We have chosen the most adequate description logics to represent spatio-temporal
aspects of MADS schemas. The logic we employed is the ALCRP(S2 ⊕ T) with
two concrete domains - S2 for MADS spatial dimension, and T for MADS temporal
dimension. This description logic extends the basic ALC(D) logic with role forming
predicates to define complex roles over the concrete domains. The ALCRP(S2 ⊕
T) features two different sets of roles - roles over abstract and roles over concrete
domains. With the predefined set of concrete roles the schema designer is able to
express MADS topological and synchronization relationships in ALCRP(S2 ⊕ T)
logic. Following the integration phases shown in Figure 4.1, after translating the
data model, the schema designer states the inter-schema mappings in the same DL
language.

As we mentioned earlier, one of the aims of the theoretical approach for validation
was to find a formalism in which we could express the spatial and temporal aspects
of the application domain. But the description logic ALCRP(D) that we have cho-
sen lacks important constructors that are needed to represent structural aspects of
databases conceptual schemas. In ALCRP(D) we could not express cardinality con-
straints, inverse roles, and roles hierarchies. Moreover, modeling of the spatial and
temporal phenomena in ALCRP(D) is not precise enough to represent the particu-
larities of spatial and temporal modeling with MADS. For example, in MADS, there
is a hierarchy of spatial and temporal datatypes with different constraints associated
to different elements of these hierarchies. Contrary, in ALCRP(D) the spatiality
(temporality) is expressed using a predefined role hasArea (hasDuration) that does
not convey all the semantics of spatial (temporal) dimension.

Another very important issue for our integration methodology, is the ability
to use a DL reasoning service to run subsumption and satisfiability checks over the
defined DL model. To the best of our knowledge, there are no reasoners implemented
that are capable to capture spatial and temporal aspects of DL models. In the
next chapter, we will use a more expressive description logic supported by reasoning
services. The SHIQ logic allows for role hierarchies, inverse and transitive roles, and
qualified number restrictions but does not support spatial and temporal modeling.
We will show in the next chapter how we define models in this logic to emulate
spatio-temporal reasoning within MADS data model semantics.

Chapter 5

Validation: Practice

Let us now recall what are the notions or conceptions of the MADS data model
and the set of inter-schema mappings that are the subject for validation. For each
MADS dimension, we describe what are the rules that we want to check to provide
the schema designer with a complete and correct set of the inter-schema mappings
and structural patterns for the integrated schema.

Structural dimension. MADS structural dimension is based on the Extended Entity-
Relationship (EER) data model. Is is shown in the literature, that an EER model
can be translated into the DLR description logic ([CLN99],[BLR03]) and its cor-
rectness can be checked with the FaCT description logic server [FN00]. i • com, a
conceptual modeling tool developed by the authors of [FN00], has a provably com-
plete inference mechanism for consistency checking and for deduction, i.e., derivation
of implied links in the schema. Thus, for the correctness and the completeness of the
structural dimension, it is sufficient to use an available description logic reasoner.
Bellow, we will justify our choice of the DL reasoner.

Spatial and Temporal Dimensions. Besides the structural dimension, the MADS
data model implements spatial and temporal dimensions. We describe them together
as they are coherently designed to provide for the orthogonal modeling approach.
Considering the spatial and temporal elements of user schemas, we want to check
that the spatial (temporal) elements conform to their respective type hierarchies
(cf. Figures 3.3 and 3.5). An nonconforming schema element would be as shown in
Figure 5.1, because in the spatial hierarchy, the type line is a subtype of the type
geo. Using the terms of the object oriented theory, by imposing this hierarchical
restriction, we allow for the refinement of the spatial features, but forbid their over-
loading. The spatial (temporal) dimensions include a predefined set of constrained
relationships, i.e., topological and synchronization relationships. These relationships
can be stated only between subsets of the spatial (temporal) types. For example,
topological relationship overlap cannot be stated between two spatial types hold-
ing the point spatial semantic. We want to be able to check that the constrained

85

86 CHAPTER 5. VALIDATION: PRACTICE

Road �

NonPlanted

Area

Figure 5.1: A non-conforming to the SADT hierarchy schema element.

relationships are stated only between allowed spatial (temporal) types. Some of
the constrained relationships are contradictory for example, stating that a spatial
object type st1 overlaps with a spatial type st2, and that its subtype sub st1 is dis-
joint with the st2 is incorrect. We want to be able to express such rules in our model.

Multi-Representation Dimension. In the methodology that we present in this the-
sis, we assume that the multi-representation concepts are used in the preservation
policy, Figure 3.17, to construct the integrated schema. For the source schemas we
assume that that they are designed with the mono-representation premise. As all
the checks are done before the construction of the integrated schema, we do not
require any check on the multiple perceptions during the validation.

Inter-Schema Mappings. The set of the inter-schema mappings is stated manu-
ally by the schema designer, thus it is required to be checked for the correctness and
completeness. The inter-schema mappings are expressed in the MADS correspon-
dence language that we have presented in Section 3.4.2. Mappings in the structural
dimension include set operators for related populations and the equivalence operator
for related attributes. Reasoning about such types of operators falls in the category
covered by the available DL reasoners. For the spatial and temporal mappings, the
MADS correspondence language includes MADS set of constrained relationships as
mapping operators and therefore, the same correctness rules are applied to the spa-
tial and temporal inter-schema mappings as for the spatial and temporal MADS
dimensions.

The choice of the language, the reasoner, and the editor. Considering the validation
phase of our integration methodology from the practical perspective, let us start
with the language that we use to express MADS schemas. There is a number of
works that study the correspondences between conceptual models used for database
modeling and ontologies used for data modeling for semantic web; in some, it is ar-
gued that the conceptual modeling can be done with description logics [CLN98], i.e,
by designing an ontology in a description logic based language [BHS03]; other argue
that the conceptual models can be used for ontology modeling [CPSV03]. To enlist
the support of both camps, and provide our methodology with perspectives, we have
chosen a most widely used ontology language Ontology Web Language (OWL) as

87

MADS counterpart. The OWL is intended to be used when the information needs
to be processed by applications, as opposed to situations where the content only
needs to be presented to humans. OWL can be used to explicitly represent the
meaning of terms in vocabularies and the relationships between those terms. This
representation of terms and their interrelationships is called an ontology. OWL has
more facilities for expressing meaning and semantics than XML, RDF, and RDF-S,
and thus OWL goes beyond these languages in its ability to represent machine inter-
pretable content. OWL has three increasingly-expressive sub-languages: OWL-Lite,
OWL-DL, and OWL-Full [OWL].

There are two most widely used reasoning engines, FaCT++ and RACER.
FaCT++ [FaC] is an implementation of an OWL-Lite reasoner. The biggest dif-
ferences between the OWL-Lite and OWL-DL abstract syntaxes is in the axioms,
which are used to provide information about classes and properties. OWL-Lite sup-
ports a simpler constraints set. For example, while OWL-Lite supports cardinality
constraints, it only permits cardinality values of 0 or 1. Primarily, the OWL-Lite is
used to create classification hierarchies, or taxonomies. The OWL-Lite, as its name
says, is the less expressive OWL sub-language.

OWL-DL, named due to its correspondence with description logics, supports
the maximum expressiveness without losing computational completeness (all entail-
ments are guaranteed to be computed) and decidability (all computations will finish
in finite time) of reasoning systems. OWL-DL includes all OWL language constructs
with restrictions such as type separation, e.g., a class can not be an individual or
property, a property can not be an individual or class [OWL]. Reasoning about
models defined in the OWL-DL sub-language, requires more advanced algorithms.
Appropriate functionalities are provided by the RACER knowledge representation
system [RAC]. RACER implements a highly optimized tableæcalculus for a very
expressive description logic. The system implements the SHIQ description logic
[HST00]. This is the basic logic ALC augmented with qualified number restric-
tions, role hierarchies, inverse roles, and transitive roles. In addition to these basic
features, RACER provides facilities for algebraic reasoning including concrete do-
mains for example, min/max restrictions over integers, equalities and inequalities
on strings.

Finally, for the models defined in the OWL-Full language, there is no reasoning
support available. Thus, in practice we are limited by the SHIQ description logic
and the OWL-DL sub-language. Among the available ontology design tools, e.g.,
OilEd, RICE, we found the knowledge-base framework Protégé [PRO] the most
appropriate for our purpose of modeling and reasoning about the spatiotemporal
schemas. Protégé combines a powerful ontology design tool, numerous extensions for
querying, visualizing and reasoning about ontologies and it supports XML Schema,
RDF(S) and OWL syntaxes. The SHIQ logic does not treat neither spatial, nor
temporal concrete domains. In the sequel, we first show what are the correspon-
dences between MADS and SHIQ constructs, and then how we have implemented
MADS data model in OWL, emulating spatial and temporal rules for describing

88 CHAPTER 5. VALIDATION: PRACTICE

spatio-temporal information.

5.1 MADS data model in SHIQ logic

As we presented in the beginning of this chapter, we do not aim at translating com-
plete MADS semantics into a description logic formalism. Given the expressiveness
of the MADS model, it would constitute a topic for another research work. Instead,
we translate the MADS concepts and rules that are necessary for the validation
phase of our integration methodology. Assume we translate a MADS schema S
into a SHIQ knowledge base K. We follow the translation procedure described in
[CLN99], and we adopt the definition of a SHIQ knowledge base from [OCEF05].
In the sequel, we first present the definition of a SHIQ knowledge base, then its se-
mantics. Then follows the definition of a (part of) MADS schema and its semantics,
and finally we present the relationship between the two models.

SHIQ knowledge base.

definition 4 (SHIQ knowledge base). A SHIQ knowledge base is a triple
K = 〈A,R, T 〉 where A is an A-Box or a set of assertions, R is role hierarchy and
T is a T-Box or terminology.

Let C be a set of concept names with subsets: Cspa ∈ C of spatial concept names
and Ctem ∈ C temporal concept names. Let R be a set of role names with subsets:
R+ ∈ R of transitive role names; Rspa ∈ R of spatial role names; and Rtem ∈ R
of temporal role names. The set of SHIQ concepts is the smallest set such that:

- every concept name is a concept,

- if C and D are concepts, R is a role, S is an atomic role and n is a nonnegative
integer, then C t D, C u D, ¬C, ∀R.C, ∃R.C, ≥ nS.C, ≤ nS.C are concepts.

An assertion is an expression that can have form C(x), R(x,y), or x 6≈ y, where C
is a concept, R is a role and x,y ∈ I, where I is a set of individual names.

A role hierarchy is a set of role inclusion axioms1. The set of roles is R∪{R− | R ∈
R}. The functions Inv and Trans are defined on roles. Inv is defined as Inv(R) = R−

and Inv(R−) = R for any role name R. Trans is a boolean function, Trans(R) = true
iff R ∈ R+ or Inv(R) ∈ R+. A role inclusion axiom is an expression of the form R
v S, where R and S are roles.

A terminology or T-Box is a set of concept inclusion axioms. A concept inclusion
axiom is an expression of the form C v D for two concepts C and D.

1We detail here the role hierarchy semantics introduced in Section 2.4.2.

5.1. MADS DATA MODEL IN SHIQ LOGIC 89

The semantics of SHIQ is given by interpretations. We adopt SHIQ semantics
definition from [TH04] and we add the value restriction for the spatial and temporal
subsets of the role and concept names. The semantics is given by means of an
interpretation I = (∆I , ·I), consisting of a non empty set ∆I , called the domain
of I, and a valuation ·I that maps every concept to a subset of ∆I and every role
to a subset ∆I ×∆I such that, for all concepts C, D, roles R, S, and non-negative
integer n, the semantic conditions of the logic are satisfied, where]M denotes the
cardinality of the set M.

concepts and roles syntax semantics

atomic concept C A AI ∈ ∆I

atomic role S S SI ∈ ∆I ×∆I

inverse role R− {(x, y) | (y, x) ∈ RI}
transitive role R+

⋃
i≥1(R

I)i

role hierarchy R v S RI ⊆ SI

concept hierarchy C v D CI ⊆ DI

conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

negation ¬C ∆I\CI
exists restriction ∃R.C {x | ∃y.(x, y) ∈ RI ∧ y ∈ CI}
value restriction ∀R.C {x | ∀y.(x, y) ∈ RI → y ∈ CI}

spatial ∀Rspa.C {x | ∀y.(x, y) ∈ RspaI → y ∈ CspaI}
temporal ∀Rtem.C {x | ∀y.(x, y) ∈ RtemI → y ∈ CtemI}

at least restriction ≥ nS.C {x |] | {y.(x, y) ∈ SI} ∧ y ∈ CI |≥ n}
at most restriction ≤ nS.C {x |] | {y.(x, y) ∈ SI} ∧ y ∈ CI |≤ n}

MADS schema.

In Section 3.2, we have introduced MADS data model. Hereafter, for the purpose
of the translation we present a partial semantics of the model that is of interest for
the validation procedures in our integration method.

From [PSZ06], a MADS schema S ∈ S is a tuple S = (Name, MetaData,
ObjectTypes, RelationshipTypes, MultiInstantiation). Where, S is a set
of schemas; Name is the name of the schema; MetaData defined schema meta-
data as for example its spatial extent, temporal extent, and schema perceptions;
ObjectTypes is a set of schema object types definitions’; RelationshipTypes
is a set of schema relationships definitions’; and MultiInstantiation defines to
which extent object and relationships may be multi-instantiated within different ob-
ject/relationship types in the schema. From the schema definition, we are interested
in ObjectType and RelationshipType definitions.

An object type O ∈ O is a tuple O = (Name, Ostamps, Supertypes, Lifecy-

90 CHAPTER 5. VALIDATION: PRACTICE

cle, Geometry, Attributes, Attributes+, Methods, Methods+, Domain,
Keys). For an object type, we are interested in its Attributes set AO ∈A, that may
include two peculiar attributes LifeCycle and Geometry, that if present define the
object type as temporal, spatial, or temporal and spatial, and the characteristics of
its spatiality and temporality.

A relationship type R ∈ R is a tuple R = (Name, Rstamps, Supertypes,
MultiAssociation, Semantics, Semantics+, Roles, Roles+, Geometry, Life-
cycle, Attributes, Attributes+, Methods, Methods+, Domain, Keys). In
the definition of a relationship type, similarly to the object type definition, we are
interested in its Attributes set AR ∈ A. Additionally, the Roles function that
defines for each perception stamp of R the local set of roles, provides us with the
ObjectCardinality set for the relationship type R. Using the schema elements
needed for validation, we give bellow a definition of the syntax of a MADS schema.
In the following, for two finite sets X and Y , a function from a subset of X to Y is
called an X-labeled tuple over Y. The labeled tuple T that maps xi ∈ X to yi ∈ Y ,
for i ∈ {1, . . . , k}, is denoted as [x1 : y1, . . . , xk : yk], and T [xi] denotes yi.

definition 5 (MADS schema.) A (partial) MADS schema is a tuple S = (LS ,
¹S , attS , relS , cardS).

LS is a finite alphabet partitioned into a set OS of pairwise disjoint object type
symbols, a set AS of pairwise disjoint attributes symbols, a set US of pairwise dis-
joint role symbols, a set RS of pairwise disjoint relationship symbols, and a set
DS of pairwise disjoint domain symbols. Each domain symbol D has an associated
predefined basic domain DBD , and these basic domains are disjoint. OS is further
partitioned into: a set Ospa

S ∈ OS of spatial object types; a set Otem
S ∈ OS of temporal

object types. The similar partition applies to RS , AS , US , and DS subsets of LS.

¹S⊆ OS ×OS is a binary relation over OS .

attsS is a function that maps each object type symbol in OS to an AS-labeled tuple
over DS .

relS is a function that maps each relationship symbol in RS to an US-labeled tu-
ple over OS .

cardS is a function from OS ×RS ×US to N0× (N0∪{∞}) that satisfies the follow-
ing condition: for a relationship R ∈ RS such that relS(R) = [U1 : O1, . . . , Uk :
Ok], cardS(O,R,U) is defined only if U = Ui for some i ∈ {1, . . . , k}, and if
O ¹∗S Oi, where ¹∗S denotes the reflexive transitive closure of ¹. The first com-
ponent of cardS(O, R, U) is denoted as cminS(O,U,R) and the second component
as cmaxS(O,U,R). Default values for cminS and cmaxS are 0 and ∞ respectively.

Intuitively, in the definition above the relation ¹S models the IsA-relationship

5.1. MADS DATA MODEL IN SHIQ LOGIC 91

between object types; the function attS is used to model attributes of an object type;
the function relS associates a set of roles to each relationship symbol R, determin-
ing implicitly also the arity of R; the function cardS specifies cardinality constraints.

The semantics of a MADS schema is given by specifying legal database states
for S. A legal database state of schema S is the set of instances of each object type
and relationship type of S that satisfies all the constraints defined by S. Formally,
a database state B corresponding to a (partial) MADS schema S = (LS , ¹S , attS ,
relS , cardS) is constituted by a non-empty finite set ∆B, disjoint from all basic
domains, and a function ·B that maps:

- every domain symbol D ∈ DS to the corresponding basic domain DBD ,

- every object type O ∈ OS to a subset OB of ∆B,

- every attribute A ∈ AS to a set AB ⊆ ∆B ×⋃
D∈DS DBD , and

- every relationship R ∈ RS to a set RB of US-labeled tuples over ∆B.

The elements of OB, AB, RB are called instances of O, A, and R respectively.

definition 6 A database state B is said to be legal for a (partial) MADS schema
S = (LS , ¹S , attS , relS , cardS), if it satisfies the following conditions:

- for each pair of object types O1, O2 ∈ OS such that O1 ¹S O2, it holds that
OB

1 ⊆ OB
2 .

- for each pair of relationships R1, R2 ∈ RS such that R1 ¹S R2, it holds that
RB

1 ⊆ RB
2 .

- for each object type O ∈ OS , if O has an attribute A ∈ AS with domain
D ∈ DS , then for each instance o ∈ OB there is exactly one element a ∈ AB

with o as the first component, and the second component of a is an element of
DBD .

