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Abstract

Recent advances in wireless communications and computing technology are enabling the
emergence of low-cost devices that incorporate sensing, processing, and communication
functionalities. A large number of these devices are deployed in the field to create a sensor
network for both monitoring and control purposes. Sensor networks are currently an active
research area mainly due to the potential of their applications. However, the deployment of
a working large scale sensor network still requires solutions to a number of technical chal-
lenges that stem primarily from the constraints imposed by simple sensor devices: limited
power, limited communication bandwidth, and small storage capacity. In view of all these
particular constraints, we require a new paradigm for communication, which consists of new
algorithms specifically conceived for sensor networks.

This thesis concentrates on the routing problem, that is, moving data among different net-
work locations, and on the interactions between routing and coding, that is, how sensors code
the observations. We start by designing efficient and computationally simple decentralized
algorithms to transmit data from one single source to one single destination. We formalize
the corresponding routing problem as a problem of constructing suitably constrained random
walks on random graphs and derive distributed algorithms to compute the local parameters of
the random walk that induces a uniform load distribution in the network. The main feature of
this routing formulation is that it is possible to route messages along all possible routes be-
tween the source and the destination node, without performing explicit route discovery/repair
computations and without maintaining explicit state information about available routes at the
nodes.

A natural extension to the single-source/single-destination scenario is to consider multi-
ple sources and/or multiple destinations. Depending on the structure and goal of the network,
nodes exhibit different communication patterns. We analyze the problem of routing under
three different communication models, namely uniform communication, central data gath-
ering, and border data gathering. For each of these models, we derive capacity limits and
propose constructive routing strategies that achieve this capacity.

An important constraint of sensor networks is the limited storage capacity available at
the nodes. We analyze the problem of routing in networks with small buffers. We develop
new approximation models to compute the distribution on the queue size at the nodes which
provide a more accurate distribution than the usual Jackson’s Theorem. Using these models,
we design routing algorithms that minimize buffer overflow losses.

Routing in large and unreliable networks, such as sensor networks, becomes prohibitively
complex in terms of both computation and communication: due to temporary node failures,
the set of available routes between any two nodes changes randomly. We demonstrate that
achieving robust communications and maximizing the achievable rate per node are incom-
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patible goals: while robust communications require the use of as many paths as possible
between the source and the destination, maximizing the rate per node requires using only
a few of the available paths. We propose a family of routing algorithms that explores this
trade-off, depending on the degree of reliability of the network.

The performance of routing algorithms in sensor networks can be significantly improved
by considering the interaction of the source coding mechanism with the transport mechanism.
We jointly optimize both the source coding and the routing algorithm in a common scenario
encountered in sensor network, namely, real-time data transmission. We demonstrate that the
combination of specially designed coding techniques, such as multiple description coding,
and multipath routing algorithms, performs significantly better that the usual routing and
coding schemes.

In summary, this thesis revisits the classic routing problem in the light of distributed
schemes for networks with resource-limited nodes.



Résumé

Les récents progrès des communications sans fils et des technologies informatiques ont per-
mis l’apparition de dispositifs à bas coûts intégrant les fonctionnalités de captage, de traite-
ment et de communication. Un grand nombre de ces dispositifs sont deployés dans la nature
afin de créer un réseau de capteurs à des fins aussi bien de contrôle que de monitorisation.
Le fort potentiel d’applications des réseaux de capteurs en font un domaine de recherche très
actif.

Cependant, la conception d’un réseau de capteurs de grande taille se heurte à un certain
nombre de difficultés techniques provenant des contraintes imposées par les capacités ré-
duites des capteurs individuels: basse puissance, capacité de communication réduite et faible
capacité de stockage. Afin de surmonter ces difficultés, de nouveaux paradigmes de commu-
nication sont nécessaires: il y a un besoin de nouveaux algorithmes spécifiques aux réseaux
de capteurs. Cette thèse se concentre sur la question du routage, à savoir le transfert de don-
nées entre différentes parties du réseau, et son interaction avec le codage, à savoir, comment
les capteurs codent leurs observations.

Dans un premier temps nous avons conçu un algorithme décentralisé simple et efficace
pour transmettre les données d’une source unique à une destination unique. Dans ce but,
on reformule le problème du routage en celui d’imposer les contraintes appropriées à des
chemins aléatoires sur des graphes (aléatoires). En suite nous dérivons des algorithmes dis-
tribués pour trouver les paramètres locaux des marches aléatoires qui induiront un certain
propriété de distribution de la charge dans le réseau. La caractéristique principale de cette
formulation est que nous sommes capables de transmettre des messages entre une source et
une destination par tous les chemins possibles, en nous affranchissant d’une reconnaissance
explicite du chemin au préalable, et sans devoir tenir à jour une information sur l’état des
chemins à chaque noeud.

Une extension naturelle de ce scenario est de considérer plusieurs sources et/ou destina-
tions. Selon la structure et la fonction du réseau, les noeuds présentent différents motifs de
communication. Nous avons traité le problème dans le cadre de trois modèles de commu-
nication : la communication uniforme, "central data gathering" et "border data gathering".
Dans le cadre de chacun de ces modèles, nous avons étudié les limites de capacités et avons
explicité les stratégies de routage qui permettent de les atteindre.

Une limitation courante des réseaux de capteurs est leur faible capacité de stockage aux
noeuds du réseau. Nous avons donc analysé le problème du routage dans des réseaux avec
faible mémoire tampon, ce qui a necessité de nouveaux modèles pour obtenir la distribution
de la taille des queues aux noeuds. Nous avons ainsi proposé une alternative au traditionnel
théorème de Jackson, qui permet une évaluation plus précise des distributions. Ce faisant,
nous avons obtenu des algorithmes qui minimisent les pertes du au débordement de la mé-
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moire tampon.
Nous nous sommes également intéresés au problème du routage dans des réseaux défail-

lants, où chaque noeud est susceptible, temporairement et de façon aléatoire, de tomber en
panne. Nous montrons alors que, d’une part robustesse des communications et d’autre part
maximisation du traffic par noeud , sont des objectifs contradictoires. La robustesse implique
l’utilisation d’un nombre de chemins (entre la source et la destination) aussi grand que pos-
sible, tandis que maximiser l’utilisation d’un noeud incite à n’utiliser qu’un nombre restreint
de chemins possibles. Nous montrons comment obtenir différents compromis, selon le degré
de fiabilité du réseau.

Enfin, nous nous sommes également intéresés à l’interaction entre le codage à la source
et le mécanisme de transport dans le réseau de capteurs. Nous nous sommes dans un premier
temps intéresé à l’utilisation des techniques de codage par descriptions multiples pour la
transmission de données en temps réel à travers des réseaux de capteurs : nous avons formulé
et résolu analytiquement un problème de réseau qui optimise simultanément le codage à la
source et le mécanisme de routage. Nous avons ensuite considéré les aspects pratiques de
l’utilisation des techniques de codage par descriptions multiples dans des réseaux de capteurs
à grande échelle, où le nombre de chemins disponibles entre une source et une destination est
grand.



Acknowledgments
I have been so lucky to have two thesis advisors, Martin Vetterli and Baltasar Beferull-
Lozano. Martin’s fresh ideas and broad knowledge have been of invaluable support for the
completion of this thesis, as well as the motivation boosts I received after every highly in-
tense weekly meetings. During this four years, Martin has not only revealed his scientific
qualities but also his human qualities: merci pour les heures de divan. Baltasar’s enthusiasm
and determination helped me to find my way out of the maze of hypothetical ideas where I
so frequently got lost. Thanks for all these long meetings at late hours spent in polishing raw
ideas, and additionally, for those exquisite paellas and fideuas (Thanks also to Julia!)

I’m grateful to all the past and present members of LCAV for the great working atmo-
sphere during the past four years. In particular, I thank Henri, as an officemate, for changing
my research vision by showing me that things that work in theory do not necessary work in
practice (in fact, rarely do), and as a friend, for all the great time outside the office. I would
also like to thank the rest of the PSE gang, Andrea and Titi, for very interesting research dis-
cussions, as well as for Andrea’s mountain tours and Titi’s guitar lessons. If everything goes
wrong, I can always earn my living with "No woman no cry". Special thanks goes also to
Jocelyne, for her fast and efficient response to all the administrative problems I had. I would
like also to thank the members of my thesis committee for the comprehensive review of my
thesis and the constructive discussion during the thesis defense.

If there is someone to blame for me taking this adventure is Rakel, because she convinced
me how cool communications systems were, and disintegrated my future as economist.

This thesis would not have been possible without the correct balance between work and
leisure. During all this time, mountains have always been my refuge and my source of energy.
Fortunately, while hanging on a rope or sliding down a white slope, there is no much time to
think about research. I would like to thank all the people that shared these special feelings
with me, especially Josep, Marie, Thomas, and Joao.

I would also like to thank Alex, my allergy mate, not only for adapting his lunch habits
to my very constrained restaurant choice, but also for being a constant support in the roller-
coaster of my motivation. It has been great to share this long ride with you! My gratitude
goes also to Faye, for her valuable corrections.

Many thanks go to Historias, Brujula, Moster, and Marcos, for frequently reminding me
how hard working is during Sunday mornings and for all the great memories that I’ll retain
of these intense four years. To my basque friends, Alberto, Kintxo, Tiko, and Davitxu, for
making me feel as the prodigal son. Even being more that one thousand kilometers away, I
have the comfort of knowing that they are always close to me. And to Txiki, for recalling me
that doing things at the last moment is not necessarily the best solution, and most importantly,
for providing me the energy I needed to write this thesis.

Last but not least, I thank my family for their continuous support since the day I started
this long trip now twelve years ago.

vii



viii Acknowledgments



Contents

Abstract iii

Résumé v

Acknowledgments vii

List of Figures xix

List of Tables xxi

Glossary of Notation and Acronyms xxiii

1 Introduction 1
1.1 The emergence of sensor networks . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A new communication paradigm . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis outline and contributions . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Point-to-Point Multipath Routing Algorithms for Large Scale Sensor Networks 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Constrained random walks on regular static graphs . . . . . . . . . . . . . . 10

2.2.1 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Local parameters of the random walk . . . . . . . . . . . . . . . . . 11
2.2.3 Distributed computation of the local parameters . . . . . . . . . . . . 15
2.2.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Constrained random walks on irregular static graphs . . . . . . . . . . . . . . 16
2.3.1 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 A generalization of the lattice coordinates . . . . . . . . . . . . . . . 17
2.3.3 Equivalence with lattice coordinates in the regular lattice . . . . . . . 18
2.3.4 Routing algorithm for the irregular lattice . . . . . . . . . . . . . . . 20
2.3.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Constrained random walks on random dynamic graphs . . . . . . . . . . . . 22
2.4.1 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Dynamic parameter computation . . . . . . . . . . . . . . . . . . . . 22
2.4.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



x CONTENTS

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Multiple Sources and Destinations: Capacity Limits and Optimal Routing 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Model and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Uniform communication model . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Network capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Optimal routing algorithms . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Central data gathering model . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Network capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Optimal routing algorithms . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Border data gathering model . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.1 Network capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.2 Optimal routing algorithms . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.A Alternative capacity proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.B Average path length in a torus . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Optimal Routing in Networks with Constrained Buffers 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Model and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Queueing network approximations . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Uniform communication with constrained buffers . . . . . . . . . . . . . . . 48

4.4.1 Approximation models for full-duplex communication channels . . . 49
4.4.2 Approximation models for half-duplex communication channels . . . 54

4.5 Central data gathering with constrained buffers . . . . . . . . . . . . . . . . 57
4.5.1 Approximation models . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.2 Optimal routing algorithms . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Border data gathering with constrained buffers . . . . . . . . . . . . . . . . . 63
4.6.1 Optimal routing algorithms . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Routing in Unreliable Networks 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Model and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Routing algorithms for unreliable networks . . . . . . . . . . . . . . . . . . 69
5.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Data Gathering in Random Networks 75
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Model and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Network capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Routing algorithms for infinite buffers . . . . . . . . . . . . . . . . . . . . . 78

6.4.1 Optimal routing algorithms . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.2 Approximation algorithms . . . . . . . . . . . . . . . . . . . . . . . 79



CONTENTS xi

6.4.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5 Routing algorithms for finite buffers . . . . . . . . . . . . . . . . . . . . . . 83

6.5.1 Optimal routing algorithms . . . . . . . . . . . . . . . . . . . . . . . 83
6.5.2 Approximation algorithms . . . . . . . . . . . . . . . . . . . . . . . 85
6.5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.6 Wireless random networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6.1 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6.2 Network capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6.3 Optimal transmission strategies . . . . . . . . . . . . . . . . . . . . 93
6.6.4 Approximative solutions for finite buffers . . . . . . . . . . . . . . . 95
6.6.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Joint Source Coding and Routing 101
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 An overview of multiple description coding . . . . . . . . . . . . . . . . . . 103
7.3 Real time services over sensor networks: a toy example . . . . . . . . . . . . 104

7.3.1 Network model and assumptions . . . . . . . . . . . . . . . . . . . . 105
7.3.2 Single description coding and single path routing . . . . . . . . . . . 106
7.3.3 Single description coding and multipath routing . . . . . . . . . . . . 107
7.3.4 Double description coding and multipath routing . . . . . . . . . . . 109
7.3.5 Multiple description coding in large networks . . . . . . . . . . . . . 110

7.4 Multiple description coding and finite buffers: a practical case . . . . . . . . 111
7.4.1 From 2 to M descriptions . . . . . . . . . . . . . . . . . . . . . . . 112
7.4.2 A practical scenario: data gathering . . . . . . . . . . . . . . . . . . 115
7.4.3 Optimal transmission strategy . . . . . . . . . . . . . . . . . . . . . 117

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.A Queueing network analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.A.1 Single path routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.A.2 Multipath routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.B Queueing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Conclusions 125
8.1 Summary of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.2 Discussion and future research . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 128

Curriculum Vitae 135



xii CONTENTS



List of Figures

1.1 Nodes and links associated to a particular ISP. Note the hierarchical approach
to deal with a large number of clients. (Source: ). 2

2.1 Square Lattice of size N1×N1. A node dk is characterized by its coordinates
[ik, jk] in the lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 We divide the network into two stages: (a) Expansion stage: increasing num-
ber of nodes per diagonal (b) Compression stage: decreasing number of nodes
per diagonal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Forwarding probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 If the network is not square, there is also a transportation stage where the

number of nodes in the diagonals remains constant. . . . . . . . . . . . . . . 14
2.5 Recursive computation of network coordinates. . . . . . . . . . . . . . . . . 15
2.6 Load distribution in the network. a) Random walk based on tossing a fair coin

to decide the next hop. b) Random walk using the local parameters derived in
this section. The x and y axis represent the lattice coordinates of a node. The
z-axis represents the number of packets carried by node [x, y] normalized
such that diagonals sum up to 1. . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Load distribution in the central diagonal Diag(N1 − 1) induced by both ran-
dom walks in a 20 × 20 regular lattice network. . . . . . . . . . . . . . . . . 17

2.8 Irregular graph: a random subset of nodes has been removed from a square
lattice. In general, a uniform load distribution across all diagonals simultane-
ously is not feasible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Pascal’s Triangle: each node dk is labeled with the number of different routes
sk to the source ds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.10 Load distribution in the network. a) Random walk based on tossing a fair coin
when there are two feasible neighbors. b) Constrained random walks using
the local parameters computed in Section. 2.3.2. The x and y axis represents
the network position of a node. The z-axis represents the number of packets
carried by node [x, y] normalized such that diagonals sum up to 1. . . . . . . 20

2.11 Average load distribution in the central diagonal Diag(N1 − 1) of a 20× 20
random lattice network induced by both random walks for 1000 different
random networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.12 Nodes switch between ON and OFF states following a Markov chain model.
Transitions are independent among nodes. . . . . . . . . . . . . . . . . . . . 22

xiii



xiv LIST OF FIGURES

2.13 Load distribution in a dynamic network with transition probabilities p0 =
0.0125 and p1 = 0.2375 so that the stationary probability of a node to be
OFF is pOFF = 0.05. Left: random walk based on tossing a fair coin when
there are two feasible neighbors. Right: constrained random walks using the
local parameters computed in Section. 2.3.2. The x and y axis represents
the network position of a node. The z-axis represents the number of packets
carried by node [x, y] normalized such that diagonals sum up to 1. . . . . . . 23

2.14 Ratio of packets arriving to the destination without any additional delay as
a function of the network variability in a 100 × 100 dynamic network with
state probability p(OFF ) = 0.01 and p(OFF ) = 0.05. . . . . . . . . . . . . 24

2.15 Transmission delay distributions as a function of the network variability in a
100×100 dynamic network with stationary probability p(OFF ) = 0.05 and
different transition probabilities p0 and p1. . . . . . . . . . . . . . . . . . . . 25

3.1 Communication models: a) uniform communication, b) central data gather-
ing, and c) border data gathering. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Network model and least displacement of nodes {di, dj} in (a) square and
(b) torus lattices. The shortest path region SPR(di, dj) between nodes di and
dj is delimited in both cases by a dashed square. . . . . . . . . . . . . . . . . 29

3.3 Bisections for a N1 × N1 lattice network: Left: square grid, and Right: torus. 31
3.4 The source-destination pair {di1 , dj1} generates traffic that flows across node

dk1 according to Π. If Π is space invariant, for any other node dk2 , we
can find another source-destination pair {di2 , dj2} with the same least dis-
placement as {di1 , dj1} that generates exactly the same traffic across dk2 as
{di1 , dj1} across dk1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Row-first (solid lines) and column-first (dashed lines) routing algorithm. Nodes
route packets using only the most external paths. . . . . . . . . . . . . . . . 34

3.6 For all source-destination pairs {di, dj} such that δ(di, dj) = [3, 2], we ob-
tain the set S of relative positions of dc in Rc(δx, δy). . . . . . . . . . . . . . 35

3.7 Rc(δx, δx) for three possible cases in a 5 × 5 lattice network: (a) δ(i, j) =
(4, 3); since δy > N1−1

2 , S does not fill completely any column of SPR(di, dj).
(b) δ(i, j) = (3, 2); since δy ≤ N1−1

2 , S fills N1 − δx columns. (c) δ(i, j) =
(2, 2); S fills all the δx columns. The arrows indicates two of the possible
routing policies that generates the least possible traffic in S. . . . . . . . . . . 36

3.8 Border data gathering model and bisection that determines the network capacity. 40
3.9 Routing algorithms for border data gathering. (a) Optimal shortest path rout-

ing. (b) Uniform border gathering: packets generated in a node are routed
with equal probability to the two closest base stations located in the same
row/column as the node (see d2). If there are two base stations in the same
column/row at the same distance (see d1), we choose any of them with equal
probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 The total number of packets in this two stage system (a) with two determinis-
tic service time queues q1 and q2 is the same as in this simplified system (b)
where the first stage queue q1 has been replaced by simple delays equal to its
service time 1/μ1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



LIST OF FIGURES xv

4.2 The number of packets in the head node of the tree network (a) is the same as
in the two-stage equivalent model (b). . . . . . . . . . . . . . . . . . . . . . 48

4.3 Tree network and equivalent two-stage model. (a) Tree network associated to
one output link lm of dm. (b) Two-stage equivalent. . . . . . . . . . . . . . . 50

4.4 Approximation models for full duplex communication channels. (a) Two-
stage model used to analyze the distribution on the size of qm. (b) Two-queue
model: reduced two-stage model without crossing packets and neglecting
exogenous traffic in dm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Two-stage equivalent networks. (a) If we replace the queues of the first stage
by pure delays of T time slots, the total number of packets in the approx-
imated model remains constant. (b) In terms of number of packets, this is
equivalent to injecting all the arrivals to a single pure delay. . . . . . . . . . . 52

4.6 Distribution on the queue size at dm using both approximation models we
propose and the independence approximation for different values of α in a
121 × 121 square lattice network with full-duplex links: a) α = 0.225, b) α
= 0.525, c) α = 0.725, and d) α = 0.925. Both approximation models we
propose clearly outperform the independence approximation model. . . . . . 53

4.7 Distribution on the queue size at dm for α = 0.75 and different network sizes
with full-duplex links. The full line shows the distribution given by the two-
queue approximation which, for a fixed relative capacity α, is independent of
the network size N . Dashed lines show the distribution obtained experimen-
tally for different network sizes N . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Half-duplex approximation model. (a) Network with half-duplex links. (b)
Approximated model for the queue associated to lm. . . . . . . . . . . . . . 55

4.9 Markov chain model for the half-duplex links model. . . . . . . . . . . . . . 56
4.10 Distribution on the queue size at dm for different values of α in a 121 × 121

square lattice network with half-duplex links. . . . . . . . . . . . . . . . . . 57
4.11 Distribution on the queue size at dm for α = 0.75 and different network

sizes with half-duplex links. The full line shows the distribution given by the
Markov model approximation which, for a fixed relative capacity α, is inde-
pendent of the network size N . Dashed lines show the distribution obtained
experimentally for different network sizes N . . . . . . . . . . . . . . . . . . 58

4.12 Two-stage equivalent model. (a) The possible nodes in the network that gen-
erate traffic through lm constitute a tree network where lm is the head node
and (b) its two-stage model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.13 Two-stage equivalent model. (a) Two-stage model where the first stage queues
has been replaced by pure delays of T time slots, (b) equivalent to injecting
all the arrivals to a single pure delay. . . . . . . . . . . . . . . . . . . . . . . 60

4.14 Routing algorithms for finite buffers. (a) Cross routing and (b) Snail routing. . 62
4.15 Routing for central data gathering: maximum relative capacity α achieved by

different routing algorithms in a 21 × 21 square lattice for different buffer
sizes Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.16 Routing for central data gathering: maximum rate achieved by cross routing
and greedy routing relative to snail routing for a fixed buffer size Q = 5 for
different network sizes N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.17 Maximum rate trade-off in border data gathering: (a) the nodes located close
to the edges carry more traffic. (b) Adaptive routing. . . . . . . . . . . . . . 64



xvi LIST OF FIGURES

4.18 Adaptive routing: maximum relative capacity achieved by adaptive routing
with different shortest-path limit values as a function of the buffer size in a
41 × 41 square lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Load distributions in a 50×50 square grid network: Top: load distribution in
the network (uniform communication model). Bottom: source-to-destination
load distribution for nodes [0, 0] and [49, 49]. Left: row-first routing. Right:
spreading routing. The x and y axis represent the lattice coordinates of a
node. The z-axis represents the number of packets carried by node [x, y]
normalized such that the maximum load is 1. The load distribution gener-
ated in the network by row-first (a) is more uniformly distributed than the
distribution generated by spreading (b) while the source-to-destination load
distribution induced by spreading (d) is as uniform as possible and the distri-
bution generated by row-first (c) is concentrated only in very few nodes. . . . 70

5.2 Source-to-destination distribution generated by constrained spreading with
values of φ = [0.0.25, 0.75, 1] (from left to right). . . . . . . . . . . . . . . . 71

5.3 Maximum rate per node - fairness trade-off for a 34 × 34 nodes square grid
network. The x axis denote fairness and y axis the maximum rate per node
achieved. We represent both quantities for different values of φ, from 0 to 1
with 0.1 interval size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Average performance of constrained-spreading for different values of φ under
the Markov failure model in a 32 × 32 square grid network. (a) Maximum
rate per node. (b) Maximum rate per node relative to the best rate achieved
by any of the routing algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Average performance of constrained-spreading for different values of φ under
the energy failure model in a 32×32 square grid network. (a) Maximum rate
per node. (b) Maximum rate per node relative to the best rate achieved by
any of the routing algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 We represent the random network with a connectivity graph Gc = (V, E),
where the edges represent that the distance between two nodes is less than
the transmission range (dashed lines). Nodes forward all packets to one sin-
gle neighbor determined by the routing algorithm Π (arrows). Any routing
algorithm Π is completely characterized by its data gathering tree (T Π). . . . 77

6.2 Data gathering in a 20 nodes random network: DGT generated by (a) DBF
and (b) UTD algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Data gathering in a random network with infinite buffers and average number
of neighbors per node equal to 15 as a function of the network size N . (a)
Average distribution factor DF (Π), i.e., the ratio between the number of
nodes that relay traffic in the most loaded node according to Π and the number
of nodes that relay traffic in the most loaded node in an optimal uniform traffic
distribution. (b) Average path length L in hops. . . . . . . . . . . . . . . . . 82

6.4 Data gathering in a 200 nodes random network with infinite buffers: (a) av-
erage distribution factor DF , and (b) average path length L in hops, as a
function of the average number of neighbors per node navg for 250 random
networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



LIST OF FIGURES xvii

6.5 The packet distribution in the queue of the most loaded node dm in a random
network (a) is the same as in its equivalent two-stage model (b). . . . . . . . 84

6.6 Routing algorithm for random networks with finite buffers: nodes inside the
circle route packets using a Hamiltonian path while the outside nodes try to
distribute load uniformly among the neighbors of the base station dBS . . . . . 86

6.7 Data gathering routing in a random network: DGT generated by (a) UTD and
(b) UTD-Q routing algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.8 Overflow losses per node in a 200 nodes network with navg = 15 and Q = 3
using the (a) DBF, (b) UTD, and (c) UTD-Q routing with LQ = 5. Buffer
overflow losses are represented by a circle centered in each node whose radius
is proportional to the average losses in each node. . . . . . . . . . . . . . . . 88

6.9 Average performance of DBF, UTD, UTD-SP, and UTD-Q as a function of
the buffer size Q in random networks of N = 300 nodes with average number
of neighbors per node navg = 15. (a) Average maximum achievable rate gain
over the DBF routing, (b) average path length relative to the average shortest
path length, and (c) average optimal LQ length. . . . . . . . . . . . . . . . . 89

6.10 Average performance of DBF, UTD, UTD-SP, and UTD-Q as a function of
the average node connectivity navg in random networks of N = 300 nodes
and a buffer size Q = 3. (a) Average maximum achievable rate gain over
DBF routing, (b) average path length relative to the average shortest path
length, and (c) average optimal LQ length. . . . . . . . . . . . . . . . . . . . 90

6.11 Average performance of DBF, UTD, UTD-SP, and UTD-Q as a function of
the network size N in random networks with an average number of neigh-
bors per node navg = 15 and a buffer size Q = 3. (a) Average maximum
achievable rate gain over DBF routing, (b) average path length relative to the
average shortest path length, and (c) average optimal LQ length. . . . . . . . 91

6.12 To obtain the optimal schedule requires solving the graph coloring problem in
the interference graph. a) Original wireless network, where edges represent
that the distance between two nodes in less than the transmission range and
arrows indicate the routing algorithm. b) Equivalent interference graph, with
edges connecting nodes that are withing each other’s interference range. For
instance, since nodes 1 and 3 cannot transmit simultaneously (collision at
node 2), there exists an edge between both nodes. . . . . . . . . . . . . . . . 94

6.13 To achieve a fair bandwidth load, we need to consider also the traffic nodes
relay. We generate a virtual source (marked with a prime) for each of the
sources relayed by a node and solve the graph coloring problem in this new
graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.14 Overflow losses per node in a 500 nodes network with navg = 15 and Q = 3
using a shortest path routing algorithm and fixed backoff window identical in
all nodes. Buffer overflow losses are represented by a circle centered in each
node whose radius is proportional to the average losses in each node. . . . . . 96

6.15 Detail of the overflow loss distribution in the center of the network: nodes
that present high overflow losses receive traffic from multiple neighbors. . . . 97

6.16 Wireless network example: a) if all nodes have the same probability to cap-
ture the channel for a transmission, the average number of packets in the
queue of node 4 is significantly higher than in any other node, b) optimal
transmission strategy with a maximum buffer size of one packet. . . . . . . . 98



xviii LIST OF FIGURES

6.17 Average throughput increase of the MAC mechanism using a linear increas-
ing backoff window with the distance to the base station with respect to a
constant backoff window for different values of the buffer size Q in random
networks of N = 100 nodes with average number of neighbors per node
navg = 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.18 Average throughput increase of the MAC mechanism using a linear increas-
ing backoff window with the distance to the base station with respect to a
constant backoff window for different network sizes N with Q = 5 and av-
erage number of neighbors per node navg = 15. . . . . . . . . . . . . . . . . 100

7.1 MD coding and multipath routing: source information is encoded in two de-
scriptions (packets), which are complementary and at the same time indepen-
dently good. Each description is sent along a different path. Even if we lose
one of these descriptions, the destination is able to compute an estimate of
the original signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Index assignment method in Multiple Description Scalar Quantization (MDSQ):
for each sample we generate two descriptions that correspond with the row
and column index in the matrix. (a) If we only fill one diagonal of the matrix,
it results in a simple repetition code that minimizes the side distortion. (b)
All possible diagonals of the matrix have been filled, which corresponds to
minimizing the central distortion. . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 Central and side distortion trade off for MDSQ and UEP coding techniques
with 8 bits per description. Solid lines represent MDSQ and dashed lines
UEP. The side and central distortions are expressed in dB, i.e., 10 log(Ds). . . 105

7.4 Network model: ds1 and ds2 transmit real time data to dd1 and dd2 respectively.106
7.5 Top: single description and single path routing coding flow model. Bottom:

queueing network model, where links are modeled by G/D/1 queues with a
deterministic service time 1

μ = B
Cl

. . . . . . . . . . . . . . . . . . . . . . . . 107
7.6 Top: SD coding and multipath routing flow model. Bottom: queueing net-

work model, where links are modeled by G/D/1 queues of service time
1
μ = B

Cl
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.7 Multipath routing distortion improvement with respect to single path routing.
The y-axis represents the distortion gap in dB and the x-axis indicates the
network load. The solid line represents theoretical values while x-marks are
results from simulations. The maximum delay is fixed at Δ = 2.5

μ . . . . . . . 109
7.8 Distortion improvement using an MD encoder with respect to SD coding and

multipath routing. The y-axis represents the distortion gap in dB and the x-
axis indicates the network load. Lines represent theoretical values, x-marks
and circles are results from simulations. The maximum delay is fixed at Δ =
2.5
μ . For all network loads we code packets using MDSQ and UEP for the

central side distortion pair (Dc, Ds) that achieves the lowest distortion. . . . 111
7.9 Distortion improvement achieved by using an MDSQ encoder and multipath

routing with respect to single path and SD coding in a 400 nodes network.
The z-axis represents the distortion gap in dB, the y-axis the maximum delay
Δ and the x-axis the rate attempted per device. Each sample is encoded using
4 bits and the link capacity is fixed to Cl = 1000 bps. . . . . . . . . . . . . . 113



LIST OF FIGURES xix

7.10 An MD system with three descriptions. Central decoder Dc receives all the
descriptions and can reconstruct the finest representation of the source. The
other decoders D

{1,2,3}
s receive only a subset of the transmitted data. The

quality of the received data is proportional to the number of descriptions re-
ceived. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.11 Minimum distortion achieved by an UEP encoder with a Gaussian source and
a bitstream of 48 bits, for different number of descriptions M as a function
of the packet loss probability ploss. . . . . . . . . . . . . . . . . . . . . . . . 115

7.12 Network model: a uniform placement of devices that measure a random field
and transmit the data to a base-station located in the center of the network. . . 116

7.13 Distortion at the base-station as a function of the transmission rate R in a
25 × 25 network using a UEP encoder that generates 1,2, and 4 descriptions
with B = 8 bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.14 Distortion reduction at the base-station using an MD encoder with respect to
SD coding as a function of the header-payload ratio using 8 bits per sample. . 118

7.15 Distortion reduction at the base-station using an MD encoder with respect to
SD coding as a function of the header-payload ratio using 12 bits per sample. 119

7.16 (a) Computation of p(ti ≤ d/yi = 1) = 0. (b) Computation of p(ti ≤
d/yi = 2) = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



xx LIST OF FIGURES



List of Tables

7.1 This table summarizes the different possible interactions between coding and
routing. The first column is the routing mechanism and the second column
shows the coding technique applied to data packets. The third columns indi-
cates the distortion improvement (in dB) with respect to the single path SD
coding for three different network load values, ρ= 0.25, 0.5, and 0.75, i.e., for
low, moderate and high traffic. . . . . . . . . . . . . . . . . . . . . . . . . . 112

xxi



xxii LIST OF TABLES



Glossary of Notation and
Acronyms

We include here the notation used in the thesis. In those few cases where a symbol has more
than one meaning, the context (or a specific statement) resolves the ambiguity.

|X | Cardinality of set X
[ik, jk] Coordinates of node dk in a lattice
(di, dj) Link between nodes di and dj

{sk, tk} Labels of node dk in a lattice
A(di, Ti) Set of ancestors of di in the tree Ti

B Number of bits per sample
Bd = B/M Number of bits per description
C Network capacity
Cl Link capacity
dk ∈ V Node k of the network
dBS ∈ V Base station
D Distortion
Ds Side Distortion
Dc Central Distortion
Diag(l) l-th Diagonal of the lattice:

set nodes [ik, jk] ∈ V such that ik + jk = l.
Diag(dk) Set of nodes that belong to the same diagonal as dk

D(di, Ti) Set of descendants of di in the tree Ti

DF (Π) Distribution factor of Π
E Set of links in the network
f(Π) Fairness of routing algorithm Π
FΠ(di, dj , dk) Traffic generated at di with destination dj that flows

through dk according to Π
Fτ Cumulative distribution function of τ
G Graph representing the network
h(dk, dl) Shortest distance in hops between nodes dk and dl

he(dk) Shortest distance in hops from dk to the nearest node on
the boundary of the lattice

H Packet header size in bits
K Packet size in bits

xxiii



xxiv Glossary of Notation and Acronyms

l = (dk, dl) ∈ E Communication channel between nodes dk and dl

L Laplace transform
L(N) Average distance in hops between any source/destination
LQ Maximum Hamiltonian paths length
M Number of descriptions
n(dk) = |ϕn(dk)| Number of neighbors of dk

navg Average number of neighbors per node
N Total number of nodes in the network
N1 =

√
N Number of nodes per dimension in lattice networks

qk Queue associated to node k
Q Buffer size per node
R Rate per node
RΠ

sup Maximum achievable rate using Π
Rtx Transmission range
s(di, dj) Euclidean distance between di and dj

Sp Number of samples per packet
S(t) Total number of packets in the network at time t
SPR(di, dj) Set of nodes that belong to any shortest path between

di and dj

tBo Backoff time
T Sampling period
TBO Backoff window size
T (di, dj) Probability of node di communicating to node dj

V Set of nodes in the network
wΠ(dk) Weight of dk

α = R
C Relative capacity

δ(di, dj) = [δx, δy] Least displacement from di to dj

Δ Maximum Tolerable Delay
ΓΠ(δx, δy, dc) Traffic generated by all pair of nodes with

least displacement [δx, δy] that flows through dc

λΠ
dk

Average traffic arrival rate to dk according to Π

λΠ
l Average traffic rate through link l according to Π

λΠ
q Average traffic rate to queue q according to Π

μ Average service rate
ν(dk) Next hop at dk

ϕn(dk) Set of neighbors of dk

ϕl(dk) Set of links connected to dk

πdk
= {p1, p2, . . . , pn(dk)} Forwarding probabilities from dk to any of its neighbors

ΠS Stationary load distribution
Π Routing algorithm
τ0 Average loss probability threshold
φ Shape of constrained spreading algorithm
ρ Utilization factor
τ(di, dj) Delay that a packet experiences to travel from di to dj

ζ UEP trade-off between side and central distortions



xxv

CSMA Carrier Sense Multiple Access
CTS Clear To Send
DBF Distributed Bellman-Ford
DGT Data Gathering Tree
JSCC Joint Source Channel Coding
MAC Media Access Control
MD Multiple Description
MDSQ Multiple Description Scalar Quantization
MST Minimum Spanning Tree
pdf Probability Density Function
PDF Probability Distribution Function
RTS Request To Send
SPR Shortest Path Region
SPT Shortest Path Tree
TSP Traveling Salesman Problem
UEP Unequal Error Protection
UTD Uniform data gathering Traffic Distribution algorithm
UTD-Q Uniform data gathering Traffic Distribution algorithm - finite Queues
UTD-SP Uniform data gathering Traffic Distribution algorithm - Shortest Path
SD Single Description



xxvi Glossary of Notation and Acronyms



Chapter 1

Introduction

1.1 The emergence of sensor networks

Recent advances in computing technology and wireless communications are enabling the
emergence of small and inexpensive devices incorporating communication, processing, and
sensor functionalities. Some of these devices are commercially available for a low price [66].
Although we are still far from truly inexpensive devices, the decreasing price of wireless
hardware is contributing to the proliferation of sensor networks for monitoring and control
purposes: a large quantity of these devices is deployed in the field to create a densely dis-
tributed network of embedded signal sensors, processors and controllers.