- for each relationship R ∈ RS of arity n between object types O1, . . . , On, to
which R is connected by means of roles U1, . . . , Un respectively, all instances
of R are of the form [U1 : o1, . . . , Un : on], where oi ∈ OB

i , i ∈ {1, . . . , n}.
- for each relationship R ∈ Rspa

S between object types O1, . . . , On, to which R is
connected by means of roles U1, . . . , Un respectively, all instances of R are of
the form [U1 : o1, . . . , Un : on], where Ui ∈ U spa

S and oi ∈ OB
i ∧ OB

i ∈ Ospa
S and

i ∈ {1, . . . , n}.
- for each relationship R ∈ Rtem

S between object types O1, . . . , On, to which R is
connected by means of roles U1, . . . , Un respectively, all instances of R are of
the form [U1 : o1, . . . , Un : on], where Ui ∈ U tem

S and oi ∈ OB
i ∧ OB

i ∈ Otem
S and

i ∈ {1, . . . , n}.

92 CHAPTER 5. VALIDATION: PRACTICE

- for each role U ∈ US of relationship R ∈ RS associated to object type O ∈ OS ,
and for each instance o ∈ OB it holds that
cminS(O,U,R) ≤]{r ∈ RB | r[U] = o} ≤ cmaxS(O, U,R).

Relationship between MADS and SHIQ. We now show how the semantics of
a (partial) MADS schema can be captured in SHIQ by defining a translation φ from
MADS schemas to SHIQ knowledge bases, and then establishing a correspondence
between legal database states and models of the derived knowledge base.

definition 7 Let S = (LS , ¹S , attS , relS , cardS) be a (partial) MADS schema.
The SHIQ knowledge base K is defined by the function φ(S) = (A,R, T) as follows.
The set A of atomic concepts of φ(S) contains the following elements:

- for each domain symbol D ∈ DS , an atomic concept φ(D);

- for each object type O ∈ OS , an atomic concept φ(O);

- for each relationship type R ∈ RS , an atomic concept φ(R).

The set R of atomic roles of φ(S) contains the following elements:

- for each attribute A ∈ AS , an atomic role φ(A);

- for each relationship R ∈ RS such that relS = [U1 : O1, . . . , Uk : Ok], k atomic
roles φ(U1),. . . ,φ(Uk).

The set T of assertions of φ(S) contains the following elements:

- for each pair of object types O1, O2 ∈ OS such that O1 ¹S O2, the assertion
φ(O1) ¹ φ(O2);

- for each object type O ∈ OS such that attsS(O) = [A1 : D1, . . . , Ak : Dk], the
assertion
φO ¹ ∀φ(A1).φ(D1) u . . . u φ(Ak).φ(Dk) u ∃=1φ(A1) u . . . ∃=1φ(Ak)

2;

- for each relationship R ∈ RS such that relS(R) = [U1 : O1, . . . , Uk : Ok] for
i ∈ {1, . . . , k}, and for each object type O ∈ OS such that O ¹∗S Oi,

- if m = cminS(O,R,Ui) 6= 0, the assertion φ(O) ¹ ∃≥m(φ(Ui))
−;

- if n = cmaxS(O, R, Ui) 6= ∞, the assertion φ(O) ¹ ∃≤n(φ(Ui))
−;

For each pair of symbols X1, X2 ∈ OS ∪ RS ∪ DS such that X1 6= X2 and
X1 ∈ RS ∪ DS , the assertion: φ(X1) ¹ ¬φ(X2).

2this assertion is obviously extended to the case of multivalued attributes

5.2. DATA MODEL DEFINITION IN OWL 93

Bellow, we give an example of a translation table for φ(S) function between
MADS model concepts and SHIQ knowledge base elements:

MASD concept SHIQ expression
object types O1, O2 ∈ OS C1 , C2 ∈ CK, (C1 u C2 v ⊥) ∈ TK
relationship types R1, R2 ∈ RS R1 , R2 ∈ RK, (R1 u R2 v ⊥) ∈ TK
attribute A ∈ AS A ∈ RK
object types hierarchy (O1 IsA O2) ∈¹S (C1 v C2) ∈ TK
attribute A ∈ AS of an object type O ∈ OS (∃A.C u ∀A.C) ∈ TK
cardinality constraint (min,max) on A ∈ AS (∃≥minA.C u ∃≤maxA.C) ∈ TK
relationship type R ∈ RS , linking objet

types O1, O2 ∈ OS (∃R.C1 u ∃R−.C2) ∈ TK
cardinality constraint (min,max) on R ∈ RS (∃≥minR.C1 u ∃≤maxR.C1) ∈ TK
relationship type hierarchy (R1 IsA R2) ∈¹S (R1 v R2) ∈ TK
spatial relationship type Rspa ∈ Rspa

S
linking object types O1, O2 ∈ Ospa

S (∃Rspa.C1 u ∃Rspa− .C2 u ∀Rspa.C1u
u∀Rspa− .C2) ∈ TK, C1, C2 ∈ Cspa

K
temporal relationship type Rtem ∈ Rtem

S
linking object types O1, O2 ∈ Otem

S (∃Rtem.C1 u ∃Rtem− .C2 u ∀Rtem.C1u
u∀Rtem− .C2) ∈ TK, C1, C2 ∈ Ctem

K

Using this translation between MADS and SHIQ constructs we are now able to
represent MADS binary relationships, cardinalities on attributes and roles, relation-
ship and object types hierarchies that are used to define the spatial and temporal
dimensions in the SHIQ formalism. In the following section we will show how we
implement the spatial and temporal dimensions in the SHIQ-based language and
what are the additional restrictions required for the resulting DL model in order to
model MADS spatial and temporal dimensions’ particularities.

5.2 Data Model Definition in OWL

In this section we present the translation of the MADS data model into the OWL
language (based on the SHIQ description logic) suitable for reasoning with the
RACER reasoner. The language that we use is the OWL-DL language. We describe
the translation of the MADS structural, spatial, temporal dimensions, constrained
relationships, and representation dimension. We refer to the MADS model expressed
in OWL as MADS-OWL.

5.2.1 Structural Dimension.

A DL model is composed of classes, properties, axioms, and restrictions. In the
terms of the MADS models, a schema is composed of object types, attributes and

94 CHAPTER 5. VALIDATION: PRACTICE

relationships. If in the MADS model attributes are defined in the scope of an object
type, i.e., attributes cannot exist by themselves, in a DL model, the sets of classes
and properties are independent, i.e., a property can be defined in general without
stating to what class(es) it belongs.

Object types definition. Let us see the simplest definition, an object type Tram
from Figure 3.13, defined as a class in OWL:

< owl : Class rdf : ID = ”Tram”/ >

In the above definition we declare a Class (OWL syntax or namespace) with an
ID (RDF namespace) equal to Tram. The OWL namespace inherits all the terms of
the RDF syntax, and therefore where appropriate, the RDF tags are used. There
are as well other namespaces that may be used the OWL schemas definitions, for
example DAML tags. All allowed namespaces are explicitly declared in the header
of an .owl file, for example:

swrl = ”http : //www.w3.org/2003/11/swrl”
rdfs = ”http : //www.w3.org/2000/01/rdf− schema”
owl = ”http : //www.w3.org/2002/07/owl”

For the inheritance or generalization/specialization link, a class can have subclasses,
and super-classes. In the DL model, for the Tram object type from Figure 3.13, the
equivalent expression for the DL class is:

< owl : Class rdf : ID = ”Tram” >

< rdfs : subClassOf >

< owl : Class rdf : ID = ”TransportLine”/ >

< /rdfs : subClassOf >

< /owl : Class >

A class can have several subclasses and several super-classes, this last feature al-
lows for multi-inheritance, which is the important feature of the MADS model. The
multi-inheritance in the DL interpretation does not provide for any refinement, re-
definition, or overloading like in MADS model [Don02]. The subclass inherits all the
properties and restrictions from its super-classes. Due to the uniqueness assumption
for the terms in a DL model, this does not produce errors. As an example for the
multi-inheritance, the same class Tram can be defined as a subclass of two classes
TransportLine and PowerConsumer as follows:

< owl : Class rdf : ID = ”Tram” >

< rdfs : subClassOf >

< owl : Class rdf : ID = ”TransportLine”/ >

5.2. DATA MODEL DEFINITION IN OWL 95

< /rdfs : subClassOf >
< rdfs : subClassOf >

< owl : Class rdf : ID = ”PowerConsumer”/ >
< /rdfs : subClassOf >

< /owl : Class >

MADS supports multi-instantiation, which means that several instances in different
types may represent the same real-world phenomenon, which in turn materializes in
the fact that such related instances bear the same identity. This originates from the
traditional hypotheses of object-oriented databases, in particular the uniqueness of
the most specialized instance for an object in an is-a hierarchy allowing an object
to be simultaneously represented in several classes. MADS proposes two multi-
instantiation links: the is-a link and the may-be link. In OWL, two classes may
contain common instances, even if they are not linked by an is-a link. In MADS,
by default two object (or relationship) types with no common ancestor in the gen-
eralization hierarchy are disjoint. To impose the same behavior on the classes in a
DL model, the designer must state explicitly the disjointness axiom for two or more
classes. This will assure (by the reasoner) that neither of the two classes would be
allowed to have any instances in common. In the example we state that the class
River is disjoint with the class Rails:

< owl : Class rdf : ID = ”River” >
< owll : disjointWith >

< owl : Class rdf : IDt = ”Rails”/ >
< /owl : disjointWith >

< /owl : Class >

For the schema in Figure 3.13, the above statement is derived from the disjoint-
ness axiom imposed on their ancestors.

The covering axiom for subclasses in MADS is translated in a DL model by the
owl:unionOf axiom. The owl:unionOf axiom in a class description defines this
class as a subclass of an anonymous class defined in turn as the union of the sev-
eral other classes. An owl:unionOf axiom describes an anonymous class for which
the class extension contains those individuals that occur in at least one of the class
extensions of the class descriptions in the list. Moreover, this axiom implements
the closed world assumption for the involved class which is the default assumption
for the database world (contrary to the logics world). If we look for an example
illustrating the covering axiom, the TouristSite class from Figure 3.13 can only have
instances of classes Museum, Monument, Theatre, or Walk:

< owl : Classrdf : about = ”TouristSite” >
. . .
< rdfs : subClassOf >
< owl : Class >

96 CHAPTER 5. VALIDATION: PRACTICE

< owl : unionOf rdf : parseType = ”Collection” >

< owl : Class rdf : ID = ”Monument”/ >

< owl : Class rdf : ID = ”Museum”/ >

< owl : Class rdf : ID = ”Theatre”/ >

< owl : Class rdf : ID = ”Walk”/ >

< /owl : unionOf >

< /owl : Class >

< /rdfs : subClassOf >

. . .
< /owl : Class >

With the described above features of the DL language, we can define object types,
the generalization/specialization links with disjoint and cover axioms, and multi-
inheri-tance as in the MADS model. In the next section we show the correspondence
between the relationships in MADS and properties in DL.

Relationship types definition. A MADS relationship is a link between two or
more object types, where each object type is assigned a role. A relationship type
describes a set of links with similar characteristics, i.e., linked objects are of the same
type, with the same roles, and similar properties. An OWL property is a binary
relation that connects two OWL concepts, where the linked concepts can be either
classes, or a class and a datatype; a property has a range and a domain. The domain
of a property is a class this property is defined in; domain can be either a user defined
class or several classes, or the owl:Thing which is the root class for a model. If a
property defined with the owl:Thing as its domain, then by inheritance, all classes
in the model will have this property. Depending on the range of the property, the
property can be either a object property or datatype property. Datatype properties
link an individual from a class (defined by the domain of this property) to an XML
schema datatype value or an RDF literal. Object properties link an individual from a
class to another individual from another (linked by this property) class. To represent
MADS relationships we employ OWL object properties. The datatype properties
correspond to simple attributes in MADS and they are considered in the sequel
of this section. In addition to the object and datatype properties, OWL provides
for annotation properties. Annotation properties can be used to add metadata to
classes, individuals, object, or datatype properties.

To define a MADS relationship tramBy type (Figure 3.13) the following OWL
code is written:

< owl : ObjectProperty rdf : ID = tramBy” >

< rdfs : domain rdf : resource = ”Tram”/ >

< rdfs : range rdf : resource = ”Rails”/ >

< /owl : ObjectProperty >

5.2. DATA MODEL DEFINITION IN OWL 97

If there is no cardinality restrictions, the definition of the relationship tramBy is
completed. In the schema in Figure 3.13, there is a cardinality 1:n imposed on the
role Tram-tramBy, this cardinality is translated in the OWL restriction clause. The
following description of the class Tram includes the cardinality constraints 1:n on
the role Tram-tramBy:

< owl : Classrdf : ID = ”Tram” >

< rdfs : subClassOf >

< owl : Restriction >

< owl : onProperty >

< owl : ObjectProperty rdf : ID = ”tramBy”/ >

< /owl : onProperty >

< owl : minCardinality
rdf : datatype = ”http : //www.w3.org/2001/XMLSchema int” > 1

< /owl : minCardinality >

< /owl : Restriction >

< /rdfs : subClassOf >

The above restriction makes the property mandatory, i.e., having at least one
value. OWL provides three constructs for restricting the cardinality of proper-
ties locally within a class context. Besides the owl:minCardinality, there is
the owl:maxCardi- nality restricting the maximum number of values, and the
owl:Cardinality if the property must have an exact number of distinct values.
With these constructs, all types of MADS cardinality constraints can be translated
to OWL syntax.

OWL object properties are unidirectional by default. To define a relationship as
being bidirectional as in MADS, an inverse property must be defined. For example,
for the relationship along between the object types TransportLine and Stop from Fig-
ure 3.13, we define a property along with the domain TransportLine and the range
Stop, and then create an inverse property inverse of along switching the domain and
the range:

< owl : ObjectProperty rdf : ID = ”inverse of along” >

< rdfs : range rdf : resource = ”TransportLine”/ >

< owl : inverseOf >

< owl : ObjectProperty rdf : ID = ”along”/ >

< /owl : inverseOf >

< rdfs : domainrdf : resource = ”Stop”/ >

< /owl : ObjectProperty >

Besides binary relationships, in MADS n-ary relationships that link more than
two object types are allowed. An example of such a relationship is the relationship
along in Figure 3.10. It links three object types Park, Non-Planted Area and Field,
where Non-Planted Area could be either a built-up area, a water body, or a road.

98 CHAPTER 5. VALIDATION: PRACTICE

There is no direct way to model the same schema part in OWL. Though, a particular
case of an n-ary relationship can be modeled, i.e., when the cardinalities of all the
roles are 1:1. Let us describe this particular case assuming that the cardinalities of
the roles of the relationship along are 1:1. The relationship along is then defined as
an object property with domain and range set to the disjunction of the three classes
it links. To each of the classes we then add the cardinality restriction on the role
along equal to the double of the original cardinality thus, we require 2 instances
in the range of the property. The interpretation of the ternary relationship along3

in Figure 3.10 is, for each instance of the Park there exist two instances linked to
it, one of the type Non-Planted Area and a second one of type Field. Note, if the
cardinalities of this relationship are different than 1:1 we cannot say how many
instances are related by each instance of this relationship, and this would make it
impossible to define the restriction over the property along in OWL. To ensure that
an instance of the class Park is linked by the property along to exactly one instance
of the class Non-Planted Area and exactly one instance of the class Field, we add the
existential restrictions for the latter two classes in the former class:

<owl:Class rdf:ID="Park">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>

<owl:ObjectProperty rdf:ID="along"/>
</owl:onProperty>
<owl:cardinality rdf:datatype="int">2</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:someValuesFrom rdf:ID="NonPlantedArea"/>
<owl:onProperty>

<owl:ObjectProperty rdf:ID="along"/>
</owl:onProperty>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:someValuesFrom rdf:ID="Field"/>
<owl:onProperty>

<owl:ObjectProperty rdf:ID="along"/>
</owl:onProperty>

</owl:Restriction>
</rdfs:subClassOf>
...
</owl:Class>

3assuming that the cardinalities are 1:1 for all the roles.

5.2. DATA MODEL DEFINITION IN OWL 99

These two existential restrictions together with the property cardinality set to 2,
model the phenomenon of three linked instances. Similar restrictions are added to
other two classes, NonPlantedArea and Field. The last restriction that must be added
to the model, is an integrity constraint to guarantee that the linked instances are the
same, Figure 5.2. Another way to model an n-ary relationship is to decompose it in n

Figure 5.2: Integrity constraint for the ternary relationship along from
Figure 3.10

binary relationships as described for example in Chapter 3 ”The Entity-Relationship
Model” of [Tha00], figure 5.3 illustrates the decomposition for the same schema part
with the initial cardinality constraints.

§ Park �

field_along

NonPlanted s
Area

 Field �

 along s
1:1

1:n

park_along

NonPlanted

Area_along

1:1

1:1

1:n

0:n

Figure 5.3: Decomposed ternary relationship along from Figure 3.10

Like for the object types, in MADS we can define the generalization/speciali-
zation link between relationship types. OWL also support hierarchies of properties

100 CHAPTER 5. VALIDATION: PRACTICE

which can be specified with owl:subPropertyOf. For example, the relationship
along, is a topological relationship with the inclusion semantics. To define this type
relationships in OWL we first create a basic topological relationships include (this is
detailed in the sequel of this section), and then define the along as a sub-property
of the include:

< owl : ObjectProperty rdf : ID = ”along” >

< rdfs : domain rdf : resource = ”TransportLine”/ >

< rdfs : subPropertyOf rdf : resource = ”include”/ >

< owl : inverseOf rdf : resource = ”inverse of along”/ >

< rdfs : range rdf : resource = ”Stop”/ >

< /owl : ObjectProperty >

The discussion above concerns the translation of the relationships that hold be-
tween two instances. In the MADS model, there is another type of association called
multi-association (cf. Section 3.2.5) defined for linking sets of instances through a
single relationship link. For this kind of relationships there are no corresponding
OWL construct. This binary restriction for properties limits OWL model expres-
siveness as compared to the MADS model. The aggregation link falls into the range
of constructs that are not directly represented in DL based models. An aggregation
link is a relationship that conveys a specific semantics of composite and component
object types, where a composite instance is an aggregation of component instances.
The aggregation links are translated into OWL by object properties with predefined
cardinality constraints and quantifier restrictions. For semantic clarity, using pre-
defined names for these properties would be beneficial, but due to the unique name
assumption, we cannot use the same name for different properties. The following
code describes class City from Figure 3.12, that has a property decomposed with the
range District. To express the aggregation link composed between City and District
we add the owl:minCardinality constraint to the property to ensure that there
is at least one component instance; and we add the universal quantifier restriction
to ensure the closed world assumption and the membership for all the component
instances.