One of the main reasons for the current rapid development of sensor networks is the
potential of its applications and its relevance in various research fields. Sensor networks ap-
plications range from important societal issues such as environmental and habitat monitoring,
traffic control, emergency scenarios, and health care, to economical issues such as production
control and structure monitoring [27; 41; 16; 28]. Sensor networks have also a great potential
as a research tool in experimental sciences: They facilitate the acquisition, processing, and
interpretation of data that with the current centralized measurement systems would be very
difficult and expensive. In addition to this, sensor networks allow data harvesting in scenarios
of difficult access or in adverse environments, and at spatial densities that are much finer than
with previous approaches.

However, the development of a working large scale sensor network still requires solutions
to a number of technical and theoretical challenges, due mainly to the constraints imposed
by the wireless sensor devices: Common devices used in sensor networks are generally very
limited in power, communication bandwidth, processing capabilities, and storage capacity.
Consequently, these devices present a high degree of unreliability, and information loss as
well as temporary failures are common in the network.

In view of all these particular features, sensor networks require a new paradigm for com-
munications: we need new tools (theories, heuristics, designs) specifically conceived for
sensor networks. Of particular interest for this thesis is the routing problem, that is, moving
data among different network locations.

1



2 Introduction

Figure 1.1: Nodes and links associated to a particular ISP. Note the hierarchical ap-
proach to deal with a large number of clients. (Source: ).

1.2 A new communication paradigm

The task of a sensor network typically consists of measuring a given physical phenomena,
generating some information about the phenomena, and transmitting it to one or more base
stations [1]. These base stations gather all the information generated in the network to an-
alyze it, store it, and eventually take some actions. The problem of routing information in
sensor networks is very challenging mainly due to the limited capabilities of the devices that
compose these networks: limited amount of storage, processing power, and energy resources.

Traditional routing algorithms, developed usually for small size networks and/or more
powerful nodes, become prohibitively complex in terms of both communication and compu-
tational complexity. For instance, due to the large number of devices in a sensor network, it
may be not possible to build and maintain a global addressing scheme.

Thus, traditional IP-based protocols may not be applicable directly to sensor networks.
Furthermore, scale issues have been dealt so far with by means of hierarchical routing. The
most common approach to group a large client community is setting up a hierarchy with
different hierarchical levels, where the clients are located at the bottom level. When any
client is unable to route one packet, it is redirected to the next hierarchy level node. This
hierarchical routing leads to a tree structure. On example of this tree structure is shown in
Figure 1.1, which shows nodes and links for a particular ISP.

This hierarchical routing is clearly not suitable in the context of sensor networks. First,
this routing scheme defines one single shortest path between any pair of nodes in the topology.
If a node on this path fails, that particular source/destination pair would remain disconnected
for an amount of time that may not be acceptable for some applications. Second, nodes and
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links in high levels of the hierarchy have to sustain most of the network traffic. In networks
where all the nodes have the same capabilities, nodes high in the hierarchy constitute the
network bottleneck and a single point of failure.

In addition, the lack of reliability of sensor networks makes the routing problem even
harder: the information sent within the network can be lost and any previously established
route can break down due to node or communication failures. The high degree of unreliability
of the individual devices, combined with the large number of devices strongly calls for mul-
tipath routing techniques, i.e., techniques in which data flows simultaneously along multiple
routes. However, achieving multipath routing in sensor networks is a difficult task. First,
searching a large space of possible routes (derived from having a large number of nodes with
high density) may prove computationally prohibitive for low complexity devices. Second,
with temporary node failures that result in routes being created and destroyed all the time, the
communication overhead required to maintain an accurate picture of available routes might
be prohibitive.

Most of the algorithms that have been developed in the past are not fully decentralized,
nor fully self-organized, nor fully scalable. In this new scenario, the communication and com-
putational complexity involved in traditional solutions based on centralized schemes makes
necessary the use of distributed solutions: we need distributed ways of sensing, processing,
and communicating.

This thesis concentrates on distributed routing algorithms, where routing decisions at each
node are only based on local information: That is, information a) nodes has access to directly,
b) nodes can compute by exchanging messages with its nearest neighbors only, and c) carried
by each packet. We analyze the routing problem for common traffic scenarios encountered in
sensor networks. For each of these scenarios, we study capacity limits and derive constructive
routing strategies that achieve this capacity.

We design routing algorithms to deal with common constraints imposed by sensor net-
works. Particularly, we study packet losses caused by the limited storage capacity of sensor
nodes and propose routing algorithms that minimize overflow losses. The analysis and de-
sign of routing algorithms for finite buffer networks requires solving the associated queueing
network problem for which there are not analytical solutions even for simple cases [10].
In practice, several approximations are used to make the analysis tractable. Most of these
approximations are based on Jackson’s independence assumption, which works well under
low rate but degrades rapidly as the rate increases. We propose a new approximation model
that captures the dependence between the queue distributions of different nodes and allows
to design simple routing algorithms that minimize overflow losses. We investigate also the
problem of routing in unreliable networks with frequent temporary node failures under differ-
ent failure models. We propose distributed routing algorithms that maximize the information
rate transmitted in the network.

In unreliable networks such as sensor networks, specially designed coding techniques
can increase the amount of useful information that is transmitted in the network. By jointly
optimizing the source coding and the routing algorithms, we can significantly increase the
information rate transmitted by the nodes. Particularly, we investigate the interaction of the
source coding and the routing mechanisms in two common scenarios in sensor networks: data
gathering and real time signal transmissions.
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1.3 Related work

Sensor networks have attracted many research efforts over the past few years [61; 32], and
many new algorithms have been proposed for the routing problem [2]. Almost every routing
protocol can be classified according to the purpose they serve such as energy conservation,
traffic balance, robustness, and throughput maximization.

For energy conservation, routing algorithms that equalize nodes energy and distribute the
traffic evenly maximize network lifetime [35]. Upadhayay et al. observed that a balanced
distribution of traffic has a greater impact on system performance than the adaptivity or ef-
ficiency of the algorithm [71] and presented a minimal fully adaptive routing algorithm that
creates a balanced and symmetric traffic load in the network. The problem of load distribution
was also studied by Hajeck [30].

Multipath routing techniques have been found to be a good strategy under the unreliable
conditions of sensor networks to increase the robustness against failures [67; 59; 58]. The
principle of these algorithms consists in flowing data simultaneously along multiple routes.
Routing using multiple paths has also been studied in the context of high-speed networks [44],
where it has been proposed as a way of reducing queueing delays in a manner analogous to
adaptive routing [47], of dealing with transmission errors and of dealing with system failures
[7; 5]. Parallel multiple route computations have been proposed as a mechanism to provide
Quality of Service (QoS) in ad-hoc networks [14].

The usual deployment of devices into the sensed area frequently consists of a regular
structure that results into a lattice sensor network, or a perturbation of it [22]. Capacity anal-
ysis of regular lattice networks has been addressed by various researchers [40; 50; 48]. Using
graph cut methods, Sun and Modiano [69] investigated the spare capacity, which is the capac-
ity needed on each link to recover from a link or node failure, in an NxN torus topology under
a uniform all-to-all traffic model. Routing in lattice networks has been thoroughly studied in
the context of distributed parallel computation [18], where Maxemchuk [43] analyzed various
routing schemes through simulation.

Previous works that analyze the finite buffer limitation at the nodes are mainly based on
Jackson’s independence assumption [10]: the queue associate to each node in the network
is analyzed independently of other queues. Harchol-Balter and Black [31] considered the
problem of determining the distribution on the queue sizes induced by a routing algorithm
in lattice networks. They reduced the problem into a product-form Jackson queue network
and analyze it using standard queueing theory techniques. Mitzenmacher [49] approximated
the system by an equivalent Jackson network with constant service time queues. He provided
bounds on the average delay and the average number of packets for square lattices.

To reduce the complexity of the queueing network analysis, all the aforementioned papers
make an independence approximation and consider the analysis of just one queue (node).
We propose a new analysis that captures the dependence between the distributions on the
queue size of different nodes. Using this analysis, we provide simple rules to design routing
algorithms that maximize throughput for limited buffer nodes.

Leighton [40] analyzed the performance of simple routing algorithms in square grid and
torus networks. Based on probabilistic reasoning, he provided bounds on the tail of the delay
and queue size distributions. This analysis requires that the queue policy is “further first”
instead of first-in first-out.

In deflection routing [43; 13], packets are forwarded to their preferred route (for instance,
a shortest path) and when there is no storage available for a packet on the path to its destina-
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tion, the packet is deflected to another path. Deflection routing exploits network diversity by
reducing the number of times a packet is deflected. These routing techniques are especially
suitable for ultra fast networks since packet buffering is completely avoided.

Finite buffers have also been considered in the study of scheduling algorithms for packet
transmission in regular topologies under a uniform all-to-all traffic model [70; 73]. Sun and
Modiano [70] showed that giving more priority to those packets with the shortest distance
in number of hops to its destination achieves the highest throughput. Varvarigos and Bert-
sekas [73] evaluated the throughput of two different packet scheduling policies and observed
that small buffer sizes can achieve throughput close to that of the infinite buffer case. In our
work, packet scheduling is fixed (FIFO) and the focus is on analyzing optimal routing algo-
rithms that achieves the maximum throughput. Particularly, we show that the performance
of different routing algorithms differs significantly when the buffers are limited and that the
required buffer to achieve a throughput close to that of the infinite buffer size reduces with
the network size.

Neely, Rohrs and Modiano [53; 54] presented equivalent models for multi-stage tree net-
works of deterministic service time queues that reduce the analysis of tree network to the
analysis of a simpler two-stage equivalent model.

For random wireless networks, Gupta and Kumar [29] studied the transport capacity and
concluded that the total end-to-end capacity per node is O

(
1/

√
N

)
, where N is the number

of nodes. Duarte-Melo and Liu [17] studied the capacity and scalability issues of the data-
gathering communication model in a wireless sensor network, giving upper bounds as well
as constructive lower bounds by assuming that there exists a schedule that determines what
subset of nodes can transmit simultaneously during which time slot. However, the problem
of deriving optimal channel access schedules for multihop networks is NP-complete [4; 19].
Even sub-optimal schedules are highly non trivial to generate, especially in a decentralized
manner. Under the same assumptions, Marco et al. [42] investigated the capability of large-
scale sensor networks to measure and transport a two-dimensional field, where the quality
of the reconstructed field is limited by the ability of the encoder to compress the data to a
rate less that the capacity of the network. They concluded that as the density increases, any
data compression scheme is insufficient to transport the required amount of data for a given
quality.

The problem of designing a Media Access Control (MAC) for wireless networks to
achieve proportional fairness of media access that adapts to different traffic requirements
have been studied in [75; 51]. Nandagopal et al. showed that proportional fairness can be
achieved without explicit global coordination by a backoff algorithm that optimizes a local
utility function. Woo and Culler [75] proposed an adaptive rate control scheme that allows
fair bandwidth allocation to the infrastructure for all nodes in a multihop network while be-
ing energy efficient. Mergen and Tong [48] analyzed the effects of the MAC on the network
capacity. Particularly, they studied the effect of multi-packet reception capability on the ca-
pacity of wireless networks with regular structures under the uniform traffic model. For this
scenario, they presented an optimal routing algorithms and a MAC scheme achieving the
maximum capacity.

Many network communication problems do not allow to use the separation theorem, thus
joint source channel coding (JSCC) can bring substantial improvements. McCanne et al.
considered the use of JSCC in the context of multicast packet video [45; 46]. Alasti et al. [3]
studied the use of JSCC in networks with congestion problem. They investigated the problem
of a simple network represented by a set of parallel queues with congestion problems and



6 Introduction

showed that double description coding significantly improves the overall average end-to-end
distortion at high network loads compared to single description coding systems.

The first theoretical results in multiple description coding were provided by El Gamal,
Cover and Ozarow [20; 55] for the case of Gaussian source, mean squared error distortion
and two descriptions. An achievable region for the binary symmetric source with many de-
scriptions was derived in [74]. Achievable rate regions of the multiple description problem
with more than two descriptions have been determined for the symmetric case by Pradhan,
Puri and Ramchandran [62; 64]. Vaishampayan proposed in [72] a simple procedure for de-
signing multiple descriptions scalar quantizers with remarkably good asymptotic properties.
For an excellent tutorial on multiple description coding refer to [25].

1.4 Thesis outline and contributions

In the complex distributed scenario of sensor networks, there are several interesting topics
to investigate, spanning from traditional signal processing such as information coding, to
communication and information theory issues such as transmission protocols and capacity
bounds. Among all these, this thesis focuses on: (a) data routing, that is, efficient and com-
putationally simple decentralized algorithms to move data among different network locations,
and (b) information coding, that is, how sensors code the observations and how this interacts
with routing.

In Chapter 2, we start by analyzing the point-to-point routing problem, that is, the problem
of moving data from one single source to one single destination within the network. To
overcome the size and complexity limitations of sensor networks, we propose a completely
different approach to the traditional routing algorithms: we formalize the routing problem as
a problem of constructing suitably constrained random walks on random lattices. We specify
a desired stationary load distribution in the network and then define a distributed algorithm
for computing the local parameter of a random walk that induces such distribution. To the
best of our knowledge this is the first piece of work that deals with the routing of messages
without any notion of discovering / maintaining / repairing explicitly described routes.

A natural extension to this scenario is to consider multiple source and/or multiple desti-
nations, which is the object of Chapter 3. We start by studying routing problems on regular
lattice graphs. Particularly, we focus on the analysis and design of routing algorithms that
maximize the throughput per node for different communication patterns representing differ-
ent network functionalities. For each case, we establish the fundamental limits of transmis-
sion capacity, and provide optimal routing algorithms for which the rate per node is equal to
this maximum transmission capacity.

One of the important limitations of sensor networks is the constrained buffer space avail-
able on the nodes for the temporary storage of packets [75]. We show in Chapter 4 that the
performance of different routing algorithms differs significantly when finite buffers are con-
sidered. In Chapter 4, we focus on the problem of routing in networks where nodes have
small buffers and design routing algorithms that minimize overflow losses. This requires
solving the queueing problem associated to the network and computing the distribution on the
queue size at the nodes. We propose alternative approximation models to the usual Jackson’s
Theorem to obtain a more accurate distribution on the queue size at the nodes. Using this
approximation, we analyze and design optimal routing algorithms for finite buffer networks
that maximize the throughput per node. We also show that the required buffer to achieve a
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throughput close to that of the infinite buffer size reduces with the network size.
Another limitation of sensor networks is the high degree of unreliability of the individual

devices that compose these networks, which gives rise to frequent temporary failures. The
object of Chapter 5 is to investigate the effect of the unreliability on the routing problem.
We show that achieving robust communications and maximizing the achievable rate per node
are incompatible goals: while robust communications require the use of as many paths as
possible between the source and the destination, maximizing the rate per node requires using
only a few of the available paths. We propose the use of a particular combination of two
routing algorithms, the first one being optimal when there are no node failures at all and the
second one being appropriate when the probability of node failure is high. The combination
of these two routing algorithms defines a family of randomized routing algorithms, each of
them being suitable for a given probability of node failure.

Most of the routing algorithms proposed in the previous chapters rely in one way or an-
other on the regular topology of the network model considered. Motivated by the insights
gained in lattice networks, we study in Chapter 6 the problem of routing in random topology
networks. We start by studying network capacity and optimal routing algorithms for both
infinite and finite buffers at the nodes for a collision-free network model. Even if random
networks are very different in nature from grid networks, we show that similar principles can
be applicable to analyze the buffer occupancy distribution at the nodes. Using approximation
models, we study routing algorithms that minimize the packet overflow and consequently,
maximize the achievable rate. We show that the problem of finding the optimal routing algo-
rithm that achieves network capacity is an NP-hard problem. We propose an approximation
algorithm to minimize overflow losses that achieves a maximum rate three times higher on
average than the rate achieved with the usual shortest path routing algorithm. Finally, we dis-
cuss the wireless case, where packet transmissions among different nodes can interfere and
result in a packet collision. We show that the overflow loss process is quite similar in both
collision-free and wireless models, and propose a simple method to reduce overflow losses
that consists in adapting the backoff window size linearly with the distance to the base station.
This mechanism allows to significantly decrease overflow losses in the network.

Chapters 2 and 5 show that multipath routing is a good strategy in unreliable networks:
by exploiting the space diversity of the network and making the data flow along multiple
routes, we are able to overcome node failures and reduce the unpredictability of sensor net-
works. In Chapter 7, we show that we can exploit this multipath property even further by
using an appropriate source coding mechanism. We investigate the interaction of the routing
mechanism and source coding techniques such as Multiple Description (MD) coding. Partic-
ularly, we study the use of MD coding in two different scenarios: real time data transmission
and central data gathering in a network with constrained buffers. First, in a real time data
transmission scenario, we analytically compute the distortion at the receiver for a simple
network model and show that the combination of multiple description coding and multipath
routing performs significantly better than the usual single path and single description scheme.
Second, we investigate the optimal transmission strategy in a sensor network performing a
central data gathering and show that, depending on the network conditions, there exists an
optimal number of descriptions that minimizes distortion. In this chapter we also consider
the practical aspects of using MD coding in large sensor networks where the set of available
paths between any source-destination pair is large. While most of the previous work stud-
ies MD coding from a rate-distortion point of view, we concentrate on the practical aspects
of implementing an MD coding scheme in a sensor network. The results obtained in both
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real time data and constrained buffer networks indicate the benefit of combining MD coding
techniques and multipath routing in large and dense unreliable networks.

We conclude in Chapter 8 with a summary and a discussion about future research.

1.5 Performance Evaluation
Given the difficulty in performing actual measurements in real wireless networks, we evalu-
ated all our algorithms through simulations. Instead of specifying the simulation environment
for each graph, in this section we review the programs we use in this thesis.

For simulations in lattice networks (Chapters 2, 3, 4, and 5) we have created a simple
simulator in C capable of dealing with sensor networks of large sizes.

To drive the simulations in random and wireless networks (Chapter 6), we use NAB
(Network in A Box) [33], a network simulator targeted at wireless ad hoc and sensor networks
that was designed for the purpose of simulating large-scale networks. NAB is written in
Ocaml, a high-level yet highly efficient programming language.

To establish accurate simulation results, we perform multiple independent replications of
each experiment [57] and compute the mean, the variance, and the confidence intervals. For
the mean and the variance, we use the following formulas:

X =
1

k

k∑
i=1

Xi,

S2 =
1

k − 1

k∑
i=1

(Xi − X)2,

and to compute the (1 − γ) ∗ 100 confidence intervals we use:

ci =
�−1

(
1 − γ

2

)
S√

k
,

where k is the number of replications and �−1 is the inverse cumulative function of the
student distribution with ∞ degrees of freedom. All experimental curves obtained through
simulation include the 95% confident intervals (if not specified otherwise) for each data point.
In the case of graphs where the variance of each data point is very small, confidence intervals
have been omitted for clarity.



Chapter 2

Point-to-Point Multipath Routing
Algorithms for Large Scale Sensor
Networks

2.1 Introduction

Implementing a basic packet forwarding service on a network of sensors is a challenging
problem. The first difficulty to overcome is the high degree of unreliability: the individual
nodes that compose sensor networks are subject to frequent temporary failures. This unre-
liability becomes more critical in the case of large sensor networks. With many error-prone
nodes on any individual route, there is a high probability that some node along any particular
route will fail. Moreover, traditional routing algorithms usually developed for smaller size
networks become prohibitively complex in terms of computation (searching a large space
of possible routes) and communication (a node failure/recovery translates into routes being
destroyed/created).

However, we show in this chapter that working with large networks allows us to over-
come the lack of reliability inherent in sensor networks. The high degree of unreliability of
the network combined with a large number of nodes, strongly calls for multipath routing tech-
niques capable of exploiting the path diversity present in the network. How to provide such
multipath routing in large networks is the fundamental problem we address in this chapter.

To deal with large networks, we focus on decentralized algorithms, that is, algorithms
based only on local information. Routing decisions at each node are only based on informa-
tion nodes have about the state of the network, and possibly, on information carried by the
packet. In this way, the complexity of the routing algorithm is independent of the size of
the network. Our main insight is the use of randomized algorithms to implement multipath
routing at essentially the cost of having each node implement independent routing decisions
plus some minimal overhead.

This work is mainly inspired by Kelly’s modeling of interacting particle systems using
random walks [36]. At a microscopic level, the behavior of a particle can be described using
a random walk model. At a macroscopic level, the same behavior is described in terms of
global quantities such as temperature, voltage, etc. If we identify particles with packets and

9
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the network with the medium, the routing problem consists of finding the best way to drive
packets from one location to another. More specifically, we formalize the routing problem
as a problem of constructing suitable constrained random walks on graphs. The target is
to achieve a desired stationary load distribution in the network. Once this desirable load
distribution is specified, we define a distributed algorithm for computing the local parameters
of a random walk that induces such distribution.

We construct constrained random walks on a particular family of random graphs that we
have chosen as an abstraction for the behavior of large sensor networks. Such random walks
define a large class of algorithms for each node in the network to execute, so as to route
packets to any destination. We denote by ϕn(dk) = {u1, . . . , un(dk)} the set of neighbors of
dk and by n(dk) = |ϕn(dk)| its cardinality. Let πdk

= {p1, p2, . . . , pn(dk)} be real numbers
such that pi ≥ 0 and

∑
i pi = 1 (a pdf on the neighbors of dk). When a packet reaches node

dk, the next hop is chosen by tossing a die whose i-th face occurs with probability pi, and the
packet is forwarded over the link (dk, ui). By making different assumptions on the topology
of the underlying network, on its dynamics, and on constraints imposed on the local pdfs, we
are able to explore a large and structured space of possible routing schemes.

In this chapter, we compute the local parameters of random walks (i.e., the πdk
) with all

the desired decentralization properties mentioned above that induces a suitable load distribu-
tion for different network abstractions. To the best of our knowledge, this is the first piece of
work that dealt with the routing of messages without any notion of discovering / maintaining
/ repairing explicitly described routes.

This chapter is organized as follows. In Section 2.2, we study the routing problem in a
square lattice and derive the local parameters of a random walk that achieves the most uniform
traffic distribution in the network. In Section 2.3, we consider the construction of constrained
random walks on a less structured graphs, namely a random lattice where a random subset
of nodes has been deleted. We show that in this random model, we can still define suitable
random walks with a certain load balancing property. Finally, in Section 2.4, we study the
problem of routing in random dynamic graphs by considering a time-varying version of the
static random network of Section 2.3.

2.2 Constrained random walks on regular static graphs
We start by designing suitable constrained random walks for a static graph with a regular
structure, namely the square lattice (Figure 2.1). This model is simple enough to allow us to
obtain simple closed form expressions for the sought distributions, yet at the same time it is
rich enough to allow us to explore issues related to scalability versus numbers of nodes.

2.2.1 Network model
We consider a square lattice of size N1 × N1 nodes (Figure 2.1) described by the graph
G(V, E). Given a set S, let |S| denote the cardinality of the set S. The N1 × N1 square
lattice contains |V | = N 2

1 = N nodes and |E| = 2N1(N1 − 1) links.
A node dk ∈ V , k ∈ [0, N − 1], can be characterized by its local coordinates [ik, jk] in

the lattice. We denote by h(dk, dl) the shortest distance in hops between dk and dl, that is:
h(dk, dl) = |ik − il| + |jk − jl|. We denote by he(dk) the shortest distance in hops from
dk to the nearest node on the boundary of the lattice. The l-th diagonal of G is the set of all
nodes [ik, jk] ∈ V such that ik + jk = l, and is denoted by Diag(l). By a slight abuse of
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Figure 2.1: Square Lattice of size N1 × N1. A node dk is characterized by its
coordinates [ik, jk] in the lattice.

notation, we denote by Diag(dk) the set of all nodes that belong to the same diagonal as dk,
that is, Diag(ik + jk). The size of a diagonal is given by |Diag(dk)|. We assume that nodes
are not aware of their geographic position in the network, i.e., nodes do not know their local
coordinates. A link l = (dk, dl) ∈ E represents a communication channel between nodes
dk and dl. If there exists a link l = (dk, dl) ∈ E, we say that dl and dk are neighbors. We
assume that all links have the same characteristics in terms of length and capacity.

We assume that packets are injected at the source ds = [0, 0], and must travel hop by hop
to the destination node dd = [N1 − 1, N1 − 1]. Any interior node [ik, jk] has 4 neighbors:
ϕn(dk) = {[ik − 1, jk], [ik, jk − 1], [ik + 1, jk], [ik, jk + 1]}. The first two are closer to
the source, the latter two are closer to the destination. A completely general random walk on
this lattice is specified by giving four numbers: πdk

[ik−1, jk], πdk
[ik, jk−1], πdk

[ik +1, jk],
and πdk

[ik, jk + 1], for all dk ∈ V (except at the boundaries, where the number of neighbors
is smaller). We derive now the local parameters of the random walk that induces a suitable
load distribution in the network.

2.2.2 Local parameters of the random walk
To effectively exploit whatever degree of route diversity the network provides, we require
a certain “load balancing” condition on the stationary distribution ΠS induced by the con-
strained random walk. The load balancing condition we impose can be formulated as follows:
if two nodes are located at the same distance from the source, then these nodes must carry
the same traffic. That is, given dk = [ik, jk] and dl = [il, jl] such that ik + jk = il + jl,
then ΠS(dk) = ΠS(dl). In other words, all nodes belonging to a particular diagonal Diag(l)
share the load evenly. To ensure the avoidance of livelock conditions, we also impose the
following condition on the random walks: if for some destination node dd, we have some
dl ∈ ϕn(dk) such that h(dl, dd) > h(dk, dd), then πdk

(dl) = 0. That is, we consider only
“shortest-path” routing algorithms.

We compute now the local parameters πdk
of the random walk that induces the desired

load distribution. We begin by dividing the network into two regions (Figure 2.2):

• In the expansion stage, packets move across diagonals with an increasing number of
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(b) Compression Stage

Figure 2.2: We divide the network into two stages: (a) Expansion stage: increasing
number of nodes per diagonal (b) Compression stage: decreasing number of nodes
per diagonal.

nodes and consequently, the density of packets per node decreases (Figure 2.2(a)).

• In the compression stage, packets move across diagonals with a decreasing number of
nodes and consequently, the density of packets per node increases (Figure 2.2(b)).

In the initial expansion stage, the number of nodes among which to spread the packet load
increases, and therefore, the optimal load per node must decrease. After crossing the longest
diagonal (corresponding to nodes with coordinates ik + j + k = N1 − 1) and entering the
compression stage, the number of nodes on diagonals starts decreasing, and therefore the load
per node must increase. It is straight forward to see that if ik + jk < N1 − 1, dk belongs to
the expansion stage, while if ik + jk ≥ N1 − 1, dk belongs to the compression stage

Note that other than boundary nodes, any node dk = [ik, jk] has exactly two neighbors
with a shorter distance to the destination than his own, whose coordinates are [ik +1, jk] and
[ik, jk + 1]. Therefore, in this particular topology, and under the shortest path condition, a
random walk is defined by a single number p, the probability of choosing one of these two
links. By convention, we define p(dk) to be the probability of dk forwarding a packet to
the neighbor that is closer to the boundary of the lattice (1 − p(dk) being the probability of
forwarding to the other). Note that p(dk) characterizes completely the random walk.

Proposition 2.1 The local parameters of the constrained random walk that achieves a uni-
form distribution on diagonals are given by:

p(dk) =

{ |Diag(dk)|−he(dk)
|Diag(dk)|+1 , if ik + jk < N1 − 1 (expansion stage),
he(dk)

|Diag(dk)|−1 , if ik + jk ≥ N1 − 1 (compression stage).
(2.1)

Intuitively, during the expansion stage we are imposing a penalty to use the nodes close to
the straight line joining the source and the destination (large he) that can be used by a large
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Figure 2.3: Forwarding probabilities.

number of nodes. Similarly, in order to avoid the “edge effect”, during the compression stage
we impose a penalty to those paths closer to the edge (small he).

Proof: The proof in both cases proceeds by induction on the diagonals. Consider
first the expansion stage. The first diagonal corresponds to the source node ds, and hence
|Diag(ds)| = 1 and he(ds) = 0. It follows from (2.1) that p(ds) = 1/2 = (1 − p(ds)),
achieving a uniform packet distribution over the second diagonal.

Let de
l be a node belonging to diagonal Diag(l) at a distance e from the nearest node

on the boundary, that is, he(d
e
l ) = e. Assume (by induction) that we have already a uni-

form packet distribution over Diag(l), and so the fractional load supported by each node is
1/|Diag(l)|. The next diagonal has |Diag(l)| + 1 nodes, and the fractional load we want
to achieve is 1

|Diag(l)|+1 . The situation is depicted in Figure 2.3(a). Therefore, for the set of
nodes de

l with 0 ≤ e ≤ N1

2 , their corresponding probability p(de
l ) has to satisfy:

1

|Diag(l)| · p(d0
l ) =

1

|Diag(l)| + 1
,

1

|Diag(l)| · p(d1
l ) +

1

|Diag(l)| · (1 − (d0
l )) =

1

|Diag(l)| + 1
,

· · ·
1

|Diag(l)| · p(de
l ) +

1

|Diag(l)| · (1 − p(de−1
l )) =

1

|Diag(l)| + 1
.
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Figure 2.4: If the network is not square, there is also a transportation stage where
the number of nodes in the diagonals remains constant.

Solving this system of equations, for any node dk we obtain:

p(dk) =
|Diag(dk)| − he(dk)

|Diag(dk)| + 1
.

We proceed similarly for the compression stage: suppose we have the load uniformly dis-
tributed over a diagonal Diag(l). The fractional load supported by each node is 1/|Diag(l)|.
The next diagonal has |Diag(l)| + 1 nodes, and the fractional load we want to achieve is

1
|Diag(l)|−1 . This situation is depicted in Figure. 2.3(b). For nodes de

l at distance 0 ≤ e ≤ N1

2

from the boundary, the corresponding probability p(de
l ) satisfies:

p(d0
l ) = 0,

1

|Diag(l)| · p(d1
l ) +

1

|Diag(l)| · (1 − p(d0
l )) =

1

|Diag(l)| − 1
,

· · ·
1

|Diag(l)| · p(de
l ) +

1

|Diag(l)| · (1 − p(de−1
l )) =

1

|Diag(l)| − 1
.

Finally, solving this system of equations yields:

p(dk) =
he(dk)

|Diag(dk)| − 1
.

Note that if the source node ds and destination node dd are such that |id − is| 	= |jd − js|,
i.e. the network is not a square (Figure 2.4), we can still use the same probability distribution
derived above. The only difference is that, besides the expansion and compression stages,
there is also a transportation phase where the number of nodes in the diagonals remains
constant. During the transportation phase, the distribution has a trivial solution: p(dk) = 1
or 0 depending whether |id − is| > |jd − js|, or |id − is| < |jd − js|. This is illustrated in
Figure 2.4.
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2.2.3 Distributed computation of the local parameters
To compute the local parameters of the random walk (2.1), nodes require knowing their own
lattice coordinates. However, we assume that nodes are not aware of their absolute position in
the network. We can only expect that each node comes equipped with a unique identifier and
that position information is discovered via communication among the nodes. In this section,
we give a distributed algorithm to compute the lattice coordinates of the nodes.

We assume that nodes know their neighbor or neighbors whose distance to a given node
di is smaller than its own. These nodes can be obtained by executing a distributed shortest
path algorithm like Bellman-Ford [10]. To compute the lattice coordinates of any node dk,
it is important to note the following: the coordinates of dk are uniquely identified by the
coordinates of its neighbors whose distance to the source ds is smaller than its own. This is
illustrated in Figure 2.5.

[ i−1, j ]

[ i, j ]

[ i, j−1 ]

(a) Two neighbors

[ i, 0 ]

[ i+1, 0 ]

[ 0, j ] [ 0, j+1 ]

(b) One single neighbor

Figure 2.5: Recursive computation of network coordinates.

If dk has two neighbors d1 and d2 with coordinates [i1, j1] and [i2, j2] whose distance
from the source is smaller than its own (Figure2.5(a)), then the coordinates of dk are given
by [ik, jk] = [max(i1, i2), max(j1, j2)]. On the other hand, if dk has only one neighbor d1

with smaller distance to the source (Figure2.5(b)), this neighbor must have coordinates of the
form either [i1, 0] or [0, j1], and then the coordinates of dk are either [i1 + 1, 0] or [0, j1 + 1].
Finally, the decision of which node is [1, 0] and which node is [0, 1] is made arbitrarily by the
source. Once we have the geometrical location of any node, the distributed routing algorithm
is trivial by using (2.1).

2.2.4 Simulation results
For illustration purposes, we compare the load distributions induced in the network by two
different constrained random walks. First, we consider a simple random walk where, to
decide which of the two feasible neighbors on a next hop to pick at each node, we flip a fair
coin. Second, we use the constrained random walk defined by (2.1). Both distributions are
shown in Figure 2.6. The simulation consists of 10000 messages transmitted in a network of
size 20 × 20 injected at ds = [0, 0] with destination dd = [19, 19].

As expected, when using forwarding probabilities which are independent of the network
location, most of the traffic is confined around the straight line joining the source and the
destination. Using a constrained random walk with the local parameters defined above, we
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Figure 2.6: Load distribution in the network. a) Random walk based on tossing a
fair coin to decide the next hop. b) Random walk using the local parameters derived
in this section. The x and y axis represent the lattice coordinates of a node. The
z-axis represents the number of packets carried by node [x, y] normalized such that
diagonals sum up to 1.

assign higher probability to nodes away from this main line during the expansion stage and to
nodes close to it during the compression stage, such that the load distribution in the network
becomes more uniform. Of course, at the source and destination there is still an unavoidable
accumulation, but this is inherent in the bottlenecks at the source and destination.

Figure 2.7 shows the traffic distribution across the central diagonal Diag(N1−1), that is,
across the set of nodes [N1 − i, i] for i ∈ [0, . . . , N1 − 1], in a 20× 20 lattice network. While
using the constrained random walk with the local parameters defined above we achieve a
uniform load distribution, the random walk based on tossing a fair coin load clearly overloads
central nodes.

2.3 Constrained random walks on irregular static graphs

2.3.1 Network model
We now turn our attention to the construction of constrained random walks on a less struc-
tured graph than the square lattice. We introduce a new graph model that takes into account
network irregularities by deleting a random subset of nodes from the square lattice, but in
such a way that the resulting graph remains connected (Figure 2.8).

In the previous section, we derived the local parameters of a constrained random walk
that induces a uniform traffic distribution on the diagonals of the square lattice. For this
new network model, the concept of diagonal is still valid. However, achieving an exact load
balancing as defined above will not be possible in general. This can be illustrated through
the example depicted in Figure 2.8: if the load is uniformly distributed in Diag(1), that
is, (1/3, 1/3, 1/3), then a uneven load of (2/3, 1/3) will result in Diag(2). Equivalently,
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Figure 2.7: Load distribution in the central diagonal Diag(N1−1) induced by both
random walks in a 20 × 20 regular lattice network.

to ensure an even load balance of (1/2, 1/2) in Diag(2), a uneven load of (1/4, 1/4, 1/2)
is required on Diag(1). Therefore, a uniform load distribution simultaneously across all
diagonals is not feasible.

The question that arises immediately is what is the load distribution that a random walk
should induce in such an irregular graph. Even if we cannot achieve uniform load across
diagonals, we still want to distribute load as fairly as possible between all nodes belonging to
the same diagonal. It turns out that we can still define suitable random walks: If the number
of routes is large, we can say something about the statistical distribution of where a packet
will lie after h hops. Therefore, by choosing appropriate local parameters for the random
walk, we should still be able to control the shape of this distribution, and steer it to one which
is, if not exactly, at least approximately uniform across diagonals. Building on this intuition,
we elaborate next on how to accomplish this.

2.3.2 A generalization of the lattice coordinates

It is important to note that the distributed algorithm we presented in Section 2.2.3 to compute
the local coordinates of all nodes does not work in the case of irregular graphs: if any of the
neighbors of a node is missing, we will not be able to identify the coordinates of the node.
For this reason, we first introduce a generalization of the concept of lattice coordinates. We
associate to each node dk a new label {sk, tk}, where the first component sk is the number
of different available routes between dk and the source, and the second component tk is the
number of different available routes between dk and the destination. We say that two routes
are different if they differ in at least one node (note that this is much weaker than requiring
the routes to be disjoint, i.e., that all but the first and last nodes are different). These new
labels can be easily computed in a distributed way: the number of different routes from a
node to the source/destination can be obtained as the sum of the number of routes to the
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Figure 2.8: Irregular graph: a random subset of nodes has been removed from a
square lattice. In general, a uniform load distribution across all diagonals simulta-
neously is not feasible.

source/destination from its neighbors whose distance to the source/destination is smaller than
its own. Note that these new labels introduce a certain dependency with the network state and
does not relate specifically to the location of the node.

The notions of expansion and compression stages can now be naturally generalized in
this irregular network model using the new defined labels. We say that a node dk labeled
as {sk, tk} belongs to the expansion stage when sk < tk. Equivalently, we say that the
node belongs to the compression stage if sk ≥ tk. We can also reformulate the forwarding
probabilities of the random walk in terms of the new labels. Consider a node with label
{sk, tk} that has at most two neighbors to which it could forward data with labels {s1, t1}
and {s2, t2}. Then, the probability p(dk) of forwarding a packet to the node {s1, t1} is
defined as:

p(dk) =

{
s2

s1+s2
if sk < tk (expansion stage),

t1
t1+t2

if sk ≥ tk (compression stage).
(2.2)

Intuitively, during the expansion stage we make the forwarding probability to a given
node inversely proportional to the number of routes between this node and the source. This is
because, if we were successful in spreading the load evenly in earlier stages, then we would
expect the load received by any node to increase with the number of routes from the source
to that node (more routes mean more ways in which a packet could reach this node). During
the compression stage, we make the forwarding probability to a given node proportional to
the number of routes between this node and the destination. Since nodes can distribute the
incoming load between all the available routes toward the destination, we make the supported
load proportional to this number of routes.

2.3.3 Equivalence with lattice coordinates in the regular lattice
An important property of the labels defined above is that, if applied in the context of the
regular square lattice, the computed forwarding probabilities are identical to those calculated
in Section 2.2. It is in this sense that we call these labels a generalization of the lattice
coordinates.

Proposition 2.2 In the context of the regular square lattice, the local parameters of the con-
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Figure 2.9: Pascal’s Triangle: each node dk is labeled with the number of different
routes sk to the source ds.

strained random walk computed using the lattice coordinates of the nodes (2.1) and the node
labels (2.2) are identical.

Proof: Consider the square lattice shown in Figure 2.1. The number of routes sk from
any node dk in the expansion stage toward the source ds represents an instance of the Pascal’s
Triangle problem, and hence sk is given by the following combinatorial number:

sk =

( |Diag(dk)| − 1
he(dK)

)
(2.3)

This is illustrated in Figure 2.9.
If now we substitute (2.3) in the local parameters of the random walk (2.2), in the case of

a complete square lattice we obtain:

p(dk) = s2

s1+s2
,

=

0
@ |Diag(dk)|

he(dk) + 1

1
A

0
@ |Diag(dk)|

he(dk) + 1

1
A+

0
@ |Diag(dk)|

he(dk)

1
A

,

= |Diag(dk)|−he(dk)
|Diag(dk)|+1 .

Similarly, for nodes in the compression stage, the number of joint paths toward the desti-
nation also forms a Pascal’s Triangle. Substituting into (2.2) we obtain:

p(dk) =
t1

t1 + t2
=

he(dk)

|Diag(dk)| − 1
. (2.4)

Therefore, labels based on the number of routes can be viewed as a generalization of
the lattice coordinates, given that the packet forwarding probabilities induced are the same.
Moreover, using these labels, the computation of the local parameters of the random walk
(2.2) can be generalized for the case of non regular networks where nodes have more than
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Figure 2.10: Load distribution in the network. a) Random walk based on tossing a
fair coin when there are two feasible neighbors. b) Constrained random walks using
the local parameters computed in Section. 2.3.2. The x and y axis represents the
network position of a node. The z-axis represents the number of packets carried by
node [x, y] normalized such that diagonals sum up to 1.

two feasible neighbors. If we denote by p(dk, di) the probability that dk forwards a packet to
di, where di ∈ ϕn(dk), then:

p(dk, di) =

⎧⎨
⎩

P
dj∈ϕn(dk), dj �=di

sj

(|ϕn(dk)|−1)
P

dj∈ϕn(dk) sj
if sk < tk (expansion stage),

tiP
dj∈ϕn(dk) sj

if sk ≥ tk (compression stage).
(2.5)

2.3.4 Routing algorithm for the irregular lattice

In the case of a lattice with missing nodes, the algorithm for setting forwarding probabilities
must be modified according to the number of neighbors that are on. Assume a given node
[i, j] and its two possible next hops, [i + 1, j], and [i, j + 1]. We have three different cases
depending on whether these nodes are on or off: if both nodes are on, we simply assign
probabilities using (2.2). If there is only one neighbor on, we assign probability 1 to the only
active node. Finally, if none of them are on, we assign probability 1 to a neighbor whose
distance to the destination is strictly smaller than the distance from the current node.

The basic idea of this algorithm is that, if the process for deleting nodes is homogeneous
(in the sense that the probability of having a node missing is independent of the location of
the node, as it is the case when nodes are deleted independently), then we expect that load
imbalances created by forwarding data to a single neighbor will in some cases cancel out.
This issue is explored via simulations next.
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Figure 2.11: Average load distribution in the central diagonal Diag(N1 − 1) of a
20 × 20 random lattice network induced by both random walks for 1000 different
random networks.

2.3.5 Simulation results

For illustration purposes, we compare the traffic distribution generated by a random walk
based on tossing a fair coin to decide which of the two feasible neighbors on a next hop to
pick with a constrained random walk whose local parameters are given in (2.2). Figure 2.10
shows the traffic distribution generated by both random walks in one irregular 20×20 square
lattice where each node is ON with probability 0.95 and OFF with probability 0.05. The
simulation consists of 10000 messages transmitted from node [0, 0] to node [19, 19].

Note that the constrained random walk with the proposed local parameters achieves a
marked improvement in terms of load balancing, especially in comparison to the scheme
based on tossing a fair coin. Note also that now loads on the diagonals are not uniform any
more, although these plots suggest that the imbalance is not severe.

Figure 2.11 shows the average traffic distribution in the central diagonal Diag(N1 − 1)
of a 20 × 20 random lattice network for 1000 different random lattices. Note that in the
random case, the traffic distribution induced by the constrained random walk with the local
parameters defined above is not perfectly uniform across the diagonal. The reason for this
non-uniformity is the different number of possible paths that goes through a particular node
of the diagonal. Nevertheless, this distribution is clearly more uniform that the distribution
induced by the random walk based on tossing a fair coin, which overloads central nodes.
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p11− p01−OFF ON

Figure 2.12: Nodes switch between ON and OFF states following a Markov chain
model. Transitions are independent among nodes.

2.4 Constrained random walks on random dynamic graphs

2.4.1 Network model
Finally, we study the problem of routing in random dynamic graphs by considering a time-
varying version of the static irregular lattice of the previous section: instead of deleting a
set of nodes from the square lattice, we make nodes switch between ON and OFF states at
discrete interval following a Markov rule as shown in Figure 2.12, where the time interval is
equal to the time it takes to transmit one packet from one node to the following. We assume
that transitions are independent among nodes. Note that under this Markov chain model
across time, the stationary probabilities of a node to be ON or OFF are given by:

pON =
p1

p0 + p1
, (2.6)

pOFF =
p0

p0 + p1
. (2.7)

2.4.2 Dynamic parameter computation
In Section 2.3, we presented a distributed labeling algorithm that adapts to the network topol-
ogy which can be seen as a generalization over the lattice coordinates for irregular graphs.
In the case of dynamic graphs, we adopt a dynamic version of this labeling algorithm: when
a node changes state, this change will affect the labels of its neighbors (since the number of
routes available from these nodes will change), which in turn will trigger changes to labels of
node further apart. That is, upon a state transition in the network (a node recovery/failure),
nodes will progressively update their labels according to the new graph. Using this dynami-
cally updated labels, nodes compute the local parameters of the random walk using (2.2) as
in the case of static graphs.

Two important aspects of this dynamic labeling algorithm is to understand how routing
performance is affected by the delays in propagating information about updates of labels,
and how sensitive this routing performance is to inaccuracies in the labels. As the network
becomes more unpredictable (i.e. in which state transitions occur more often), labels are less
accurate and consequently, the routing becomes less effective. We explore these aspects in
the next section via simulations.
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Figure 2.13: Load distribution in a dynamic network with transition probabilities
p0 = 0.0125 and p1 = 0.2375 so that the stationary probability of a node to be OFF
is pOFF = 0.05. Left: random walk based on tossing a fair coin when there are two
feasible neighbors. Right: constrained random walks using the local parameters
computed in Section. 2.3.2. The x and y axis represents the network position of a
node. The z-axis represents the number of packets carried by node [x, y] normalized
such that diagonals sum up to 1.

Finally, note that the routing problem in dynamic lattice networks under random failures
will be studied in more detail in chapter 5.

2.4.3 Simulation results
As in previous sections, we compare first the traffic distribution generated by a random walk
based on tossing a fair coin to decide which of the two feasible neighbors on a next hop to pick
with the constrained random walk with the local parameters discussed above. Figure 2.13
shows the traffic distribution generated by both random walks in a dynamic irregular 20× 20
square lattice with transition probabilities p0 = 0.0125 and p1 = 0.2375 so that the stationary
probability of a node to be OFF is pOFF = 0.05. The simulation consists of 10000 messages
transmitted from node [0, 0] to node [19, 19].

Note that the constrained random walk with the proposed local parameters achieves a
marked improvement in terms of load balancing. Interestingly, the load distributions achieved
in the case of a dynamic random networks are much closer to uniform than those achieved
in an irregular but static lattice. The reason is that, because of the ergodicity of the model
considered for the network dynamics, the load distribution of the dynamic network is essen-
tially the average of the load distributions of many irregular static random networks and it is
this averaging effect what results in smoother, more balanced loads. For instance, the traffic
distribution in the central diagonal Diag(N1 − 1) of dynamic networks is identical to the
averaged traffic distribution in the central diagonal of irregular and static lattices.

Another important factor to measure the performance of the routing algorithm is the dis-
tribution of the time messages take to reach the destination. In the static case, this time is
just the number of hops on a shortest route. However, in the context of dynamic networks,
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Figure 2.14: Ratio of packets arriving to the destination without any additional
delay as a function of the network variability in a 100× 100 dynamic network with
state probability p(OFF ) = 0.01 and p(OFF ) = 0.05.

this delay becomes random: as nodes go ON and OFF, the information about state transitions
needs to propagate throughout the network, and this propagation takes time. Therefore, in-
accurate state information can introduce randomness in transport delay in two forms. First,
packets can be delayed at intermediate nodes if both [i + 1, j] and [i, j + 1] are OFF, and the
current distance estimates from both [i−1, j] and [i, j−1] to destination are greater than that
from [i, j]. In this case, a packet at [i, j] waits a random amount of time until either the map
of distances converges (and a new neighbor closer to destination can be identified), or until
one of [i + 1, j] and [i, j + 1] turns ON again. Second, packets can also be delayed if both
[i + 1, j] and [i, j + 1] are OFF, and at least one of the current distance estimates from either
[i − 1, j] or [i, j − 1] to destination is smaller than from [i, j]. Note that both situations can
arise only for short periods of time, while distance updates propagate.

For the same two random walks as before, we now compare the ratio of packets that arrive
to the destination in the shortest time, i.e., the ratio of packets that does not get additional
delay in the network. Figure 2.14 shows this ratio in a 100 × 100 dynamic network with
stationary probabilities p(OFF ) = 0.01 and p(OFF ) = 0.05 as a function of p0. Note
that p0 is an indicator of the variability of the network: higher values of p0 imply frequent
state transmissions and consequently, nodes often route packets based on inaccurate state
information. Each simulation consists of 10000 messages transmitted from node [0, 0] to
node [99, 99].

Note that in all cases, the random walk with the local parameters we defined exhibits
the highest ratio of packets delivered without any additional delay. If a packet does not
encounter a node with inaccurate information, it will arrive to the destination in the minimum
number of hops. However, if a packet does encounter a node that recently underwent a state
transition, it will likely get either delayed at that node, or misrouted. If state transmissions
are unpredictable and uniformly distributed in all nodes, to minimize the number of packets
being delayed at a given time, the best one can do is to distribute packets as balanced as
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Figure 2.15: Transmission delay distributions as a function of the network variabil-
ity in a 100 × 100 dynamic network with stationary probability p(OFF ) = 0.05
and different transition probabilities p0 and p1.

possible in the network.
In Figure 2.15, we analyze the packet delay distribution induced by the random walk

whose local parameter are discussed in Section 2.4.2 in a 100 × 100 dynamic network with
state probability p(OFF ) = 0.05 as a function of the network variability. Each simulation
consists of 10000 messages transmitted from node [0, 0] to node [99, 99].

First note that if p0 = 0, the graph is static, and hence all packets arrive to the destina-
tion without any additional delay. As the network becomes more unpredictable, i.e., as p1

increases, state transitions are more frequent and less packets follow a shortest path due to
inconsistent state routing. Consequently, the time distribution becomes wider.

2.5 Summary
In this chapter, we studied the problem of designing point-to-point routing algorithms for
large scale sensor networks. First, we argued that complexity considerations make it natural
to introduce an element of randomization in the problem formulation, and so we formulated
the problem as one of defining suitable random walks on random dynamic graphs. Then, we
presented random walk constructions in three different cases: a regular and static lattice, an
irregular but still static lattice, and an irregular and dynamic lattice. For these three cases
we designed distributed algorithms for computing the local parameters of the random walks
that induced the most uniform load distribution in the network. Finally, we analyzed the
performance of the proposed random walks via simulations. Using this routing formulation,
we are able to route messages without explicitly discovering / maintaining / repairing routes.

A natural extension to this scenario is to consider multiple source and/or multiple desti-
nations, which is the focus of the next chapter.
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Chapter 3

Multiple Sources and
Destinations: Capacity Limits and
Optimal Routing

3.1 Introduction

A natural extension to the point-to-point routing analyzed in previous chapter is to consider
multiple sources and/or multiple destinations. Depending on the structure and goal of the
network (monitoring, data collection, actuation), nodes exhibit different communication pat-
terns. Particularly, we analyze three different communication models: uniform communi-
cation, central data gathering, and border data gathering. In uniform communication (Fig-
ure 3.1(a)), the probability of any node communicating to any other node in the network is
the same for all pairs of nodes. It models a distributed control network where every node
needs the information generated by all nodes in the network [26]. In central data gathering
(Figure 3.1(b)), nodes send their data to one common node (base station) which collects the
information generated in the network [34]. In border data gathering (Figure 3.1(c)), the infor-
mation generated by all nodes is collected by the nodes located at the border of the network.
This configuration models a situation that arises frequently in integrated devices: Nodes lo-
cated on the borders can be easily connected to high-capacity transmission lines, while nodes
inside the device are difficult to connect and can only communicate to neighbor nodes.

As in the previous chapter, we consider lattice networks, namely square lattice and torus
lattice based networks. We choose these simple structures because they allow for a theoretical
analysis while still being useful enough to incorporate all the important elements such as con-
nectivity and scalability with respect to the size of the network. Moreover, lattice networks
are widely used in regular settings like parallel computation [18], distributed control [15],
satellite constellations [70], and wired circuits such as CMOS circuits and CCD-based de-
vices [21]. Lattice networks are also known as grid [11] or mesh [68] networks.

We focus on the analysis and design of routing algorithms that maximize the throughput
per node for the three network models described above. For each case, we establish the
fundamental limits of transmission capacity, and then, we characterize and provide optimal
routing algorithms achieving a rate per node equal to this maximum transmission capacity.

27
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Figure 3.1: Communication models: a) uniform communication, b) central data
gathering, and c) border data gathering.

We require the routing algorithms to have all the decentralization properties mentioned
in the previous chapter. In addition, we require them to satisfy the property of being space
invariant: the algorithm to route packets between any two nodes depends only on the relative
position between them, not on their absolute positions. This is equivalent to assuming that
nodes are not aware of their absolute position in the network.

The rest of the chapter is structured as follows. In Section 3.2, we introduce the net-
work model and definitions. Section 3.3 studies the uniform communication model. We give
capacity limits and design optimal routing algorithms for both torus and square lattices. In
Section 3.4, we study the central data gathering model and in Section 3.5, the border data
gathering. For both communication models we study capacity limits and derive constructive
routing strategies that achieve this capacity.

3.2 Model and definitions
We assume that either the considered network is wired (e.g. a CMOS circuit) or if it is
wireless, we assume contention is solved by the MAC layer. Thus, we abstract the wireless
case as a graph with point-to-point links and transform the problem into a graph with nearest
neighbor connectivity.

We consider graphs of size N1 × N1 nodes (or vertices) that are either a square or torus
lattice. The subscripts “s” and “t” denote the square and the torus lattices respectively. The
square lattice (Figure 3.2(a)) is described by the graph Gs(V, Es) and the wrapped square
or torus lattice (Figure 3.2(b)) by the graph Gt(V, Et). A torus lattice network is obtained
from a square lattice network by adding some supplementary links between opposite nodes
located at the border of the lattice. Figure 3.2 shows a N1 × N1 square and a torus lattices
for N1 = 5.

The N1 × N1 square lattice Gs(V, Es) contains |V | = N nodes (or vertices) and |Es| =
2N1(N1 − 1) links (or arcs). The N1 × N1 torus lattice Gt(V, Et) contains |V | = N nodes
and |Et| = 2N links.
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Figure 3.2: Network model and least displacement of nodes {di, dj} in (a) square
and (b) torus lattices. The shortest path region SPR(di, dj) between nodes di and
dj is delimited in both cases by a dashed square.

Every node di ∈ [0, N −1] in the network can potentially be the source or the destination
of a communication, as well as a relay for communications between any other pair of nodes.
We assume that sources generate constant size packets with an average rate of R packets per
time unit. We denote by T (di, dj) the probability of di communicating to dj .

An arc or link l ∈ E{s,t} represents a communication channel between two nodes. In
this work, we consider two cases for these communication channels, namely the half-duplex
and the full-duplex case, depending upon whether both nodes may simultaneously transmit,
or whether one must wait for the other to finish before starting transmission. In the case of
half-duplex links, if two neighbor nodes want to use the same link, we assume that both have
the same probability of capturing the link for a transmission.

The network model is similar to the one discussed in [70]. We assume that time is slotted
and a one-hop transmission consumes one time slot. We denote by ϕl(di) the set of links
connected to the node di. The length of a path is defined as the number of links in that path.
Moreover, we denote by h(di, dj) the length of the shortest path between nodes di and dj .
We define the shortest path region SPR(di, dj) of a pair of nodes {di, dj} as the set of nodes
that belong to any shortest path between di and dj . For instance, SPR(di, dj) in the square
lattice is a rectangle with limiting corner vertices being di and dj (Figure 3.2(a)).

For any pair of nodes {di, dj}, we can view the lattice as an Euclidean plane map and
consider dj to be displaced from di along the X-Y Cartesian coordinates. We denote as
δx(di, dj) ∈ [−(N1 − 1), N1 − 1] and δy(di, dj) ∈ [−(N1 − 1), N1 − 1] the relative dis-
placements from di to dj Figure 3.2(a)) and define the least displacement for these two nodes
as:

δ(di, dj) = [δx(di, dj), δy(di, dj)]. (3.1)

Because of the particular existing symmetry in the torus lattice, given two nodes {di, dj},
there are several possible values for δ(di, dj). We consider δ(di, dj) to be the one with the
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smallest norm (Figure 3.2(b)).
When packets arrive at a particular node or are generated by the node itself, they are

placed into the buffer until the node has the opportunity to transmit them through the required
link. We assume nodes have a unconstrained buffer for the temporary storage of packets.

A rate R is said to be achievable if the total number of packets in the network stays
bounded over time.

Definition 3.1 An N nodes network is said to have capacity C
{u,cg,bg}
{s,t} (N) if any rate R =

C
{u,cg,bg}
{s,t} (N) − ε, ∀ ε > 0, is achievable. Moreover, any rate R ≥ C

{u,cg,bg}
{s,t} (N) is not

achievable.

The subscripts “s” and “t” indicates the network topology, square and torus lattices respec-
tively. The superscripts “u”, “cg”, and “bg” denotes the traffic model, that is, uniform, central
data gathering, or border data gathering respectively.

A routing algorithm Π defines how traffic flows between any source destination pair
{di, dj}. Shortest path routing algorithms are those where packets transmitted between any
two nodes di, dj can only be routed inside SPR(di, dj). We assume that routing algorithms
are time invariant, that is, Π does not change over time. As in previous chapter, we assume
that nodes are not aware of their absolute positions in the network.

Definition 3.2 We say that a routing algorithm Π is space invariant if routing between any
pair of nodes depends only on the relative position of the two corresponding nodes. That is,
Π is space invariant if for all {di, dj , dk, dl} ∈ V ,

δ(di, dj) = δ(dk, dl) → Π(di, dj) = Π(dk, dl).

Definition 3.3 A routing algorithm Π is said to have maximum achievable rate RΠ
sup(N) if

any rate R = RΠ
sup(N)− ε, ∀ ε > 0, is feasible in a network of N nodes using Π as routing

algorithm. Moreover, any rate R ≥ RΠ
sup(N) is not feasible.

We denote by FΠ(di, dj , dk) the traffic generated at node di with destination node dj that
flows through node dk according to a particular routing algorithm Π. Similarly, we denote by
λΠ

dk
the average traffic arrival rate to node dk according to Π:

λΠ
dk

=
∑

di∈V

∑
dj∈V

T (di, dj)F
Π(di, dj , dk). (3.2)

By a slight abuse of notation, we denote by λΠ
l the average traffic rate through link l according

to a routing algorithm Π.
In the next sections, we study network capacity and routing algorithms that achieve the

maximum RΠ
sup(N) for the three different communication models described above.

3.3 Uniform communication model
In the uniform communication model, the probability of any node communicating to any
other node in the network is the same for all pairs of nodes, that is:

T (di, dj) =

{
1

N−1 di 	= dj ,

0 di = dj .
(3.3)
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Figure 3.3: Bisections for a N1 × N1 lattice network: Left: square grid, and Right: torus.

It models a distributed control network where every node needs the information generated by
all nodes in the network [26]. We study now the network capacity and the optimal routing
algorithm that achieve this upper bound.

3.3.1 Network capacity
Under the infinite buffer assumption, network capacity can be easily derived applying bisec-
tion arguments1 [40; 50] to both torus and square lattices.

Lemma 3.1 The network capacity Cu
{s,t}(N) for the uniform communication model is given

by:

Cu
s (N) =

{
2β√
N

(
1 − 1

N

)
, if N is even,

2β√
N

, if N is odd,
(3.4)

Cu
t (N) =

{
4β√
N

(
1 − 1

N

)
, if N is even,

4β√
N

, if N is odd,
(3.5)

where β is equal to 1 for half-duplex links and 2 for full-duplex links.

The bisections that give these limits are shown in Figure 3.3. Note from (3.4) and (3.5) that,
in both cases, the network capacity decreases with the square root of the total number of
nodes, that is, with N1. An alternative capacity proof that does not use a bisection argument
can be found in appendix 3.A. As we will see in the next section, these upper bounds are
actually tight and can be achieved by certain routing algorithms.

3.3.2 Optimal routing algorithms
Network capacity can indeed be achieved in both torus and square lattices by using suitable
routing algorithms. In other words, max

Π

{RΠ
sup

(
N)} = Cu

{s,t}(N). The next proposition

1The bisection argument is based in the max-flow min-cut theorem which states that the maximal amount of a
flow is equal to the capacity of a minimal cut.
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di2

di1

j1d

dj2

dk1

dk2

Figure 3.4: The source-destination pair {di1 , dj1} generates traffic that flows across
node dk1 according to Π. If Π is space invariant, for any other node dk2 , we can
find another source-destination pair {di2 , dj2} with the same least displacement as
{di1 , dj1} that generates exactly the same traffic across dk2 as {di1 , dj1} across dk1 .

characterizes the class of shortest path routing algorithms that are optimal for torus lattice
networks.

Theorem 3.1 All shortest path space invariant routing algorithms achieve network capacity
in a torus lattice network.