< owl : Classrdf : ID = ”City” >

. . .
< rdfs : subClassOf >

< owl : Restriction >

< owl : onProperty >

< owl : ObjectProperty rdf : ID = ”decomposed”/ >

< /owl : onProperty >

< owl : minCardinality
rdf : datatype = ”http : //www.w3.org/2001/XMLSchema int > 1”

< /owl : minCardinality >

< /owl : Restriction >

5.2. DATA MODEL DEFINITION IN OWL 101

< /rdfs : subClassOf >
< rdfs : subClassOf >

< owl : Restriction >
< owl : allValuesFrom >

< owl : Class rdf : ID = ”District”/ >
< /owl : allValuesFrom >
< owl : onProperty >

< owl : ObjectProperty rdf : ID = ”decomposed”/ >
< /owl : onProperty >

< /owl : Restriction >
< /rdfs : subClassOf >

< /owl : Class >

Using the DL based modeling we cannot express the aggregation semantic, i.e.,
we cannot say that the same phenomenon in our example, a city and a set of dis-
tricts, in the real world is the same object. The owl:sameClassAs construct allows
for such statements only between two instances but not between an instance and a
set of instances. The whole-part relationship is partially modeled in OWL with the
transitivity axiom imposed on an object property. But the limitation of this axiom
is that OWL-DL requires that for a transitive property no local or global cardinality
constraints should be declared on the property itself or its super-properties, nor on
the inverse of the property or its super-properties.

Finally, the last structural element that is used in MADS and in general in
conceptual models, is an attribute. In MADS, both object types and relationship
types may hold attributes. Depending on the data model, attributes can be either
complex or simple, mono-valued or multi-valued, mandatory or optional. In the
sequel we consider the translation of the MADS attributes into the OWL language.

Attributes definition. MADS attributes are translated to OWL properties. As
we mentioned above, there are two types of properties in OWL: object properties
that link individuals to individuals; and datatype properties that link individuals to
data values. To define a MADS attribute in OWL, new properties and classes may
be needed for complex attributes as well as for their components.

Properties are defined by property axioms which define their characteristics. In
its simplest form, a property axiom just defines the existence of a property. For
example:

< owl : ObjectPropertyrdf : ID = ”locatedIn”/ >

Often, property axioms define additional characteristics of properties. OWL sup-
ports the following constructs for property axioms:

• RDF Schema constructs: rdfs:subPropertyOf, rdfs:domain and rdfs:

range;

102 CHAPTER 5. VALIDATION: PRACTICE

• relations to other properties: owl:equivalentProperty and
owl:inverseOf

• global cardinality constraints: owl:FunctionalProperty and
owl:Inverse FunctionalProperty;

• logical property characteristics: owl:SymmetricProperty and
owl:Transitive Property.

To represent simple properties, like attribute Description of the object type Mu-
seum from Figure 3.13, we create an OWL property Description, with the domain
restricted to the class Tram, and the range of the datatype string. This attribute is
a mono-valued mandatory attribute, thus we add the cardinality restriction so that
this property must have exactly one value for every instance of the class Museum.
The listing shows the definition of the attribute Description:

< owl : DatatypeProperty rdf : ID = ”description” >
< rdfs : domain rdf : resource = ”Museum”/ >
< rdfs : range

rdf : resource = ”http : //www.w3.org/2001/XMLSchema string”/ >

< /owl : DatatypeProperty >

The cardinality restriction for the property Description in class Museum:

< owl : Restriction >
< owl : cardinality

< rdf : datatype = ”http : //www.w3.org/2001/XMLSchema int = 1”
< /owl : cardinality >

< owl : onProperty >
< owl : DatatypeProperty rdf : ID = ”description”/ >

< /owl : onProperty >

< /owl : Restriction >

If a property is allowed to have a unique value, i.e., in the set of the instances of a
class, there is no two instances that have the same value of a given property, than this
property can be modeled as a functional property with the owl:FunctionalProperty
axiom. Making analogy with the databases world, a functional property is an iden-
tifier attribute. Thought it is not a very realistic assumption for the above example,
museum descriptions are allowed to be equal for different museums, and thus, we
rather employ the cardinality restriction than the functional property axiom.

Attribute Exhibition of the same object type Museum is an optional, multi-valued
attribute. To define this attribute in OWL, it is sufficient to declare datatype
property Exhibition existence, to restrict the domain for this property to the class
Museum, and to set the range of the property to string. In OWL, properties by
default are optional, multi-valued properties.

5.2. DATA MODEL DEFINITION IN OWL 103

Definition of a complex attribute in OWL requires additional classes to be cre-
ated. In our example object type Museum, there is a complex attribute OpenTime
with two component attributes summer and winter. To translate MADS attribute
OpenTime into OWL property OpenTime, we first create a class MuseumOpenTime

< owl : Classrdf : ID = ”MuseumOpenTime”/ >

and then two object properties summer and winter with the domain restricted to
this class.

< owl : ObjectPropertyrdf : ID = ”summer” >

< rdfs : domain rdf : resource = ”MuseumOpenTime”/ >

< rdfs : range rdf : resource = ”Interval”/ >

< /owl : ObjectProperty >

< owl : ObjectProperty rdf : ID = ”winter” >

< rdfs : range rdf : resource = ”Interval”/ >

< rdfs : domain rdf : resource = ”MuseumOpenTime”/ >

< /owl : ObjectProperty >

In Figure 3.13, the winter and summer are the temporal properties of type Inter-
val, we do not explain here how we add the temporal features to these attributes,
interested reader is referred to the section devoted to the MADS temporal dimension
translation, Section 5.2.3.

Now we can create the object property OpenTime with domain Museum and
range MuseumOpenTime.

< owl : ObjectProperty rdf : ID = ”openTime” >

< rdfs : rangerdf : resource = ”MuseumOpenTime”/ >

< rdfs : domainrdf : resource = ”Museum”/ >

< /owl : ObjectProperty >

Having introduced the auxiliary classes and properties we have modeled in OWL
complex MADS attribute openTime. Each value of the property openTime would
be an instance of a class MuseumOpenTime with two temporal values for winter and
summer properties.

As seen from the translation procedure for MADS relationship types and complex
attributes, the OWL constructs we use to represent them are the same, i.e., object
properties. If we consider reverse translation of an OWL model into a MADS schema,
then these two different MADS constructs become indistinguishable. We propose
to employ the annotation property to label MADS complex attributes. OWL DL
allows annotations on all the basic constructs, i.e., classes, properties, individuals.
Five annotation properties are predefined by OWL, owl:versionInfo, rdfs:label,
rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy. We use the rdfs:comment with

104 CHAPTER 5. VALIDATION: PRACTICE

the value ”MADS complex attribute” associated to the object property that models
an MADS complex attribute. Finally, the translation of the openTime attribute is
as follows:

< owl : ObjectPropertyrdf : ID = ”openTime” >
< rdfs : comment

rdf : datatype = ”http : //www.w3.org/2001/XMLSchema string”
> MADS complex attribute < /rdfs : comment >

< rdfs : range rdf : resource = ”MuseumOpenTime”/ >
< rdfs : domain rdf : resource = ”Museum2”/ >

< /owl : ObjectProperty >

As in MADS, OWL provides the construct for defining a range of data values,
namely an enumerated datatype. This datatype format makes use of the owl:oneOf
construct, that is also used for describing an enumerated class. In Figure 3.13 there
is an attribute season in the object types Boat and Walk. This attribute can have
from 1 to 4 predefined values for season names. An OWL corresponding property
would be an enumerated datatype property with the allowed values from the list
summer, autumn, winter, and spring. The listing shows the OWL constructs for this
property.

< owl : DatatypeProperty rdf : ID = ”season” >
< rdfs : range >
< owl : DataRange >
< owl : oneOf >

< rdf : List >
< rdf : first

rdf : datatype = ”http : //www.w3.org/2001/XMLSchema string > spring
< /rdf : first >

< rdf : rest >
< rdf : List >

< rdf : first
rdf : datatype = ”http : //www.w3.org/2001/XMLSchema string > summer

< /rdf : first >
. . .

< /rdf : List >
< /rdf : rest >

< /rdf : List >
< /owl : oneOf >

< /owl : DataRange >

< /rdfs : range >

We have described the representation of the MADS object type attributes in
OWL. In MADS, not only object types but also the relationship types can hold
attributes. Since both MADS relationships and attributes are represented by the

5.2. DATA MODEL DEFINITION IN OWL 105

Stop

Name 1:1 Str

TimeTable m:n Str

TransportLine

TimeTable m:n Str

Zones 2: 2 Str

2:n 1:n

minDistance 1:1 real

along

Along

minDistance 1:1 real

TransportLine

TimeTable m:n Str

Zones 2: 2 Str

2:n 1:1
TrLine-Along

Stop

Name 1:1 Str

TimeTable m:n Str

1:n
Along-Stop

1:1

Figure 5.4: Transformation for relationships with attributes.

same OWL construct, there is no direct way to represent such kind of attributes in
OWL. MADS relationships holding attributes should be translated to object types
with attributes. To keep the link with the object types that were related by this
relationship, two more relationship types should be added, as shown in Figure 5.4.

Let us summarize all the structural elements then we can use in the two mod-
eling approaches - MADS and OWL, the Table 5.1 lists the concepts that we have
described in this section.

Table 5.1: Structural Dimension - MADS vs OWL
MADS concepts OWL concepts
Object type owl:Class
IsA link owl:SubClassOf
Covering axioms: cover, disjoint owl:UnionOf,owl:DisjointWith
no corresponding concept owl:sameClassAs
no corresponding concept Enumerated class owl:OneOf
Binary relationship type owl:ObjectProperty with defined

owl:range, owl:domain, and
owl:inversePropertyOf

n-ary relationship type no direct representation
IsA link owl:subPropertyOf
Role cardinalities owl:minCardinality, owl:maxCardinality

owl:Cardinality
Object simple attribute owl:datatypeProperty
Object complex attribute owl:objectProperty
Identifier attribute owl:functionalProperty
no corresponding concept Relations to other properties

owl:equivalentProperty
Relationship attribute no direct representation

5.2.2 Spatial Dimension.

As we have described in Section 3.2, the spatial dimension of the MADS model
contains the hierarchy of spatial abstract data types (SADT) and the set of topolog-

106 CHAPTER 5. VALIDATION: PRACTICE

ical relationships with associated constraints. The SADTs are associated to object
types and attributes to add specific spatial features whereas, topological features are
added to relationship types. The spatial dimension in MADS is orthogonal to the
structural dimension. Similarly for OWL modeling, we aim at defining the spatial
dimension in a way it could be freely added or removed as additional feature to
structural elements. The general idea is to create a hierarchy of OWL classes with
associated restrictions, and use the members of this spatial hierarchy as subclasses
for those user defined classes to which we want to associate spatial features. With
the owl:subClassOf construct, the restrictions of the superclass are inherited by
the subclasses, preserving the spatial behavior in the subclasses.

The definition of the spatial domain starts with the definition of two disjoint
classes GSimple and GComplex:

< owl : Class rdf : ID = ”GSimple” >

< owl : disjointWith rdf : ID = ”GComplex”/ >

< /owl : Class >

< owl : Class rdf : ID = ”GComplex” >

< owl : disjointWith rdf : ID = ”GSimple”/ >

< /owl : Class >

or graphically in the Protegé editor as shown in Figure 5.54. Instances of the class
GSimple are the point, line, lineSetOriented, and areaSimple. Instances of the class
GComplex are pointSet, lineSet, lineSetOriented, and areaComplex. These instances

Figure 5.5: OWL: Geo types for basic spatial instances.

are the basic elements to define the spatial dimension in OWL. The intrinsic prop-
erty of a spatial class is the hasGeometry property. The hasGeometry property for
different spatial types has different predefined values, those values are either values
from class GSimple or class GComplex. Therefore, we define a general (or root) spa-
tial type Geo, and restrict the domain of the property hasGeometry to this class, and
the range to the union of classes GSimple and GComplex.

< owl : ObjectProperty rdf : ID = ”hasGeometry” >

< rdfs : range >

< owl : Class >

4As the class definitions become more complex, we will use graphical notation instead of the
textural one.

5.2. DATA MODEL DEFINITION IN OWL 107

< owl : unionOf rdf : parseType = ”Collection” >

< owl : Class rdf : about = ”GSimple”/ >

< owl : Classrdf : about = ”GComplex”/ >

< /owl : unionOf >

< /owl : Class >

< /rdfs : range >

< rdfs : domain >

< owl : Class >

< owl : unionOf rdf : parseType = ”Collection” >

< owl : Class rdf : about = ”Geo”/ >

< /owl : unionOf >

< /owl : Class >

< /rdfs : domain >

< /owl : ObjectProperty >

As the listing above shows, we have defined the hasGeometry property with the
closed world assumption for its range, i.e., values of this property are limited only
to the predefined instances of two classes. Moreover, by applying the closed world
assumption to the domain of the hasGeometry property this property becomes an
intrinsic property for spatial classes. We all all the restrictions on the hasGeome-
try property to the set of necessary & sufficient conditions to define (contrary to
describe) the sub-class of the Geo class. With such a set of necessary & sufficient
conditions, any class that has the hasGeometry property will by classified by the
reasoner as a spatial class.

Now we can define the OWL spatial hierarchy by extending the root Geo class
and stating the values for the hasGeometry property for each spatial subclass. The
spatial hierarchy is shown in Figure 5.6. The two direct subclasses of the Geo are
disjoint therefore, all their subclasses are as well disjoint. For the GeoSimple class
the hasGeometry property has the range GSimple and, for the GeoComplex class the
hasGeometry property has the GComplex class as its range. Then, for the leaf classes,
the hasGeometry property has an exact value from the corresponding class. For ex-
ample, for LineSet class, the restriction of the hasGeometry property is the following:

< owl : Class rdf : ID = ”LineSet” >

< owl : equivalentClass >

< owl : Restriction >

< owl : onProperty >

< owl : ObjectProperty rdf : ID = ”hasGeometry”/ >

< /owl : onProperty >

< owl : hasValue >

< GComplex rdf : ID = ”lineSet”/ >

< /owl : hasValue >

< /owl : Restriction >

< /owl : equivalentClass >

108 CHAPTER 5. VALIDATION: PRACTICE

Figure 5.6: OWL: spatial data types hierarchy.

. . .

The listing above instructs the reasoner to classify any class and any instance that
has the property hasGeometry with the value lineSet of type GComplex, as being of
type LineSet.

By defining the hierarchy of the spatial types and restrictions on the intrinsic
property hasGeometry, we have created the spatial dimension for the OWL models.
The spatial classes we defined are abstract, i.e., there will be no direct instances of
the class Line or any other class from the hierarchy created. Instead, we use the
spatial types as super-classes for user defined classes. The type hierarchy has some
limitations compared to the MADS spatial data type hierarchy. We had to introduce
two additional classes and populate them with specific instances that we later used
to distinguish the spatial types. Using instances instead of classes limits the rules
over the spatial types that we were able to express. This drawback is due to the fact
that we use the OWL-DL language. In OWL-Full we would be able to use directly
a class for lines, a class for points etc. But since the OWL-Full is not optimized for
reasoning, we allow for the OWL-DL limitations. Using instances instead of classes
has some drawbacks. We cannot say that for example, a lineOriented is a subtype of
the line. Later we will see the consequences of the lack of the IsA link between these
types. We summarize the two spatial dimensions in the Table 5.2.

5.2. DATA MODEL DEFINITION IN OWL 109

Table 5.2: Spatial Dimension - MADS vs OWL

MADS spatial dimension OWL spatial dimension
Spatial ADT hierarchy Spatial abstract types hierarchy
Hierarchy in spatial subclasses not possible in OWL-DL
Mandatory Geometry attribute Intrinsic hasGeometry property
that defines spatial features with predefined values

5.2.3 Temporal Dimension.

The temporal dimension is defined in a similar way to the spatial dimension. First,
we create two disjoint classes, TComplex and TSimple:

< owl : Class rdf : ID = ”TSimple” >

< owl : disjointWith rdf : ID = ”TComplex”/ >

< /owl : Class >

< owl : Class rdf : ID = ”TComplex” >

< owl : disjointWith rdf : ID = ”TSimple”/ >

< /owl : Class >

According to the MADS temporal abstract type hierarchy shown in Figure 3.5,
we create the populations of these two classes, i.e., instant and interval are the in-
stances of class TSimple; and instantSet, intervalSet are the instances of the class
TComplex.

The intrinsic property for the temporal types is the hasTime property. This
means that the necessary and sufficient condition for a class to be classified as a
temporal one, is the existence of the hasTime property. For the general (or root)
temporal class Time, this property must exist, and the value of this property is re-
stricted to one of the values from the TSimple or TComplex classes.

< owl : Classrdf : ID = ”Time” >

< owl : equivalentClass >

< owl : Restriction >

< owl : someValuesFrom >

< owl : Class >

< owl : unionOf rdf : parseType = ”Collection” >

< owl : Class rdf : ID = ”TComplex”/ >

< owl : Class rdf : ID = ”TSimple”/ >

< /owl : unionOf >

< /owl : Class >

< /owl : someValuesFrom >

< owl : onProperty >

< owl : ObjectProperty rdf : ID = ”hasTime”/ >

110 CHAPTER 5. VALIDATION: PRACTICE

< /owl : onProperty >

< /owl : Restriction >

< /owl : equivalentClass >

< /owl : Class >

Defined this way, a temporal class must have the hasTime property. The closure
axiom is applied for the subclasses of the Time class. The temporal hierarchy for
the OWL models is shown in Figure 5.7. For the subclasses we define additional

Figure 5.7: OWL: temporal data types hierarchy.

axioms on the values of the property hasTime. For example, let us consider in de-
tails the temporal type Interval, its representation in the Protégé tool is shown in
Figure 5.8. All the restrictions concern the hasTime property. From the root class
Time, Interval inherits the most general restriction on the hasTime property. Then,
from the TimeSimple class a more precise restriction is inherited. This restriction
is compliant to the previous, more general one, and it restricts the range of the
hasTime property only to the instances of the TSimple class. Finally, in the leaf
class Interval, the restriction on the hasTime property is most precise, the necessary
and sufficient condition for a class to be classified as Interval, is that the value of the
intrinsic property must be equal to interval, where interval is one of the instances
of class TSimple. As seen from restriction inherited from the TSimple type (Figure
5.8), we have imposed the closure axiom on the values of the hasTime property. This
axiom allows for reasoning with the closed world assumption, which is the default
assumption in the database world.