RΠ
sup(N) = Cu

t (N) ∀ Π ∈ {shortest path space invariant}.
Proof: Consider a space invariant routing algorithm Π. Given the structural period-

icity of the torus, for every source-destination pair {di1, dj1} that generates traffic flowing
across any particular node dk1, there always exists another source-destination pair {di2, dj2}
with the same least displacement as {di1, dj1} that generates exactly the same traffic flowing
across some other node dk2 in the network (Figure 3.4). That is, ∀ dk2 ∈ V, ∃{di2, dj2} :
{δ(di2, dj2) = δ(di1, dj1) and FΠ(di2, dj2, dk2) = FΠ(di1, dj1, dk1)}.

Consequently, the average arrival rate to any node is constant:
if Π ∈ { space invariant }, λΠ

dk
= λ for all dk ∈ V. (3.6)

Let L(N) be the average distance between a source and a destination for a given commu-
nication model described by T (di, dj):

L(N) =
1

N

∑
di∈V

∑
dj∈V

T (di, dj)h(di, dj).

Particularly, in a torus lattice under uniform traffic distribution (see Appendix 3.B):

L(N) =

{
N

√
N

2(N−1) , if N is even,
1
2

√
N, if N is odd.

(3.7)

In the uniform communication model, all nodes generate packets at a constant rate R.
These packets take, on average, L(N) hops before reaching their destination. Therefore,
the total traffic per unit of time generated in the network is given by NRL(N). If Π is
space invariant, all nodes have the same average rate (3.6) and the total traffic is uniformly
distributed among all nodes. Therefore, the average arrival rate λ at any node is:

λ =
NRL(N)

N
= RL(N). (3.8)
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The maximum achievable rate RΠ
sup(N) at which nodes can transmit while keeping the

queues stable and the number of packets in the network bounded, is obtained by applying the
stability condition in the nodes, that is:

λsup = μsup − ε, ∀ 0 < ε < μsup, (3.9)

where λsup is the maximum average arrival rate per node and μsup is the maximum average
number of packets that can be transmitted per unit of time. That is, μsup = 4 for full-duplex
communication channels and μsup = 2 for half-duplex. Substituting (3.8) into (3.9), the
maximum rate RΠ

sup(N) achieved by any space invariant routing algorithm Π is:

RΠ
sup(N) =

μsup

L(N)
=

2β

L(N)
. (3.10)

Combining (3.7) and (3.10), RΠ
sup(N) is equal to the network capacity given in (3.5).

As a consequence of Theorem 3.1, we have the following achievability result:

Corollary 3.2 The network capacity Cu
t (N) of a torus lattice network is equal to the upper

bound given by (3.5).

Theorem 3.1 says that, given the structural periodicity of the torus, the use of space invari-
ant routing algorithms induces a uniform traffic distribution in the network that guarantees
the maximum rate per node.

This uniform traffic distribution is not possible in the case of a square lattice network.
Given the topology of a square lattice, as a node is located closer to the geographic center of
the lattice, it belongs to the SPR of an increasing number of source-destination pairs. In the
case of shortest path routing algorithms, this implies a higher traffic load.

Intuitively, the optimal routing algorithm has to avoid routing packets through the lattice
center and promote as much as possible the distribution of traffic towards the borders of the
lattice. In this way, we compensate the higher number of paths passing through the center of
the lattice by enforcing a lower average traffic for these paths. This is the principle of row-
first (column-first) routing [40]: nodes always route packets along the row (or column) in
which they are located towards the destination node until they reach the destination’s column
(or row). Then, packets are sent along the destination’s column (row) until they reach the
destination node. This algorithm is illustrated in Figure 3.5. In the following, we prove
that this simple algorithm is indeed optimal among all shortest path space invariant routing
algorithms.

For the sake of simplicity, we restrict our analysis to the case of odd N . The analysis for
even N is similar but more cumbersome, while essentially the same results hold. Notice also
that since we are interested in large networks, this is not a limiting restriction.

Theorem 3.3 For the square lattice network and the uniform communication model, the total
average traffic λΠ

dc
that flows through the center node dc for any space invariant routing

algorithm Π, is lower bounded by:

λΠ
dc

≥ R
√

N. (3.11)

Proof: The prove is constructive: we show that this lower bound is actually tight and
design a routing algorithm Π that achieves this lower bound. In this proof we make use of
the concept of least displacement and the property of space invariant routing algorithms.
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i

j

Figure 3.5: Row-first (solid lines) and column-first (dashed lines) routing algo-
rithm. Nodes route packets using only the most external paths.

Let ΓΠ(δx, δy, dc) denote the traffic generated by all pair of nodes with a least displace-
ment given by [δx, δy] that flows through node dc, that is,

ΓΠ(δx, δy, dc) =
∑

di∈V

∑
dj∈V :

δ(di,dj)=[δx,δy ]

T (di, dj)F
Π(di, dj , dc).

Given the symmetry of dc, ΓΠ(δx, δy, dc) has the following properties:

ΓΠ(δx, δy, dc) = ΓΠ(δy, δx, dc). (3.12)

ΓΠ(δx, δy, dc) = ΓΠ(|δy|, |δx|, dc). (3.13)

The average traffic arrival rate to dc can be obtained by summing over all possible least
displacements in the network:

λΠ
dc

=

N1−1∑
δx=−(N1−1)

N1−1∑
δy=−(N1−1)

ΓΠ(δx, δy, dc). (3.14)

Using property (3.13), we can reduce the analysis of ΓΠ(δx, δy, dc) to only positive values of
δx and δy . Using property (3.12), we can further reduce the analysis to the case |δx| ≥ |δy|.
That is,

λΠ
dc

= 4

N1−1∑
δx=0

ΓΠ(δx, δx, dc) (3.15)

+ 4

N1−1∑
δx=0

ΓΠ(δx, 0, dc) + 8

N1−1∑
δx=2

δx−1∑
δy=1

ΓΠ(δx, δy, dc).

To derive now a lower bound for λΠ
dc

, we can equivalently compute a lower bound for
ΓΠ(δx, δy, dc) and apply (3.15). To compute ΓΠ(δx, δy, dc) we add the traffic contribution
FΠ(di, dj , dc) of all source-destination pairs {di, dj} such that δ(di, dj) = [δx, δy]. Instead
of keeping dc fixed and computing the traffic that goes through dc for all {di, dj} such that
δ(di, dj) = [δx, δy], we can equivalently consider a fixed rectangle Rc(δx, δy) of size [δx, δy]
and locate dc in several positions. In other words, we determine the set S of relative positions
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dc
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Figure 3.6: For all source-destination pairs {di, dj} such that δ(di, dj) = [3, 2], we
obtain the set S of relative positions of dc in Rc(δx, δy).

of dc in Rc(δx, δy) with respect to all source destination pairs {di, dj} such that δ(di, dj) =
(δx, δy). Then, the traffic that flows through dc for any shortest path routing algorithm Π
can be computed as the total traffic generated by Π in S. Figure 3.6 shows an example for
[δx, δy] = [3, 2].

Once we obtain S, we construct the routing policy Π that minimizes the total average
traffic flowing through the set S or, equivalently, that minimizes ΓΠ(δx, δx, dc).

First note that if δy > N1−1
2 , the set S has a vertical size smaller than δy and consequently,

S does not fill completely any column of Rc(δx, δy). We can therefore design a routing policy
that uses only nodes in the set Rc(δx, δy) \ S and that generates no traffic in S. The only
routing policy that fulfills this condition for all δy > N1−1

2 consists of using only the two
most external paths of SPR(di, dj). Figure 3.7(a) illustrates this case. Therefore, for any Π,
ΓΠ(δx, δy, dc) ≥ 0 for all δx.

If δy > N1−1
2 we distinguish between two cases. If δx > (N1 − 1)/2, S fills completely

N1 − δx columns of Rc(δx, δy). Therefore, all routes between the source and the destina-
tion go through at least one node belonging to each of these N1 − δx columns. Given that
T (di, dj) = 1/(N − 1) for all di, dj ∈ V, dj 	= di, the total traffic that goes through S is
lower bounded by ΓΠ(δx, δy, dc) ≥ R

N−1 (N1 − δx). Figure 3.7(b) illustrates this case. Note
that there are many routing policies that achieve this lower bound, as for instance, the routing
algorithm that uses only the two most external paths.

If δy ≤ N1−1
2 , S fills all the δx columns of Rc(δx, δy) and any route between the source

and the destination crosses at least δx + δy nodes belonging to S. That is, ΓΠ(δx, δy, dc) =
R

N−1 (δx + δy)). Note that we only consider the locations of dc as a source of a transmission
and not as a destination. Obviously, the packets that reach dc and have dc as final destination
do not interfere with the traffic going through dc, while the traffic generated at dc itself does.
Figure 3.7(c) illustrates this case.

Putting all three cases together, we have that ΓΠ(δx, δy, dc) is lower bounded as follows:

ΓΠ(δx, δy, dc) ≥

⎧⎪⎨
⎪⎩

R
N−1 (δx + δy) δx ≤ N1−1

2 , δy ≤ N1−1
2 ,

R
N−1 (N1 − δx) δx > N1−1

2 , δy ≤ N1−1
2 ,

0 otherwise,
(3.16)
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Figure 3.7: Rc(δx, δx) for three possible cases in a 5 × 5 lattice network: (a)
δ(i, j) = (4, 3); since δy > N1−1

2 , S does not fill completely any column of
SPR(di, dj). (b) δ(i, j) = (3, 2); since δy ≤ N1−1

2 , S fills N1 − δx columns.
(c) δ(i, j) = (2, 2); S fills all the δx columns. The arrows indicates two of the
possible routing policies that generates the least possible traffic in S.

and a routing algorithm Π that achieves minimization in the three cases consists in flowing
data only through the most external paths.

Using (3.16) into (3.15), we bound the total traffic that flows through dc as:

λΠ
dc

≥
( R

N − 1

) ⎧⎨
⎩4

(N1−1)/2∑
δx=0

2δx + 4

(N1−1)/2∑
δx=0

δx

+ 4

N1−1∑
δx=(N1+1)/2

(N1 − δx) + 8

(N1−1)/2∑
δx=2

δx−1∑
δy=1

(δx + δy)

+8

N1−1∑
δx=(N1+1)/2

(N1−1)/2∑
δy=1

(N1 − δx)

⎫⎬
⎭ .

and evaluating summations yields to λΠ
dc

≥ R√
N .

As a consequence of Theorem 3.3, we have the following three corollaries:

Corollary 3.4 A shortest path space invariant routing algorithm achieves capacity in the
uniform communication model only if the total average traffic λΠ

dc
that flows through the

center node dc is greater or equal to the total average traffic flowing through any other node
dx, that is:

λΠ
dc

≥ λΠ
dx

, for all dx ∈ V \ dc.

Proof: The proof follows by contradiction. Suppose that a network capacity-achieving
routing algorithm Π generates a traffic distribution where there exists a node dx such that
λΠ

dx
> λΠ

dc
. Then, from Theorem 3.3,

λΠ
dx

> R
√

N. (3.17)
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The maximum rate per node RΠ
sup(N) achieved by Π is obtained by imposing stability con-

ditions for dx, that is:
(λΠ

dx
)sup = μsup − ε, ∀ 0 < ε < μsup.

Particularizing (3.17) to the maximum rate, we have that (λΠ
dx

)sup > RΠ
sup(N)

√
N , and im-

posing the above stability condition:

RΠ
sup(N) <

(λΠ
dc

)sup√
N

=
μsup − ε√

N
,

Recalling now the capacity formula of a square lattice network (3.4), we obtain:

RΠ
sup(N) < Cu

s (N),

and therefore, Π does not reach capacity.
Corollary 3.4 says that the factor that really limits the maximum achievable rate in the

network is the amount of traffic routed through the center node dc.
In the proof of Theorem 3.3, we have already characterized the set of routing policies

that generates the minimum traffic in dc. One of these policies consists in flowing data only
along the two most external paths of the source and the destination SPR, that is, row-first
(column-first) routing (Figure 3.5).

Theorem 3.5 Row-first routing algorithm achieves capacity in a square lattice network.

Proof: From Theorem 3.3, we know that λr-f
dc

= R√
N . It is easy to verify that the

network traffic distribution induced by row-first routing is such that λr-f
dc

> λr-f
dx

for all dx ∈
V \ dc.

In the case of infinite buffers, the maximum achievable rate Rr-f
sup(N) at which nodes

can transmit information while keeping the number of packets in the network bounded, is
obtained by applying the stability condition to the most loaded node dc:

(λr-f
dc

)sup = μsup − ε, ∀ 0 < ε < μsup. (3.18)

Using now Theorem 3.3, and recalling the capacity formula of a square lattice network (3.4),
we obtain:

Rr-f
sup(N) =

μsup

N
= Cu

s (N). (3.19)

As a consequence, we have the following achievability result:

Corollary 3.6 The network capacity Cu
s (N) of a square lattice network is equal to the upper

bound given by (3.4).

The optimal routing strategy to achieve the maximum rate per node consists in making
nodes use only the two most external shortest paths to route packets to any destination. Note
that this contradicts the point-to-point routing algorithms derived in Chapter 2, where all
shortest paths are used with equal probability. This suggests that there exists a trade-off
between the maximum achieved rate and the robustness of the routing algorithms. This will
be the topic of Chapter 5.
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3.4 Central data gathering model

We now turn our attention to the central data gathering model, in which every node transmits
information to a particular and previously designated node dBS denoted base station that can
be located anywhere in the network. This model corresponds to the case where one node
(base station) collects the information generated by all the nodes in the network [34]. The
communication matrix T is given by:

T (dm, dj) =

{
1, if dj = dBS ,

0, otherwise.

Under the central data gathering model, routing in a torus is a particular case of routing
in a square lattice. The reason is that for any base station location in a torus, the shortest path
graph consists of a square lattice with the base station located in the center node. Therefore,
in this section we need only to consider the square lattice. We apply the same type of analysis
as in the uniform communication model. First, we bound the network capacity Ccg

s (N) and
then, we characterize the class of routing algorithms that achieve this capacity.

3.4.1 Network capacity

The following Lemma establishes an upper bound for the network capacity under the central
data gathering model:

Lemma 3.2 The network capacity Ccg
s (N) for the central data gathering communication

model in a square lattice is upper bounded as follows:

Ccg
s (N) ≤ |ϕl(dBS)|

N − 1
. (3.20)

Proof: Since all the traffic from the network must reach dBS using one of the links in
the set ϕl(dBS), the bottleneck of the network is clearly located in these links. Applying a
bisection argument [40] to these links yields the result.

Note that through the links that limit the capacity, the information flows only in one
direction: from the inner nodes to dBS . Therefore, the network capacity is equivalent for
half-duplex and full-duplex links.

3.4.2 Optimal routing algorithms

Capacity achieving routing algorithms are characterized by the following Lemma:

Lemma 3.3 A shortest path routing algorithm Π achieves capacity for a location of the base
station dBS if and only if the total arrival traffic to dBS is uniformly distributed among the
links in ϕl(dBS). That is:

λΠ
l =

R(N − 1)

|ϕl(dBS)| , for all l ∈ ϕl(dBS). (3.21)
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Proof: Since all the arriving traffic to dBS has to use one of the links in the set ϕl(dBS),∑
l∈ϕl(dBS)

λΠ
l = R(N − 1). (3.22)

In central data gathering, the most loaded link in the network obviously belongs to ϕl(dBS).
Applying the stability condition for these unitary capacity links:

max
l∈ϕl(dBS)

λΠ
l = 1 − ε, ∀ 0 < ε < 1. (3.23)

Combining (3.22) and (3.23), the result follows.
As a consequence of Lemma 3.3, we have the following achievability result:

Corollary 3.7 The network capacity Ccg
s (N) of a square lattice network for the central data

gathering model is equal to the upper bound given by (3.20).

Lemma 3.3 establishes that the only necessary and sufficient condition for a routing algorithm
to achieve capacity is to uniformly distribute the traffic among the four input links to dBS .
Although there is a wide class of routing algorithms that satisfy this condition, we will show
in next chapter that their performance is quite different when the buffers are constrained to
be finite.

3.5 Border data gathering model
In this section, we apply similar tools to analyze routing in a substantially different commu-
nication model, namely, border data gathering. In border data gathering, all nodes located in
the four edges of the square lattice act as base stations and inner nodes act as sources generat-
ing information that needs to be transmitted to any of these base stations without any specific
mapping between source nodes and base stations (Figure 3.8). This configuration models a
situation that arises frequently in integrated devices: Nodes located on the borders can be eas-
ily connected to high-capacity transmission lines, while nodes inside the device are difficult
to connect and can only communicate to neighbor nodes. Note that several communication
matrices are allowed. Obviously, this model can be considered only for the square lattice.
We proceed as in previous sections: first, we compute the network capacity based on flow
arguments. Then, we present the set of routing algorithms that achieve capacity.

3.5.1 Network capacity
The network capacity can be easily derived applying bisections augments:

Lemma 3.4 The network capacity Cbg
s (N) for the border data gathering communication

model in a square lattice is upper bounded as follows:

Cbg
s (N) ≤ 4√

N − 2
. (3.24)

Proof: The bottleneck of the network is determined by the links connecting inner nodes
to base stations. Therefore, the bisection that determines the network capacity is the one that
separates the edge nodes from inner nodes (Figure 3.8). Noticing that there are (N1 − 2)2

nodes and 4(N1 − 2) links through the cut, the result follows.
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Figure 3.8: Border data gathering model and bisection that determines the network
capacity.

Note also that on the links that limit the capacity, the information flows only in one di-
rection: from the inner nodes to the edges. Therefore, the network capacity is equivalent for
half-duplex and full-duplex links.

3.5.2 Optimal routing algorithms
Let SBS denote the set of base stations in the network and ϕl(SBS) the set of links that con-
nect any base station with an inner node. Lemma 3.4 establishes that the maximum rate that
nodes can transmit to SBS is determined by the number of links in ϕl(SBS). As a conse-
quence, capacity achieving routing algorithms are characterized by the following Lemma:

Lemma 3.5 A routing algorithm Π achieves capacity only if the total arrival traffic to SBS

is uniformly distributed among the links in ϕl(SBS). That is:

λΠ
l =

R(
√

N − 2)

4
, for all l ∈ ϕl(SBS). (3.25)

The proof of this lemma is similar to the proof of Lemma 3.3.
First notice that no shortest path routing algorithm satisfies exactly this optimality condi-

tion. The shortest path routing algorithm that achieves the maximum rate Rs-p
sup(N) consists

of distributing the traffic as uniformly as possible among the links in ϕl(SBS). That is, when
a node has more than one possible shortest path toward a base station, it distributes the load
uniformly among these paths. This optimal shortest path routing is shown in Figure 3.9(a).
The maximum rate Rs-p

sup(N) is limited by the most loaded links, that is, the links located in
the middle of the four edges (Figure 3.9(a)):

Rs-p
sup(N) =

4

2
√

N − 5
< Cbg

s (N),

which is roughly one half of the network capacity Cbg
s (N).

On the other hand, it can be shown that there exist multiple non-shortest path routing al-
gorithms that achieve capacity. For instance, a simple strategy that achieves capacity consists
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Figure 3.9: Routing algorithms for border data gathering. (a) Optimal shortest path
routing. (b) Uniform border gathering: packets generated in a node are routed with
equal probability to the two closest base stations located in the same row/column as
the node (see d2). If there are two base stations in the same column/row at the same
distance (see d1), we choose any of them with equal probability.

of the following: packets are always routed along the same row and column until they reach
a base station, that is, packets do not turn. New packets generated in a node are routed with
equal probability to the two closest base stations located in the same row or column as the
node. If there are more than one base stations in the same row or column at the same distance,
it chooses any of them with equal probability. We denote this routing algorithm as uniform
border gathering and it is depicted in Figure 3.9(b). It is easy to verify that uniform border
gathering satisfies the capacity condition (3.25) and therefore, Runiform

sup (N) = Cbg
s (N).

Note that since in both routing algorithms, shortest path and uniform border gathering,
packets flow only in one direction, the routing algorithms are equivalent for half-duplex and
full-duplex links.

3.6 Summary

In this chapter, we considered the problem of multiple sources and/or destinations routing
in lattice networks under three different communication models: uniform communication,
central data gathering, and border data gathering. For each of these models, we studied
capacity limits and derived constructive routing strategies that achieve this capacity.

In this chapter, we assumed that nodes have an infinite buffer for the temporary storage
of packets. In the next chapter, we turn our attention to the case of finite buffers: we will
show that the performance of these routing algorithms is quite different when the buffers are
constrained to be finite. Indeed, we will show that the routing algorithms that achieve the
maximum rate per node in the finite buffer case are different from the ones we presented in
this chapter.
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3.A Alternative capacity proof
The network capacity of an N nodes and M links network can be bounded as follows. Con-
sider a data unit u, where 1 ≤ u ≤ RNT . Suppose it moves from the source du

i to the
destination du

j following a shortest path of length h(du
i , du

j ). Then,

RNT∑
u=1

h(du
i , du

j ) = RNTL. (3.26)

Now we apply the condition that links are simplex, that is, can be used only by one node
at the same time.

RNTX

u=1

h(du
i ,du

j )X

s=1

1{The sth hop of u is over link i in slot s} ≤ C.

Summing over the links and the slots gives:

RNT∑
u=1

h(du
i , du

j ) ≤ MTC. (3.27)

Combining equations ( 3.26) and ( 3.27):

R ≤ MC

NL
. (3.28)

Substituting M , N and L in (3.28) yields the result.

3.B Average path length in a torus
In the uniform communication model, the traffic matrix T is defined as follows:

T (di, dj) =

{
1

N−1 di 	= dj

T (di, dj) = 0 di = dj .
(3.29)

Then,

L =
1

N

∑
di∈V

1

N

∑
dj∈V

T (di, dj)h(di, dj). (3.30)

Given the structural homogeneity of the torus:

L =
1

N − 1

N∑
dj∈V,dj �=di

h(di, dj), for any di ∈ V. (3.31)

The diameter d of a N1 × N1 torus network is given by:

d =

{
N1 for even N1

N1 − 1 for odd N1.
(3.32)
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If we denote by b(s) the size of the reachable set of nodes of separation s from node di, then:

∑
dj∈V \di

h(di, dj) =
d∑

s=1

sb(s). (3.33)

The number of nodes in the reachable set of separation s from node di for a torus lattice of
size N1 ≥ 3 is given by [52]:

N1 even : b = 4s ; s ≤ N1

2 − 1

b = 4s − 2 ; s = N1

2

b = 4(n − s) ; N1

2 + 1 ≤ s ≤ N1 − 1

b = 1 ; s = N1

N1 odd : b = 4s ; s ≤ N1−1
2

b = 4(n − s) ; N1−1
2 ≤ s ≤ N1 − 1

(3.34)

Combining these equations and substituting in ( 3.31) yields the result.
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Chapter 4

Optimal Routing in Networks with
Constrained Buffers

4.1 Introduction

One of the important limitations of sensor networks is the small memory capacity of sensor
devices (e.g. Berkeley motes have 512 KB [66]). This memory constraint translates into a
limited (and generally small) space for the temporary storage of packets [75], which causes
packet loss due to buffer overflow. In this chapter, we focus on the analysis and design
of routing algorithms that maximize the throughput per node for networks with constrained
buffers at the nodes.

In the case of finite buffers, deriving the network capacity and maximum rate requires to
compute the distribution on the queue size at the nodes. Assuming that all packets have the
same size, we model each node as a first come first served (FIFO) single-server queue with
a deterministic service time equal the time a packet takes to be transmitted from one node to
the following. Then, the distribution on the queue size at the nodes is obtained by solving the
associated G/D/1 queueing network problem. However, the analysis of queueing networks
is complex and no analytical exact solutions are known even for the simplest cases [10]. The
common technique to resolve queueing network problems consists in using approximations
to reduce the network to a simpler model that allows a tractable analysis. Most of these
approximations assume exponential service times (exponentially distributed packet sizes) and
Poisson arrival processes in the queues, and apply Jackson’s independence assumption [10]:
each queue in the network is analyzed as a M/M/1 queue independently of other queues.
This independence approximation has been also used for more general arrival processes and
deterministic service times [49]. Although the independence approximation works well for
low rates, it degrades rapidly as the rate increases.

In this chapter, we propose a new approximation model for G/D/1 queue networks that
captures the dependence between the distributions on the queue size at different nodes. In
the particular case of lattice networks, this approximation model allows to reduce a G/D/1
queue lattice network of arbitrary size to a four G/D/1 queues network, simplifying con-
siderably the network problem and obtaining an accurate distribution on the queue size at
the nodes even at high rates. This approximation also allows us to study the effect of rout-
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ing on the queue distribution and derive the routing algorithms that achieve the maximum
transmission rate.

Using this approximation model, we analyze the distribution on the queue size induced
by different routing algorithms under the same three communication models described in the
previous chapter. Under the uniform traffic communication model, we obtain the distribution
on the queue size at the nodes induced by the optimal routing algorithm, that is, row-first.
Under the central and border data gathering, we show that the performance of different rout-
ing algorithms that achieve capacity under the infinite buffer assumption differs considerably
when we consider finite buffers at the nodes. For both communication models, we derive the
routing algorithms that minimize buffer overflow and hence achieve the maximum rate per
node.

The rest of the chapter is organized as follows. In Section 4.2, we introduce the network
model and definitions. In Section 4.3, we briefly review the main approximation techniques
used to solve the queueing network problem. In Section 4.4, we study the uniform com-
munication model with finite buffers and propose new approximate models to analyze the
corresponding queueing network. Using these models, we compute the packet distribution
in the queues and study the performance of routing algorithms under finite buffers. In Sec-
tion 4.5, we study the central data gathering scenario and derive the optimal routing algorithm
that minimizes overflow losses. In Section 4.6, we analyze the border data gathering problem.

4.2 Model and definitions
The network model we consider in this chapter is identical to the model described in the
previous chapter with the additional constraint of finite buffers. We assume that sources
generate constant size packets following a Bernoulli distribution with constant average rate
of R packets per time unit. Nevertheless, as we will explain later, most of the approximation
algorithms we propose in this chapter are valid for a more general class of sources.

We assume that nodes are equipped with limited buffer capabilities for the temporary
storage of Q packets. When packets arrive at a particular node or are generated by the node
itself, they are placed into the buffer until the node has the opportunity to transmit them
through the required link. If the buffer is full, the new arrived packet is dropped. Equivalently,
we can consider that there are 4 queues per node, each queue associated to one of the 4 output
links.

Since the number of packets in a network with finite buffers is always bounded (Q×|V |),
a different definition for achievability is needed. Notice also that, due to randomness of
buffer overflow, there is a non-zero probability of packet loss at any rate. A rate R is said to
be feasible if the average loss probability is smaller than a given (sufficiently small) threshold
τ0. Along this paper, we consider τ0 = 5.10−3. Note that the results we present in this
chapter do not depend qualitatively on the choice of this parameter. Even if the quantitative
values we show in the simulation sections definitively depend on the value of τ0, the relative
performance of different routing algorithms remains unchanged.

We extend the notation developed in the previous chapter to evidence the dependency of
the rate with the buffer size Q:

Definition 4.1 A routing algorithm Π is said to have maximum achievable rate RΠ
sup(N, Q)

if any rate R = RΠ
sup(N, Q)−ε, ∀ ε > 0, is feasible in a network of size N1×N1 with buffer

size Q using Π as routing algorithm. Moreover, any rate R ≥ RΠ
sup(N, Q) is not feasible.
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Note that for Q = ∞, RΠ
sup(N,∞) is the supremum of the set of achievable rates. Obviously,

RΠ
sup(N, Q) ≤ C(N) ∀ Q.

In the next section we briefly review the approximation techniques used in the literature
to solve the queueing network problem. Then, we propose a new approximation model that
gives an accurate distribution even at high loads. Finally, using this new approximation, we
study the routing algorithms that achieve the maximum RΠ

sup(N, Q) for the three communi-
cation models described in the previous chapter.

4.3 Queueing network approximations
To solve the associated queueing problem and obtain the distribution on the number of packets
in the queue for each node, some approximations are needed. Most of these approximations
are based on Kleinrock’s independence assumption and Jackson’s theorem [10]. Jackson’s
theorem says that the numbers of customers in a queueing network are distributed as if each
queue is M/M/1 and is independent of the other queues. This independence approximation
is used even for more general queue models, as for instance, if the service time is other than
exponentially distributed. Jackson’s theorem provides a good first approximation in many
practical situations even if its use cannot be rigorously justified [10].

Previous works that consider finite buffers are mainly based on Jackson’s theorem [10].
Harchol-Balter and Black [31] considered the problem of determining the distribution on the
queue sizes induced by the greedy routing algorithm in torus and square lattice networks by
reducing the problem into a product-form Jackson queue network and analyze it using stan-
dard queueing theory techniques. Mitzenmacher [49] approximated the queueing network by
an equivalent Jackson network with constant service time queues. He provided bounds on
the average delay and the average number of packets for square lattices. Unfortunately, the
separation of the upper and lower bound, in the general case, grows as the square root of the
number of nodes.

To reduce the complexity of the queueing network analysis, all the aforementioned papers
make an independence approximation and consider the analysis of just one queue (node).
However, even if the independence approximation works well under low rate, it degrades
rapidly as the rate increases. In this chapter we propose a new approximation model that
captures the dependence between the distribution on the queue size at different nodes and
consequently, provides a better approximation under high rate.

This approximation model is based on some results by Neely, Rohrs and Modiano’s [53;
54] on equivalent models for tree networks of deterministic service time queues. We briefly
review now the main results in [53; 54].

Theorem 4.1 ([53]) The total number of packets in a two stage system of deterministic ser-
vice time queues is the same as in a system where the first stage queues are replaced by simple
delays equal to the service time.

Theorem 4.2 ([54]) The analysis of the queue distribution in the head node of a multi-stage
tree system of deterministic service time queues with stationary and independent exogenous
traffic sources can be reduced to the analysis of a simpler two-stage equivalent model, which
is formed by considering only nodes located one stage away from the head node and preserv-
ing the exogenous inputs.
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Figure 4.1: The total number of packets in this two stage system (a) with two
deterministic service time queues q1 and q2 is the same as in this simplified system
(b) where the first stage queue q1 has been replaced by simple delays equal to its
service time 1/μ1.
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Figure 4.2: The number of packets in the head node of the tree network (a) is the
same as in the two-stage equivalent model (b).

Figure 4.1 illustrates the equivalence provided by Theorem 4.1. Figure 4.2(a) shows a tree
network and Figure 4.2(b) its two-stage equivalent model. Importantly, as long as the sources
are stationary and independent, these equivalences do not require any assumption about the
nature of the generated traffic.

4.4 Uniform communication with constrained buffers
We start by analyzing the problem of routing in lattice networks under the uniform com-
munication model. We introduce some approximations that simplify the queueing network
analysis and provide meaningful theoretical results that are close to the results obtained by
simulation, as experimentally shown later.

We restrict our analysis to the routing algorithm that achieves capacity with unconstrained
buffers in both torus and square lattices, namely, row-first routing. Moreover, as we show later
in this section, row-first routing is also optimal for finite buffers.

When finite buffers are considered, the maximum rate per node is clearly reduced due
to buffer overflow. Overflow losses will first appear in the most loaded node, which will
determine the maximum achievable rate RΠ

sup(N,∞). For both torus and square lattices, we
denote the most loaded node as dm. In a square lattice, dm is clearly the node located in the
center of the network(Lemma 3.4). In a torus, if the routing algorithm is space invariant, all
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nodes support exactly the same average traffic (Theorem 3.1) and, furthermore, all nodes in
the network are indistinguishable due to the torus symmetry. Therefore, we can consider that
dm is any node in the network.

First, we decompose dm into four identically distributed and independent FIFO queues
each one associated to one of its four output links. The arriving packets to dm whose final
destination is not dm, are sent through one of the four output links depending on their des-
tinations. In view of the symmetry of dm for both torus and square lattices with respect to
the central node, the arrival distributions to these four links are clearly identical. Moreover,
due to the independence of packet generation, we assume that these arrival distributions are
also independent. Therefore, we approximate the distribution on the queue size at dm as the
addition of these four iid distributions and compute it as the convolution of each individual
queue. This way, we reduce the problem to computing the distribution on the size of only one
of these iid queues, qm, associated with the output link lm in dm.

Next, we propose different approximations for full-duplex and half-duplex links (whether
lm is half-duplex or full-duplex) and compare them with experimental results.

4.4.1 Approximation models for full-duplex communication channels

If lm is a full-duplex channel, qm has a dedicated link and, since all packets have the same
size, it can be modeled as a deterministic service time queue. We can therefore use the results
of Section 4.3 to obtain the distribution on the size of qm. First, we identify qm as the head
node of a tree network composed of all the nodes sending traffic through lm (Figure 4.3(a)).
Applying Theorem 4.2, the distribution on the size of qm can be approximated by the distri-
bution at the head node of the two-stage model (Figure 4.3(b)), where we only consider the
three neighbors located one hop away from dm preserving the traffic generated by the entire
network that flows through lm.

Note that even if the two-stage model of Theorem 4.2 is an equivalent model for tree
networks, the reduced two-stage model of Figure 4.3(b) is an approximation model. The rea-
son is that the network associated to qm (Figure 4.3(a)) is not exactly a tree and, therefore,
it does not correspond exactly to the network of Theorem 4.2 (Figure 4.2(a)). In addition to
the exogenous inputs generated at each node, there is also traffic leaving the network at each
node that corresponds to the traffic that has reached its destination or the traffic that does not
travel through qm. Under the uniform communication model, the average traffic that reaches
its destination and leave the network is equal to the average rate per node R for all nodes.
However, as the network size increases, R needs to decrease as O(1/

√
N) (network capacity

is O(1/
√

N)), and consequently, the departing traffic at each node becomes negligible com-
pared to the traffic that flows through the same node. Hence, the network of queues associated
to qm is approximately a tree network, and the two-stage model provides an approximated
network which becomes more precise as the network size increases.

According to Theorem 4.2, the arrivals to the nodes of the first stage in the two-stage
model correspond to the addition of all exogenous inputs that are routed through lm. Since
packets are generated in sources following independent Bernoulli distributions, this arrival
process converges, as the number of nodes increases, to a Poisson distribution.

Note that under the uniform communication model, packets travel O(
√

N) hops on aver-
age before reaching their destination. Using row-first routing, packets travel most of the time
along the same row or column, turning only once. Consequently, the traffic entering a node
by a row or a column link continues, with high probability, along the same row or column.
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Figure 4.3: Tree network and equivalent two-stage model. (a) Tree network asso-
ciated to one output link lm of dm. (b) Two-stage equivalent.

Let pc denote the probability of a packet to continue along the same row or column, and pt

the probability of turning. These probabilities are easy to calculate at dm:

pc =

⎧⎨
⎩

√
N−1√
N+1

, for the square lattice,
√

N/2−1√
N/2+1

, for the torus,
(4.1)

pt =

⎧⎨
⎩

√
N−1

2
√

N(
√

N+1)
, for the square lattice,

√
N/2−1√

N(
√

N/2+1)
, for the torus.

(4.2)

Note that pc+pt is equal to one minus the probability that the packet final destination is
dm. Note also that pc goes asymptotically to one as the number of nodes increases, while pt

goes to zero. It follows that qm receives most of the traffic from the node located in the same
row or column as lm.

Apart from the traffic that arrives from its neighbors, dm generates also new traffic that
is injected to the network at a rate R. Considering again the symmetry of dm, the fraction of
this traffic that goes through lm is R/4. The average arrival rate λΠ

qm
to qm can be computed

as the addition of the traffic generated in dm and the traffic arriving from its neighbors:

λΠ
qm

= R/4 + λΠ
1 (pc + 2pt) , (4.3)

where λΠ
1 is the total arrival rate to the neighbors of dm (Figure 4.3(b)). For row-first routing

and the uniform communication model, λΠ
1 is equal to:

λr−f
1 =

{
R√

N
4 , for the square lattice,

R√
N

8 , for the torus.
(4.4)

We can express R as a fraction of the network capacity C(N), that is, R = αC(N),
and denote α as the relative capacity. Then, recalling the capacity formula (3.4), λr−f

1 = α
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Figure 4.4: Approximation models for full duplex communication channels. (a)
Two-stage model used to analyze the distribution on the size of qm. (b) Two-queue
model: reduced two-stage model without crossing packets and neglecting exoge-
nous traffic in dm.

for both torus and square lattices. Putting everything together, the resulting approximation
model is shown in Figure 4.4(a).

Regardless of the number of nodes in the network, we reduce the analysis of the distribu-
tion on the size of qm to a four queue network. This approximation holds for any exogenous
traffic distribution as long as it is stationary and independent among the different sources
(Theorem 4.2).

Using now these reduced approximation models, we can derive some interesting results
about the buffer requirements to achieve a certain relative capacity.

Theorem 4.3 The buffer size Q required to achieve a certain relative capacity α decreases
with the network size N .

Proof: By Theorem 4.1, the total number of packets in the approximated model (Fig-
ure 4.4(a)) is the same as a system where the queues of the first stage have been replaced by
pure delays of T time slots (Figure 4.5(a)), and this is equivalent to injecting all the arrivals
into a single pure delay (Figure 4.5(b)). The total average arrival rate λr−f

s1 to the first stage
queues is:

λr−f
s1 = α(pc + 2pt) = α(

√
N − 1)/

√
N. (4.5)

Therefore, note that for a fixed α and large N , the total number of packets in this two queue
model is almost constant with N .

We can decompose the total number of packets S(t) in the approximated model (Fig-
ure 4.4(a)) as the number of packets in the first stage S1(t) plus the number of packets in the
head node Sh(t), that is, S(t) = S1(t) + Sh(t). As N increases, pc goes asymptotically to
one and most of the traffic is served by the same first stage queue. Consequently, for a fixed
α, S1(t) increases with N . Equivalently, Sh(t) decreases. In the limit, we can approximate
the model by just two constant service time queues as shown in Figure 4.4(b), where no buffer
is needed in the head node.

We can simplify our model even further while still keeping the important properties that
determine the queue size distribution. Note that, since pt is O(1/

√
N), we can simplify the
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Figure 4.5: Two-stage equivalent networks. (a) If we replace the queues of the first
stage by pure delays of T time slots, the total number of packets in the approximated
model remains constant. (b) In terms of number of packets, this is equivalent to
injecting all the arrivals to a single pure delay.

model for large networks by assuming that the number of packets turning at dm is negli-
gible, i.e., packets arrive at qm only from the neighbor located in the same row or column
as lm. Similarly, the exogenous traffic generated at dm, goes also asymptotically to zero
(O(1/

√
N)) as compared with the incoming traffic α, and can also be neglected. Conse-

quently, we approximate the queueing network by a two-queue model where qm is a deter-
ministic service time queue that receives traffic from another deterministic service time queue
with the same service time and average arrival rate equal to α (Figure 4.4(b)). It follows that
the number of packets in qm is (at most) one with probability α and zero with probability
1 − α.

Finally, the distribution Pm(k) on the total queue size k at dm in the two-queue model, is
given by the addition of four independent and identically distributed queues associate to the
four outgoing links from dm:

Pm(k) =

{(
4
k

)
(1 − α)(4−k)αk, for 0 ≤ k ≤ 4,

0, otherwise.
(4.6)

Note that both approximation models proposed, namely the two-stage model (Figure 4.4(a)
and the two-queue model Figure 4.4(b)), are asymptotically exact.

Simulation results

Figure 4.6 shows the distribution on the size of qm obtained by simulating the whole queueing
network, the two-stage model (Figure 4.4(a)), the two-queue model (Figure 4.4(b)) and the
usual M/D/1 approximation for different values of the relative capacity α in a 121 × 121
square lattice network.

For the M/D/1 approximation, we simply apply Jackson’s Theorem and consider that each
queue in the network is M/D/1 independent of other queues [49]. Therefore, we approximate
qm by a M/D/1 queue with a Poisson arrival with rate α.

Both the two-stage and two-queue models allow very good analysis in low and medium
load. Experimentally, we have found that a good approximation is obtained for α < 0.8.
Beyond this traffic intensity, some of the assumptions we make are not totally valid and the
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(b) α = 0.525
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(c) α = 0.725
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Figure 4.6: Distribution on the queue size at dm using both approximation models
we propose and the independence approximation for different values of α in a 121×
121 square lattice network with full-duplex links: a) α = 0.225, b) α = 0.525, c) α =
0.725, and d) α = 0.925. Both approximation models we propose clearly outperform
the independence approximation model.

approximation quality degrades. For instance, to approximate the network by a tree, we
neglected the traffic leaving the network at each (destination) node, which increases as R
increases.

Both approximation models that we propose clearly outperform, at all rates, the M/D/1
model based on Jackson’s theorem. The reason is that the M/D/1 approximation neglects
the existing correlation between the traffic and queue occupancy of neighbor nodes, while a
simple two-stage model captures this correlation. Therefore, the M/D/1 model only approx-
imates the distribution closely under low load conditions, that is, while the independence
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Figure 4.7: Distribution on the queue size at dm for α = 0.75 and different network
sizes with full-duplex links. The full line shows the distribution given by the two-
queue approximation which, for a fixed relative capacity α, is independent of the
network size N . Dashed lines show the distribution obtained experimentally for
different network sizes N .

approximation is valid. Under medium and high loads, the independence assumption does
not hold, and the approximation quality degrades rapidly. For α = 0.525, we already observe
that this approximation is far from the distribution obtained experimentally.

Figure 4.7 shows the distribution on the queue size at dm obtained experimentally for
a constant relative capacity α = 0.75, as a function of the network size N . We compare
the experimental distributions with the distribution given by the two-queue approximation
model, which is independent of the network size. As expected, as the size of the network
N increases, the packet distribution converges asymptotically to the two-queue model (Fig-
ure 4.4(b)). Consequently, as stated in Theorem 4.3, the probability of having more than four
packets in dm (one for each output link lm) goes asymptotically to zero as we increase N .

Note that in all the approximation and simulation results shown in this chapter, we com-
pute the distribution of queue sizes by assuming infinite buffer queues (G/D/1) at the nodes.
This distribution gives complete information about the buffer requirement to achieve a certain
capacity or the capacity achieved with a given buffer size. For instance, if we need to transmit
information at a rate per node equal to 0.725 of the network capacity in a 121×121 network,
we compute the distribution of the queue size in the most loaded node (Figure 4.6(c)) and
obtain that the required buffer is equal to 7 packets.

4.4.2 Approximation models for half-duplex communication channels

For half-duplex, we cannot apply the same techniques as in the full-duplex case since the
arrival and service times in dm are no longer independent. If dm receives k packets from its
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Figure 4.8: Half-duplex approximation model. (a) Network with half-duplex links.
(b) Approximated model for the queue associated to lm.

neighbors, not only is its queue increased by k packets, but also it can transmit, at most, 4−k
packets using the remaining links.

We assume as in the full-duplex case that dm is composed of four independent and iden-
tically distributed queues associated to the four output links and we analyze the distribution
on the size of one of these queues qm associated to the output link lm.

To capture the dependence between arrivals and departures, we propose the following
approximation. Every time dm wants to send a packet through lm, it has to compete for lm
with one of its neighbors, dn (Figure 4.8(a)). If dm takes lm first, it can transmit a packet and
the size of qm is reduced by one. However, if dn takes the link first and sends a packet, not
only is dm unable to transmit, but also the size of qm is increased by one if the final destination
of the packet is not dm. Note that, in practice, packets sent by dn never go through lm (packets
do not go backwards) although they stay in dm. However, by putting these packets into lm we
simulate packets arriving from the other neighbors of dm and prevent packet transmissions.
This approximation is represented in Figure 4.8(b).

We denote by ρm the utilization factor of qm. That is, ρm =
λΠ

qm

μqm
= α

μqm
, where λΠ

qm

is the arrival rate to qm, and μqm
is the service rate. Note that λΠ

qm
is identical in both half-

duplex and full-duplex models. Similarly, we denote by ρn the utilization factor of the queue
qn in dn associated to lm. We assume that the probability that dm captures the link before dn

is equal to 1/2. Therefore, if qm has a packet waiting to be transmitted, the probability ps of
sending it this time slot is simply equal to the probability of dm being the first to capture the
link plus the probability of dn having nothing to transmit through lm:

ps =
1

2
+

1

2
(1 − ρn) = 1 − ρn/2; (4.7)

We model qm service time as a geometric distribution with parameter ps. That is, if dm does
not capture lm in this time slot, we assume that it tries to capture it in the next time slot with
the same probability.

As in the full-duplex case, we approximate arrivals to dn as a Poisson distribution with
parameter α. Accordingly, interarrival times are independent and exponentially distributed
with the same parameter. In addition to arrivals from dn, new packets are also produced at
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Figure 4.9: Markov chain model for the half-duplex links model.

dm following a Bernoulli distribution with rate R. Considering again the symmetry of dm,
the fraction of this traffic that goes through lm is R/4.

Note that both distributions, arrivals and service time, are memoryless. This memoryless
condition allows to use a Markov chain analysis, that is, if we denote by Xm(t) the number
of packets in the queue qm at time t, {Xm(t) | t > 0} can be approximated using a Markov
chain. As the network size increases, the difference between both utilization factors ρm and
ρn becomes negligible, and we can assume that ρm = ρn = ρ. Moreover, the new traffic
generated at dm becomes negligible (O(1/

√
N)) compared to the traffic that arrives from dn.

Applying these simplifications, the transition probability matrix Pm(j, k) associated to
{Xm(t) | t > 0} can be approximated by:

Pm(0, k) =

{
1 − ρ, k = 0,

ρ, k = 1,

Pm(j, k) =

{
1 − ρ/2, k = j − 1,

ρ/2, k = j + 1,

whose transition graph is shown in Figure 4.9.

Simulation results

Figure 4.10 shows the distribution on the queue size at dm for different values of α in a
121 × 121 square lattice network with half-duplex links. This figure compares the packet
distribution obtained by simulation with the Markov chain approximation. This model closely
approximates the experimental distribution for low to moderate rate per node (α < 0.8). As
in the full-duplex case, beyond this traffic intensity, the independence assumptions are no
more valid and the approximation quality degrades.

Figure 4.11 shows the distribution on the queue size at dm obtained experimentally for a
constant relative capacity α = 0.75, as a function of the network size N . We compare the
experimental distributions with the distribution given by the Markov model approximation,
which is independent of the network size. Note that the Markov model closely approximates
the experimental distributions. A key difference with the case of full-duplex links is that, as
the network size increases, the buffer requirements do not go asymptotically to zero. The
intuitive reason is that, in the case of half-duplex links, lm is shared between dm and dn and,
even if the input rate λΠ

lm
is less than the link capacity, there is a non-zero probability that dm

competes for the link with dn, in which case one of them has to store the packet for a further
transmission. In other words, the stationary probability distribution νm(k) of the Markov
chain that approximates the number of packets k in qm, has positive values for k > 1 for any
value of N .
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Figure 4.10: Distribution on the queue size at dm for different values of α in a
121 × 121 square lattice network with half-duplex links.

4.5 Central data gathering with constrained buffers
We established in the previous chapter (Lemma 3.3) that the only necessary and sufficient
condition for a routing algorithm to achieve capacity under the central data gathering model
and unconstrained buffers, is to uniformly distribute the traffic among the four arrival links
to dBS . Although there is a wide class of routing algorithms that satisfy this condition, we
show in this section that their performance is quite different when the buffers are constrained
to be finite.

4.5.1 Approximation models
For the sake of simplicity, we restrict our analysis to a particular location of dBS : the square
lattice center. Note that the analysis of this location is equivalent to solving the problem for
any location in the torus network. Nevertheless, a similar analysis can be carried out for
any location. Note that, for the central node, row-first routing does not satisfy the optimality
condition: by always forwarding packets along the same row until they reach the column of
dBS , most of the traffic reach dBS through the upper and lower links while the rest of the
links are underused. However, there are many routing algorithms that achieve capacity for
infinite buffers. For instance, a simple routing algorithm that satisfies the capacity condition
is the random greedy algorithm [40], where nodes use row-first or column-first as routing
algorithm with equal probability.

To analyze the network capacity for a given routing algorithm under finite buffers, we
proceed as in the uniform communication model. First, we identify the most loaded node
dm and associate the network to a tree. Then, we reduce this tree to its two-stage equivalent
model and obtain the packet distribution in dm by analyzing the packet distribution in the
head node of the two-stage model. We perform this analysis for any shortest path routing
algorithm Π that achieves capacity in the infinite buffer case.
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Figure 4.11: Distribution on the queue size at dm for α = 0.75 and different net-
work sizes with half-duplex links. The full line shows the distribution given by the
Markov model approximation which, for a fixed relative capacity α, is independent
of the network size N . Dashed lines show the distribution obtained experimentally
for different network sizes N .

The bottleneck of the network is clearly located in the four neighbors of dBS . Moreover,
if Π achieves capacity when buffers are infinite, the total arrival traffic to dBS is uniformly
distributed among the four links in ϕl(dBS) (Lemma 3.3). Due to the independence of packet
generation, we can assume that the distributions on the queue size in these four nodes are
independent and identically distributed. Consequently, we reduce the problem to computing
the queue distribution for one of these neighbors, say dm. We denote by lm the link between
dm and dBS and by qm the queue in dm associated to lm (Figure 4.12(a)).

We consider now only those nodes in the network that generate traffic through lm. These
nodes form a tree with qm as head, with exogenous inputs at each node, and with no traffic
leaving the network. Applying Theorem 4.2, the packet distribution in qm is the same as in
its two-stage model (Figure 4.12(b)). Note that in this case there is not traffic leaving the
network at each node as in the uniform communication case. Therefore, the two-stage model
is not an approximation but an exact model for all rates.

The arrivals to the three nodes of the first stage are the addition of all the traffic gen-
erated by the network that goes through lm. If Π achieves capacity for infinite buffers, by
Lemma 3.3, the total average traffic that flows through lm is equal to:

λΠ
lm =

R(N − 1)

4
. (4.8)

We denote by λΠ
1 , λΠ

2 and λΠ
3 the average arrival rates to the three first stage nodes of the

two-stage model (Figure 4.12(b)). These three nodes have to route all the traffic that goes
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Figure 4.12: Two-stage equivalent model. (a) The possible nodes in the network
that generate traffic through lm constitute a tree network where lm is the head node
and (b) its two-stage model.

through lm except the traffic generated by dm itself. That is,

λΠ
1 + λΠ

2 + λΠ
3 =

R(N − 1)

4
−R. (4.9)

We obtain the distribution on the size of qm by analyzing the distribution at the head node of
the two-stage model, which obviously depends on the values of λΠ

1 , λΠ
2 and λΠ

3 .

4.5.2 Optimal routing algorithms
Particularly, we are interested in finding the routing algorithm Π that, for a given Q, achieves
the maximum RΠ

sup(N, Q). This is equivalent to minimizing the number of packets in qm for
any given R.

Different routing algorithms generate different values for λΠ
1 , λΠ

2 and λΠ
3 , and conse-

quently, different distributions on the size of qm. First, we analyze the values of λΠ
1 , λΠ

2 , and
λΠ

3 that generate the minimum number of packets in qm and then, we analyze the routing
algorithm that induces such values.

Theorem 4.4 In a two-stage network where the total average arrival rate is fixed, i.e., λΠ
1 +

λΠ
2 + λΠ

3 = λt, the values of λΠ
i , i ∈ 1, 2, 3 that minimize the number of packets in the head

node for any arrival distribution are such that all traffic arrives only through one node of the
first stage. That is:

λΠ
i =

{
λt, for i=1,2 or 3,

0, otherwise.
(4.10)

Proof: By Theorem 4.1, the total number of packets in the two-stage model (Fig-
ure 4.12(b)) is the same as a system where the first stage queues has been replaced by pure
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Figure 4.13: Two-stage equivalent model. (a) Two-stage model where the first stage
queues has been replaced by pure delays of T time slots, (b) equivalent to injecting
all the arrivals to a single pure delay.

delays of T time units (Figure 4.13(a)). In terms of number of packets in the system, this is
equivalent to injecting all the arrivals to a single pure delay (Figure 4.13(b)). Consequently,
the total number of packets in the system is equivalent for any combination of λΠ

i values.
We can decompose the number of packets in the two-stage model as the packets in the

first stage plus packets in the head node. Minimizing the number of packets in the head node
is therefore equivalent to maximizing the packets in the first stage. Since the first stage is
composed of three G/D/1 queues with equal service time, the number of packets in the first
stage is maximized when all the traffic goes through only one queue.

Using the two-stage equivalent model and Theorem 4.4, we can easily design routing
algorithms that minimize packet overflow. Consider a routing algorithm Π that achieves
capacity for the infinite buffer case. That is, Π generates the optimal traffic distribution to the
neighbor nodes of dBS according to Lemma 3.3.

As we have previously pointed out, maximizing RΠ
sup(N, Q) is equivalent to minimizing

the number of packets in the most loaded nodes. Therefore, if we want Π to be also optimal
for finite buffers, it needs to generate the optimal arrival distribution (as given in Theorem 4.4)
in all the nodes.

Intuitively, if Π achieves the maximum RΠ
sup(N, Q), the input traffic to the most loaded

node dm has to arrive from only one of its neighbors, say dn. This way, we minimize the
overflow losses in dm. However, by routing all the traffic that arrives at dm through dn, the
congestion problem is translated to dn. Consequently, dn is now the most loaded node, and
we can apply the same argument as before. Furthermore, as the network size increases, the
difference between the traffic that flows through dm and dn goes asymptotically to zero. It
is clear now that to obtain the routing algorithm that minimizes the number of packets in all
nodes, and equivalently, minimizes the overflow losses, Theorem 4.4 has to be applied to all
nodes:

Theorem 4.5 The routing algorithm that minimizes overflow losses consists in making nodes
receive all traffic exclusively from one neighbor.

We apply now Theorem 4.5 to design algorithms that minimize overflow losses in the
case where we constraint packets to take only shortest paths towards the destination and
more generally, when non shortest paths are also allowed.
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The shortest path routing algorithm that implements this principle is shown in Figure 4.14(a)
and consists in the following. In the N1 × N1 square lattice, there are 2(N1 − 1) nodes that
have only one possible shortest path toward dBS . We denote this set of nodes by SD(dBS).
For any other node, the optimal routing algorithm consists in forwarding packets to the clos-
est node in SD(dBS). Note that there is only one closest node in SD(dBS) for all the nodes
except for those nodes located in the two diagonals of the lattice. Diagonal nodes forward
packets towards only one of the two closest nodes in SD(dBS) in such a way that each of the
four diagonal nodes at the same distance from dBS chooses a different forwarding node. We
denote this routing algorithm as cross routing.

Cross routing generates the optimal node arrival distribution among all shortest path rout-
ing algorithms. Although the most loaded nodes, that is, nodes located close to dBS , receive
packets from more than one neighbor, most of the traffic arrives mainly from one. The aver-
age arrival rates generated in dm by cross routing are: λc−r

1 = R(N − 9)/4, λc−r
2 = R, and

λc−r
3 = 0. It follows that cross routing is asymptotically optimal.

However, according to Theorem 4.5, the optimal routing consists in making nodes receive
all traffic exclusively from one neighbor. This condition can only be fully satisfied by a
non-shortest path routing. Applying this condition recursively, the set of optimal routing
algorithms is such that it divides the network into four disjoint subsets of (N − 1)/4 nodes
and joins them with a single path that does not pass twice through the same node and ends in
dBS . We denote the optimal routing algorithms set as traveling salesman (TS) routing.

Figure 4.14(b) shows an example of a TS routing algorithm where the traffic flows toward
dBS following a spiral. We denote this routing algorithm as snail routing. Clearly, Snail
routing belongs to TS routing and, according to Theorem 4.5, generates the optimal arrival
distribution in all nodes.

Applying theorem 4.2, for all TS routing algorithms, the packet distribution in any node
di of the network is equivalent to the distribution in the head node of a two queues tandem
network, where the exogenous inputs are in first queue the addition of all the traffic that
di relays, and in the second queue the local traffic generated at di. As the network sizes
increases, the local traffic generated at di becomes negligible with respect to the relayed
traffic. In the limit, we can approximate the model by just two constant service time queues
where no buffer is needed in the head node. Consequently, the buffer size Q required to
achieve a certain relative capacity α goes asymptotically to zero with the network size N .

Note that Theorem 4.4 is valid for any arrival distribution, and consequently, it holds for
any exogenous traffic generation process at the nodes. Thus, even if the maximum achiev-
able rate RΠ

sup(N, Q) clearly depends on the traffic generation process, cross routing and TS
routing still achieve the highest maximum rate among the shortest path and non-shortest path
routing algorithms, respectively.

We can easily apply the analysis shown in this section to the analogous broadcast com-
munication model, where the central node is the only source in the network and generates
different information packets for each node of the network.

4.5.3 Simulation results

We compare the performance of random greedy routing, cross routing and TS routing. Fig-
ure 4.15 shows the maximum relative capacity RΠ

sup(N, Q)/Ccg(N) achieved by different
routing algorithms in a 21 × 21 square lattice network as a function of the buffer size Q.

Notice that although all routing algorithms asymptotically achieve capacity as the buffer
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Figure 4.14: Routing algorithms for finite buffers. (a) Cross routing and (b) Snail routing.

size increases, the maximum achievable rate RΠ
sup(N, Q) under small buffers differs strongly

among different routing algorithms. As expected, the maximum RΠ
sup(N, Q) corresponds to

snail routing (TS routing), while cross routing performs best among shortest path routing
algorithms.

Figure 4.16 shows the maximum rate achieved by different routing algorithms relative to
the maximum rate achieved by the snail routing for a fixed buffer size Q = 5 as a function of
the network size N . Since all routing algorithms analyzed are asymptotically optimal with
the network size, the performance gap between snail routing and these algorithms decreases
as the network size increases for a fixed value of Q. The reason is that, as the network size
increases, the most loaded nodes receive most of the traffic mainly from only one neighbor.
Moreover, note that for a fixed buffer size Q = 5, the relative rate achieved goes asymp-
totically to 1 with the network size N . As we explained previously, the required buffer to
reach capacity decreases with the network size, and therefore, even a small buffer of Q = 5
is enough to reach capacity for values of N large enough.

Although TS routing achieves the maximum RΠ
sup(N, Q), the delay incurred by the pack-

ets may be unacceptable. Notice that a packet generated by the furthest node must travel
across (N − 1)/4 nodes before reaching dBS , while for a shortest path routing, the furthest
node is

√
N − 1 hops away. Moreover, the average path length LTS for any TS routing

algorithm is O(N), while for any shortest path routing, Ls−p is O(
√

N). TS routing repre-
sents an extreme case of the existing trade-off between RΠ

sup(N, Q) and delay, achieving the
optimal rate per node drastically increases the delay. Equivalently, since most of the energy
is commonly consumed in the transmission process, to increase the average path length is
equivalent to increase the average power consumption in the network, which might not be a
good idea in a wireless scenario for example.
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4.6 Border data gathering with constrained buffers

Finally, we turn our attention to the border data gathering problem. We use the approxima-
tion model derived in the previous sections to obtain the routing algorithm that achieves the
maximum RΠ

sup(N, Q) for finite buffers.
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Figure 4.17: Maximum rate trade-off in border data gathering: (a) the nodes located
close to the edges carry more traffic. (b) Adaptive routing.

4.6.1 Optimal routing algorithms
We proceed as in the previous section: we apply the routing condition to minimize over-
flow losses (Theorem 4.5), that is, we make nodes receive all traffic exclusively from one
neighbor. Note that the optimal shortest path routing algorithm we derived for infinite buffers
(Section 3.5) is also optimal for finite buffers since all nodes receive traffic from only one
neighbor. However, we showed that this routing policy does not achieve capacity with infi-
nite buffers. For infinite buffers, we showed that the algorithm that reached capacity was a
non-shortest path algorithm that we denoted by uniform border gathering. Under the uniform
border gathering algorithm, most nodes receive traffic from many of its neighbors, and there-
fore, it does not satisfy the optimality condition for finite buffers. Actually, as we show in
the next Lemma, in border data gathering no routing algorithm reaches capacity and behaves
optimally for finite buffers.

Lemma 4.1 Under the border data gathering communication model, the routing condition
to minimize overflow losses (4.10) and the capacity condition (3.25) cannot be both satisfied
simultaneously.

Proof: Let Π be a routing algorithm that achieves capacity under the infinite buffer
assumption. Consider a node da located in the diagonal close to the edges, as illustrated in
Figure 4.17(a). Notice that it is enough to focus on the traffic that goes through a certain
node. By Lemma 3.5, da has to carry the traffic of at least two links in ϕl(dBS), that is,
λΠ

da
≥ 2R(

√
N−2)
4 . That is, da receives traffic from more than one neighbor. Otherwise, there

is a link l such that λΠ
l > R(

√
N−2)
4 , and Π does not achieve capacity. On the other hand, if
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Figure 4.18: Adaptive routing: maximum relative capacity achieved by adaptive
routing with different shortest-path limit values as a function of the buffer size in a
41 × 41 square lattice.

da receives traffic from only one neighbor, λΠ
da

is upper bounded as λΠ
da

≤ R(
√

N−2)
4 , and

(3.25) is not satisfied.

Lemma 4.1 implies that the design of the optimal routing algorithm for a given queue size
Q, should trade-off both the conditions related to approaching capacity and the conditions
related to operate optimally in the case of finite buffers. Therefore, we propose an adaptive
routing algorithm that depends on the buffer size Q. As in previous sections, the most critical
nodes are those located close to the base stations, that is, the most loaded nodes. Therefore,
it is in those nodes where it is more important to apply the optimal queue condition.

Consequently, we define the following routing algorithm: nodes located at a distance less
than a fixed value spl (shortest path limit) from any base station, route packets according to
shortest path routing. That is, in nodes close to any base station, we reduce buffer overflow
by making nodes receive from one single neighbor. On the other hand, nodes further than
spl route packets according to the uniform border gathering. That is, we distribute load as
uniformly as possible among the base stations so that the maximum capacity can be achieved.
We denote this routing algorithms as adaptive routing and it is depicted in Figure 4.17(b).
Note that when spl is equal to zero, adaptive routing is equivalent to uniform border gathering,
that is, the more loaded node (nodes close to the border) receives traffic from more than one
neighbor. As we increase the value of spl, these nodes start receiving packets from only one
neighbor (shortest path routing). Finally, when spl is equal to (

√
N − 1)/2, all nodes receive

packets from only one neighbor and adaptive routing is equivalent to shortest path routing.
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4.6.2 Simulation results
Figure 4.18 shows the values of RΠ

sup(N, Q) achieved by adaptive routing algorithm with
different values of spl in a 41 × 41 square lattice network, as a function of the buffer size Q.

First, note the trade-off between the rate RΠ
sup(N, Q) achieved for big and small buffer

sizes: no routing strategy can achieve high rates for both extremes. For high buffer values,
the optimal routing strategy consists in choosing spl=0, which results in uniform routing. As
the buffer size decreases, the optimal values for spl decrease and, when the buffer goes to
zero, the optimal value for spl is the maximum, which results in shortest path routing.

4.7 Summary
In this chapter, we focused on the analysis and design of routing algorithms in networks
where nodes have a limited buffer space. We proposed alternative approximation models to
the usual Jackson’s Theorem to obtain a more accurate distribution on the queue size at the
nodes. Using these approximations, we derived the routing condition to minimize overflow
losses: nodes receive all traffic exclusively from one neighbor. According to this condition,
we designed the routing algorithms that maximize the throughput per node for networks with
finite buffers at the nodes under three different communication models: uniform communi-
cation, central data gathering, and border data gathering.

Note that the routing condition to minimize packet overflow implies the use of single
path routing between any source destination pair. As we showed in Chapter 2, single path
routing is very sensitive to network unreliability. This suggests a trade-off between capacity
and robustness that will be explored in Chapter 5.

In this chapter, as well as in the previous chapter, we analyzed the problem of routing
restricted to lattice networks, where a theoretical analysis is still feasible. A natural extension
is to consider more general random networks, which is the object of Chapter 6.



Chapter 5

Routing in Unreliable Networks

5.1 Introduction

Sensor networks consist of simple devices with very limited power and processing capabil-
ities which present a high degree of unreliability. Temporary node failures are commonly
present with a certain “recovery” period after which, nodes start working again. Besides
nodes going up and down, links are also unreliable and temporary link failures are also fre-
quent in wireless networks.

Routing in large and unreliable networks becomes prohibitively complex in terms of both
computation and communication: the set of available routes between any two nodes changes
randomly due to random node failures. To overcome this complexity, we already proposed
in Chapter 2 the use of fully decentralized routing algorithms where routing decisions at
each node are only based on local information. To avoid explicit route discovery or repair
computations, and to avoid maintaining explicit state information, we proposed there to use
a decentralized routing through a constrained random walk.