We show in Table 5.3 the MADS and OWL structures that are used to model
temporal dimension in our approach. The temporal ADT hierarchy in MADS model
has only two levels, which makes its translation to the OWL language simpler. For
such hierarchy we could specify all the rules that exist for the initial MADS TADT
hierarchy.

5.2. DATA MODEL DEFINITION IN OWL 111

Figure 5.8: OWL: Interval temporal type.

Table 5.3: Temporal Dimension - MADS vs OWL

MADS temporal dimension OWL temporal dimension
Temporal ADT hierarchy Temporal abstract types hierarchy
Mandatory LifeCycle attribute Intrinsic hasTime property
that defines spatial features with predefined values

5.2.4 Constrained relationships.

We have introduced MADS constrained relationships in Section 3.2.4. Two tables
3.2 and 3.3 list the topological and synchronization relationships supported in the
MADS data model. These relationships hold between a limited subset of MADS
object types: topological relationships hold between spatial object types, and syn-
chronization relationships hold between temporal object types.

Topological relationships hold between object types featuring spatial properties.
To implement this kind of relationships in the OWL language, we introduce a set of
OWL object properties with associated restrictions. These restrictions ensure that
firstly, the properties hold only between spatial classes and secondly, that the types
of the related classes correspond to the type of the topological property, i.e., for each
particular topological property, there are subsets of spatial classes that are allowed
as its range and domain. We show possible topological relationships in Figure 5.9.

As the figure shows, the distribution of the topological properties over the data
types is not regular, and thus, we will define them differently. To define the disjoint
property, we add this property to the definition of the spatial dimension with the
domain and range set to Geo because all pairs of spatial types can participate in
the disjoint property. Then, we defined properties that form segments in the validity
table, e.g., the meet property holds for all line and area types. For the the adjacent

112 CHAPTER 5. VALIDATION: PRACTICE

 domain

range • � �� � ��

•

 �

��

�

��

	

	

	

	

	

	

disjoint meet 	overlap
cross include equal

Figure 5.9: MADS: topological relationships, validity table.

topological property the domain and range composed of the Line, LineOriented, Line-
Set, LineSetOriented, AreaSimple, and AreaComplex spatial types. Figure 5.10 shows
the OWL representation of the MADS adjacent topological realtionship.

The cross property holds for the sub-table that excludes the Point spatial type,
the pairs PointSet-PointSet, and both simple and complex areas. In MADS, two
point sets, and two areas may overlap but not cross [Don02]. Due to this notion
of the cross relationship, we define the cross property separately for sets of points,
lines, and areas. According to the table depicted in Figure 5.9, for the point set
spatial type, the property cross point is defined with the domain of PointSet and the
range of line and area spatial types. For line spatial types we define the cross line
property with the domain Line, LineOriented, LineSet, and LineSetOriented and the
range composed of point set spatial type and all line and area spatial types. Then,
we define the cross area property with the domain containing area spatial types and
the range containing point set and line spatial types.

Following the same idea, we define topological inclusion in OWL. The property
include is defined separately for point set, line, and area spatial types, the domain
and range are set in correspondence to the validity table for the inclusion topological
relationship. The rule for the inclusion topological property is that the domain of
this property may contain one- or two-dimensional spatial classes, and range should
contain spatial classes with the lesser or equal dimension. For example, a property
that has the line types in its domain, will have point and line types in its range.
The spatial inclusion property with the area types in its domain, will have all other
spatial classes in its range, because areas are two-dimensional classes, the maximal
dimension supported in MADS model. For our OWL spatial dimension we define
three inclusion properties with point, line and area spatial types as their domains
and the ranges set according to the rule described above.

5.2. DATA MODEL DEFINITION IN OWL 113

Figure 5.10: OWL: adjacent topological property.

The domain and range of the overlap property are composed of the classes with
equal dimensions but it is not symmetrical, i.e., an Area can be the range for an
overlap property with the domain AreaComplex. For the overlap MADS relation-
ship, we define tree different properties in OWL: overlap pointSet, overlap line, and
overlap area.

The distribution of the equal topological property has a different pattern. This
property is a symmetrical one, i.e., its domain and range are always the same. In-
stead of defining equal property for each of eight spatial types, we define a generic
property equal, and then for each spatial type we restrict this property by a uni-
versal restriction. For example, for the PointSet spatial type, we add the following
restriction on the equal property:

< owl : Class rdf : ID = ”PointSet” >

< rdfs : subClassOf >

< owl : Restriction >

< owl : onProperty rdf : resource = ”equal”/ >

< owl : allValuesFrom rdf : resource = ”PointSet”/ >

< /owl : Restriction >

< /rdfs : subClassOf >

< /owl : Class >

114 CHAPTER 5. VALIDATION: PRACTICE

Let us now describe the relationships between temporal classes. These relation-
ships are called synchronization relationships in MADS. To define these relationships
in OWL, we introduce synchronization properties for our MADS-OWL model. To
define the OWL synchronization properties, we construct the validity table in the
same way we did for topological relationships, the table is shown in Figure 5.11;
the synchronization properties in MADS-OWL are defined in correspondence to it.

 domain

 range

disjoint meet overlap include equal

Figure 5.11: MADS: synchronization relationships, validity table.

Similarly to the topological properties, the domain and range for a synchroniza-
tion property are temporal classes. This restriction guarantees that synchronization
properties belong to the temporal extension of the model. Making further analogy
with the spatial dimension, we note that synchronization relationships correspond to
the topological relationships between point and line spatial types. This is because
the temporality of a class is expressed by associating an instant (point in time),
interval (line in time), set of instants, or set of interval type to it, which corresponds
in the spatial dimension, to point, oriented line, set of points, and set of oriented
lines respectively.

The relationship that exists for all temporal types is disjoint. For our MADS-
OWL model, we have defined the tdisjoint property5 with two sub-properties before
and after; the screen-shot in shown in Figure 5.12. The tdisjoint property has its
domain and range set to TimeSimple or TimeComplex temporal classes. The sub-
properties before and after, inherit these restrictions. For every temporal class we
add restrictions on the t equal property, limiting the range of this property to the
same class as the domain. The t equal property holds only between instances of
the same class, in the Figure 5.11, this property fills the diagonal of the table.
In the MADS-OWL, this property is defined as symmetrical and transitive. As
an example, in Figure 5.13 we show the definition of the t equal property for the
IntervalSet temporal class.

The MADS constrained relationships are modeled in OWL by a predefined set
of owl:objectProperty properties. As the name, constrained properties, suggests,

5the name is different due to the unique name assumption in Protégé.

5.2. DATA MODEL DEFINITION IN OWL 115

Figure 5.12: Disjoint synchronization relationship

Figure 5.13: Temporal equal property.

for these special properties we have constrained their domains and ranges. This
modeling choice has its disadvantages, but it is a viable way to implement this kind of
MADS concepts. One of the goals in translating MADS schemas into OWL models,
is to be able the use OWL reasoning services to uncover contradictory concepts in
the original MADS schemas. For the constrained properties we cannot use reasoners
to check the validity of domains and ranges of these properties. This is because the
domains and ranges are not the constraints to be checked by the reasoner, they are
used as axioms when reasoning. We avoid this fact in our modeling approach by
limiting the choice of the model designer during the model definition phase. In other
words, while creating a model, the designer cannot choose incompatible classes as
domain or range for topological or synchronization properties. This goal is achieved
due to the following modeling assumptions:

116 CHAPTER 5. VALIDATION: PRACTICE

• The MADS model definitions in OWL, MADS-OWL, is presented as a ref-
erence ontology in each user-defined model. The MADS-OWL ontology is
imported in the user model with a namespace mads. This namespace (or pre-
fix) is used to distinguish the MADS concepts from the user model concepts.
If the user wants to define a spatial or temporal class or property, he must use
the MADS-OWL ontology classes and properties as superior for his/her model
elements. User cannot change the imported ontology.

• By creating the user-defined properties as subproperties of MADS-OWL, the
designer is limited in his choice of domain and range for these properties. As
shown in Figure 5.12, subproperties inherit the domains and ranges of the
superproperties. If the designer wants to rewrite the inherited values, his
choice is checked for compatibility with parent values. If the designer defines
a domain (or range) that is not a specialization of the domain (or range) of the
parent property, his/her choice is rejected and an error message is displayed.

By using the approach described above, we insure that the designer will correctly
define topological and synchronization properties in his/her model. The same ap-
proach as well limits the choice of instances that can participate in a constrained
property. At instance creation phase, the designer is prompted to choose instances
only from valid classes, i.e., temporal for synchronization, and spatial for topological.
We summarize our modeling approach in the Table 5.4.

Table 5.4: Constrained relationships - MADS vs OWL

MADS constrained OWL constrained properties
relationships
Constrained relation- Predefined set of OWL properties of type
ships owl:objectProperty
Topological relation- Topological properties with domain and range
ships set to temporal classes
Synchronization relation- Synchronization properties with domain and
ships range set to temporal classes

5.2.5 Representation Dimension.

To model MADS representation dimension, we should provide the user with a way to
add perception stamps to user models. There are two types of modeling primitives
in OWL - classes and properties. As we described earlier, MADS object types are
modeled by OWL classes, and MADS attributes and relationships are modeled by
OWL properties (cf. Table 5.1). Classes and properties in OWL are two independent
sets of modeling primitives, e.g., a property can be defined without any relationship

5.2. DATA MODEL DEFINITION IN OWL 117

to any class. Contrary to the approach to define stamps in MADS, in OWL we
define stamps separately for classes and for properties.

To provide for multiple perception in OWL, we add the Perception class to the
definition of the MADS model in OWL. This Perception class is then extended by
the user, i.e., the user defines stamps as subclasses of the Perception class along with
a description for each stamp. The stamp descriptions are defined as OWL annota-
tion properties of type rdfs:comment. The annotation properties can be added to
OWL classes, properties and individuals. Since the user defines two different sets
of perception stamps (one for classes, one for properties), the value of the annota-
tion property can be the key to relate class and property stamps. We cannot use
the name of the stamps for this purpose due to OWL unique name assumption.
To associate a stamp to a user-defined class, it is sufficient to add the stamp as a
superclass for the user-defined class. Besides the annotation, the stamps can have
more properties. For example, if a stamp (as in [PSV05]) has two fields viewpoint
and resolution, then two properties can be added to a user-defined stamp to model
those two fields. By adding the stamp as a superclass for the user-defined class, the
properties of the stamp are inherited in the user-defined class. Figure 5.14 shows
an example with two perception stamps T1 and T2 and classes that inherit these
perception stamps, i.e., belong to one or another perception.

Figure 5.14: Perception stamps T1 and T2 with the corresponding classes

For the properties, we do similarly. First, we have defined the property per-
ceptions that belongs to the MADS-OWL model. Then, the user can extend this
property with user-defined stamps and descriptions. Figure 5.15 illustrates an exam-
ple with two perception stamps t1 and t2 and different attributes and relationships
that hold to these stamps. In the figure, construct and seasons are attributes and
busBy is a relationship (cf. Figure 3.13 for MADS representation of the same el-
ements). Also, we can see from the figure, that the attribute season holds both
stamps as it appears as the subclass of both perceptions. With this approach for
multiple perceptions we can translate MADS perception-varying object types in
OWL, MADS inter-representation links, and MADS stamped relationships. The
one type of the multiple representation that has no corresponding representation
in OWL, is the stamps for IsA link. In other words, we cannot design an OWL

118 CHAPTER 5. VALIDATION: PRACTICE

Figure 5.15: Perception stamps t1 and t2 with the corresponding classes

hierarchy of classes (properties) where the subclasses (sub-properties) inherit only a
subset of the parent perception stamps. The definition of the OWL owl:subClassOf

construct belongs to the OWL model and cannot be changed to meet the multiple
perceptions paradigm. So, we limit the multiple perceptions mechanisms to the
OWL model.

As we mentioned above, the two sets of OWL modeling primitives are indepen-
dent and it is up to the designer to assign the perception stamps in a coherent way.
It is up to the designer to check that the attributes of a class with the stamps T1

and T2 do not hold any other stamps than t1 and/or t2. This ad-hoc perception as-
sumption does not limit our approach to reasoning because the multiple perceptions
of the MADS model are employed in structural patterns that are chosen after the
reasoning is done. But, if needed, additional constraints can be added to the model
to ensure the stamps coherence.

By this point we have described the translation of MADS structural, spatial, rep-
resentation dimensions, along with constrained relationship to the OWL language.
The resulting model, MADS-OWL is then used by the schema designer to create
user models and state the inter-schema mappings for these models.

5.3 Schema Definition in OWL

With the MADS-OWL model, the designer can create his/her own models using
the spatial, temporal, and representational dimensions of MADS-OWL. We detail
the user schema definition in this section. For our reasoning services we employ a
reasoner that does not provide for spatial or temporal reasonings. Thus, we defined
the MADS-OWL model in a way it emulates reasoning over spatial and temporal
elements of the user-defined model in the scope of the MADS data model.

The general idea on how to define a class as temporal/spatial is to make this
class a subclass of one of the temporal/spatial classes predefined in MADS-OWL.

5.3. SCHEMA DEFINITION IN OWL 119

We illustrate the above modeling approach using our example schemas (Figures 3.12
and 3.13). Figure 5.16 depicts several classes from schema T1. As it is seen from the

Figure 5.16: Some spatial classes from schema T1 from Figure 3.13 defined
in Protégé OWL.

figure, we have defined a class SchemaT1 to group all the elements of the schema
T1. Class SchemaT1 is created purely for visualization reasons and it is not used for
validation. Spatial object types TouristPlace, City, and District hold the simple area
spatial semantics in the MADS schema thus, we defined them as subclasses of the
AreaSimple spatial OWL class. The subclasses of TouristPlace: Museum, Curiosity,
and Monument inherit spatial restrictions of their superclass. The Stop and Station
spatial object types hold the point spatial semantics, thus in MADS-OWL they
have the Point spatial OWL class as their superclass. As it is defined in MADS-
OWL model, all the spatial classes are disjoint, i.e., a user-defined class cannot be
a subclass of two spatial classes. Thus, as the figure shows, all the subclasses of
AreaSimple are disjoint with subclasses of Point.

A spatio-temporal class is defined as a subclass of one of the temporal and one
of the spatial MADS-OWL classes. As an example, in schema in Figure 3.12, there
is a spatio-temporal object type TouristPlace. In OWL, we define this object type
as a class TouristPlace with the AreaSimple spatial class and the Interval temporal
class as its superclasses. Defined as such, the TourisPlace inherits spatial properties
and restrictions as well as temporal.

To define a spatial attribute in MADS-OWL, we create an OWL property of type
<owl:objetProperty> with the range restricted to a spatial class. For example, for
the attribute Start of the object type Walk from Figure 3.13, we define the OWL
property start with the domain restricted to the instances of the spatial class Point:

< owl : ObjectProperty rdf : ID = ”start” >
< rdfs : range rdf : resource = ”Point”/ >
< rdfs : domain rdf : resource = ”Walk”/ >

< /owl : ObjectProperty >

120 CHAPTER 5. VALIDATION: PRACTICE

Similarly, we define temporal attributes. In Figure 5.17 we show the definition of
a complex temporal attribute openTime (cf. Figure 3.13 for MADS representation).
The openTime attribute is a complex attribute with two sub-attributes summer and
winter. To model such an attribute in OWL, we first create a class MuseumOpenTime
that has two properties corresponding to two sub-attributes summer and winter. The

Figure 5.17: OpenTime attribute of the Museum object type from Figure
3.13 modeled in Protégé.

latter properties are temporal properties, i.e., the range of these properties is set
to the temporal class Interval. This restriction guarantees that only instances of
temporal class Interval can become values of the properties summer and winter. The
MuseumOpenTime class is an auxiliary class that provides for the structure of the
complex attribute openTime. Then, we define the property openTime and set its
range to the MuseumOpenTime class. As we saw earlier, the ways MADS complex
attributes and relationships are translated into OWL are exactly the same, thus the
reverse process, i.e., translation from OWL to MADS is undefined. To avoid the
ambiguity we have proposed to add a comment to the MADS complex attributes.
For the openTime property we have added a <rdfs:comment> with the value ”MADS
complex attribute”, Figure 5.17.

Properties in OWL are unidirectional, i.e., a MADS relationship is translated to
OWL by two properties. Let us consider as example the locatedIn relationships be-

5.3. SCHEMA DEFINITION IN OWL 121

tween object types TouristPlace and CityBorough from Figure 3.12. This relationship
holds topological inclusion semantics and therefore can link only spatial object types.
In OWL, spatial property locatedIn is defined as a sub-property of the include area
topological property. This latter property belongs to the MADS-OWL model and
restricts the domain and range of its sub-properties by those spatial classes that can
participate in it, cf. table in Figure 5.9. The following OWL code describes the
locatedIn property.

< owl : ObjectProperty rdf : ID = ”locatedIn” >

< rdfs : subPropertyOf >

< owl : ObjectProperty rdf : ID = ”include area”/ >

< /rdfs : subPropertyOf >

< rdfs : domain rdf : ID = ”TouristPlace”/ >

< rdfs : range rdf : ID = ”CityBorough”/ >

< owl : inverseOf >

< owl : ObjectProperty rdf : ID = ”locates”/ >

< /owl : inverseOf >

< /owl : ObjectProperty >

The range and domain of the locatedIn property are the subclasses of the range
and domain of the include area property. This restriction is verified by the Protégé
ontology checker. The cardinality constraint for the locatedIn property is defined as
a restriction in class TouristPlace on this property.

< owl : Classrdf : ID = ”TouristPlace” >

. . .
< rdfs : subClassOf >

< owl : Restriction >

< owl : minCardinalityrdf : datatype = ”int”
> 1 < /owl : minCardinality >

< owl : onProperty >

< owl : ObjectPropertyrdf : ID = ”locatedIn”/ >

< /owl : onProperty >

< /owl : Restriction >

< /rdfs : subClassOf >

< /owl : Class >

There is an inverse property locates that has CityBorough class as its domain and the
TouristPlace class as its range. This property completes the definition of the MADS
locatedIn relationship. In the class CityBorough we do not add any restriction on the
property locates because by default, OWL properties are created as optional and
multiple, which corresponds to the cardinality constraint 0:n.

We have entirely defined schemas T1 and T2 (Figures 3.12 and 3.13) in OWL.
Figures 5.18 and 5.19 show the hierarchy of the classes including spatial and temporal

122 CHAPTER 5. VALIDATION: PRACTICE

super-classes. The properties are not displayed in the figures due to the complexity
of the whole image.