In Chapter 2, we studied the routing problem from a single source-destination perspec-
tive. We provided a fully distributed routing algorithm with a load balancing property: nodes
located at the same distance from the source must carry the same traffic. This implies that all
the available routes between the source and the destination are used with a certain probabil-
ity. When the network becomes unreliable, we showed that this uniform traffic distribution
performed better than other routing schemes.

Then, we analyzed the routing problem for multiple sources and/or destinations and char-
acterized the routing algorithms that maximize the rate per node. For any source-destination
pair, these routing algorithms required using only a few of the available paths between the
source and the destination. For instance, in the case of uniform communications, a simple
routing algorithm that maximizes the rate per node is row-first, which uses only the two most
external paths between the source and the destination. For the data gathering case, the optimal
routing uses only one path. Equivalently, we showed in Chapter 4 that when the buffers at the
nodes are constrained to be finite, the optimal routing strategy to minimize packet overflow
consisted in making packets flow along a unique path.

This suggests that, in the case of unreliable networks, there exists a trade-off between
the maximum achievable rate per node and robustness, being more remarkable in the case
of networks with small buffers at the nodes. On the one hand, to overcome packet losses
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due to the network unreliability, packets should be distributed among the available paths.
On the other hand, to increase the rate per node and reduce packet losses due to overflow
losses, packets are constrained to use only a few of these paths. The subject of this chapter
is to explore this trade-off in the context unreliable random networks with multiple sources
multiple destinations.

In particular, we propose to use a family of randomized routing algorithms which are
obtained as a convex linear combination of two routing algorithms, the first one being optimal
when there are no node failures and the second one being appropriate when the probability
of node failure is high. For a given node failure rate, we show that a specific combination
achieves the best maximum rate per node.

The rest of the chapter is structured as follows: In Section 5.2, we start by introducing the
two failure models we consider to model sensor networks unreliability. Then, in Section 5.3,
we analyze the routing algorithms that achieve the maximum rate per node depending on the
degree of unreliability of the network. Finally, in Section 5.4, we present simulation results.

5.2 Model and definitions
The network model we consider in this chapter is identical to the model described in Chapter 3
with the additional constrained that nodes are subject to failures. We consider two different
models for the temporary node failures. In the first model, we assume that nodes switch
between on and off states over time, independently for each node, following a Markov rule
with transition probabilities p0 and p1. That is, the stationary probability of a node being off,
and thus its associated links, is given by POFF = p0

p1+p0
. This model tries to capture node

failures due to any malfunction in the node.
The second model assumes that a node failure depends on how frequently it is used for

routing. For this purpose, we initially assign to each node a given energy and assume that
energy consumption in a node is proportional to the number of packets transmitted and re-
ceived by the node. Assuming that nodes are powered by a renewable source of energy, once
the energy of a node is exhausted, it is refueled after a “recovery” period. We model this
recovery period as a random variable with a geometric distribution. This model is relevant,
for example, for sensor networks with solar panels.

Recall that, for a given routing algorithm Π, we denote by F Π(di, dj , dk) the traffic gen-
erated at node di with destination node dj that flows through node dk according to a particular
routing algorithm Π.

Definition 5.1 Given a N1 ×N1 grid network, let ds = [0, 0] and dd = [N1 − 1, N1 − 1] be
the two most distant nodes. We define the fairness f(Π) of a routing algorithm Π as:

f(Π) =
1

1 + 1
N1

∑
di∈V (FΠ(ds, dd, di) − Funi(ds, dd, di))

2 , (5.1)

where F uni(ds, dd, di) is the uniform node-to-node traffic distribution, that is, according to
the notation introduced in Chapter 2, F uni(ds, dd, di) = 1

|Diag(di)| .

The fairness of a routing algorithm is a measure of how uniform the node-to-node distribution
is.

We assume a uniform communication model where all nodes transmit information with a
constant average rate and the probability of any node communicating to any other node in the
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network is the same for all pairs of nodes. In the next section, we study routing algorithms
that maximize this rate per node under certain decentralization conditions.

5.3 Routing algorithms for unreliable networks

In dynamic networks the maximum achievable rate per node depends on two factors: the
limited connectivity, which determines the static network capacity, and the packet losses due
to node failures and overflow losses.

In Chapter 2 we proposed a distributed randomized routing algorithm for achieving ro-
bustness against failures and maximum path diversity with very low computational complex-
ity and minimal state information. This routing algorithm is based on the idea that when
nodes in the network can fail at any moment and sources have no state information about the
network, the best one can do is to distribute the traffic as uniformly as possible among all
the nodes in the shortest path region. The load distribution that this algorithm induces for
any pair of source-destination nodes is the most uniform possible: two nodes in the shortest
path region which are located at the same distance from the source carry the same load. We
denote this routing algorithm by spreading. Notice that f(spreading) = 1. The spreading
algorithm is proposed based on the intuition that under failures, distributed communications
are more robust. Moreover, we showed through simulations that when the network becomes
unreliable, spreading performed better than other routing schemes.

However, according to Chapter 3, in the multiple sources and/or destinations scenario,
spreading is not a good strategy if we want to maximize the rate per node when there are
no failures in the network, in which case, row-first is optimal. On the other hand, row-first
routing is obviously not a good strategy when failures are present in the network: it routes
packets using only the two most external paths of the entire shortest path region, thus not
taking advantage of the full diversity in the network, and consequently, being very vulnerable
to failures.

In other words, while row-first achieves the most uniform load distribution in the network
among the shortest path routing algorithms, the source-to-destination traffic is distributed
over very few nodes (only over the edge nodes). On the contrary, the spreading algorithm
achieves the most uniform source-to-destination load distribution while the load distribution
in the network is not optimal. This is illustrated in Figure 5.1, which shows the network
and source-to-destination distributions induced by row-first and spreading routing algorithms.
This illustrates also the existing trade-off between robustness and maximum rate per node.

In the case of unreliable networks, we propose to use a routing algorithm that adapts
to the failure rate of the network by controlling the shape of the source-to-destination load
distributions. Clearly, if the failures in the network are nonexistent or very rare, the best
solution is to use a very confined source-to-destination distribution (low fairness) to maximize
the rate per node. As the failure rate increases and the network becomes more unreliable, the
source-to-destination distribution should be wider (high fairness) to avoid inoperative nodes
and overcome the network unpredictability. This will cause a reduction in packets losses due
to node failures, which will also contribute to increase the rate per node. However, at the
same time, this will generate a suboptimal overall traffic distribution that reduces the rate per
node. Therefore, for a given failure rate, there is an optimal source-to-distribution shape that
achieves the maximum rate per node.

Both routing algorithms, spreading and row-first, can be defined in terms of the forward-
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Figure 5.1: Load distributions in a 50×50 square grid network: Top: load distribu-
tion in the network (uniform communication model). Bottom: source-to-destination
load distribution for nodes [0, 0] and [49, 49]. Left: row-first routing. Right: spread-
ing routing. The x and y axis represent the lattice coordinates of a node. The z-axis
represents the number of packets carried by node [x, y] normalized such that the
maximum load is 1. The load distribution generated in the network by row-first (a)
is more uniformly distributed than the distribution generated by spreading (b) while
the source-to-destination load distribution induced by spreading (d) is as uniform as
possible and the distribution generated by row-first (c) is concentrated only in very
few nodes.

ing probabilities of a constrained random walk at any given node. Note that in this particular
topology, and under the shortest path condition, a random walk is defined by a single number
p, the probability of choosing one of the two links in the shortest path towards the destina-
tion. By convention, we define p(dk) to be the probability that node dk forwards a packet to
its neighbor that is closer to the boundary of the lattice (1 − p(dk) being the probability of
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Figure 5.2: Source-to-destination distribution generated by constrained spreading
with values of φ = [0.0.25, 0.75, 1] (from left to right).

forwarding to the other). We showed in Chapter 2 that the local parameters of the spreading
algorithms for any node dk = [ik, jk] ∈ V were given by:

p(dk) =

{ |Diag(dk)|−he(dk)
|Diag(dk)|+1 , if ik + jk < N1 − 1 (expansion stage),
he(dk)

|Diag(dk)|−1 , if ik + jk ≥ N1 − 1 (compression stage).
(5.2)

In the same way, we can easily define the local parameters of row-first as follows:

p(dk) =

{
1, if ik + jk > 0,

1/2, if ik + jk = 0.
(5.3)

To control the shape of the source-to-destination distribution we use a convex linear com-
bination of the two limit cases, i.e., spreading and row-first, which in terms of forwarding
probabilities is defined as:

p(dk) =

{
(1 − φ) |Diag(dk)|−he(dk)

|Diag(dk)|+1 + φ, if ik + jk < N1 − 1 (expansion stage),

(1 − φ) he(dk)
|Diag(dk)|−1 + φ, if ik + jk ≥ N1 − 1 (compression stage).

(5.4)
where φ is the parameter that determines the fairness of the routing algorithm, and conse-
quently, the shape of the source-to-destination and the network load distributions. We denote
this routing algorithm as constrained spreading. If φ = 0, constrained spreading gener-
ates a very constrained source-to-destination traffic distribution and the most uniform traffic
distribution in the network. As we increase φ, the source-to-destination traffic distribution be-
comes wider and the network distribution less uniform. In the limit, when φ = 1, the source-
to-destination traffic distribution is uniform. Figure 5.2 shows the source-to-destination dis-
tribution generated by constrained spreading with values of φ = [0, 0.25, 0.75, 1].

Note that in the case of the torus grid network, since spreading routing is also space
invariant, it also achieves capacity when there are no node failures in the network, i.e., it
generates a uniform overall load distribution. Consequently, the optimal routing algorithm in
dynamic networks is just to use spreading routing.

5.4 Simulation results
In this section we analyze through simulations the performance of the routing algorithms
family proposed in previous section. For completeness, we compare also the performance
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Figure 5.3: Maximum rate per node - fairness trade-off for a 34 × 34 nodes square
grid network. The x axis denote fairness and y axis the maximum rate per node
achieved. We represent both quantities for different values of φ, from 0 to 1 with
0.1 interval size.

of some other shortest path space invariant routing policies used in square grid networks:
Diagonal and Bernoulli routing algorithms. Diagonal routing [6] is a probabilistic routing
strategy which states that propagation of messages toward the diagonal should be given pref-
erence where possible, where diagonal denotes the set of nodes that are an equal number of
rows and columns away from the destination node. Bernoulli routing consists of flipping a
fair coin to decide which of the two feasible neighbors on a next hop to pick at each node.

Figure 5.3 shows the trade-off between maximum achievable average rate per node and
fairness (5.1) for Bernoulli, Diagonal, and constrained-spreading routing algorithms for dif-
ferent values of φ in a 34×34 nodes square grid network with a buffer size per node Q = 100,
where φ takes values in the interval [0, 1] with a step size of 0.1. Notice that constrained-
spreading routing algorithms clearly outperform both Bernoulli and Diagonal, in fairness and
maximum rate per node achieved. Observe also that when φ = 0, that is, we have a pure
row-first routing, we achieve the maximum rate per node, however the fairness is low. On the
other hand, for φ = 1, we have a spreading routing algorithm and consequently the fairness
is maximized while the rate per node decreases importantly. Between these two extremes, we
obtain intermediate results for different values of φ.

We analyze now the two dynamic network models we described in Section 5.2. First
we consider the case of dynamic networks based on the Markov failure model. We fix the
transition probability pON→OFF = 0.01 and make the transition probability pOFF→ON

take values in the interval [1, 0.01] such that pOFF varies linearly in the interval [0, 0.25].
Figure 5.4 shows the rate per node achieved by different constrained-spreading routing algo-
rithms characterized by different values of φ in a 34× 34 square grid network with buffers of
size Q = 100. The simulation time was 600,000 time slots. Figure 5.4(b) shows the rate per
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Figure 5.4: Average performance of constrained-spreading for different values of
φ under the Markov failure model in a 32 × 32 square grid network. (a) Maximum
rate per node. (b) Maximum rate per node relative to the best rate achieved by any
of the routing algorithms.

node relative to the best rate achieved by any of the considered routing algorithms for each
given value of pOFF .

Notice that, if the network is static (pOFF = 0), the best strategy is to choose φ = 0 (row-
first routing), that achieves a rate per node 12% higher than the φ = 1 strategy. However, as
the unreliability of the network increases, the performance for φ = 0 degrades rapidly. For
very unreliable networks (values of pOFF close to 0.15 or above), the best routing algorithm
consists in choosing φ = 1 (spreading), which achieves a rate per node 8% higher than the
φ = 0 strategy. We observe also, that depending on the values of pOFF , the optimal values
for φ are different.

We repeated the same experiment considering the energy based failure model. We con-
sider that the energy of a node is depleted after sending 500 information packets. Then, after
a “refueling” period, nodes become active again. The results are presented in Figure 5.5. In
this case, the pOFF→ON is going to determine the “refueling” period. As the “refueling”
period increases, the network becomes more unreliable, given that more nodes would be in-
operative waiting for more energy supply. Figure 5.5(a) shows the rate per node achieved by
different routing algorithms under different network conditions and Figure 5.5(b) shows the
relative rate per node.

Observe that the behavior of the routing algorithms under both failure models is very
similar: for very short “refueling” periods, low values for φ achieve better results, while large
“refueling” periods calls for large values for φ. However, in the energy based model, the rate
per node decreases more rapidly. This is due to the fact that in the square grid network, nodes
situated in the center of the network have to deal with a higher traffic load (see Figure 5.1).
Therefore, their energy is depleted more rapidly than any other node, resulting in more fre-
quent temporary failures. However, the relative performance of constrained-spreading rout-
ing algorithms remains quite similar.
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Figure 5.5: Average performance of constrained-spreading for different values of
φ under the energy failure model in a 32 × 32 square grid network. (a) Maximum
rate per node. (b) Maximum rate per node relative to the best rate achieved by any
of the routing algorithms.

5.5 Summary
In this chapter, we showed that achieving robust communications and maximizing the achiev-
able rate-per-node are incompatible goals: while robust communications require the use of
as many paths as possible between the source and the destination, maximizing the rate per
node requires using only a few of the available paths. To illustrate this trade-off, we studied
routing algorithms that maximize the rate per node for dynamic networks under two different
failure modes: a Markovian model that reproduces failures due to malfunction in the nodes,
and an energy limited model which is related to depletion of communication resources. We
proposed to use a particular combination of two routing algorithms, namely row-first and
spreading, row-first being the routing algorithm that achieves capacity in the static case, and
spreading being the most robust algorithm against failures. The combination of these two
routing algorithms defines a family of randomized routing algorithms, each of them being
suitable for a given probability of node failure. All the routing algorithms that we proposed
are fully decentralized and can be easily distributed.



Chapter 6

Data Gathering in Random
Networks

6.1 Introduction

Most of the routing algorithms we proposed in previous chapters rely in one way or another on
the regular topology of the network model we considered. For instance, the optimal routing
algorithms we derived in previous chapters to reduce overflow losses were specially designed
for the square grid. Motivated by the insight gained in grid networks, we tackle now the
problem of routing in random networks.

Throughout this chapter, we assume that either the network is wired, or that if it is wire-
less, there exists either a transmission schedule or a frequency division multiplexing that
avoids conflicts. Therefore, we abstract the random network as a random graph with point-to-
point links and transform the problem into a graph with nearest neighbor connectivity. Under
this hypothesis, nodes can simultaneously receive multiple packets from different neighbors
and, at the same time, transmit one packet to the next hop. If a node receives or generates
locally a new packet while transmitting another packet to the next hop, the newly arrived
packet is temporarily stored in the buffer until there is an opportunity to transmit it.

As we showed in grid networks, when nodes have a limited buffer for the temporary
storage of packets, the maximum achievable rate is considerably reduced with respect to the
infinite buffer case due to packet overflow. As explained before, the analysis of this maximum
achievable rate requires computing the buffer occupancy distribution in the nodes, which is
not feasible without some approximations. Although random networks are very different in
nature from grid networks, we show that similar principles can be applied to analyze this
buffer occupancy.

We first analyze the case where nodes have unconstrained memory: we study the network
capacity and optimal routing algorithms for infinite queues. We show that the problem of
finding the optimal routing algorithm that achieves network capacity is actually an NP-hard
problem and propose a distributed approximation algorithm that behaves close to optimal.
Then, using similar techniques as in Chapter 3, we analyze the effect of finite buffers on the
network and show that finding the optimal routing algorithm is also an NP-hard problem. We
propose an approximation algorithm to minimize overflow losses that achieves a maximum
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rate at least three times higher on average than the rate achieved with the usual Shortest
Path Routing algorithm. We show that this routing algorithm requires combining adequately
shortest path routing and traveling salesman routing.

Finally, we discuss also the wireless case, where packet transmissions among different
nodes can interfere and result in packet collisions. We show that to achieve network capacity,
it is necessary to construct a transmission schedule which is an NP-complete problem. We
propose a simple alternative method that consists in modifying the media access control to
deal with finite buffer and reduce packet overflow.

The rest of the chapter is structured as follows: In Section 6.2, we introduce the random
network model. In Section 6.3, we analyze capacity limits of random networks. In Sec-
tion 6.4, we investigate the infinite buffer case and provide routing algorithms that maximize
the achievable rate per node. In Section 6.5, we analyze optimal routing algorithms that min-
imize packet overflow for the finite buffer case. Finally, in Section 6.6, we analyze wireless
random networks for both finite and infinite buffers.

6.2 Model and definitions

We randomly deploy N nodes on a square area following a uniform distribution. We assume
that each node is a source of data as well as a relay for some other sources to reach the des-
tination. We will use nodes, sources, and sensors interchangeably in subsequent discussions.
We assume that nodes use a fixed transmission power and achieve a fixed transmission range
Rtx. We denote the euclidean distance between any two nodes di and dj as s(di, dj).

We assume that there exists a transmission schedule or frequency division multiplexing
that avoids conflicts: if the euclidean distance between two nodes is less than the commu-
nication radio Rtx, we assume that there exists a link between both nodes with capacity Cl.
Hence, we transform the problem into a graph with nearest neighbor connectivity.

We denote by ϕn(di) the set of nodes that are located inside the circle of radius Rtx and
center di, i.e., ϕn(di) = {dj : s(di, dj) ≤ Rtx}. Equivalently, ϕn(di) is the set of neighbors
of di in the connectivity graph. We assume that nodes are aware of their neighbor nodes, but
not of their absolute positions in the network. We denote as n(di) the number of neighbors of
di, that is: n(di) = |ϕn(di)|. For a fixed network size N , we choose the surface dimensions
such that the average number of neighbors per node is equal to navg.

We consider the central data gathering communication model, in which all nodes send
their data to one common fixed node dBS , denoted as base station, and located at the center of
the square area. This scenario corresponds to the case where one node (base station) collects
the information generated by all the nodes in the network [34].

We assume that nodes generate packets uniformly with a rate of R packets per second.
More specifically, nodes generate one packet in every interval of duration (1/R) seconds.
Within an interval, the exact packet origination time is uniformly distributed from 0 to (1/R),
independently among nodes. This models a sensor network that regularly measures a certain
phenomenon without node synchronization.

A routing algorithm Π defines how traffic flows from any source to the base station dBS .
We consider the class of single path routing algorithms, that is, all the packets generated at any
node follow one single route to dBS . We assume that routing algorithms are time invariant,
that is, Π does not change over time. We also assume that nodes forward all packets to one
single neighbor or next hop regardless the source of the packets. This allow us to completely
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Figure 6.1: We represent the random network with a connectivity graph Gc =
(V, E), where the edges represent that the distance between two nodes is less than
the transmission range (dashed lines). Nodes forward all packets to one single
neighbor determined by the routing algorithm Π (arrows). Any routing algorithm Π
is completely characterized by its data gathering tree (T Π).

characterize any routing algorithm Π by its Data Gathering Tree (DGT) T Π with dBS as root
node. For illustration purposes, Figure 6.1 shows a routing algorithm and its corresponding
data gathering tree. Shortest path routing algorithms are those where packets transmitted
between any node di and dBS always follow a path with the minimum number of hops, in
which case, T Π is a shortest path tree (SPT).

Given that nodes have a single parent node towards dBS , the traffic that flows through a
given node di can also be determined by the number of children of di in the data gathering
tree. We denote by D(di, T

Π) the subtree that has di as root node which consists of all the
nodes that send their traffic through di according to the data gathering tree T Π, or in other
words, the set of descendants of di in T Π. Similarly, we denote by A(di, T

Π) the set of nodes
that relay the traffic sent by di towards dBS according to T Π, or in other words, the ancestors
of di in T Π. An example of both subtrees is depicted in Figure 6.1.

The length of a path is defined as the number of hops in that path. Moreover, we denote by
h(di, dj) the length of the shortest path between nodes di and dj . We denote by L

Π
(N) the

average number of hops that packets take to reach the base station when nodes route packets
according to Π and by λΠ

dk
the traffic arrival rate to node dk according to Π.

We assume that nodes are equipped with buffer capabilities for the temporary storage of
Q packets. When packets arrive at a particular node or are generated by the node itself, they
are placed into a queue until the node has the opportunity to transmit them to the next hop. If
the buffer is full, the newly arrived packet is dropped.

Note that the definitions of network capacity and maximum achievable rate introduced
before are also valid for random networks:

Definition 6.1 An random network of N nodes with infinite buffers is said to have capacity
C{w,c}(N) if any rate R = C{w,c}(N) − ε, ∀ ε > 0, is achievable. Moreover, any rate
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R ≥ C{w,c}(N) is not achievable.

The subscripts “w” and “c” indicate the network model, the wired or collision-free case and
the wireless or collision model respectively.

Definition 6.2 Given a random network of N nodes with finite buffers of size Q, a rout-
ing algorithm Π is said to have maximum achievable rate RΠ

sup(N, Q) if any rate R =

RΠ
sup(N, Q) − ε, ∀ ε > 0, is feasible using Π as routing algorithm. Moreover, any rate

R ≥ RΠ
sup(N, Q) is not feasible.

The goal is to design scalable routing algorithms, with all the decentralization properties
discussed in Chapter 2, that for a given buffer size Q, minimize packet losses due to buffer
overflow. We start by studying the network capacity of random networks.

6.3 Network capacity
In the case of infinite buffers, the network capacity is limited by the nodes that support
most traffic. For the central data gathering communication model, the most loaded nodes
are clearly the neighbors of the base station, which have to relay the traffic generated by
the whole network towards dBS . Applying bisection arguments [40; 50] to these nodes, the
network capacity Cw(N) is upper bounded as:

Cw(N) ≤
⌈

n(dBS)Cl

N − 1

⌉
. (6.1)

As in the regular lattice case, the network capacity decreases linearly with the total num-
ber of nodes N . This linear decrease is due to the bottleneck at the base station inherent in the
data gathering communication model. However, as opposed to regular topologies, this upper
bound is not always achievable in random networks, and in general, the network capacity
depends on the specific network topology.

6.4 Routing algorithms for infinite buffers
The maximum achievable rate RΠ

sup(N,∞) under the assumption of infinite buffers can be
easily derived by applying the stability condition in the most loaded node dm. Given the
centralized structure of the traffic matrix, and the fact that we consider single path routing
algorithms, it is clear that dm ∈ ϕn(dBS). Noting also that all the traffic transmitted by dm

has to reach dBS by a single link of capacity Cl, we have:

RΠ
sup(N,∞) = min

di∈ϕn(dBS)

Cl

|D(di, T Π)| . (6.2)

6.4.1 Optimal routing algorithms
The optimal routing algorithm Πopt that maximizes RΠ

sup(N,∞) is such that the total arrival
traffic to dBS is distributed as uniformly as possible among the nodes in ϕn(dBS). Equiva-
lently, Πopt minimizes the most loaded node in ϕn(dBS):

Πopt = arg max
Π

(
min

di∈ϕn(dBS)

Cl

|D(di, T Π)|
)

= argmin
Π

(
max

di∈ϕn(dBS)
|D(di, T

Π)|
)

. (6.3)
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The maximum network capacity is achieved if the load is uniformly distributed in ϕn(dBS),
that is:

max
di∈ϕn(dBS)

|D(di, T
Πopt)| =

⌈
N − 1

n(dBS)

⌉
.

However, depending on the network topology, this upper bound is not always achievable.

Theorem 6.1 The algorithm to find the optimal routing algorithm that maximizes the achiev-
able rate per node in a random network with infinite buffers is NP-complete.

Proof: The optimal routing Πopt is such that T Πopt consists of n(dBS) disjoint trees

of maximum size
⌈

N−1
n(dBS)

⌉
whose roots are each of the neighbors of dBS . Note that the

problem of identifying these disjoint trees is a particular case of the Bounded Component
Spanning Forest (BCSF) [23]. Given a graph G = (V, E), a weight w(v) ∈ Z+

0 for each
v ∈ V and two positive integers K ≤ |V |, and B, the BCSF problem consist in finding a
partition of V into k ≤ K disjoint sets V1, V2, . . . , Vk such that, for 1 ≤ i ≤ k, the subgraphs
of G induced by Vi are connected and the sum of the weights of the vertices in Vi does not
exceed B. The BCSF problem is NP-complete even if all the weights equal 1 and B is any
fixed integer larger than 2. Finding the optimal routing algorithm Πopt is a BCSF problem for
w(v) = 1, B = N−1

n(dBS) , and k = n(dBS).

6.4.2 Approximation algorithms
The usual distributed algorithm to compute the DGT in a sensor network is the distributed
Bellman-Ford (DBF) algorithm [10]. The DBF algorithm computes the shortest path from
any node to the base station dBS by making nodes select as their next hop the neighbor that is
located closer to dBS in number of hops. As we will see later, the DBF algorithm generally
leads to a highly unequal distribution of the traffic in ϕn(dBS). In the following, we propose
a simple distributed approximation routing algorithm whose DGT equalizes the load as much
as possible among the nodes in ϕn(dBS).

Given any routing algorithm Π, we can decompose T Π into n(dBS) disjoint subtrees,
STdi

= D(di, T
Π), di ∈ ϕn(dBS), each subtree associated to a different node in ϕn(dBS).

We define the weight wΠ(dj) of a node dj as the number of nodes that dj relays towards dBS

(including itself) according to the routing algorithm Π, that is, wΠ(dj) = |D(dj , T
Π)|. With

a slight abuse of notation, we define the weight of a subtree as the weight of its root node,
that is, wΠ(STdi

) = wΠ(di) = |D(di, T
Π)|. Given a node dj , we define as ST−1(dj) the

subtree to which dj belongs. That is:

ST−1(dj) = STdi
: dj ∈ STdi

.

The goal is to define an algorithm whose associated DGT is such that the weights of all
subtrees are as similar as possible. We propose a distributed algorithm based on the DBF
algorithm with a different cost matrix than the hop distance to dBS .

Each node dj maintains two costs, c1(dj) and c2(dj): c1(dj) is its own weight, that
is, c1(dj) = wΠ(dj); c2(dj) is the weight of the subtree the node is connected to, that is,
c2(dj) = wΠ(ST−1(dj)). Initially, all subtrees STdi

consist of only their root nodes, that is,
STdi

= {di}, di ∈ ϕn(dBS). Consequently, all the nodes in ϕn(dBS) are initialized with
an individual weight of one and a subtree weight of one, i.e., c1(di) = 1, c2(di) = 1 for all
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di ∈ ϕn(dBS). The rest of the nodes are not connected, and therefore, they are initialized
with an individual weight c1(dj) = 1 (just their own weight) and a subtree weight equal to
c2(dj) = ∞ (to indicate that nodes are not connected). Nodes try to locally equalize the
weight of the subtrees as much as possible by choosing as next hop the neighbor with the
minimum subtree weight. More precisely, a node dj chooses its next hop ν(dj) as follows:

ν(dj) = arg min
dk∈ϕn(dj)

(c1(dj) + c2(dk)) . (6.4)

In other words, dj joins the same subtree as ν(dj). Note that when dj joins a new subtree
STdN

, it also implies that all the nodes that dj is relaying, also join the same subtree. The
weights of all the nodes belonging to the subtree STdN

= ST−1(ν(dj)) have to be updated
with the weight of the new nodes. Particularly, we update the individual weights c1 of ν(dj)
and all its ancestors and the subtree weight c2 of all the nodes belonging to STdN

as follows:

c1(dk) = c1(dk) + c1(dj) for all dk ∈ A(dj , STdN
), (6.5)

c2(dk) = c2(dk) + c1(dj) for all dk ∈ STdN
. (6.6)

Similarly, if dj is leaving a subtree STdO
it was connected to, to join a new subtree with

a lower weight, it is also necessary to update the weights of the nodes belonging to STdO
by

subtracting the weight of the leaving node dj . That is:

c1(dk) = c1(dk) − c1(dj) for all dk ∈ A(dj , STdO
), (6.7)

c2(dk) = c2(dk) − c1(dj) for all dk ∈ STdO
. (6.8)

It can be verified that this algorithm converges in a finite time to a solution. The proof goes
along the same line as the proof of the convergence of the DBF algorithm [10]. We denote
this routing algorithm as Uniform data gathering Traffic Distribution (UTD) algorithm. Note
that UTD does not take into account the distance in hops to the base station to build the DGT,
but only the weight of each subtree. Therefore, it does not necessarily lead to shortest path
routing.

We can easily consider a shortest-path version of the UTD algorithm by forcing nodes
to choose the next hop only among the neighbors which are closest (in the hops metric) to
the base station. We denote this algorithm as UTD-SP routing. Out of the multiple possible
shortest path trees of a random network, DBF gives randomly one, while UTD-SP tries to
compute the one that distributes the traffic as uniformly as possible. By constraining the
neighbors that can be chosen as next hop, the traffic distribution achieved by UTD-SP is
obviously less uniform than in the unconstrained case, i.e., UTD.

Note that both routing algorithms can also be applied in the case of multiple data collec-
tors and for different base station locations. While considering multiple base stations has the
effect of increasing the achievable rate per node, placing the sink near the border of network
reduces it. In both cases, UTD and UTD-SP equalize the load as much as possible among the
neighbor nodes of the base stations.

For illustration purposes, we show the DGT generated by the DBF and UTD algorithms
for a single realization of a 20 nodes random network in Figure 6.2. Note that the UTD algo-
rithm distributes the load more uniformly among the nodes in ϕn(dBS) even if non shortest
paths are needed. In this example, using the DBF algorithm, the capacity will be limited by
the node dm which relays the traffic of 12 nodes, while using UTD, this load has been re-
duced to 6 nodes. On the other hand, the length of the longest path using the DBF algorithm
is of two hops, while for the UTD algorithm is 6 hops.
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(a) (b)

Figure 6.2: Data gathering in a 20 nodes random network: DGT generated by (a)
DBF and (b) UTD algorithms.

6.4.3 Simulation results
To analyze the performance of the different routing algorithms in random networks with finite
buffers, we compare the traffic distribution generated in ϕn(dBS). In particular, we are only
interested in the most loaded node dm, that is, the node that limits the maximum achievable
rate. We define the distribution factor DF (Π) of a routing algorithm Π as the ratio between
the number of nodes that relay traffic in the most loaded node dm according to Π, that is,
|D(dm, T Π)|, and the number of nodes that relay traffic in the most loaded node in an optimal
uniform traffic distribution. That is, DF (Π) = |D(dm,TΠ)|n(dBS)

(N−1) . Clearly, DF (Π) depends
on the specific network topology, and DF (Π) ≥ 1. Note that this uniform distribution may
be even not feasible for some random network topologies. The maximum rate achieved by Π
can be written in terms of DF (Π) as:

RΠ
sup(N,∞) =

Cw(N)

DF (Π)
,

where Cw(N) is the upper bound given in (6.1).
We compare now the performance of the DBF, UTD, and UTD-SP algorithms in terms

of distribution factor and average path length. Figure 6.3 shows the performance of these
three routing algorithms as a function of the network size and Figure 6.4 as a function of the
average number of neighbors per node.

Figure 6.3(a) and Figure 6.4(a) show the average distribution factor DF achieved by the
DBF, UTD, and UTD-SP algorithms. Figure 6.3(b) and Figure 6.4(b) show the average path
length L for the same three algorithms.

First, notice the highly unbalanced traffic distribution achieved by the DBF algorithm
and how it degrades with the network size (Figure 6.3(a)) and with the connectivity of the
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Figure 6.3: Data gathering in a random network with infinite buffers and average
number of neighbors per node equal to 15 as a function of the network size N . (a)
Average distribution factor DF (Π), i.e., the ratio between the number of nodes that
relay traffic in the most loaded node according to Π and the number of nodes that
relay traffic in the most loaded node in an optimal uniform traffic distribution. (b)
Average path length L in hops.

network (Figure 6.4(a)). The reason is that the nodes that discover first a path towards dBS

have a higher probability to be chosen as relay by its neighbors, which will only change
their next hop if a node with a shorter path toward dBS is discovered. Therefore, the traffic
distribution generated by the DBF algorithm is highly unbalanced. Moreover, this effect is
more remarkable in networks with higher average number of neighbors per node, where a
node that discovers a shortest path can be selected by a higher number of neighbors.