Figure 5.18: Schema T1 in Protégé.

5.3. SCHEMA DEFINITION IN OWL 123

Figure 5.19: Schema T2 in Protégé.

We now present the algorithm for MADS schema definition in OWL. In the
notation used in the algorithm the subscript indicate to which model the element
belongs, e.g., MADS object type Amads has a corresponding OWL class Aowl.
algorithm:

1. OWL classes:

(a) Create an <owl:Class rdf:ID "Aowl"/> for each object type Amads in
MADS diagram;

(b) Create an <owl:Class rdf:ID "Raowl"/> for each MADS relationship type
Ramads with attributes;

(c) Create an <owl:Class rdf:ID "Rnowl"/> for each n-ary MADS relationship
type Rnmads;

(d) Create an <owl:Class rdf:ID "Cowl"/> for each MADS complex attribute
cmads.

2. OWL object properties:

(a) Create an

<owl:ObjectProperty rdf:ID "Rowl">
<rdfs:domain rdf:resource "Aowl"/>
<rdfs:range rdf:resource "Bowl">

</owl:ObjectProperty>

124 CHAPTER 5. VALIDATION: PRACTICE

for each binary MADS relationship type Rmads that links two MADS
object types Amads and Bmads

6;

(b) Create an inverse object property

<owl:ObjectProperty rdf:ID "inverse of Rowl">
<rdfs:domain rdf:resource "Bowl"/>
<rdfs:range rdf:resource "Aowl">

</owl:ObjectProperty>

for each binary MADS relationship type Rmads that links two MADS
object types Amads and Bmads;

(c) Create an

<owl:ObjectProperty rdf:ID "Rcowl">
<rdfs:domain rdf:resource "Aowl"/>
<rdfs:range rdf:resource "Cowl">
<rdfs:comment MADS complex attribute/>

</owl:ObjectProperty>

for each MADS complex attribute cmads, where Amads is the object
type the complex attribute cmads belongs to;

(d) Create n OWL object properties (with corresponding inverse object
properties) for each n-ary MADS relationship Rnmads (modeled as
class Rnowl in OWL) and for each MADS relationship with attribu-
tes Ramads (modeled as class Raowl in OWL);

3. OWL datatype properties:

(a) Create a

<owl:DatatypeProperty rdf:ID "aowl">
<rdfs:domain rdf:resource "Aowl"/>
<rdfs:range rdf:resource

"http://www.w3.org/2001/XMLSchema type"/>
</owl:DatatypePropertyProperty>

for each MADS simple attribute amads of a predefined data type
type of object type Amads;

(b) Create a

<owl:DatatypeProperty rdf:ID "aowl">
<rdfs:domain rdf:resource "Cowl"/>
<rdfs:range rdf:resource

"http://www.w3.org/2001/XMLSchema type"/>
</owl:DatatypePropertyProperty>

6Rowl can later be defined as topological and/or synchronization property.

5.3. SCHEMA DEFINITION IN OWL 125

for each MADS composing attribute, i.e., for each of the compo-
sing attributes of a complex attribute cmads.

4. MADS-OWL dimensions: structural, spatial, temporal:

(a) Create a

<rdfs:subClassOf>
<owl:Class rdf:ID = "Aowl"/>

</rdfs:subClassOf>

restriction for each MADS object type which is a subtype of Amads;

(b) Create a

<rdfs:subClassOf>
<owl:Class rdf:ID = SADTowl/>

</rdfs:subClassOf>

restriction for each Aowl class that models a spatial object type,
where the SADTowl is one of the predefined classes in the MADS-
OWL spatial hierarchy;

(c) Create a

<rdfs:subPropertyOf>
<owl:ObjectProperty rdf:ID = Topologicalowl"/>

</rdfs:subClassOf>

restriction for each Rowl object property that models a topolo-
gical relationship type, where the Topologicalowl is one of the
MADS-OWL predefined topological properties;

(d) Create a

<rdfs:subClassOf>
<owl:Class rdf:ID = TADTowl"/>

</rdfs:subClassOf>

restriction for each Aowl class that models a temporal object
type, where the TADTowl is one of the predefined classes in
the MADS-OWL temporal hierarchy;

(e) Create a

<rdfs:subPropertyOf>
<owl:ObjectProperty rdf:ID = Synchronizationowl"/>

</rdfs:subClassOf>

restriction for each Rowl object property that models a synch-
ronization relationship type, where the Synchronizationowl is
one of the MADS-OWL predefined synchronization properties;

5. Cardinality constraints, application specific constraints:

126 CHAPTER 5. VALIDATION: PRACTICE

(a) Add a

<owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema int">
n</owl:minCardinality>

<owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema int">
m</owl:minCardinality>

for each of the MADS relationship types and attributes where the
cardinalities are different from 0 : n;

(b) Add different application specific restrictions, e.g., OWL nece-
ssary conditions, OWL necessary and sufficient conditions (to
define classes), disjoint axiom on classes application const-
raints in the PAL language; specify OWL symmetric, functional,
transitive properties;

end algorithm

One of the assumptions that we make in our approach, is the validity of the source
schemas. Thus at this stage of the translation from MADS to OWL, the ontology
check for each schema should not give any error. The subsumption check should
not produce any new subclass/superclass relationships since all the classes within
each schema are mutually disjoint. Consistency check verifies if there are contradic-
tory restrictions, for example, cardinality constraints on relationships (properties in
OWL). In our example schema T1 there is a relationship stopServes with the cardi-
nality 1:n, if the designer sets two cardinality restrictions that are incompatible, e.g.,
<owl:minCardinality> greater than <owl:maxCardinality>, then the class Stop
which is the domain of this property, is found inconsistent. The checks provided by
the RACER reasoner become more valuable when the inter-schema mappings are
added.

5.4 Inter-schema Mappings Definition in OWL

Let us now consider the translation of MADS inter-schema mappings into OWL.
There are three types of inter-schema mappings that are stated to relate source
schemas. The first set of mappings is the Schema population Correspondences (SC)
that relate the populations of object types. Then, there are Property semantic
Correspondences (PC) for the attributes of the related object types. The last set
of mappings is the Matching Rules (MR) which is a subset of the PC that relates
identifier attributes. To illustrate the inter-schema mappings definition in OWL, we
use the same set of MADS correspondences as we used for the theoretical part in
Section 4.2.3, the syntax of MADS inters-schema mappings was presented in Section
3.4.2:
Schema population Correspondences:

5.4. INTER-SCHEMA MAPPINGS DEFINITION IN OWL 127

(1) T2.TouristSite ∩ T1.TouristPlace ;
(2) T2.Museum ⊆ T1.Museum ;
(3) T2.Monument ⊆ T1.Monument ;

Property semantic correspondences:
(4) T2.Museum w T1.Museum ;
(5) T2.Monument w T1.Monument ;
(6) T2.Munument.Construct T1.Monument ;
(7) T2.Museum.OpenTime T1.Museum ;
(8) T1.CityBorough.name = T2.TouristSite.district ;

Matching Rules within the Property semantic correspondences:
(9) T1.TouristPlace w T2.TouristSite ;
(10) T1.TouristPlace.name = T2.TouristSite.name ;

Schema population Correspondences. In MADS, the Schema population Cor-
respondences are stated between object types using the intersect, inclusion, equality,
and disjoint operators - {∩,⊆,≡, ∅}.

In OWL, the classes are assumed to overlap, i.e., if it is not explicitly forbidden by
the disjoint axiom, OWL classes can have common instances, which corresponds to
the overlapping relationship in MADS. For our OWL models Schema1 and Schema2,
we stated that within the schemas, the classes are disjoint, but classes belonging to
different models do not have this restriction.

The inclusion in OWL is stated as the subclass axiom. In OWL, subclass means
necessary implication, i.e., if the T2.Museum is stated as a subclass of T1.Museum,
then all the instances of the T2.Museum are the instances of T1.Museum. This defini-
tion of subclasses in OWL corresponds exactly the inclusion relationship definition
in MADS. For the population correspondences (1) - (3) we have stated the corre-
sponding subclass axioms.

To state two classes as equivalent, it is sufficient to add a separate necessary &
sufficient condition to one of the equivalent classes. The corresponding condition is
added automatically to the other class. In the OWL syntax, the equivalence between
T1.Museum and T2.Museum is stated as follows:

< owl : Class rdf : ID = ”Museum” >

< owl : equivalentClass >

< owl : Class rdf : ID = ”Museum2”/ >

< /owl : equivalentClass >

. . .
< /owl : Class >

Let us now run the reasoner with an invalid condition which we have asserted on

128 CHAPTER 5. VALIDATION: PRACTICE

purpose. The condition we have added to the model is the following:

< owl : Class rdf : ID = ”TouristPlace” >

< owl : disjointWith >

< owl : Class rdf : ID = ”TouristSite”/ >

< /owl : disjointWith >

. . .
< /owl : Class >

This condition invalidates the previous one, because TouristPlace is the superclass of
the Museum, and TouristSite is the superclass of Museum2, cf. Figures 5.18 and 5.19.
The model asserts that with the disjoint super-classes some of their subclasses are
equal, as shown graphically in Figure 5.20. If we check consistency for the Museum

Figure 5.20: Validation for the <owl:equivalentClass> condition.

class, the reasoner finds it inconsistent. The inferred (consistent) model does not
have the equivalence condition anymore.

Property semantic Correspondences. For the Property semantic Correspon-
dences the set of operators includes the equality sign - ≡ - for attributes having
comparable domain type like integer or strings; the set of topological relationships
- gt , gt , e , gt , gt , w - that are used to relate the spatial extensions of the
schemas; and the set of synchronization relationships - , , , , ,

, - to relate the timestamped elements of the schemas.
The equivalence between two properties is stated with the <owl:equiva- lentProperty>

restriction. For our OWL models, the equivalent properties are for example, the
nameCityBorough and the district property of the TouristSite class (expression (8))
with the equivalence between them stated as follows:

< owl : DatatypeProperty rdf : ID = ”district” >

5.4. INTER-SCHEMA MAPPINGS DEFINITION IN OWL 129

. . .
< owl : equivalentProperty >

< owl : FunctionalProperty rdf : ID = ”nameCityBorough”/ >
< /owl : equivalentProperty >

< /owl : DatatypeProperty >

The equality of the properties means that the ranges of these properties are the
same.

For spatial mappings we use the MADS-OWL topological properties. For ex-
ample, to state the expressions (4) in OWL, we add the s equal property to the
Museum2 class with the closure axiom, i.e., with the existential and the universal
restrictions. We add a similar restriction to the Monument2 class to state the ex-
pression (5). By the definition of the s equal property, its domain and range must
be of the same type. If the designer states for example, that a museum is spatially
equal to a bus stop, the reasoner will find the two classes inconsistent. To express
synchronization mappings (6) and (7), we define a synchronization property t equal
between the Construct and the Monument classes and between the MuseumOpenTime
and the Museum classes respectively.

Figure 5.21: Constraint for the topological properties.

We have defined several constraints over the property semantic correspondences.

130 CHAPTER 5. VALIDATION: PRACTICE

Since we are limited by the decidable subset of the first-order logic, we define the
constraints on the instance level. In Figure 5.21 we show a constraint, spatial rule 01,
that prohibits an instance of the class Geo from having incompatible topological
properties. To demonstrate the validation procedure, we have created two instances
of the spatial class Stop, Palais Royal and Gare de l Est, and we stated in the model
that the Gare de l Est is spatially disjoint and spatially equal to the Palais Royal.
This last statement is inconsistent which had been found by the constraint validation
engine. In Figure 5.21, the status of the constraint spatial rule 01 is not valid.

For the MADS-OWL synchronization properties we have defined a similar con-
straint, temporal rule 01, that checks all the synchronization properties of a tem-
poral instance. The constraint is invalidated if the instance has the same values
for the t disjoint and for any other of the synchronization properties. This type
of constraints is equivalent to imposing the disjointness restriction on the t disjoint
synchronization property. But this constraint is a higher order constraint and would
make our model undecidable in the frame of OWL-DL modeling approach. The con-
straint in the listing bellow is the temporal rule 01, it is defined over the instances of
the class Time and therefore is checked for any instance of any subclass of the class
Time.

(defrange ?tmp1 :FRAME Time)
(defrange ?tmp2 :FRAME Time t disjoint)

(forall ?tmp1 (forall ?tmp2
(=> (t disjoint ?tmp1 ?tmp2)

(and (not (t equal ?tmp1 ?tmp2))
(not (overlap time ?tmp1 ?tmp2))
(not (meet ?tmp1 ?tmp2))
(not (during ?tmp1 ?tmp2))

))))

For the constraints we use PAL - Protégé Axiom Language that implements a
model-checking rather than theorem-proving engine. In other words, PAL makes
strong closed world assumptions and is used for writing restrictions on existing
knowledge, not for asserting new knowledge. The primary goals of PAL are thus to
detect incomplete entry of information and to check entered information for incon-
sistencies beyond the local scope of facets [PAL].

Now, considering the restrictions on the spatial and temporal MADS-OWL con-
cepts, and additional PAL constraints over the spatial and temporal properties, we
can emulate the spatial and temporal reasoning over the property semantic corre-
spondences stated by the designer.

Matching Rules. As we described in Section 3.4.2, the identifier attributes can
belong to one or more MADS dimensions, i.e., an object can be identified by it’s
geometry, life-cycle, or a thematic attribute. The identifier attributes are stated by

5.4. INTER-SCHEMA MAPPINGS DEFINITION IN OWL 131

the schema designer. As in databases, the identifier properties in OWL are manda-
tory, adding to this fact the unique name assumption, we can use a restriction over
an identifier attribute as necessary & sufficient condition that defines the class that
holds this property. The properties that figure in the necessary & sufficient con-
ditions are the candidates for the matching rules. In our example, the properties
that identify the tourist attractions are the name and geometry associated to the
instances of the classes TouristSite and TouristPlace, i.e., instances of these classes
that have the same values for the name and hasGeometry properties, are the same
instances. Mapping (9) in OWL, is stated with the <owl:equivalentProperty>

restriction:

< owl : DatatypeProperty rdf : ID = ”nameTouristPlace” >

. . .
< owl : equivalentProperty >

< owl : FunctionalProperty rdf : ID = ”nameTouristSite”/ >

< /owl : equivalentProperty >

< /owl : DatatypeProperty >

Mapping (10) is stated as the restriction over the s equal property in the class Tourist-
Site as shown:

< owl : Class rdf : ID = ”TouristSite” >

< rdfs : subClassOf >

< owl : Restriction >

< owl : allValuesFrom rdf : resource = ”TouristPlace”/ >

< owl : onProperty >

< owl : ObjectProperty rdf : ID = ”s equal”/ >

< /owl : onProperty >

< /owl : Restriction >

< /rdfs : subClassOf >

. . .
< /owl : Class >

The names and the geometries of the tourist attraction instances are their iden-
tifying attributes. We add the existential restrictions in the necessary & sufficient
set of restrictions thereby defining the TouristSite and the TouristPlace classes. If the
models Schema1 and Schema2 are populated with the instances of the above men-
tioned classes, the reasoner will automatically infer the identical instances based on
their name and geometry values.

To summarize the representation of the MADS inter-schema mappings in MADS-
OWL we now make a list of the translations for each MADS inter-schema mapping
operator, we assume that the inter-schema are stated between two MADS object
types Amads and Bmads with corresponding MADS-OWL classes Aowl and Bowl.

132 CHAPTER 5. VALIDATION: PRACTICE

translation:

1. Schema population Correspondences (SC). Add to the definition of
the class Aowl one of the following MADS-OWL constructors:

MADS SC operators MADS-OWL representation

∩ <owl:DisjointWith/> for
all non-overlapping classes;

⊆ <owl:subClassOf/>;

∅ <owl:DisjointWith/>;

≡ <owl:sameClassAs/>;

2. Property semantic Correspondences (PC). Add appropriate
restrictions to the definition of the Aowl class:

MADS PC operators MADS-OWL representation

= <owl:equivalentProperty/>;

↔ <owl:equivalentProperty/>;

any topological <owl:Restriction>
operator, i.e., <owl:onProperty>
gt, gt , <owl:ObjectProperty
e , gt , rdf:about=Topologicalowl/>
gt , w </owl:onProperty>

<owl:allValuesFrom>
<owl:Class rdf:ID= Bowl/>

</owl:allValuesFrom>
</owl:Restriction>

any synchro- <owl:Restriction>
nization <owl:onProperty>
operator, i.e., <owl:ObjectProperty

, , rdf:about=Synchronizationowl/>
, , <owl:onProperty>
, , <owl:allValuesFrom>

<owl:Class rdf:ID= Bowl/>
</owl:allValuesFrom>

</owl:Restriction>

3. Matching Rules (MR). The PCs with an equivalence operator,
including spatial (w) and temporal () equivalence, are the
matching rules.

5.5. CHAPTER SUMMARY 133

5.5 Chapter Summary

In this chapter, we described a hybrid approach exploiting advantages of two for-
malisms: a spatio-temporal conceptual model and an expressive description logic.
The two approaches we employ come from different worlds: database and ontology.
”In the former, validity is possible but doubt is a plague, in the latter, the doubt is
embraced, but validity is a myth” [HPPSH05]. We do not enhance any of the two
approaches to achieve our goal - meaningful integration of spatio-temporal database
schemas. Instead, we exploit the advantages of each approach and cope with their
limitations. From the database world, we use MADS, an EER conceptual model,
intended to describe spatio-temporal application data. A peculiar feature of MADS
that is of interest in an integration environment is that it includes specific concepts
to describe multiple representations of data. Indeed, as stated in [DPS98], full inte-
gration of spatial database requires a powerful data model for the integrated schema
in order not to loose the semantics of the original schemas. EER like conceptual
schemas are concise if compared to the description logics ones; they represent the
real world in the way humans think of it: by objects with their properties and re-
lationships. With the strong representation capabilities, conceptual models lack a
validation support that becomes a crucial feature for schema integration processes.
As shown in Figure 4.1, our integration process requires additional information to
be stated by the designer. Initially, integrity constraints and inter-schema mappings
are not part of the source schemas; addition of these statements may entail incon-
sistencies in the resulting description. To validate user input, the source schemas
together with the integrity constraints and the inter-schema mappings are translated
into a description logic language. The translated model is then checked for satisfia-
bility. In the context of our integration process, the satisfiability of the model means
that the inter-schema mappings conform to the data model, that they are mutually
non-contradictory, and the integrity constraints imposed on the data model and the
user models are compatible. Furthermore, the successful satisfiability check allows
the schema designer to follow any of the integration policies, i.e., minimal, non-
exhaustive, maximal, or preservation (Section 3.4). In the case of a non-satisfiable
model, only the preservation policy with the multiple representation structural pat-
terns is a viable solution for the integrated schema.