Note that the smaller DF (Π) is achieved, in all cases, by UTD. Moreover, the traffic dis-
tribution in ϕn(dBS) generated by the UTD and UTD-SP algorithms becomes more uniform
as the network size increases (Figure 6.3(a)). A similar behavior can be observed with the
network connectivity (Figure 6.4(a)): the traffic distribution becomes more uniform as the
average number of neighbors per node increases. Clearly, in large and dense networks, it is
easier to find a data gathering tree that uniformly balances the load among the neighbors of
dBS .

Note that in all cases, the distribution factor achieved by the UTD algorithm is at least
three times lower than the distribution factor achieved by the DBF algorithm. Consequently,
the maximum rate achieved by UTD is at least three times higher than the maximum rate
achieved by using the DBF algorithm.

As expected, the UTD algorithm presents in both comparisons a higher average path
length (Figures 6.3(b) and 6.4(b)). However, this difference with the shortest path routing
algorithm is bounded in all cases within a constant factor of approximately 1.7. Note that
DBF and UTD-SP algorithms are both shortest path routings and, therefore, have the same
average path length.
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Figure 6.4: Data gathering in a 200 nodes random network with infinite buffers: (a)
average distribution factor DF , and (b) average path length L in hops, as a function
of the average number of neighbors per node navg for 250 random networks.

6.5 Routing algorithms for finite buffers
If nodes have a limited space for the temporary storage of packets, the maximum achievable
rate is clearly reduced due to the presence of buffer overflows. Moreover, there is no reason to
believe that optimal routing algorithms which achieve the maximum rate for infinite buffers
will perform well under finite buffers. We already showed in Chapter 4 that, in the case of
lattice networks, the necessary conditions for a routing algorithm to be optimal under finite
buffers are more restrictive than for infinite buffers.

In this section, we show that the problem of finding the routing algorithm that achieves
the maximum rate in a random network with finite buffers is also NP-complete. Then, we
propose a simple approximation algorithm that achieves a maximum rate of, at least, three
times the maximum rate achieved by the usual DBF algorithm, for any given loss probability.

6.5.1 Optimal routing algorithms

A necessary condition for the optimal routing algorithms Πopt to achieve the maximum rate
RΠ

sup(N, Q) is to distribute the load uniformly among the nodes in ϕn(dBS). However, this
condition is not sufficient under finite buffers. Overflow losses will appear now in the most
loaded nodes, reducing the maximum achievable rate.

Computing the maximum achievable rate RΠ
sup(N, Q) for a finite value of Q requires

analyzing the packet distribution in the queue of the most loaded node dm, that is, where
overflow losses will appear first. To compute the packet distribution in the queue of dm, it
is necessary to analyze the entire queue subtree D(dm, T Π) with dm as a head node, de-
picted in Figure 6.5(a). Using the same approximation models for tree networks [53; 8] we
used in Chapter 4, this analysis can be reduced to the analysis of a much simpler two stage
network formed by considering only nodes located one stage away from dm and preserving
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Figure 6.5: The packet distribution in the queue of the most loaded node dm in a
random network (a) is the same as in its equivalent two-stage model (b).

the exogenous inputs. The resulting equivalent model is shown in Figure 6.5(b). The packet
distribution in the queue of dm is identical if we consider the entire random network (Fig-
ure 6.5(a)) or just the two-stage model (Figure 6.5(b)). But more importantly, using this
approximation model, we can also derive the DGT that minimizes overflow losses.

Nodes close to dBS carry a higher load and will suffer first from packet overflow losses,
determining the maximum achievable rate RΠ

sup(N,∞). Reducing overflow losses in the most
loaded nodes is equivalent to reducing the number of packets in the queue of the nodes, or
similarly, to make the packet distribution in their queues confined to small values. As we
already showed in Chapter 4, the routing strategy that minimizes the number of packets in
the queues of all nodes, and equivalently, minimizes the overflow losses, consists in making
nodes receive traffic exclusively from one of their neighbors.

Combining both conditions, the uniform traffic distribution and the overflow loss mini-
mization, Πopt is such that the data gathering tree G = T Πopt it induces consists of n(dBS)
disjoint subtrees STdi

= D(di, G), di ∈ ϕn(dBS), where each STdi
is a path of at most⌈

N−1
n(dBS)

⌉
nodes where each node is visited exactly once. In other words, each STdi

is a
Hamiltonian path.

Theorem 6.2 The algorithm to find the optimal routing algorithm that maximizes the achiev-
able rate per node for a random network with finite buffers is NP-complete.

Proof: Note that this problem is a particular case of Theorem 6.1 where all subtrees are
constrained to be Hamiltonian. An equivalent way to show that this problem is NP-complete
is to note that a particular case of this problem (when n(dBS) = 1) is equivalent to finding
a path starting from dBS that visits each nodes of the network exactly once. If we create a
dummy node dD that is connected to all nodes in the graph, this problem is equivalent to
finding a Hamiltonian cycle in this new graph. A Hamiltonian cycle is a closed loop through
a graph that visits each node exactly once. The problem of deciding whether a graph has a
Hamiltonian cycles is a special case of the traveling salesman problem (TSP), where each
pair of nodes with an edge between them has cost 0 and for each missing edge, the cost is
1 [39]. The problem of finding a Hamiltonian path is NP-complete, and the only known way
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to determine whether a graph has a Hamiltonian circuit is to undertake an exhaustive search.

Note that the optimal routing algorithm Πopt for random networks is similar to the opti-
mal algorithm for regular topologies: we showed that the algorithm that minimizes overflow
losses in a square grid consisted in distributing the load uniformly among the four arrival links
to the base station using a Hamiltonian path within the set of nodes associated to each of these
links. The regular topology of the square grid allowed to easily construct Hamiltonian paths.
However, in the more general case of random networks, it is an NP-hard problem.

6.5.2 Approximation algorithms
In the following, we introduce a distributed routing algorithm that reduces overflow losses
while allocating the load as uniformly as possible among the nodes in ϕn(dBS).

In general, the heuristics to solve the traveling salesman problem are quite difficult to dis-
tribute. A simple and popular heuristic is based on the Minimum Spanning Tree (MST). We
start by computing the MST of the set of nodes relaying traffic through a particular neighbor
of dBS . In our case, given that the only cost metric is the number of hops, the MST is just
the shortest path tree. Then, we do a depth-first search in the MST and generate an ordered
list of nodes according to the order in which they were discovered. We generate the routing
graph by relaying these vertices in the ordered list by a shortest path. Simple approximation
methods exists also for the euclidean TSP where shortest paths are always preferable than
indirect paths [39]. However, for the particular communication model we consider, we can
design specific algorithms which are less complex and exhibit better performance.

It is important to note that in the data gathering communication model, nodes close to
dBS carry more traffic than those nodes located far away, and therefore, they are subject to
higher packet overflow losses. As we will show later, most of the packet losses are indeed
concentrated in very few nodes close to dBS . From Theorem 4.5, we know that the routing
condition to minimize overflow losses consists in making nodes receive all traffic exclusively
from one neighbor. Therefore, in order to minimize buffer overflow, this condition has to be
specially enforced in the nodes close to dBS . To ensure now a uniform load distribution in
ϕn(dBS), we make nodes located further from dBS route their traffic such that the weight of
the subtrees is as equalized as possible. This idea is depicted in Fig 6.6.

Based on this idea, we propose the following distributed routing algorithm. First, using
an approximation algorithm, we establish n(dBS) disjoint Hamiltonian paths ST (di), di ∈
ϕn(dBS), of length LQ <

⌈
(N−1)
n(dBS)

⌉
departing from each neighbor of dBS . To generate these

paths, we use a simple incremental method that consists in inserting new points into a partial
path, starting from a single vertex, until the path is complete. One simple version of this
heuristic that seems to work best is furthest point insertion [39]: among the neighbors of the
end point that do not belong to any path (if any), we insert the one that is furthest from dBS .
Note that we can not assure that all Hamiltonian paths end with the same number of nodes,
and therefore, we can not guarantee an optimal traffic distribution.

Once we have generated the Hamiltonian paths, the nodes that do not belong to any path,
forward their traffic preferentially to the end points of the previously established paths using
the UTD routing algorithm with a small modification: the nodes that belong to any of the
Hamiltonian paths set their subtree cost c2 according to their position in the route, such that
c2 is inversely proportional to the number of hops towards dBS . In this way, there is a big
penalty to relay traffic on those nodes close to dBS , belonging to any Hamiltonian path.
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Figure 6.6: Routing algorithm for random networks with finite buffers: nodes inside
the circle route packets using a Hamiltonian path while the outside nodes try to
distribute load uniformly among the neighbors of the base station dBS .

Using this penalty gradient, we also ensure that all nodes remain connected. That is, we
allow nodes to connect to other nodes than the end-points if these are the minimum subtree
weight nodes. We denote this routing algorithms as UTD-Q routing. Note that the UTD-Q
routing algorithm can be executed in a totally distributed way and that it can also be applied
in the case of multiple data collectors and for different base station locations.

To reduce overflow losses, it is convenient to choose a large value for LQ, so that many
nodes receive traffic from only one neighbor. However, if LQ is too large, the traffic would be
distributed unevenly among ϕn(dBS), and overflow loses would consequently increase. This
suggests that there exists an optimal LQ value for which overflow losses are minimized. Note
that the average path length increases linearly with LQ, indicating that there exists a trade-off
between overflow losses (capacity) and the average number of transmissions (delay).

For illustration purposes, we show the DGT generated by the UTD and UTD-Q algo-
rithms with LQ = 4 for a single realization of a 200 nodes random network in Figure 6.7.
Note that UTD-Q avoids having nodes (such as d1 and d2) located close to the base station
and receiving traffic from several neighbors. However, it is also important to note that UTD
induces also in some cases Hamiltonian paths in those nodes close to the base station. The
reason is that the number of nodes located at a distance of d hops from dBS decreases lin-
early with d. Thus, in order to generate a uniform traffic distribution, it is necessary that
nodes close to dBS receive traffic from only a few of their neighbors.

6.5.3 Simulation results

In this section, we compare through simulations the performance of different algorithms for
packet routing in random networks with finite buffers. To drive the simulations we use NAB
(Network in A Box) [33], a network simulator described in the introduction chapter.
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(a) (b)

Figure 6.7: Data gathering routing in a random network: DGT generated by (a)
UTD and (b) UTD-Q routing algorithms.

We first analyze through simulation the overflow loss distribution depending on the rout-
ing algorithm used. Figure 6.8 shows the average overflow losses per node using the DBF,
UTD and UTD-Q algorithms for a transmission rate R = 0.75Cw, in a random network of
N = 200 nodes with an average number of neighbors per node navg = 15 and a buffer size
Q = 3. Overflow losses are represented by a circle centered in each node whose radius is
proportional to the average losses in each node. As expected, DBF routing (Figure 6.8(a))
induces high losses in some of the neighbors of dBS , mainly due to a highly unbalanced
traffic distribution. These hot-spots are suppressed when UTD routing (Figure 6.8(b)) is used
instead. However, nodes close to dBS that receive traffic from multiple neighbors still present
significant overflow losses. Note from Figure 6.8(b) that all the nodes that present significant
losses receive traffic from several neighbors. The UTD-Q algorithm reduces considerably
overflow losses in these nodes by making them receive all the traffic from only one neighbor.

We compare now the performance of different routing algorithms for packet transmissions
over random networks. As performance metric, we compute the maximum achievable rate
RΠ

sup(N, Q) considering that a rate is feasible if the average loss probability in the network is
smaller than 1%. Particularly, we compute RΠ

sup(N, Q) as a function of the buffer size Q, the
network size N , and the network connectivity navg for two shortest path routing algorithms,
DBF and UTD-SP, and two non shortest-path algorithms, UTD and UTD-Q. The values given
for UTD-G correspond to the maximum rate achieved for the optimal LQ value.

Figure 6.9 compares the average performance of DBF, UTD, UTD-SP, and UTD-Q as a
function of the buffer size Q in random networks of N = 300 nodes with average number
of neighbors per node navg = 15. Figure 6.9(a) shows the gain in the maximum achievable
rate gain over the DBF algorithm, that is, RΠ

sup(N, Q)/RDBF
sup (N, Q). As expected, UTD-Q

achieves always the highest rate per node and, on average, can be up to 4.5 times higher than
the rate achieved with DBF routing. This gain is clearly more noticeable for small buffer
sizes, where overflow losses are more critical. Note also that the performance improvement
of UTD-Q over UTD is only significant for small buffers. The reason is that, as we show in
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(a) DBF (b) UTD

(c) UTD-Q

Figure 6.8: Overflow losses per node in a 200 nodes network with navg = 15 and
Q = 3 using the (a) DBF, (b) UTD, and (c) UTD-Q routing with LQ = 5. Buffer
overflow losses are represented by a circle centered in each node whose radius is
proportional to the average losses in each node.

Figure 6.7, UTD tends to generate also Hamiltonian paths in those nodes close to the base
station, so that the benefits of UTD-Q are diminished.

Figure 6.9(b) shows the average path length relative to the average shortest path length,
i.e., the average path length if all the nodes use a shortest path to the base station. The reason
why UTD-Q presents a higher path length for small buffers is explained in Figure 6.9(c).
As the buffer size increases, both non-shortest path algorithms, UTD and UTD-Q, present
an average path length of approximately 1.5 times the average shortest path length. This
illustrates the trade-off between overflow losses and the average number of transmissions.

Figure 6.9(c) shows the average optimal LQ length of the UTD-Q routing that achieves
the maximum rate. As expected, the optimal LQ length is higher for small buffers and de-
creases monotonically with the buffer size. For small buffer sizes, to reduce overflow losses,
it is necessary to increase the length of the Hamiltonian paths, even if this implies a small load
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Figure 6.9: Average performance of DBF, UTD, UTD-SP, and UTD-Q as a function
of the buffer size Q in random networks of N = 300 nodes with average number
of neighbors per node navg = 15. (a) Average maximum achievable rate gain over
the DBF routing, (b) average path length relative to the average shortest path length,
and (c) average optimal LQ length.

unbalance in ϕn(dBS). Consequently, the average path length is also increased. For large
buffer sizes, the uniform load distribution becomes more crucial in order to reduce losses and
consequently, the length of the Hamiltonian paths should be reduced.

Figure 6.10 compares the average performance of the same four algorithms as a function
of the average node connectivity navg in random networks of N = 300 nodes and a buffer
size Q = 3. Note that, for all algorithms, the rate gain over DBF (Figure 6.10(a)) increases
linearly with navg. The reason is that, as we explained in the infinite buffer case, the traffic
distribution generated by DBF in ϕn(dBS) becomes more unequally distributed as the aver-
age number of neighbors per node increases. Note also that the performance gain of UTD-Q
over UTD increases slightly with navg. The reason is that in dense networks, nodes located
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Figure 6.10: Average performance of DBF, UTD, UTD-SP, and UTD-Q as a func-
tion of the average node connectivity navg in random networks of N = 300 nodes
and a buffer size Q = 3. (a) Average maximum achievable rate gain over DBF
routing, (b) average path length relative to the average shortest path length, and (c)
average optimal LQ length.

close to the base station are in the communication range of an increasing number of nodes.
Consequently, they can receive traffic from multiple nodes, increasing the overflow losses in
non-Hamiltonian paths. From Figure 6.10(b) and Figure 6.10(c), we can conclude that the
average path length and the optimal LQ length do not change significantly with navg.

Figure 6.11 compares the average performance of the same four algorithms as a func-
tion of the network size N in random networks with an average number of neighbors per
node navg = 15 and a buffer size Q = 3. The performance gain of UTD-Q and UTD over
DBF (Figure 6.11(a)) slightly increases with the network size and remains almost steady for
networks bigger than 300 nodes. Note also that the performance improvement of UTD-Q over
UTD is more significant for bigger networks. On the other hand, the average path length (Fig-
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Figure 6.11: Average performance of DBF, UTD, UTD-SP, and UTD-Q as a func-
tion of the network size N in random networks with an average number of neighbors
per node navg = 15 and a buffer size Q = 3. (a) Average maximum achievable rate
gain over DBF routing, (b) average path length relative to the average shortest path
length, and (c) average optimal LQ length.

ure 6.11(b)) and the average optimal LQ (Figure 6.11(c)) increases significantly with N . The
reason is that, for a constant average number of neighbors per node, bigger networks allow
for longer Hamiltonian paths while achieving a uniform traffic distribution in ϕn(dBS).

In view of these results, we can conclude that the main reason for the better performance
of the UTD routing algorithms family over the DBF algorithm is the more uniform distribu-
tion of the load in ϕn(dBS). However, the performance improvement of UTD-Q over UTD
is significant for small buffers and big networks. It is also important to note that, even if the
average overflow losses using the UTD and UTD-Q are similar for many network conditions,
the losses distribution differ considerably: while UTD concentrates the losses in very few
nodes close to dBS , UTD-Q distributes these losses over a higher number of nodes. This can
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also be observed in Figure 6.8.

6.6 Wireless random networks
In previous sections, we assumed that either the network is wired, or that there exists a trans-
mission schedule or frequency division multiplexing that avoids conflicts. Under this assump-
tion, nodes can simultaneously receive multiple packets and, at the same time, transmit one
packet to the next hop. This allowed us to model random networks as random graphs with
point-to-point connectivity. We turn our attention now to the problem of routing in wireless
networks.

We analyze first network capacity and show that the optimal transmission strategy re-
quires generating a transmission schedule which is also an NP-complete problem. Then, we
give the wireless interpretation of the optimal routing strategy we derived for wired random
networks. Based on this interpretation, we propose a simple alternative method to the time
scheduling that consists in modifying the media access control to deal with finite buffer and
reduce packet overflow.

6.6.1 Network model
The network model we consider is similar to the one of the previous section but with wireless
links. We assume that nodes use a fixed transmission power and achieve a fixed transmission
range Rtx. We adopt the following commonly used interference model [29]: let di and dj be
two sources with distance s(di, dj) between them. Then, the transmission from di to dj will
be successful if and only if:

s(di, dj) ≤ Rtx and s(dk, dj) > Rtx, (6.9)

for any source dk that is simultaneously transmitting. This interference model implies that
nodes can neither receive more than one transmission at a time nor transmit and receive at the
same time.

To avoid packet collisions, we assume a listening mechanism such as CSMA: nodes listen
to the channel before initiating a packet transmission, and transmit only if the channel is idle.
To resolve the problem of packet collisions due to the well known hidden terminal problem,
we assume an ideal RTS/CTS contention control scheme: when a node wants to transmit data
to another node, it sends out a Request To Send (RTS) packet. The receiver node replies
with a Cleared To Send (CTS) packet. After the transmitter node receives the CTS packet,
it transmits the data packet. Any other node receiving the CTS packet should refrain from
sending data for a given random time (solving the hidden node problem). To simplify the
analysis, we assume that this RTS-CTS mechanism is error-free and neither packet losses nor
collisions occur during this mechanism.

When packet transmission from a node is not possible (either the channel is busy or the
transmission will result in a collision with an already transmitting node), the packet is stored
in the buffer and re-scheduled after some random time tBO. This backoff mechanism is
widely used in media access control to reduce contention [75]. The idea of the backoff mech-
anism is to restrain a node from accessing the channel for a period of time and hopefully,
the channel will become free after the backoff period. To avoid synchronization among peri-
odic streams of traffic, tBS is a uniformly distributed random variable that takes values in a
backoff window [0, TBO].
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As we see in the next section, the achieved rate per node in the wireless scenario highly
depends on the media access control and transmission strategies [65]. We start by reviewing
some results on network capacity and transmission strategies.

6.6.2 Network capacity

In the wireless scenario, dBS can only receive packets from one of its neighbors simulta-
neously. Therefore, an obvious upper bound on the network capacity is given by the single
shared channel between dBS and its neighbors, which carries all the traffic generated by the
entire network:

Cc(N) ≤ Cl

N − 1
. (6.10)

This upper bound can only be achieved if the base-station is receiving all the time. Unfortu-
nately, it can be shown that this upper bound is in general not achievable with high probability
as the number of sensors increases to infinity [17]. Duarte-Melo and Liu [17] gave a construc-
tive lower bound that can be achieved with high probability in a randomly deployed network:
they showed that the maximum achievable rate per node is arbitrarily close to Cl

(N−1)(2−πR2
tx)

.
However, this lower bound assumes that nodes are synchronized and that there exists

a schedule that determines what subset of nodes can transmit simultaneously during which
time slot. This schedule which is left unspecified in [17], is highly non trivial to generate,
especially in a distributed context. Note also that both upper and lower bounds are O(1/N),
indicating that network capacity decreases with the total number of nodes N .

6.6.3 Optimal transmission strategies

The optimal transmission strategy requires generating an optimal schedule that determines
the subset of nodes that can transmit simultaneously. Unfortunately, the problem of deriving
optimal channel access schedules for multihop networks is an NP-Complete problem [4; 19]:

Proposition 6.1 The algorithm to find the optimal transmission schedule that maximizes the
achievable rate per node in a random wireless network with is NP-complete.

Proof: We represent the wireless random network with a connectivity graph Gc =
(V, E), where the edges represent that the distance between two nodes is less than the trans-
mission range. That is, transmissions from one node are heard by all its neighbor nodes. If we
assume that time is slotted and nodes are synchronized, the schedule can be seen as a function
f : V → that determines in which time slot each node transmit. To derive the optimal
scheduling function f is equivalent to solving the graph-coloring problem in a random graph.

The graph k-colorability problem [23] consist in, given a graph G = (V, E) and a positive
integer k ≤ |V |, finding a function f : V → {1, 2, . . . , k} such that f(u) 	= f(v) whenever
{u, v} ∈ E. The minimum chromatic number of the graph is the minimal k that allows to
solve the k-colorability problem.

Starting from the original network connectivity graph Gc, we construct the interference
graph Gi = (V, Ei) with edges connecting nodes that are withing each other’s interference
range. Computing the optimal schedule is equivalent to obtaining the chromatic number of
Gi and solve the k-colorability problem, which is an NP-complete problem [23].
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Figure 6.12: To obtain the optimal schedule requires solving the graph coloring
problem in the interference graph. a) Original wireless network, where edges rep-
resent that the distance between two nodes in less than the transmission range and
arrows indicate the routing algorithm. b) Equivalent interference graph, with edges
connecting nodes that are withing each other’s interference range. For instance,
since nodes 1 and 3 cannot transmit simultaneously (collision at node 2), there ex-
ists an edge between both nodes.

We illustrate this optimal schedule with an example. Figure 6.12(a) shows the connec-
tivity graph of a wireless network where arrows represent the routing algorithm and Fig-
ure 6.12(b) shows its correspondent interference graph. For this simple graph, we can easily
obtain the chromatic number (k = 4) and solve the 4-colorability problem. Therefore, as
shown in Figure 6.12(b), the optimal schedule consists in cycles of 4 time slots: in the first
time slot nodes 1 and 5 transmit simultaneously, and the nodes 2, 3, and 4 transmit in the sec-
ond, third and fourth time slots respectively. Given that all nodes transmit once during each
period of 4 time slots, we need 5 of these periods to transmit one packet from each node to
the base station. Therefore, the maximum generation rate per source is limited to one packet
each 20 time slots. However, note that this time scheduling is clearly not efficient.

To achieve the same amount of data delivered to the base-station for each node, a non-
uniform allocation of the bandwidth is necessary. While solving the graph coloring problem
results in a time schedule that assigns the same bandwidth to all the sources, the optimal
strategy requires assigning a higher bandwidth to the nodes that relay traffic for other nodes.
To consider the relayed traffic, we use virtual sources [17]: for each node, we create one
virtual source for every source whose traffic goes through this node. We reconstruct now the
interference graph adding these virtual sources to the connectivity graph and solve the graph
coloring problem to obtain the optimal traffic schedule.

Figure 6.13 shows the modified interference graph of the previous example with the vir-
tual sources. It is easy to verify that the chromaticity of this new graph is 11. Therefore, there
exists an optimal schedule of length 11 in which all nodes transmit one packet to the base
station. Consequently, the maximum rate that nodes can generate is limited to one packet
every 11 times slots, which is higher than the rate we obtained previously.

However, the k-colorability problem is NP-complete for all k ≥ 3 [23]. This problem
is indeed among the first ones proved to be intractable, and hence, it is very unlikely that an
optimal polynomial-time algorithm could ever be devised for it.
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Figure 6.13: To achieve a fair bandwidth load, we need to consider also the traffic
nodes relay. We generate a virtual source (marked with a prime) for each of the
sources relayed by a node and solve the graph coloring problem in this new graph.

6.6.4 Approximative solutions for finite buffers

Applying graph theory results, the chromaticity of a random graph is upper bounded by the
highest degree nmax plus one [12]. Therefore, there exists a schedule of length at most
nmax that allows all nodes to transmit at least once. Some polynomial time approximation
algorithms to compute schedules can be found in [56]. However, even to generate suboptimal
schedules is non trivial.

An alternative solution with good performance can be found in the Media Access Control
(MAC): some MAC schemes are designed to achieve fair bandwidth delivery to the base
station [75] or to have a fair sharing of the channel among local competing neighbors [51].
Among these, the backoff is a widely used MAC mechanism to reduce contention. The idea is
to restrain a node from accessing the channel for a period of time and hopefully, the channel
will become free after the backoff period. Generally, the backoff time tBO is randomly
drawn from a fixed backoff window [0, TBO]. In the following, we propose a simple backoff
mechanism to reduce overflow losses in wireless networks.

To motivate the problem, we show first in Figure 6.14 the overflow loss distribution in a
500 nodes random wireless network with navg = 15 and Q = 3 using a shortest path routing
algorithm and backoff window size equal for all nodes. Overflow losses are represented by a
circle centered in each node whose radius is proportional to the average losses in each node.
Note that this overflow loss distribution is similar to the distribution we obtained in the wired
case: a) overflow losses occur in nodes close to the base station and hence carrying more
traffic, and b) nodes that present high overflow losses receive traffic from multiple neighbors
(Figure 6.15).

The reason why nodes receiving traffic from multiple neighbors present high overflow
losses can be illustrated through an example. Let us consider a simple four nodes network as
the one depicted in Figure 6.16(a), where all nodes generate packets locally at the same rate
and node 4 relays traffic for nodes 1, 2, and 3. We consider the network in a high rate regime
and assume that nodes have always at least one packet in the queue waiting to be transmitted.
If we assume that all nodes have the same backoff window, the probability of capturing the
channel for a packet transmission is identical for all four nodes, and equivalently, the average
packet transmission time is also identical. However, the average arrival rate to node 4 is
four times higher than to nodes 1, 2, and 3. Analyzing the distribution on the number of
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Figure 6.14: Overflow losses per node in a 500 nodes network with navg = 15 and
Q = 3 using a shortest path routing algorithm and fixed backoff window identical in
all nodes. Buffer overflow losses are represented by a circle centered in each node
whose radius is proportional to the average losses in each node.

packets waiting in the queue of each node, it is clear that the number of packets in node 4 is
significantly higher than in any other node, which in the finite buffer case, will translate into
higher overflow losses. Thus even if the backoff mechanism regulates the transmission rate
of the nodes by preventing transmissions after packet collisions, it induces unbalanced queue
distributions.

To reduce overflow losses, we need a transmission strategy that minimizes the number of
packets waiting in the queue of the most loaded nodes. For instance, in the previous example
the optimal transmission schedule that minimizes the number of packets in the queues is
depicted in Figure 6.16(b): when node 4 has one packet waiting to be transmitted, it has
priority over its neighbors to capture the channel. In this case, the maximum buffer size
required at any node is just of one packet.

Note that this optimal schedule is very similar to the routing strategy that minimizes
overflow losses in the wired case, which consisted in making nodes receive traffic exclu-
sively from one of their neighbors (Chapter 4). This routing strategy guaranteed that packets
received in high loaded nodes can be immediately transmitted, so that the queue remains con-
strained. The wireless interpretation of this optimality condition is that when a node receives
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Figure 6.15: Detail of the overflow loss distribution in the center of the network:
nodes that present high overflow losses receive traffic from multiple neighbors.

one packet from any of its neighbors, it must have the opportunity to transmit it without re-
ceiving a new packet from its neighbors. This condition is equivalent to enforcing a higher
probability to capture the channel in nodes that carry more traffic.

A simple approach to induce this asymmetry in the channel access probability is to use
the backoff mechanism. In the previous example, we considered that all nodes have the same
backoff window size TBO and consequently, identical average packet transmission times.
Indeed, the average packet transmission time of a node di is inversely proportional to the
size of its backoff window TBO(di). Thus, to minimize the number of packets waiting in the
queue of the most loaded nodes, we require a different backoff window in each node which is
inversely proportional to the total traffic arrival rate, i.e., inversely proportional to the traffic
nodes relay. Under the central data gathering model, we can approximate the relayed traffic
with the distance to the base station: the traffic arrival rate to a node is inversely proportional
to its distance to the base station. Using this approximation, we propose a simple MAC
mechanism where each node adapts the size of its backoff window according to its distance
to the base station such that if h(di, dBS) > h(dj , dBS) then TBO(di) > TBO(dj).

As the network size increases, the traffic generated locally in high loaded nodes becomes
negligible with respect to the relayed traffic. Therefore, the total arrival traffic to a node
di is in average O(navg) times higher than the traffic that goes through its neighbors for
which di relays traffic. Consequently, we require di to have an average packet transmission
time O(navg) times smaller than these neighbors, or equivalently, a backoff window O(navg)
times smaller. Note also that the neighbors of di that relay traffic through di are located one
hop further from the base station that di. Consequently, we require a backoff window that
increases linearly with the distance to the base station and with slope equal to the average
neighbors per nodes, that is:

TBO(dj) = T 0
BOnavgh(dj , dBS). (6.11)

In the next section, we evaluate through simulations the performance of this simple MAC
mechanism for wireless networks with small buffers at the nodes.
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Figure 6.16: Wireless network example: a) if all nodes have the same probability to
capture the channel for a transmission, the average number of packets in the queue
of node 4 is significantly higher than in any other node, b) optimal transmission
strategy with a maximum buffer size of one packet.

Note that the backoff mechanism is a self-regulated mechanism: it is only applied when
collisions appear in the network, that is, when the network becomes congested. This control
mechanism can be combined with other control mechanisms, such as the linear increase and
multiplicative decrease approach [75].

Note also that the gain of the backoff approach we proposed to reduce overflow losses de-
pends on the MAC protocol used. Certain MAC schemes can already incorporate congestion
control mechanisms, that reduce the benefits of this simple algorithm.

6.6.5 Simulation results
In this section, we compare through simulations the performance of the linear increasing
backoff window mechanism with a constant backoff window where all the nodes have identi-
cally backoff window sizes. To drive the simulations we use NAB (Network in A Box) [33],
a network simulator described in the introduction chapter.

Figure 6.17 compares the average performance of both MAC mechanisms for different
buffer sizes Q as a function of the packet generation rate R in random networks of N =
100 nodes with average number of neighbors per node navg = 15. Particularly, we show
the throughput gain at the base station of the linear increasing backoff window mechanism
over the constant backoff window mechanism. As expected, the throughput gain is more
significant when buffers at the nodes are small. Note also that the gain increases linearly with
the rate for all buffer sizes. Thus, the throughput gain is more noticeable in networks with
small buffers and transmitting in a high load regime, that is, when overflow losses are more
likely to happen.

Figure 6.18 compares the average performance of the same two MAC mechanisms for
different network sizes N as a function of packet generation rate R in random networks with
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Figure 6.17: Average throughput increase of the MAC mechanism using a linear
increasing backoff window with the distance to the base station with respect to a
constant backoff window for different values of the buffer size Q in random net-
works of N = 100 nodes with average number of neighbors per node navg = 15.

buffer size Q = 5 and average number of neighbors per node navg = 15. Note that the
throughput gain increases with the network size, especially at lower rates. As above, the gain
increases linearly with the rate for all network sizes.

In general, the throughput gain we obtain by using the linear backoff mechanism in the
wireless case are qualitatively similar to the gain reported by using the UTD-Q algorithm in
the wired case. That is, this gain increases significantly with average degree navg, decreases
with the buffer size Q and slightly increases with the number of nodes N . This indicates that,
even if wireless networks are very different in nature from wired networks, the overflow loss
mechanism behaves quite similarly in both.