We have defined the MADS-OWL model which is the MADS translation into
the OWL language. MADS structural, spatial, temporal, and representation dimen-
sions are orthogonally defined in the OWL ontology language. We were not able to
translate all the MADS features into OWL. In the structural dimension we could
not for example define relationships with attributes. The solution for this short-
coming of the OWL semantics is to remodel a relationship with attributes by an
object type with attributes, as shown in Figure 5.4. Using the binary structures
OWL we had to use same constructors for complex attributes and for relationships,
adding an annotation property to distinguish them. For the spatial and temporal
dimensions we were not able to implement the overloading concept along the spatial

134 CHAPTER 5. VALIDATION: PRACTICE

types hierarchy. For example for the schema in Figure 3.13, the Walk object type in
MADS-OWL model holds the same spatial semantics as its parent, i.e., the simple
area type. For MADS representation dimension, we implemented the perception
stamps in different and independent ways for classes and properties. This modeling
solution requires additional constraints to be added to the model to link two sets
of stamps. Due to the OWL definition of the subclass constructor, we could not
associate perception stamps to the IsA (subClass constructor in OWL) links. This
does not limit the validation process since we do not reason over the models with
different perception stamps; perceptions stamps may be associated to the integrated
schema in MADS provided the designer chooses the preservation integration policy.

The MADS-OWL model is imported as a reference ontology in the user model.
Then, the user defines spatial or temporal classes or properties by using the MADS-
OWL ontology classes and properties as parent for his/her model elements. If the
designer wants to rewrite the inherited values, his choice is checked for compatibility
with parent values. If the designer defines a domain (or range) that is not a spe-
cialization of the domain (or range) of the parent property, this choice is rejected
and an error message is displayed. The integrity constraints associated to the data
model are inherited by the user models and can be validated in our modeling frame-
work. Figure 5.21 shows a screen-shot with an invalidated constraint spatial rule 01
and spatial instances Palais Royal and Gare de l Est that do not conform to this
constraint.

Our modeling approach insures that the model designer will correctly define
spatial and temporal elements as well as the topological and synchronization prop-
erties. A model constructed with the reference MADS-OWL model, is then checked
for satisfiability considering MADS spatial and temporal semantics.

Chapter 6

System Modeling Issues

This chapter is devoted to the system modeling. We present two models, UML and
SEAM model, of a system that provides for integration functionalities. The models
describe a framework where several tools are employed together, each involved in the
service it is best suited for. Unified Modeling Language (UML) is a non-proprietary,
third generation modeling and specification language. However, the use of UML
is not restricted to modeling software. As a graphical notation, UML can be used
for modeling hardware (engineering systems) and is commonly used for business
process modeling, representing organizational structure, and systems engineering
modeling (from wikipedia.org). SEAM [Weg03] stands for Systemic Enterprise Ar-
chitecture Methodology. The core idea of SEAM is to provide a uniform notation for
all enterprise stake-holders that participate in a business process. SEAM enterprise
model supports hierarchical modeling approach, where a sub-level model details its
super-level model using a uniform notation. In SEAM, at each level, a system can
be represented with a computational viewpoint (i.e., as a collaboration of subsys-
tems) and with an informational viewpoint (i.e., focusing on the semantics of the
information and information processing performed) [BRW03].

6.1 UML modeling

In this section we present several UML diagrams for integration tool - ICATool.
The tool allows to read MADS schemas and verify the syntax of the Inters-schema
Correspondence Assertions or inter-schema mappings between these schemas. The
modeling approach is adopted from [RS01]. In the following sections we present the
use case, the robustness diagram, and the activity diagram for ICATool.

6.1.1 Use Case introduction and definitions

Use case modeling is a powerful, industry standard requirements modeling technique.
The use case model is depicted in diagrams using UML. Use cases are used to model
how the system will interact with users and external systems. Use cases provide

135

136 CHAPTER 6. SYSTEM MODELING ISSUES

an important base upon which the system can be designed and built. The basic
definitions of the use case vocabulary [Coc00]:

• Actor - anyone or anything with behavior;

• Stakeholder - someone or something with a vested interest in the behavior of
the system under discussion (SuD);

• Primary actor - the stakeholder who or which initiates the interaction with
the SuD to achieve a goal;

• Use case - a contract for the behavior of the SuD;

• Scope - identifies the system that we are discussing;

• Preconditions and guarantees - what must be true before and after the use
case runs;

• Main success scenario - a case in which nothing goes wrong;

• Extensions - what can happen differently during the scenario.

A use case captures a contract between the stake-holders of a system about its
behavior. The use case describes the functionality of the system - what the system
will do for the user in order to get some useful work done. It also helps to layout
the actors or users of the system and their role in running the system. The use case
describes the system’s behavior under various conditions as the system responds to
a request from one of the stake-holders, called the primary actor. The primary actor
initiates the interaction with the system to accomplish some goal.

A use case description generally includes:

1. General comments and notes describing the use case;

2. Requirements - things that the use case must allow the user to do, such as
ability to update order, ability to modify order etc.

3. Constraints - rules about what can and can not be done. The rules include
pre-conditions that must be true before the use case is run - e.g. create order
must precede modify order; also include post-conditions that must be true
once the use case is run e.g. order is modified and consistent; invariants -
these are always true - e.g. an order must always have a customer number

4. Scenarios - sequential descriptions of the steps taken to carry out the use
case. May include multiple scenarios, to cater for exceptional circumstances
and alternate processing paths;

5. Scenario diagrams - sequence diagrams to depict the workflow.

6.1. UML MODELING 137

In the following we propose a use case for the ICATool, the tool that allows for
creating the inter-schema mappings for MADS schemas. As the input, the editor
takes two or more MADS schemas and following the integration method (Section
3.4) proposes an integrated view of the input schemas.

6.1.2 Use Case: ICATool

Use Case : Generate the Integrated Schema.

Primary Actor: Database Integrator (DI).

Scope: ICATool integration tool.

Stake-holders and Interests:
Domain Expert (DE) - assists the DI to obtain adequate results.
ICATool - based upon the correct inter-schema mappings generate the correct inte-
grated schema.
MADS schema editor - displays the schemas (input and integrated) in graphical
form for DI and DE to analyze.
Description Logic Reasoner (DLR) - validates MADS schemas and inter-schema
mappings, based on the validtion results, DI chooses the integration policy for the
final schema.

Preconditions: the DI is knowledgeable in the domain of conceptual modeling
and has at least theoretical knowledge about the integration method used in the
ICATool; there is an expert support accessible to the DI; the schemas that are used
as the input of the ICATool are in MADS format; these schemas are valid.

Minimal Guarantees: the DI is presented the local (input) schemas in the textu-
ral format and gets some knowledge of the data modeled by these schemas.

Success Guarantees: the DI obtains the integrated schema that meets the re-
quirements of the application this schema is generated for.

Main Success Scenario:

1. DI starts the ICATool.

2. DI chooses the MADS schemas.

3. The schemas are parsed and displayed by the ICATool.

4. DI analyzes the schemas and states the inter-schema mappings.

5. DI starts the syntactic parser of the ICATool.

138 CHAPTER 6. SYSTEM MODELING ISSUES

6. DI interprets the result of the parsing, makes corrections if necessary.

7. The inter-schema mappings and schemas are translaled to MADS-OWL lan-
guage and sent to the DLR for validation.

8. DI chooses the integration policy to be followed.

9. DI starts the integrated schema generator function of the ICATool.

10. The integrated schema is displayed in the ICATool window in the textural
form and in the MADS editor window in the graphical form.

11. DI analyzes the result schema and either accepts or refuses it.

Parse MADS schemas

and present them in the

textural form

Datbase Integrator

is supposed to be

able to anayse the

input schemas and

provide the rules

Database Integrator (DI)

Database Expert (DE)

Ask the DE for

assistance

Datbase Expert has

knowledges about

the data semantics.

Consults the DI

State inter-

schema matchings

Define user

functions

Choose the

integration

policy

Assept or refuse

the integrated

schema

System (ICATool)

Parse Inter-

schema

matchings

Generate the

integrated

schema

Interact with the

DL reasoner

System - DL Reasoner (DLR)

Translate MADS

schemas

Validate

schemas and

mappings

Edit schema

definitions

Figure 6.1: The Use Case for the ICA Tool.

Extensions:

4a. DI has insufficient knowledge to formulate the inter-schema mappings.

4a.1. DI consults the DE, together they formulate the inter-schema mappings.

6a. The parser results in syntactical mistakes.

6a.1. DI asks the DE for assistance.

11a. DI needs help in interpreting the results of integration.

11a.1. DI asks the DE for assistance.

6.1. UML MODELING 139

In the following two sections we present two modeling diagrams - robustness
and activity diagram. These two diagrams are similar in the sense that they model
the general interaction flow between stake-holders of the system, and give a first
view on the functions to be implemented in the application. These diagrams are
transitional from from the static “what to model” to dynamic “how to” implement
the system. We aim, by presenting hereafter these two diagram types to compare
their expressiveness and usefulness.

6.1.3 Robustness diagram for the ICATool

In the UML system design, how to get from use cases to sequence diagram is a non-
trivial problem. Most approaches that can be found in the literature, talk about use
cases and sequence diagrams but do not address how to get across the gap between
the fuzzy use cases and a code-like level of detail on the sequence diagrams [RS01].
To close this gap the [RS01] proposes a diagram called robustness diagram. The
place of the robustness analysis is between what the system has to do and how it is
actually going to accomplish this task. A robustness diagram is similar to the UML
activity diagram, in that it shows the objects that participate in the scenario and
how these objects interact with each other. In a robustness diagram the following
three elements are used (see Figure 6.2):

Boundary

 Object

Entity

Object

Control

Object

Figure 6.2: Robustness Diagram Elements.

• Boundary object - used by actors use to communicate with the system.
Usually, boundary objects include screens, dialogs, and menus;

• Entity objects - usually objects from the domain model. Entity objects map
to the database tables and files that hold the information;

• Control objects - embody much of the application logic. They serve as
connectors between the users and the stored data.

There are four basic rules that a robustness diagram should meet (see Figure 6.3):

1. Actors can only talk to the boundary objects;

2. Boundary object can only talk to controllers and actors;

3. Entity objects can only talk to the controllers;

140 CHAPTER 6. SYSTEM MODELING ISSUES

Allowed
 Not allowed

Figure 6.3: Robustness Diagram Rules.

4. Controllers can talk to boundary objects, entity objects and other controllers,
but not to actors.

Following the use case that was presented earlier Section 6.1.2, we propose the
robustness diagram for this use case (see Figure 6.4). This robustness diagram
follows the course of actions included in the use case.

As we mentioned before, the robustness diagram provides a bridge between the
“analysis level” view provided by the text of the use case and the “detailed design”
view that would be presented on a sequence diagram. Since it’s very difficult to pro-
ceed from analysis directly to detailed design, it’s hard to do modeling successfully
without this step. In the following section we present the activity diagram for the
same use case.

6.1.4 Activity diagram for the ICATool

UML activity diagrams document the logic of a single operation or method, a single
use case, or the flow of logic of a business process. In our case we will design an
activity diagram for the ICATool (Inter-schema Correspondence Assertions Tool)
use case. To give a broader overview of the activity diagram design and usage we
begin with a general description of this type of diagram. To create a UML activity
diagram, the following steps should be iteratively performed.

1. Identify the scope of the activity diagram. The scope could be a single use
case, a portion of a use case, a business process that includes several use cases,
or a single method of a class. Once the scope is identified, a note indicating
an appropriate title for the diagram should be added to it.

2. Add start and end points. Every activity diagram has a starting point and
an ending point. Some authors make the ending points optional ([RS01]).
Sometimes an activity is simply a dead end, but even in this case, indicating
the only transition to an ending point would not introduce any overwhelming

6.1. UML MODELING 141

DI

correct

DI starts the

 ICATool

ICATool

Open, parse, and

display MADS schemas

 in textural format

Write Inter-

schema

mappings

Parse the

mappings

Choose

the

policy

Start the integra-

ted schema gene-

ration procedure

Interprete the

rersults of

 integration

accept

MADS Editor

 Schemas

Ontology

refuse

Start the DL reasoner

 and send the schemas

 in the MADS-OWL format

DI

Edit mappings,

 add rules

correct

Validate

schemas

consult

Validate

mappings

DEconsult

iconrrect

correct

Figure 6.4: Robustness Diagram for the ICATool.

to the diagram. This way, when some other designer reads this diagram, he
or she knows that the exit of the activities was considered in the design.

3. Add activities. If the diagram models use case, an activity should be added for
each major step initiated by an actor (this activity would include the initial
step, plus any steps describing the response of the system to the initial step).
If the SuD is a high-level business process, an activity is introduced for each
major process, often a use case or a package of use cases. Finally, if a method
is modeled, then it is common to have an activity for this step in the code.

4. Add transitions from the activities. A good style by [Amb00] is to exit an ac-
tivity, even if it is simply to an ending point. Whenever there is more than one
transition out of an activity, each transition should be labeled appropriately.

5. Add decision points. Sometimes the logic of what is modeled calls for a de-
cision to be made. Perhaps something needs to be inspected or compared to
something else. Important to note that the use of decision points is optional.

6. Identify opportunities for parallel activities. Two activities can occur in paral-
lel when no direct relationship exists between them and they must both finish
before a third activity can.

142 CHAPTER 6. SYSTEM MODELING ISSUES

For the diagram depicted in Figure 6.5, the scope of the diagram is integrated
schema generation with the ICATool. This process can be finished either with
success - the schema is generated and it meets the application requirements; or with
failure, but still fulfilling the minimal guarantees (see the use case in Section 6.1.2).
The failure case can occur if the database integrator has insufficient knowledge either
on the integration method, or on the semantics of the modeled data and application.
The set and the order of the activities correspond to the lines in the use case.

Parse MADS schemas

and present them in the

textural form

Datbase Integrator

is supposed to be

able to anayse the

input schemas and

provide the rules

Database Integrator (DI)

Domain Expert (DE)

Ask the DE for

assistance

Domain Expert has

knowledges about

the data semantics.

Consults the DI

State inter-

schema matchings

Define user

functions

Choose the

integration

policy

Assept or refuse

the integrated

schema

System (ICATool)

Parse Inter-

schema

matchings

Generate the

integrated

schema

Interact with the

DL reasoner

DL Reasoner (DLR)

Translate MADS

schemas

Validate

schemas and

mappings

Edit schema

definitions

Figure 6.5: Activity Diagram for the ICATool.

Discussion. In this section we make a comparison of the two diagram types that
were presented in the Sections 6.1.3 and 6.1.4. These diagrams generally model
the interaction flow in the system. The elements representing the same logic in
both diagrams are the activities in the Activity diagram (AD) and controllers in
the Robustness diagram (RD). From the point of view of the functionality of the
future application, an RD draws a more precise picture of the potential functions
to implement. The activities in an AD are more general that the controllers in an
RD. The controllers of an RD diagrams can be attributed not only to actors, as in
an AD, but also to the elements that constitute these actors. For example, if one of
the actors is a tool, then a controller can represent one of the function no this tool.
On the other hand, analyzing an RD, it is difficult to say which actor initiated what
function. A RD is written for every use case, whereas a single application can be
specified by several use cases that intersect. In an AD it is possible to specify the
actor that initiates an activity.

Structurally, an AD is richer than an RD. The significant elements of an AD such
as termination points, decision points, parallel execution are not easily perceived
from an RD. The termination points allow to define precisely the possible final
states of the modeled process and link them to the following process flow. For a
coherent system design it is important to clearly see the possible outcomes of the

6.2. SEAM MODELING 143

use cases composing the application. On the other hand, an RD displays entity
concepts which are the data sources that are involved in the process flow. Such an
approach to modeling the data sources in an RD diagram, is a simple and condense
way to model the process flow with the underlying data. There in no other diagram
in UML that would combine the static and dynamic elements of the application.
To conclude our comparison, we would like note that there are rules for an RD
design that check the application logic, whereas an AD is designed without ordering
constraints. This could defer logic mistakes discovery for further modeling phases
where correction of such mistakes becomes more expensive.

6.2 SEAM modeling

In the previous section we have presented the use case, robustness and activity UML
diagrams for ICATool, a tool to design an integrated MADS schema. Although all
these diagrams describe the same artefact at different levels, they use different graph-
ical notations with hardly traceable links between them. It seem beneficial to employ
a model that provides for a unified notation in processes and resources modeling.
The state of the art in hierarchical object-oriented models is such that no models
are suited for that purpose [LW04]. Existing hierarchical models either represent
the hierarchy in an inconsistent way, or focus on only one system of interest, or
inadequately model actions, or lack a complete metamodel to keep the traceability
across the hierarchy. Authors in [LW04] present a meta-model SEAM, that defines
a hierarchical object-oriented model of systems such as those found in enterprise
architecture. SEAM stands for the Systemic Enterprise Architecture Methodology,
described in [Weg03]. In general, SEAM distinguishes 3 organizational levels: busi-
ness, operation and IT (Information Technology) [Weg03]. The first level represent
companies working together. The second level represents people and systems within
the company. The third levels represents how the IT system is built. However, many
other levels can exist (depending on the particular organization and modeler).

Let us imagine that ICATool is employed in an organization that implements
the mediation level services for organizations like the one we described in the very
beginning of this thesis (Figure 1.1). For that organization we model only two SEAM
levels, i.e., business and operation. The IT level, which is out of the scope of this
thesis, usually represents the system of interest as a collaboration of components -
IT systems - supporting the process defined on the operation level. Using SEAM
approach to model the Enterprise Architecture (EA) of such an organization, the
Project Manager (PM) would first design the model of the Business Organizational
Level (Figure 6.6). A business level model shows the system of interest within its
environment and defines the collaboration(s) between main participants. On this
modeling level, the PM defines the process to implement (i.e., Integrated Schema
Design), the actors of the process (i.e., Domain Expert (DE), Integrated Schema
Designer (ISD), ICATool, and Description Logic Reasoner (DLR)) and their main

144 CHAPTER 6. SYSTEM MODELING ISSUES

Organisations with heterogeneous data

«
»

«
»

Integrated

Schema Design

* Domain Expert (DE)

1 Integrated Schema Designer

 (ISD)

1 ICATool

1 Description Logic Reasoner

 (DLR)

Consult DI

Design Integrated

Schema

Validate schemas

and mappings

Inter-schema

mappings

Figure 6.6: Business Level Model

functionalities, as shown in Figure 6.6.
Further detailing the integrated schema design process, the process manager de-

signs the Operation Organizational Level models. The operation level considers the
process (e.g., a business process) within the system of interests. Such process de-
scribes the role (the functionality) of the system in the collaboration defined on the
business level. In Figure 6.7, we show the organizational level diagram for one of the
actors, i.e., Integrated Schema Designer. Although the model is designed for a single

1 Integrated Schema Designer (ISD)

* Domain Expert (DE)

1 ICATool

1 DLR

Consult DI

Validate schemas

and mappings

Inter-schema

mappings

* Inter-schema mappings definition

Design Integrated Schema

consult the DE

analyse schemas,

mappings

state the mappings

interact with DLR

analyse the results

from DLR

1 Domain

Ontology

* MADS schema

* Valid MADS

schema

* Inter-schema

mapping

* Valid Inter-

schema

mapping

2..* 0..*are linked / link

conform to / provide terms

1

*

conform to / provide terms

1

*

Figure 6.7: Operation Level Model

participant, it preserves the relationships between all participants in the process and
adds links from all the participants to the data they use. Thus, the operation level
model shows the object model, i.e., object types that are used to accomplish the

6.2. SEAM MODELING 145

process, and the detailed functionality of one participant. This model integrates the
UML object model with a detailed use case. The advantage in such a representation,
is that the object model is explicitly presented (contrary to the UML diagrams that
are different for data and processes). Also, is it clear from the model, what are
the component processes of the main functionality of the participant modeled. This
SEAM operation level model could be improved by modeling the integrated schema
design process in an explicit way.

For that type of modeling, the Business Process Modeling Notation (BPMN,
www.bpmn.org) could be considered. BPMN is designed to cover many types of
modeling and allows the creation of process segments as well as end-to-end business
processes, at different levels of precision. The primary goal of the BPMN is to pro-
vide a notation that is readily understandable by all business users, from the business
analysts that create the initial drafts of the processes, to the technical developers

n

a

m

e

Event

Flow Objects

events affect the flow of the process

and usually have a cause and and

impact.
Start Intermediate End

Activity is a generic term for work that is per-

formed. An activity can be atomic or

compound.

Gateway is used to control the divergence and

convergence of sequence flow. Defines

decisions, forking, merging, and joining

of the flow.

Flow Object Types

message timer rule

compound activity

Merge (XOR) Merge (OR) Join (AND)

Connecting Objects

Sequence Flow is used to show the order (sequence) that activities will be performed

Message Flow is used to show the flow of messages between two separate process participants

Association is used to associate data, text and other artefacts with flow objects

Swimlanes

Pool repsesents a participant

in a process.

Lane is a sub-patition in a pool;

lanes are used to organise

and categorized activities

n

a

m

e

Artefacts

Data Object

Group

Annotation

shows the data required by

activities

is used for documentation or

analysis; does not affect the

sequence flow

textused for comments for

the reader of the diagram

Figure 6.8: BPMN elements.

responsible for implementing the technology that will perform those processes, and
finally, to the business people who will manage and monitor those processes [Whi04].
BPMN defines a Business Process Diagram (BPD), which is based on the flowchart-
ing technique tailored for creating graphical models of business process operations.
A BPD then, is a network of graphical objects, which are activities and the flow
controls that define their order of performance [Whi04]. On of the drives for the
development of BPMN is to create a simple mechanism for creating business process

146 CHAPTER 6. SYSTEM MODELING ISSUES

models, while at the same time being able to handle the complexity inherent to busi-
ness processes. The four basic categories of elements are: Flow Objects, Connecting
Objects, Swimlanes, and Artifacts, Figure 6.8 shows basic elements provided by the
BPMN.

For our integrated schema design process, we define one pool (i.e., one process)
with 3 departments (i.e., sub-processes). Each of the sub-processes contains the
activities of one tool employed by the Integrated Schema Designer to construct
an integrated schema (Fugure 6.9). One of the advantages of the BPMN, is that
the reader of the diagram sees the process as the whole, and at the same time
the activities of each component sub-process are clearly separated. In the BPD in
Figure 6.9, we used the events (i.e., start event and end event), gateways, activities,
associations, and data objects. The BPD is close to the activity diagram from
Figure 6.5; the process we model is a simple one, so we cannot demonstrate all the
advantages of an BPD over an AD, but it is clear that a BPD is more expressive
and rich than an AD. To benefit from the two expressive notations, we believe that
a combination of the SEAM operation level notation and the BPMN1, to have in
one diagram a detailed process model and corresponding class model, would not
compromise the readability of an operation organizational level model.

1Currently such a synergy of notations is under development in LAMS laboratory and the draft
name of this method is S-BPMN .

6.2. SEAM MODELING 147

ic
a_

bu
si

ne
ss

.ig
x

Integrated schema design

MADS Editor ICATool DL Reasoner
(r

e)
de

si
gn

M

A
D

S

sc
he

m
as

N
ee

d
to

In

te
gr

at
e

P
ar

se
 a

nd

di
sp

la
y

M
A

D
S

sc

he
m

as

S
yn

ta
ct

ic

ch
ec

k

S
ta

te
 th

e
IC

A
s

-
in

te
r-

sc
he

m
a

m
ap

pi
ng

s

T
ra

ns
la

te
 to

D

es
cr

ip
tio

n
Lo

gi
c

m
ap

pi
in

gs
C

ho
os

e
po

lic
y

an
d

pa
tte

rn
s

fo
r

ea
ch

 S
C

G
en

er
at

e
in

te
gr

at
ed

sc

he
m

a
in

M

A
D

S
xm

l

D
is

pl
ay

 th
e

in
te

gr
at

ed

sc
he

m
a

in

M
A

D
S

V
al

id
at

e
th

e
sc

he
m

as
sc

he
m

a

V
al

id
at

e
th

e
IC

A
s

-
in

te
r-

sc
he

m
a

m
ap

pi
ng

s

va
lid

m
ap

pi
ng

s

no
t V

al
id

va
lid

no
t v

al
id

M
A

D
S

 s
ch

em
as

in
 X

M
L

M
A

D
S

-O
W

L
sc

he
m

as

M
A

D
S

 s
ch

em
a

 in
 X

M
L

co
rr

ec
t

no
t c

or
re

ct

F
ig

u
re

6
.9

:
B

P
d
ia

gr
am

fo
r

th
e

IC
A

T
o
ol

.

148 CHAPTER 6. SYSTEM MODELING ISSUES

6.3 Chapter Summary

In this chapter we have sketched the system models for the integration framework
that includes several components. We have considered two modeling approaches,
the UML and the SEAM approaches. Within both approaches we have defined the
actors of the integration process together with their main functionalities. In UML,
this corresponds to the use case; in SEAM, to the business organizational level
model. The latter contains less elements (only one main functionality is shown),
and therefore is more comprehensible for a wide circle of users (managers). Next
level diagrams that model the processes performed by actors in the framework are
the activity or robustness diagrams in UML, and the operation organizational level
model in SEAM. On this level of modeling the advantage of SEAM approach is in its
hierarchical structure and the unified notation. A SEAM operation organizational
level diagram models a process showing its super and sibling processes using an
uniform notation to show relationships between process actors. We note, that a
SEAM operation model could be enhanced by choosing the BPMN for the process
description within it. In UML, the notation for the activity and robustness diagrams
is different from that of the use case, which requires from the model designer to
memorize more modeling elements with their different representations in different
diagrams. Moreover, an UML activity diagram does not show the data used in the
process, while a SEAM operation model contains the object model of the process.

Chapter 7

Conclusions and Future Issues

7.1 Contributions of the Thesis

In this thesis we have addressed a complex problem of information integration. We
conducted our research in the context of the projects of our laboratory, and we de-
veloped a specific integration method for spatio-temporal data. We have elaborated
on a novel integration approach with validation that results in a spatio-temporal
integrated schema that is flexibly constructed to meet the application requirements.
The method is based on the expressive spatio-temporal conceptual model MADS,
developed in our laboratory.

We have defined the MADS-based language for inter-schema mappings that al-
lows explicit use of topological and synchronization operators to relate spatial and
temporal object types. The language conforms to the data model and inherits its
semantics. This correspondence language extends the MADS data model with inte-
gration capabilities, thus, enabling its prospective usage in large-scale collaborative
projects. The data model and, therefore, the correspondence language are not lim-
ited to the spatio-temporal domain and efficiently treat thematic data.

We positioned our methodology as adhering to the federated information sys-
tems approach. Accordingly, our integration process results in an integrated schema
that is called a global schema in a federated system. The integrated schema designer
is guided towards constructing a global schema that corresponds to the application
needs. Our distinctive vision on the integrated schema construction includes provid-
ing the designer with several structural policies and patterns that result in different
integrated schema elements, an example is shown in Figure 3.27. The designer is
not constrained to choose the same policy or pattern for all related populations,
instead he/she can choose the most adapted structural solution for each population
correspondence. The set of structural patterns defined for the integration process
guarantees that there is always at least one patterns that can be applied to produce
a valid integrated schema element.

Another original feature of our approach is that we have included and formalized
the validation phase, where the set of the inter-schema mappings is checked for the

149

150 CHAPTER 7. CONCLUSIONS AND FUTURE ISSUES

consistency, and the putative structural patterns are validated against the integrity
constraints imposed on the source schemas. To validate user input, the source
schemas together with the integrity constraints and the inter-schema mappings are
translated into a description logic language. The translated model is then checked
for satisfiability. A successful satisfiability check allows the schema designer to
follow any of the integration policies, i.e., minimal, non-exhaustive, maximal, or
preservation. In the case of a non-satisfiable model, only the preservation policy with
the multiple representation structural patterns is a viable solution for the integrated
schema.

We have considered the choice of a formalism for the validation phase of our
method from two perspectives: theoretical and practical. From the theoretical as-
pect, we pursued the expressiveness of the formalism. We have shown that MADS
conceptual schemas and inter-schema mappings can be expressed using an expressive
description logic (DL) with a combined, spatial-temporal concrete domain. But we
have faced the tradeoff between the expressivity and decidability, i.e., very expres-
sive description logics are undecidable and therefore, there are no reasoning services
developed for them. To practically implement the validation phase, we have chosen a
DL-base language that is decidable and supported by an available reasoner. We im-
plemented the MADS model semantics needed for reasoning about the inter-schema
mappings in OWL-DL (Description Logic sub-language of the Ontology Web Lan-
guage). Thus we have coupled two modeling approaches, i.e., conceptual modeling
and modeling with ontologies in a hybrid integration process.

The OWL-DL provides neither for spatial nor for temporal support, thus, we have
constructed a reference spatio-temporal ontology, MADS-OWL, that serves as the
domain ontology and ensures the spatial and temporal constraints in user schemas.
We have defined the translation from the MADS formalism to the OWL, stating
the corresponding modeling concepts in each language. User ontologies expressed
in MADS-OWL, can benefit from the reasoning services available for the OWL-DL
ontologies. We have designed the MADS-OWL domain ontology in a way that the
spatio-temporal features we need to validate could be captured by a non spatio-
temporal reasoner.

To combine all the composite elements of our integration method together and
explicitly model their functionality and the cooperations between them, we have
chosen two system modeling approaches and designed high level system diagrams.
We have shown that a hierarchical modeling approach with a unified notation results
in a more expressive system model that can subsequently serve as the conceptual
foundation for the integration framework.

7.2 Future Directions

Integration of several independently developed databases is a complex task, which is
becoming increasingly important in the modern age information technology. In this

7.2. FUTURE DIRECTIONS 151

thesis we have considered several aspects of a specific problem of spatio-temporal
data integration. We could not fulfil all the deficiencies in our domain of interest,
and here we present some prospective developments for the issues we have considered
in this thesis.

For the integration methodology. We have developed the MADS-OWL on-
tology to model MADS spatial and temporal dimensions in description logic. As
we employed MADS representational dimension only for the final schema compo-
sition (i.e., in the preservation policy), this dimension in not fully implemented in
MADS-OWL reference ontology. In particular, the MADS concept of multiple per-
ceptions adds a great flexibility and expressivity to conceptual models, especially
in the domain of geo-applications. Thus, we might expect that some of the source
spatio-temporal schemas could already employ multiple perceptions. To extend our
methodology to treating source schemas with multiple perceptions, a more precise
translation of the MADS representational dimension into DL should be implemented.

For data integration support. In our thesis we considered the integration and
validation approaches only for the schema level. Extension of the integration and
validation services to the instance level would be an important extension of our ap-
proach. This would expand the scope of the application of our method beyond the
federated systems, i.e., it would be applicable to the data warehouses management.
For the reasoning support on the instance level, specific spatial and temporal rea-
soners should be added to the framework. What we have done manually for MADS
topological relationships using the Protégé Axiom Language (cf. Figure 5.21), could
be delegated to the specific spatial and temporal reasoners. Thanks to the MADS
(and MADS-OWL) orthogonality in spatial, temporal and structural dimensions,
we can decompose the model and the population in 3 subsets: spatial, temporal
and thematic. Then we will apply 3 different machineries to reason about the net-
work of temporal intervals (for instances with temporal extension), spatial network
(for instances with spatial extension) and use description logic reasoner for ABox
reasoning. If an instance is defined as spatial and temporal, then for each type of
reasoning only relevant properties would be considered. To the best of our knowl-
edge, an integration framework combining conceptual modeling and modeling with
ontologies and supported by spatial and temporal reasoning services on the schema
and the instance levels, has not been even conceived, let alone implemented.

For the integration framework. We have proposed a framework where the
schema designer uses several tools to construct an integrated schema. The inte-
grated schema design process is not automated due to the complex semantics of the
application domain we consider. One of the improvements in the assisted schema
design would be definition of user profiles to facilitate the choice of the integration
policies and structural patterns. When the schema population correspondences are

152 CHAPTER 7. CONCLUSIONS AND FUTURE ISSUES

stated, the ICATool would ask the designer to indicate a preferred integration pol-
icy for each of the related populations. If, after the validation phase, a policy is
found applicable, the integrated schema element would be generated without the
designer intervention. Otherwise, the designer will be prompted to change the pol-
icy. Note, that there is a preservation policy that can be applied even in the case of
incompatible representations.

As we have shown in Section 4.2.4, the matching rules stated during the integra-
tion process can serve as the integrity constraints for an integrated database. Thus,
providing the extension of the MADS data model with the integration capabilities,
we should consider the translation of the inter-schema mappings from the concep-
tual to the logical level, e.g., to Oracle triggers. These triggers would inform the
schema designer (or the database administrator) about the matching instances in
the database. The translation rules should be coherent with already implemented
translation procedures in the MADS translation module.

Bibliography

[AF98] A. Artale and E. Franconi. A temporal description logic for reasoning
about actions and plans. Journal of Artificial Intelligence Research,
1998.

[AF01] A. Artale and E. Franconi. A survey of temporal extensions of descrip-
tion logics. Annals of Matematics and Artificial Intalligence (AMAI),
2001.

[AKPT91] J.F. Allen, H.A. Kautz, R.N. Pelavin, and J.D. Tenenberg, editors.
Temporal reasoning and palnning, chapter 1, pages 2–68. Morgan Kauf-
mann, 1991.

[AL04] A. Artale and C. Lutz. A correspondence between temporal description
logics. Journal of Applied Non-Classical Logic, 14(1-2):209–233, 2004.

[All83] J. F. Allen. Maintaining knowledge about temporal intervals. Com-
munications of the ACM, 26(11):832–843, 1983.

[AM99] G. Aslan and D. McLeod. Semantic heterogenity resolution in fed-
erated databases by metadata implantation and stepwise evolution.
VLDB Journal, (8):120–132, 1999.

[Amb00] S. Ambler. How to draw UML activity diagrams. http://www-
106.ibm.com, 2000.

[AOTT98] D. Abel, B. C. Ooi, K.-L. Tan, and S. H. Tan. Towards integrated
geographical information processing. International Journal of Geo-
graphical Information Science, 12(4):353–371, June 1998.

[BBB+98] O. T. Balovnev, A. Bergman, M. Breunig, A. B. Gremers, and S. Shu-
milov. A CORBA-based approach to data and system integration for
3D geoscientific application. In Proceedings of the 8th International
Conference on Spatial data Handling (SDH’98), pages 396–407, Van-
couver, Canada, July 1998.

153

154 BIBLIOGRAPHY

[BBMHR91] A. Borgida, R. Brachman, D. McGuinness, and L. Halpern-Resnick.
CLASSIC: A structural data model for objects. In in Proc. of the 1989
ACM SIGMOD International Conference on Data, pages 59–67, 1991.

[BCdG01] D. Berardi, D. Calvanese, and G. de Giacomo. Reasoning on UML
class diagrams using description logic based systems. In Proc. of the
KI’2001 Workshop on Applications of Description Logics, 2001. CEUR
Electronic Workshop Proceedings, http://ceur-ws.org/Vol-44/.

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

[BH91] F. Baader and P. Hanschke. A scheme for integrating concrete domains
into concept languages. In Proc. of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI), pages 452–457, Sydney,
Australia, 1991.

[BHS03] F. Baader, I. Horrocks, and U. Sattler, editors. Description Logics as
Ontology Languages for the Semantic Web. Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2003.

[BLN86] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of
methodologies for database schema integration. ACM Computing Sur-
vey, 18(4):323–364, 1986.

[BLR03] A. Borgia, M. Lenzerini, and R. Rosati. The Description Logic Hand-
book, chapter Description Logics for Databases, pages 462–484. Cam-
bridge Univercity Press, 2003.

[BRW03] P. Balabko, I. Rychkova, and A. Wegnamm. Operational ASM
Semantics behind Graphical SEAM Notation. In In Proc. of the
DAIS/FMOODS Ph.D. workshop, Paris, 2003.

[BS85] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Science, 9(2):171–216,
1985.

[CdGL97] D. Calvanese, G. de Giacomo, and M. Lenzerini. Conjunctive query
containment in description logics with n-ary relations. In Proc. of the
1997 Description Logic Workshop (DL’97), pages 5–9, 1997.

[CdGL+98] D. Calvanese, G. de Giacomo, M. Lenzerini, D. Nardi, and R. Rosati.
Information integration: Conceptual modeling and reasoning support.
In CoopIS 1998, pages 280 – 291, 1998.

BIBLIOGRAPHY 155

[CdGL01] D. Calvanese, G. de Giacomo, and M. Lenzerini. A Framework for
Ontology Integration. In Proceedings of SWWS’01, The first Semantic
Web Working Symposium Stanford University, pages 303–306, Califor-
nia, USA, July 30 - August 1 2001.

[CG05] D. Calvanese and G. De Giacomo. Data integration: A logic-based
perspective. AI Magazine, 26(1):59–70, 2005.

[CH01] A. G. Cohn and S. M. Hazarika. Qualitative spatial representation
and reasoning: an overview. Fundamenta Informaticae, 46(1-2):1–29,
2001.

[CL93] T. Catarci and M. Lenzerini. Representing and using interschema
knowledge in cooperative information systems. Journal of Intelligent
and Cooperative Information Systems, 2(4):375 – 398, 1993.

[CLN98] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for con-
ceptual data modeling. In Jan Chomicki and Gnter Saake, editors,
Logics for Databases and Information Systems, pages 229–263. Kluwer
Academic Publisher, 1998.

[CLN99] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying Class-Based Rep-
resenation Formalisms. Journal of Artificial Intelligence Research,
(11):199–240, 1999.

[Coc00] A. Cockburn. Writing Effective Use Cases. Addison Wesley, 2000.

[CPSV03] N. Cullot, C. Parent, S. Spaccapietra, and C. Vangenot. Ontologies:
A Contribution to the DL/DB Debate. In In Proc. of the 1st In-
ternational Workshop on the Semantic Web and Databases, 29th In-
ternational Conference on Very Large Data Bases, Berlin Germany,
September 7-8 2003.

[CR99] J. Chomicki and P. Z. Revesz. Constraint-based interoperability of
spatio temporal databases. GeoInformatica, 3(3):211–244, September
1999.

[dic] Online Dictionary of Computer Science.
http://burks.bton.ac.uk/burks/foldoc/.

[DLD+04] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP:
Discovering Complex Semantic Matches between Database Schemas.
In Proc. of the 2004 ACM SIGMOD international conference on Man-
agement of data, pages 383 – 394, Paris, France, June 13-18 2004.
ACM Press.

156 BIBLIOGRAPHY

[DMDH02] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map
between ontologies on the Semantic Web. In Proc. of International
WWW conference, WWW’02, Honolulu, Hawaii, USA, May 7-11 2002.

[DMDH04] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Ontology match-
ing: A machine learning approach. In S. Staab and R. Studer, edi-
tors, Handbook on Ontologies in Information Systems, pages 397–416.
Springer-Velag, 2004.

[Don02] P. Donini. NOMADS: a Spatio-temporal Data Model Supporting Multi-
instantiation. PhD thesis, École Polytechnique Fédérale de Lausanne,
2002.

[DPS98] T. Devogele, C. Parent, and S. Spaccapietra. On spatial database
integration. International Journal of Geographic Information Systems,
Special Issue on System Integration, 3(12):335–352, 1998.

[Dup94] Y. Dupont. Resolving Fragmentation Conflicts in Schema Integration.
In P. Loucopoulos, editor, 13th International Conference on the Entity-
Relationship Approach, ER’94, volume 881 of LNCS, pages 513–532,
Manchester, U.K., December 13-16 1994. Springer.

[EP90] A. Elmagarmid and C. Pu. Guest editors’ introduction to the special
issue on heterogeneous databases. ACM Computing Survey, 22(3):175–
178, 1990.

[ES04] M. Ehrig and Y. Sure. Ontology mapping - an integrated approach. In
Proc. of the ESWS 2004, pages 76–91, Heraklion, Crete, Greece, May
2004.

[FaC] http://owl.man.ac.uk/factplusplus/.

[FDC03] F. Fonseca, C. Davis, and C. Câmara. Bridging ontologies and concep-
tual schema in geographical information integration. Geoinformatica,
7(4):355–378, 2003.

[FEAC02] F. Fonseca, M. Egenhofer, P. Agouri, and C. Câmara. Using ontologies
for integrated geographic information systems. Transactions in GIS,
6(3):231–257, 2002.

[FN00] E. Franconi and G. Ng. The i.com tool for intelligent conceptual mod-
elling. In In Proc. of the 7th Intl. Workshop on Knowledge Represen-
tation meets Databases (KRDB’00), Berlin, Germany, August 2000.

[FPNB99] J. Fowler, B. Perry, M. Nodine, and B. Bargmeyer. Agent-Based
Semantic Interoperability in InfoSleuth. ACM SIGMOD Records,
28(1):60–67, March 1999.

BIBLIOGRAPHY 157

[GEFK99] M. Goodchild, M. Egenhofer, R. Fegeas, and C. Kottman, editors. In-
teroperating Geographic Information Systems. Kluwer Academic Pub-
lishers, 1999.

[GMZB99] A. Gupta, R. Marciano, I. Zaslavsky, and C. Baru. Integrating GIS and
Imagery through XML-based Information Mediator. In P. Agouris and
A. Stefanidis, editors, International Workshop on Integrated Spatial
Databases: Digital Images and GIS (ISD’99), volume 1737 of Lecture
Notes in Computer Science. Springer, Portland, Maine, USA, June
1999.

[GN02] A. Gerevini and B. Nebel. Qualitative spatio-temporal reasoning with
RCC-8 and Allen’s interval calculus: Computational complexity. In
Proceedings of ECAI’2002, pages 312–316. IOS Press, 2002.

[Gua98] N. Guarino. Information Extraction: A Multidisciplinary Approach
to an Emerging Information Technology, chapter Semantic Matching:
Formal Ontological Distinctions for Information Organisation, Extrac-
tion, and Integration, pages 139–170. Springer-Verlag, 1998. M.T.
Pazienza.

[GW00a] N. Guarino and Ch. Welty. Ontological analysis of taxonomic relation-
ships. In A. Lander and V. Storey, editors, Proceedings of ER-2000:
The 19th International Conference on Conceptual Modeling., LNCS.
Springer-Verlag, October 2000.

[GW00b] N. Guarino and Ch. Welty. Towards a methodology for ontology based
model engineering. In J. Bezivin and J. Ernst, editors, Proceedings of
the ECOOP-2000 Workshop on Model Engineering, June 2000.

[HG02] F. Hakimpour and A. Geppert. Global schema generation using formal
ontologies. In Proc. of the ER2002, LNCS 2503, pages 307–321, 2002.

[HIMT03] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data
Management Infrastructure for Semantic Web Applications. In Proc.
of International WWW conference, WWW’03, pages 556–567, 2003.

[HLM99] V. Haarslev, C. Lutz, and R. Möller. A description logic with concrete
domains and a role-forming predicate operator. Journal of Logic and
Computation, 9(3), 1999.

[Hor98] I. Horrocks. Using an expressive description logic: FaCT or Fiction?
In A. G. Cohn, L. Schubert, and S. C. Shapiro, editors, Principles
of Knowledge Representation and Reasoning: Proceedings of the Sixth
International Conference (KR’98), pages 636–647, San Francisco, Cal-
ifornia, June 1998. Morgan Kaufmann Publishers.

158 BIBLIOGRAPHY

[HPPSH05] I. Horrocks, B. Parsia, P. Patel-Schneider, and J. Hendler. Semantic
web architecture: Stack or two towers?, 2005.

[HST00] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expres-
sive description logics. Logic Journal of the IGPL, 8(3):161 – 180,
2000.

[JM00] N. Juristo and A. M. Moreno. Introductory paper: Reflection on con-
ceptual modeling. Data & Knowledge Engineering, (33):103–117, July
2000.

[KLWZ04] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. ε-connections of
abstract description systems. Artif. Intell., 156(1):1–73, 2004.

[Lut02] C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD
thesis, Teaching and Research Area for Theoretical Computer Science,
RWTH Aachen, 2002.

[Lut03] C. Lutz. Description logics with concrete domains—a survey. In Ad-
vances in Modal Logics Volume 4. King’s College Publications, 2003.

[LW04] L.-S. Lê and A. Wegmann. Meta-model for Object-Oriented Hierarchi-
cal Systems. Technical report, Laboratory of Systemic Modeling Swiss
Federal Institute of Technology, Lausanne EPFL-IC-LAMS, 2004.

[Mac94] R. M. MacGregor. A description classifier for the predicate calculus.
In in Proceedings of the Twelfth National Conference on Artificial In-
telligence, (AAAI 94), pages 213–220, 1994.

[MBDH02] J. Madhavan, P. Bernstein, P. Domingos, and A. Halevy. Representing
and reasoning about mappings between domain models. In Proc. of the
AAAI Eighteenth National Conference on Artificial Intelligence, pages
80 – 86, Edmonton, Alberta, Canada, 2002. American Association for
Artificial Intelligence.

[Mur02] MurMur consortium. MurMur project: Multi-representations
and Multiple resolution in geographic databases.
http://lbdwww.epfl.ch/e/MurMur, 2002.

[OCEF05] M. M. Ortiz, D. Calvanese, Th. Eiter, and E. Franconi. Data Complex-
ity of Answering Conjunctive Queries over SHIQ Knowledge Bases.
Technical report, Free University of Bozen-Bolzano, November 2005.

[OGI] OpenGIS Consortium. http://www.opengis.org.

[OWL] http://www.w3.org/TR/owl-semantics/.

BIBLIOGRAPHY 159

[PAL] Protége axiom language. http://protege.stanford.edu/plugins/paltabs/pal-
documentation/index.htm.

[Pel91] C. Peltason. The BACK system - an overview. SIGART Bulletin,
2(3):114–119, 1991.

[PRO] http://protege.stanford.edu/.

[PS98] C. Parent and S. Spaccapietra. Database integration: the key to the
data interoperability. Technical report, EPFL, CH-1015 Lausanne,
1998.

[PSV05] C. Parent, S. Spaccapietra, and C. Vangenot. Multiple representations
in geographic databases. In Proceedings of the International Confer-
ence, Somewhere, Somewhen 2005.

[PSZ99] C. Parent, S. Spaccapietra, and E. Zimanyi. Spatio-Temporal Concep-
tual Models: Data Structures + Space + Time. In 7th ACM Sympo-
sium on Advances in GIS, Kansas City, Kansas, Kansas City, Kansas,
November 5-6 1999.

[PSZ05] C. Parent, S. Spaccapietra, and E. Zimányi. The MurMur
Project: Modeling and Querying Multi-Representation Spatio-
Temporal Databases. Information Systems, 2005. In Press.

[PSZ06] C. Parent, S. Spaccapietra, and E. Zimányi. Conceptual Modeling for
Traditional and Spatio-Temporal Applications: The MADS Approach.
Springer-Verlag, 2006. Not yet published. Available: May 15, 2006.

[QL94] X. Qian and T. F. Lunt. Semantic interoperation: A query media-
tion approach. Technical Report SRI-CSL-94-02, Computer Science
Laboratory, SRI International, April 1994.

[RAC] http://www.racer-systems.com/.

[RCC92] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions
and connection. In Proceedings of the 3rd International Conference on
Knowledge Represenation and Reasoning (KR’92). Morgan Kaufmann,
92.

[RS01] K. Rosenberg and K. Scott. Applying Use Case Driven Object Mod-
eling with UML. Addison Wesley, 2001. An Annotated e-Commerce
Example.

[Sat96] U. Sattler. A concept language extended with different kinds of transi-
tive roles. In G. Görz and S. Hölldobler, editors, 20. Deutsche Jahresta-
gung für Künstliche Intelligenz, number 1137 in Lecture Notes in Ar-
tificial Intelligence. Springer Verlag, 1996.

160 BIBLIOGRAPHY

[Sem05] SemanticWeb. KAON2. http://kaon2.semanticweb.org/, 2005.

[She99] A. Sheth. Changing Focus on Interoperability in Information Systems:
from System, Syntax, Structure to Semantics, chapter in [GEFK99].
Kluwer Academic Publishers, 1999.

[SL90] A. Sheth and J. Larson. Federated database systems for managing dis-
tributed, heterogeneous, and autonomous databases. ACM Computer
Surveys, (2):183–236, September 1990.

[SMS02] A. Sotnykova, S. Monties, and S. Spaccapietra. Semantic integration in
MADS conceptual model. In H. Bestougeff and B. Thuraisingham, ed-
itors, Heterogeneous Information Exchange and Organizational Hubs.
Kluwer, 2002.

[SPV00] S. Spaccapietra, C. Parent, and C. Vangenot. GIS Databases: From
Multiscale to MultiRepresentation. In B.Y.Choueiry and T.Walsh,
editors, Proceedings 4th InternationalSymposium, SARA-2000, volume
1864 of LNAI, Horseshoe Bay, Texas, USA, July 26-29 2000. Springer-
Verlag.

[SPVC04] S. Spaccapietra, C. Parent, C. Vangenot, and N. Cullot. On using
conceptual modeling for ontologies. In In Proceedings of the Interna-
tional Workshop on the Intelligent Networked and Mobile Systems, On-
tologies for Networked Systems (ONS) track, located at the 5th Inter-
national Conference on Web Information Systems Engineering WISE
2004, Brisbane, Australia, 22nd-24th November 2004.

[TH04] D. Tsarkov and I. Horrcks. Efficient Reasoning with Range and Do-
main Constraints. In Proc. of the International Workshop on Descrip-
tion Logics (DL-2004), Whistler, British Colombia, Canada, June 6-8
2004.

[Tha00] B. Thalheim. Entity-relationship modeling: foundations of database
technology. Springer-Verlag, 2000.

[Van01] C. Vangenot. Multi-représentation dans les bases de données
géographiques. PhD thesis, École Politechnique Fédérale de Lausanne,
2001.

[Weg03] A. Wegmann. On the Systemic Enterprise Architecture Methodology
(SEAM). In ICEIS (3), pages 483–490, 2003.

[Wes02] M. Wessel. On spatial reasoning with description logics - position
paper. In Proc. of the International Workshop in Description Logics
2002 (DL2002), Touluse, France, April 19-21 2002.

BIBLIOGRAPHY 161

[Whi04] S. A. White. Introduction to BPMN. IBM, 2004.

[Wie92] G. Wiederhold. Mediators is the architecture of future information
systems. The IEEE Computer Magazine, March 1992.

[WVV+01] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster,
H. Neumann, and S. Hübner. Ontology-Based Integration of Informa-
tion - A Survey of Existing Approaches. In Proceedings of the IJCAI-01
Workshop on Ontologies and Information Sharing, Seattle, USA, Au-
gust 4-5 2001.

[WZ00] F. Wolter and M. Zakharyaschev. Spatio-temporal representation and
reasoning based on RCC-8. In Proceedings of the International Con-
ference on Principles of Knowledge Representation and Reasoning,
KR2000, 2000.

Sotnykova Anastasiya
24 December 1973, single, Ukrainian

Database Laboratory, EPFL-IC-IIF-LBD, Station 14, CH-1015 Lausanne, Switzerland
Anastasiya.Sotnykova@epfl.ch, Tel: +41 78 656 87 18

Experience
2002 – 2005 Research Assistant, PhD candidate (EPFL, Switzerland)

PhD thesis on integration of geographical databases is defended in December 2005.
• led final projects for graduate students – conceptual modeling, UML, Ontology Web Language (OWL),

Apache Cocoon Framework, Tomcat, Xindice XML DBMS
• prepared and taught a graduate class on database integration – geographical data modeling, MapInfo;
• published 4 conference and 1 journal paper

2000 – 2003 Principal participant in a project for the Ministry of environment and the Planning department
(Luxembourg)
• remodeled legacy environmental data for a more efficient usage – specific database integration

methodology for geographical data, UML, Java, JavaCC
• trained staff members in conceptual modeling of spatio-temporal information – conceptual data

modeling approach for geographical data (MADS)

1997 – now Teaching Assistant (EPFL, Switzerland; Bilkent University, Turkey)
• taught undergraduate courses on Operating Systems and OO Programming Languages
• prepared and taught graduate courses on Database Design and Advanced Databases – conceptual

data modeling, Oracle 9i,10g, Oracle XML, Oracle Spatial, SQL , XML , XPath , XQuery

1996 Computer Engineer (Kharkov State Polytechnic University, Ukraine)
• designed and developed a decision support system for liver surgery within a joint project with Kharkov

Medical University – data mining , Clipper DBMS, C++
• designed and supported exercise and project sessions for department courses – Assembler, Pascal, FoxPro
• translated technical documentations for department usage

1994 – 1996

Freelance Developer (Ukraine)
• developed specific management systems for several companies such as a

• client and contract management for an insurance company serving 1000 clients
• stock handling for a bearing trade company
• client management for a small tourist agency

Education

2005
1999
1998
1994 , 1996

PhD in Computer Science, EPFL, Lausanne, Switzerland
Pre-doctoral school certificate, EPFL, Lausanne, Switzerland
M.S. in Computer Engineering and Information Science, Bilkent University, Turkey
B.S. and M.S. in Computer Engineering, system analyst specialization. Kharkov State Polytechnic
University, Ukraine. Graduated with High Honour

Languages Russian, Ukrainian, English, French, Italian (basic)

Personal
Interests

Summer and winter mountain sports, biking, tango dancing

Publications

A. Sotnykova, N. Cullot, and C. Vangenot.
Spatio-temporal Schema Integration with Validation: A Practical Approach, in R. Meersman et al. (Eds.):
OTM Workshops 2005, LNCS 3762, 2005

A. Sotnykova, C. Vangenot, N. Cullot, N. Bennacer, and M-A. Aufaure.
Semantic Mappings in Description Logics for Spatio-Temporal Database Schema Integration
Journal on Data Semantics III, LNCS 3534, 2005

N. Bannacer, M.-A. Aufaure, N. Cullot, A. Sotnykova. Representing and Reasoning for Spatiotemporal
Ontology Integration. OTM Workshops, 2004

Anastasiya Sotnykova: Geodata Interoperation via Semantic Correspondences. CoopIS / DOA / ODBASE ,
2002

A. Sotnykova, S. Monties, S. Spaccapietra, Semantic Integration in MADS Conceptual Model
In H. Bestougeff, B. Thuraisihgham, editors, In Heterogeneous Information Exchange and Organizational
Hubs, Kluwer, 2002