6.7 Summary

In this chapter, we studied the problem of routing in random networks. We first analyzed a
collision-free or wired random network model and considered both infinite and finite buffers
at the nodes. In the infinite buffer case, we studied the network capacity and showed that the
problem of finding the optimal routing algorithm that achieves this capacity is an NP-hard
problem. Then, we proposed a distributed approximation algorithm that behaves close to
optimal. Using similar techniques as in Chapter 3, we analyzed the effect of finite buffers on
the routing strategy and showed that finding the optimal routing algorithm is also an NP-hard
problem. We proposed an approximation algorithm to minimize overflow losses that achieves
an average rate per node considerably higher than the rate achieved with the usual shortest
path routing algorithm.



100 Data Gathering in Random Networks

0.9 1 1.1 1.2 1.3
1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

Rate

R
at

e 
G

ai
n

N=100
N=300
N=500

Figure 6.18: Average throughput increase of the MAC mechanism using a linear
increasing backoff window with the distance to the base station with respect to a
constant backoff window for different network sizes N with Q = 5 and average
number of neighbors per node navg = 15.

Finally, we discussed the wireless case, where packet transmissions among different
nodes can interfere and result in packet collisions. We showed that the overflow loss process
is quite similar in both collision-free and wireless models. We proposed a simple method
to reduce overflow losses that consists in adapting the backoff window size linearly with the
distance to the base station.



Chapter 7

Joint Source Coding and Routing

7.1 Introduction

Multipath routing was shown to be a good strategy in unreliable networks: by exploiting
the space diversity of the network and making the data flow along multiple routes, we were
able to overcome node failures and reduce the unpredictability of random networks. In this
regard, we described a routing algorithm that uses all the available paths between the source
and the destination such that the load is uniformly distributed. In the context of large and
dense unreliable networks where the number of available paths between any two nodes is
large, this routing algorithm outperforms other routing schemes that only make use of one or
few paths (Chapter 5). In this chapter, we show that we can exploit this multipath property
even further by using an appropriate source coding mechanism.

Until now we have characterized any routing algorithm by the maximum rate that nodes
can reliably transmit: That is, we considered only the network layer. However, there is
much to be gained if the upper layers are also considered in the design of routing algorithms.
Particularly, we investigate the interaction of the source coding and the routing mechanisms
in sensor networks, and consider a new performance metric of routing algorithms, namely
the distortion achieved at the destination. The idea is to combine the space diversity provided
by the routing algorithm and the network with an appropriate source coding technique such
as Multiple Description (MD) coding.

Packet transmissions over sensor networks are subject to many failures such as node
breakdowns, link failures, overflow losses, packet corruption, etc. In scenarios where re-
transmissions are not possible due to time constraints or expensive feedback, source coding
techniques that make all the received packets useful can be of great benefit. If, in addition
to this, the network provides the necessary spatial diversity to transmit packets along differ-
ent paths, multipath routing reduces the loss probability correlation among packets. Multiple
Description (MD) codes are specially conceived for this scenario: as opposed to Single De-
scription (SD) coding, an MD source encoder partitions information into descriptions that
can be sent over the available paths to the destination. Depending on the subset of packets
that is correctly received, the destination computes an estimate of the original source. The
quality of the estimate depends on the number of descriptions received but, in contrast to
the single-description case, the loss of packets does not lead to a catastrophic failure only to
degradation. This is illustrated in Figure 7.1.

101
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Figure 7.1: MD coding and multipath routing: source information is encoded in
two descriptions (packets), which are complementary and at the same time indepen-
dently good. Each description is sent along a different path. Even if we lose one
of these descriptions, the destination is able to compute an estimate of the original
signal.

The signal distortion at the destination depends on the number of packets received and
on the coding method used to generate the descriptions. Therefore, if we want to maximize
the quality of the reconstructed data, it is necessary to optimize jointly two elements: the
information rate at the destination and the reconstruction of the original data from the received
packets.

An interesting scenario where MD coding can be beneficial is in real time signal trans-
mission, where packet retransmissions are not possible due to the delay constraint. In this
chapter, we study the joint optimization of the source coding and the routing mechanisms
under this scenario: we formulate and solve analytically a network problem that merges both
coding and routing, in the context of real time data transmissions. We show that the most
sophisticated scheme (using MD coding and multipath routing) performs significantly better
and is more robust over a wide range of network parameters than the usual scheme, that is,
SD coding and single path routing.

One of the main limitations of sensor networks is the reduced memory available at the
nodes. This memory constraint translates into a limited (and generally small) space for the
temporary storage of packets, which causes packet loss due to buffer overflow. This is also a
scenario where MD coding can be used to reduce the consequences of overflow losses. We
also consider the practical aspects of using MD coding in large sensor networks where the set
of available paths between any source-destination pair is large. While most of the previous
work studies MD coding from a rate-distortion point of view, we concentrate on the practical
aspects of implementing an MD coding scheme in a sensor network.

The results obtained in both scenarios, real time data and finite buffer networks, indicate
the benefit of combining MD coding techniques and multi path routing in large and dense
unreliable networks.

The rest of the chapter is organized as follows. We start in Section 7.2 by a brief review
of some of the existing results and techniques of MD coding. In Section 7.3, we introduce
a simple network model where we study the optimal coding and routing strategies in terms
of achieved distortion. In Section 7.4.1, we analyze some MD coding techniques capable
of generating an arbitrary number of descriptions and in Section 7.4.2, we apply these MD
coding techniques in a data gathering sensor network.
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7.2 An overview of multiple description coding
We start by a brief review of some of the existing results and techniques of MD coding. The
performance of a source coder is characterized by its rate-distortion curve. In the case of MD
coding, closed formulas for the rate-distortion curves only exists for the case of Gaussian
sources and the two descriptions case. We consider, therefore, an independent and identical
distributed Gaussian source with zero mean and unit variance σ2 = 1. The information
generated by the source is encoded by an MD encoder that generates 2 descriptions using
B bits in total. We assume that both descriptions are equally important and the encoder
assigns B/2 bits per description. The achievable rate-distortion in this case is defined by the
following equations [55]:

D1
s = D2

s = 2−2B
2 (1−η),

Dc = 2−2B 1
1−(1−2Ds)2 ,

(7.1)

where Di
s, i ∈ {1, 2}, are the side distortions, that is, the distortion in the case that only

the i-th description gets to the destination, and Dc is the central distortion, or the distortion
achieved when both descriptions are received. The parameter η, (0 ≤ η ≤ 1), represents the
trade-off between the side and the central distortion, or equivalently, the amount of redun-
dancy that the coder adds to the generated descriptions.

A possible practical implementation of an MD coder is Multiple Description Scalar Quan-
tization (MDSQ), proposed by Vaishampayan [72]. An MD scalar quantizer can be seen as
an ordinary quantizer plus an index assignment that generates two indices per quantized sam-
ple. The index assignment consist in searching the sample value in a matrix and returning
the row and column indices of the sample. The trade off between central and side distortion
is represented by the number of diagonals we fill into the matrix. Figure 7.2 shows some
possible realizations of this matrix. For instance, if we fill only one diagonal of the matrix we
have a pure repetition code, achieving the best side distortion. On the other hand, if we fill
all possible diagonals we achieve the best central distortion possible. This scheme has been
proved to be asymptotically optimal [72].

An alternative way to implement MD coding is Unequal Error Protection (UEP) codes
with a progressive source coder [25]. The idea is to use a progressive source coder to produce
a representation at rate (2 − ζ)(B/2), ζ ∈ [0, 1], and then partition this representation in
three parts. The initial (most important) ζ(B/2) bits are repeated in each description; the
second (1 − ζ)(B/2) bits are put in description 1; and the final (1 − ζ)(B/2) bits are put
in description 2. This is summarized in the following scheme, where the square represents
repeated bits:

Description 2:

Description 1: ζ ζ(1−   )

(1−   )ζζ

(B/2) (B/2)

(B/2)(B/2)

In the particular case of a memoryless Gaussian source with squared error distortion and
two descriptions, the achievable rate-distortion region is given by the following formulas:

Dc = 2−2(2−ζ) B
2 ,

D1
s = 2−2B

2 ,

D2
s = 2−2B

2 ζ .

(7.2)

The parameter ζ, (0 ≤ ζ ≤ 1), represents the trade-off between side and central distortions,
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Figure 7.2: Index assignment method in Multiple Description Scalar Quantization
(MDSQ): for each sample we generate two descriptions that correspond with the
row and column index in the matrix. (a) If we only fill one diagonal of the matrix,
it results in a simple repetition code that minimizes the side distortion. (b) All
possible diagonals of the matrix have been filled, which corresponds to minimizing
the central distortion.

or equivalently, the amount of redundancy that the coder adds to the generated descriptions.
Goyal [25] proposed a very simple method to practically implement this coding strategy using
a uniform scalar quantizer followed by a double description generator.

For illustration purposes, we show in Figure 7.3 the side and central distortion trade offs
for both the MDSQ and UEP coding techniques. We compare also the theoretical distortion
with the distortion achieved experimentally using a uniform scalar quantizer followed by a
double description generation with B/2 = 8 bits per description. Note that MDSQ performs
slightly better than UEP for almost all central-side distortion pairs. The difference between
theoretical and experimental values is almost completely explained by two factors: first the
performance gap due to the non optimal quantizer, and secondly, the fact of considering only
one dimension in the quantizer.

7.3 Real time services over sensor networks: a toy example

An interesting scenario where MD coding can be of great value is in real time data transmis-
sion where packet retransmissions are not possible due to a delay constraint. Until now we
have not considered the delay incurred by packets to travel from the source to the destination:
all packets that reached the destination were considered as correctly received. However, in
certain applications involving real time data, packets need to reach the destination within a
certain delay, above which, the information they carry becomes obsolete.

The joint performance of a coding scheme and a routing algorithm can be characterized
by the achieved distortion at the destination. To translate the rate that a routing algorithm
provides into a distortion at the destination, we need to consider the source coding mecha-
nism, characterized by its rate-distortion curve. However, as we have seen in Section 7.2,
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Figure 7.3: Central and side distortion trade off for MDSQ and UEP coding tech-
niques with 8 bits per description. Solid lines represent MDSQ and dashed lines
UEP. The side and central distortions are expressed in dB, i.e., 10 log(Ds).

closed formulas for the rate-distortion curve exists only for the case of Gaussian sources and
two descriptions. Under a simple scenario, we derive in this section analytical expressions
for the distortion at the destination and compare quantitatively different coding and routing
techniques. Namely, we compute the distortion improvement achieved when two descriptions
and multipath routing are used instead of the usual single path and single description coding.

7.3.1 Network model and assumptions

To obtain analytical expressions for the distortion, we simplify the network model as much
as possible while still providing the main characteristics we want to explore: multiple source-
destinations and space diversity. We consider a simple four nodes network (Figure 7.4): two
devices act as sources, ds1 and ds2, sending data to dd1 and dd2 respectively. Any device may
serve as relay for ongoing communications.

We assume that sources generate real time data modeled as a zero mean and unit variance
Gaussian random variable that needs to reach the destination within a maximum tolerable de-
lay of Δ. Packets that have gone through a delay exceeding Δ are dropped at the destination.
We assume that intermediate nodes do not have the capability of dropping packets that have
already reached the maximum delay.

We model a sensor network that regularly measures a certain phenomenon without node
synchronization. In this regard, we assume that sources generate one packet of constant size
B bits each interval of T time units. The exact packet generation time inside the interval is
given by a random variable uniformly distributed from 0 to T , independent among nodes.
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Figure 7.4: Network model: ds1 and ds2 transmit real time data to dd1 and dd2 respectively.

The arrival process Ai of such a source can be characterized by the following formula:

Ai = iT + a(i), i = [0, 1, ...], (7.3)

where a is a random variable uniformly distributed in the interval [0, T ].
Links represent simplex communication channels of capacity Cl. Note that for both

source-destination pairs there exist two possible paths, each composed of two links. Both
packet flows share the same network and hence compete for a certain capacity. We model
each link li as a first come first served (FIFO) single-server queue qi with a deterministic
service time 1/μ = B/Cl, which is the time a packet takes to be transmitted from one node
to the following.

We denote by τ(di, dj) the random variable that indicates the total delay that a packet ex-
periences to travel from di to dj . Correspondingly, fτ(di,dj) represents its probability density
distribution and Fτ(di,dj) its cumulative distribution.

This simple scenario allow us to derive analytical expressions for the distortion achieved
at the destinations dd1 and dd2 under different transport and coding mechanisms. First, we
study the reduction in distortion achieved by using a multipath routing algorithm that dis-
tributes load between the two available paths instead of a single path routing. Secondly,
we analyze the benefit of using an appropriate source coding mechanism combined with the
multipath routing scheme.

7.3.2 Single description coding and single path routing
We start by computing the distortion for the usual single description coding and single path
routing. Figure 7.5 illustrates the routing algorithm and the equivalent flow model. Since this
flow model is equivalent for both source-destination pairs, we concentrate only on the pair
(ds1, dd1). Assuming that a packet is dropped when the packet delay has exceeded a fixed
value Δ, the distortion D at the destination in the single description case is given by:

D = 2(−2B)Fτ(ds1,dd1)(Δ) + (1 − Fτ(ds1,dd1)(Δ)). (7.4)

To obtain the delay cumulative distribution Fτ(ds1,dd1) incurred by packets to reach the
destination, we model each link li as a G/D/1 queue qi with a deterministic service time
1/μ = B/Cl and analyze the resulting queueing network problem shown in Figure 7.5. The
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Figure 7.5: Top: single description and single path routing coding flow model.
Bottom: queueing network model, where links are modeled by G/D/1 queues with
a deterministic service time 1

μ = B
Cl

.

analysis of this queueing network can be found in Appendix 7.A.1. After some computations,
we obtain the following approximation for the cumulative distribution:

Fτ(ds1,dd1)(Δ) ≈

⎧⎪⎨
⎪⎩

0, if Δ ≤ 2B
Cl

,

β + Cl

B (1 − β)(Δ − 2B
Cl

), if 2B
Cl

≤ Δ < 3B
Cl

,

1, if 3B
Cl

≤ Δ,

(7.5)

where β =
√

(1 − ρ1) and ρ1 is the queue utilization factor of q1. Combining now (7.4)
and (7.5) we obtain the distortion at dd1.

7.3.3 Single description coding and multipath routing
We now turn our attention to the case of SD coding and multipath routing. The optimal
multipath routing strategy for both source-destination pairs simply consists in using the two
available paths with equal probability. Figure 7.6 illustrates the routing algorithm and the
equivalent flow model. Since this flow model is equivalent for both source-destination pairs,
we concentrate only on the pair (ds1, dd1).

Given that we use again a SD coding scheme, we compute the distortion at dd1 using (7.4).
To obtain the delay cumulative distribution Fτ(ds1,dd1)(Δ) incurred by packets to reach the
destination, we proceed as in the previous section: we model each link li as a G/D/1 queue
qi with a deterministic service time 1/μ = B/Cl and analyze the resulting queueing net-
work problem shown in Figure 7.6. The analysis of this queueing network can be found in
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Figure 7.6: Top: SD coding and multipath routing flow model. Bottom: queueing
network model, where links are modeled by G/D/1 queues of service time 1
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Appendix 7.A.2. After some computations, we obtain the following approximation for the
cumulative distribution:

Fτ(ds1,dd1)(Δ) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if Δ < 2B
Cl

,

F1, if 2B
Cl

≤ Δ < 3B
Cl

,

F2, if 3B
Cl

≤ Δ < 4B
Cl

,

1, if 4B
Cl

≤ Δ,

(7.6)

where

F1 = β2 + 2β(1 − β)
(

Cl

B

)(
Δ − 2B

Cl

)
+ (1 − β)2

(
Cl

B

)2

“
Δ− 2B

Cl

”2

2 ,

F2 = 1+2β−β2

2 + (1 − β)2
(

Cl

B

)2

[
B
Cl

(
Δ − 3B

Cl

)
−

“
Δ− 3B

Cl

”2

2

]
,

with β =
√

(1 − ρ), where ρ is the queue utilization factor of any of the queues. Combin-
ing (7.4) and (7.6) we obtain the distortion at dd1.

We compare the achieved distortion by both routing strategies, single path and multipath
routing, theoretically and experimentally. Figure 7.7 shows the reduction in distortion in dB
achieved by multipath routing over single path routing for a maximum delay Δ = 2.5

μ under
different values of the network load ρ given by ρ = B

TCl
. Multipath routing clearly achieves

a lower distortion than single path routing for all the network load values. The distortion
reduction is maximum (about 5.5 dB) when ρ = 0.5, which corresponds to the maximum
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Figure 7.7: Multipath routing distortion improvement with respect to single path
routing. The y-axis represents the distortion gap in dB and the x-axis indicates the
network load. The solid line represents theoretical values while x-marks are results
from simulations. The maximum delay is fixed at Δ = 2.5

μ .

network load that the single path routing strategy can support. As we will show later, this
reduction in distortion is more significant for small values of the maximum delay Δ. This
gain is due to the more uniform load distribution achieved by multipath routing, which results
in a more efficient usage of the network capacity. Note also that the theoretical approximation
we derived closely follows the experimental results.

7.3.4 Double description coding and multipath routing

We have already shown the quantitative gain of using multipath routing with respect to single
path routing from a distortion point of view. Furthermore, we can exploit the space diversity
provided by the multipath routing algorithm and combine it with an MD coding that generates
two descriptions, where each description follows a different path toward the destination.

We assume now that sources generate two descriptions of equal size B/2, and depending
on the network conditions (congestion), sources add the necessary redundancy. These two
descriptions are forwarded randomly using the two available paths, such that two descriptions
of the same sample are not routed through the same path. We analyze the distortion achieved
at the destination by the two descriptions coding schemes discussed in Section 7.2: MDSQ
and UEP. Using an encoder based on MDSQ, the total distortion is computed as follows:

DMDSQ = DcFτ(ds1,dd1)(Δ)2+

2Ds(1 − Fτ(ds1,dd1)(Δ))Fτ(ds1,dd1)(Δ) +
(
1 − Fτ(ds1,dd1)(Δ)

)2
,

(7.7)
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where Ds and Dc are computed using (7.1). And using an encoder based on UEP:

DUEP = DcFτ(ds1,dd1)(Δ)2+

(D1
s + D2

s)(1 − Fτ(ds1,dd1)(Δ))Fτ(ds1,dd1)(Δ) +
(
1 − Fτ(ds1,dd1)(Δ)

)2
,

(7.8)

where D1
s , D2

s , and Dc are computed using (7.2).
To obtain the delay cumulative distribution Fτ(ds1,dd1) incurred by packets to reach the

destination, we proceed as in the previous section: we model each link li as a G/D/1 queue
qi with a deterministic service time 1/μ = B/2Cl and average arrival rate λ = 2/T , and
analyze the resulting queueing network problem. Note that this analysis is identical to the
one of previous section, where q1 and q2 present half the service time and twice the average
arrival rate. Even though both queues present the same utilization factor as in the multipath
and SD coding, the service time has been reduced by a factor of two, pointing out that the
communication model we are considering presents a better performance for small packets.

We jointly optimize now two elements: given the routing algorithm and the coding
scheme, we can calculate the loss probability of any individual description. Then, depending
on this loss probability, we adjust the coding scheme to achieve the lowest distortion possible.
Combining (7.7) and (7.8) with (7.6), we obtain the different values for the distortion at dd1

as a function of the "redundancy" we add in the descriptions. We adapt this redundancy to
obtain the lowest possible distortion for every network condition.

We compare the achieved distortion using multi path routing with single and double de-
scription coding theoretically and experimentally. Figure 7.8 shows the benefits of using an
MD coding over SD coding for different network loads ρ = B/TCl. For each ρ, we compute
the distortion achieved using MDSQ and UEP encoders for the central and side distortion
pair (Dc, Ds) that achieves the lowest distortion.

The MD encoder clearly outperforms SD coding for all the values of ρ, the distortion im-
provement being more remarkable for low values of the network load. As expected, MDSQ
slightly outperforms UEP, with a maximum distortion improvement of almost 1.6 dB for a
network load ρ = 0.125. As we will show later, this reduction in distortion is more signifi-
cant for small values of the maximum delay Δ. Note that as the network load ρ goes to 1, the
distortion improvement goes to 0. The reason is that in a highly congested network (high ρ),
almost all the packets reach the destination latter that the maximum allowed delay Δ. Con-
sequently, the benefit of MD coding is limited. Note also that the theoretical approximation
we derived closely follows the experimental results.

All the interactions between coding and routing we studied in this section are summarized
in Table 7.1.

7.3.5 Multiple description coding in large networks
All the coding and routing interactions we studied in this section can be easily applied to
more general networks. For illustration purposes, we compare through simulations the aver-
age end-to-end distortion achieved by the most sophisticated scheme, i.e., MD source coding
using scalar quantizers and a multipath routing algorithm, with the usual SD coding and sin-
gle path routing in a square grid network. The network model is identical to the one described
in Chapter 3 under a uniform communication model. As a single path routing algorithm we
use row-first, which achieves the maximum rate per node (Chapter 3). As multipath routing
algorithm, we use spreading, which has the convenient property of using all the available
paths between the source and the destination (Chapter 5). Figure 7.9 shows the distortion
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Figure 7.8: Distortion improvement using an MD encoder with respect to SD cod-
ing and multipath routing. The y-axis represents the distortion gap in dB and the
x-axis indicates the network load. Lines represent theoretical values, x-marks and
circles are results from simulations. The maximum delay is fixed at Δ = 2.5

μ . For all
network loads we code packets using MDSQ and UEP for the central side distortion
pair (Dc, Ds) that achieves the lowest distortion.

achieved by both schemes as a function of the rate per node and the maximum tolerable de-
lay Δ. As expected, the combination of an MDSQ encoder and multipath routing performs
significantly better than single path single description encoder. The performance gap is more
significant in the case of low rates and small Δ, where packet delay is more critical, and the
advantage of using MD coding more evident. As we showed in Chapter 5, row-first is the
optimal routing algorithm that achieves the maximum rate per node in a uniform communi-
cation scenario. Thus, the throughput achieved by row-first at high rates is higher than the
throughput achieved by spreading. Consequently, the distortion improvement of MD coding
and multipath routing decreases at high rates.

7.4 Multiple description coding and finite buffers: a prac-
tical case

In practice, common devices used in sensor networks have limited storage for the temporary
storage of packets, which causes packet losses due to buffer overflow. The resulting loss
probability distribution was thoroughly studied in Chapters 4 and 6. This is also a scenario
where MD coding can be very useful: by sending descriptions along different paths we try
to minimize the effects of overflow losses. Moreover, if these paths are sufficiently different,
the quality of the received signal will be less sensitive to local congestion.
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Routing Coding Distortion Improvement (in dB)
ρ = 0.25 ρ = 0.5 ρ = 0.75

Single Path Single description 0 0 0
Multipath Single description 0.6 5.5 3.3
Multipath UEP: two descriptions 12.1 8.8 5.7
Multipath MDSQ: two descriptions 13.6 9.4 5.9

Table 7.1: This table summarizes the different possible interactions between coding
and routing. The first column is the routing mechanism and the second column
shows the coding technique applied to data packets. The third columns indicates the
distortion improvement (in dB) with respect to the single path SD coding for three
different network load values, ρ= 0.25, 0.5, and 0.75, i.e., for low, moderate and
high traffic.

While in the previous section we studied MD coding from a rate-distortion point of view,
we concentrate now on the practical aspects of implementing an MD coding scheme in sensor
networks with finite buffers where the set of available paths between any source-destination
pair is large. To fully exploit the spatial diversity present in the network, we need an MD
coding technique capable of generating an arbitrary number of descriptions. We start by
reviewing some of the existing techniques to generate more than two descriptions and analyze
their computational complexity. We compare the end-to-end distortion that these techniques
achieve as a function of the number of descriptions for a simple network model characterized
by a fixed probability of failure.

Then, we analyze the application of these coding techniques in a practical situation: a
sensor network performing a data-gathering task. We analyze the optimal coding strategy
as a function of practical parameters (such as header sizes, buffer sizes, and transmission
rates) in addition to the number of descriptions. We show that although from a theoretical
point of view the use of more descriptions provides a better performance, this is not the case
when we consider practical constraints. We show experimentally that, depending on these
practical parameters, there exists an optimal number of descriptions that achieves a minimum
distortion.

7.4.1 From 2 to M descriptions

When the set of available routes between any source-destination pair is large, MD coding
techniques capable of generating an arbitrary number of descriptions may be necessary. How-
ever, most of the previous work that addresses MD coding deals only with two descriptions,
in which case close formulas for the rate-distortion curve have been obtained. In the previous
section, we discussed two MD coding techniques used to generate two descriptions: Unequal
Error Protection (UEP) [63; 64] and Multiple Description Scalar Quantization (MDSQ) [72].
We consider now the generalization of these two techniques to deal with an arbitrary num-
ber of descriptions. A generic MD coding scheme for three descriptions is depicted in Fig-
ure 7.10.

To compare the distortion achieved by different MD coding schemes and study the op-
timal number of descriptions, we start from a simple model of the network: we model each
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Figure 7.9: Distortion improvement achieved by using an MDSQ encoder and mul-
tipath routing with respect to single path and SD coding in a 400 nodes network.
The z-axis represents the distortion gap in dB, the y-axis the maximum delay Δ and
the x-axis the rate attempted per device. Each sample is encoded using 4 bits and
the link capacity is fixed to Cl = 1000 bps.

path as a point-to-point channel characterized by a constant probability ploss of losing a
packet, independently of the packet size. We also assume that packet losses are independent
among paths, and uncorrelated in time. If a packet reaches the destination (with probability
(1 − ploss)), we assume that it does not contain bit errors, hence it can be correctly decoded.
We consider a single source-destination pair with multiple paths between them, where the
source is Gaussian with zero mean and variance σ2. Under this scenario, we analyze the dis-
tortion achieved at the destination by different coding techniques as a function of the number
of descriptions M .

One possible technique to generate an arbitrary number of descriptions of Bd bits each,
consists in generalizing the UEP coding technique explained in the previous section. The in-
formation generated by the source is quantized by an MD encoder that generates a progressive
bitstream of length MBd bits and marks it at M different positions, each one corresponding
to the attainment of a distortion level Di

s (1 ≤ i ≤ M ) [63].
Assuming that each description follows a different path toward the destination, and de-

noting with k the number of descriptions out of M correctly received, the average distortion
D at the destination is given by:

D =
M∑

k=1

(
M

k

)
Dk

s (1 − ploss)
kpM−k

loss + σ2pM
loss. (7.9)

The M optimal values of Dk
s that minimize (7.9) for a given ploss, can be found using a



114 Joint Source Coding and Routing

D s
2

D s
3

D s
1 D s

1,2

D s
1,3

D s
2,3

D cSource Encoder
CH. 2

CH. 1

CH. 3

Figure 7.10: An MD system with three descriptions. Central decoder Dc receives
all the descriptions and can reconstruct the finest representation of the source. The
other decoders D
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s receive only a subset of the transmitted data. The quality of

the received data is proportional to the number of descriptions received.

minimization method: we optimally tune the redundancy in each description using Lagrange
multipliers. The output is then rounded to the nearest integer and the theoretical rate alloca-
tion is guaranteed over a long sequence of samples. This coding technique has the computa-
tional complexity of finding the optimal distortion values, which is linear with the number of
descriptions.

Figure 7.11 shows the distortion achieved by an UEP encoder with the optimal redun-
dancy at the descriptions as a function of the packet loss probability ploss for a Gaussian
source and a bitstream of 48 bits. We compare the minimum distortion achieved with 2 de-
scriptions of 24 bits, 4 of 12, and 6 of 8. The 6-description encoder outperforms encoders
that generate smaller number of descriptions for all packet loss probability, where the gain is
more significant for low values of ploss. These experimental results indicate that an increasing
number of descriptions allows for a fine tuning of the redundancy we add, and consequently,
achieves a lower distortion.

An alternative practical implementation of an MD coder is Multiple Description Scalar
Quantization (MDSQ). A M -description MDSQ encoder is basically as a central quantizer
and an index assignment in M dimensions: for each source scalar input, the encoder produces
M quantization indices. These indices can be seen as indices of row and column of a M -
dimensional index assignment hyper-cube in which each dimension has size 2B

d cells. The
idea is to fill this hyper-cube with no more than 2MBd numbers according to the packet
loss probability ploss, such that the difference of these numbers in all the hyper-planes is
minimized [9]. If only a subset of indices is received, the decoder can reconstruct the best
coarse version of the original signal and the quality increases with the number of received
descriptions.

However, the problem of completely filling the hyper-cube while minimizing the differ-
ence in each hyper-plane is NP-complete [9]. In practice, to achieve a trade-off between
central and side distortions, we only need to fill the hyper-cube partially. Note that com-
pletely filling the hyper-cube corresponds to minimizing the central distortion. To the best
of our knowledge, there does not exist an efficient optimization algorithm to partially fill the
hyper-cube, and the only possible solution is an exhaustive search. Therefore, the complexity
of generating the optimal hyper-cuber increases exponentially with the bits per description
and with the number of descriptions. The complexity of dynamically adapting an MDSQ
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Figure 7.11: Minimum distortion achieved by an UEP encoder with a Gaussian
source and a bitstream of 48 bits, for different number of descriptions M as a func-
tion of the packet loss probability ploss.

encoder to different operating points discourages a real-time implementation of this method
for more than two descriptions. For practical implementations, we thus consider only a two-
description MDSQ encoder.

7.4.2 A practical scenario: data gathering

The network model we considered in the previous section was simply characterized by a con-
stant probability ploss of losing a packet, independent of the number of descriptions. Under
these assumptions, we showed that a higher number of descriptions achieved a lower distor-
tion at the destination. However, in many practical scenarios, these assumptions are not valid,
and a higher number of descriptions does not necessarily lead to a lower distortion. Packet
loss probability clearly depends on many network parameters such as packet size and net-
work congestion, and in general, this loss probability is highly correlated in time and among
paths. We consider now all these practical parameters and analyze the use of MD coding in a
particular situation: central data gathering in a sensor network.

We measure a Gaussian random field X on a square area, with X being uncorrelated in
space and time. We uniformly place N sensor devices that sample the field and send all the
information to a single device (base-station), which gathers all the information generated by
the network and reconstructs the field. The resulting network is shown in Figure 7.12. The
network model we consider is identical to the square grid model described in Chapter 3.

We assume that each sensor generates samples uniformly with a rate of R samples per
unit time. More specifically, nodes generate one packet in every interval of duration (1/R)
seconds. Within an interval, the exact packet origination time is uniformly distributed from 0
to (1/R), independently among nodes. We further assume that the packet generation process
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Base−Station

Figure 7.12: Network model: a uniform placement of devices that measure a ran-
dom field and transmit the data to a base-station located in the center of the network.

is independent among nodes. To increase the communication efficiency, sensors group Sp

samples in one single data packet, and send it to the base-station. We assume that Sp is
determined by the application requirements. In practice, in addition to the samples (payload
of the packet), data packets contain also a header that includes information such as the device
identifier, sampling times, or sequence numbers. We denote by H the size in bits of the
header.

The sensors encode the generated samples and produce M descriptions. In order to make
the comparison fair among different coding schemes, we assume that the total number of
bits per sample is fixed. That is, we generate M descriptions of Bd = B/M bits each so
that the information rate transmitted by the network is constant regardless of the number of
descriptions. As Sp descriptions are included in the same packet, the total packet size K in
bits is given by K = H + Sp

B
M .

The nodes route packets towards the base-station using the spreading algorithm (Chap-
ter 2), which have the convenient property of using all the available paths between the source
and the base-station. Note that spreading allows to exploit the network diversity present in
the network, making the use of multiple description coding very convenient.

We assume that nodes are equipped with limited buffer capabilities for the temporary
storage of Q packets. When packets arrive at a particular node or are generated by the node
itself, they are placed into the buffer until the node has the opportunity to transmit them
through the required link. If the buffer is full, the newly arrived packet is dropped and no
retransmission is attempted. We consider that buffer overflow is the only source of packet
loss.

We assume that the packet transmission time between one node and any of its neighbors
is proportional to the packet size and model each link as a single-server queue with a de-
terministic service time equal to the packet transmission. In consequence, the probability
ploss of losing a packet for a given source depends on the network parameters such as the
transmission rate R, the packet size K , and the number of descriptions M .

With all the information generated by the nodes, the base-station reconstructs the field X .
We measure the distortion D between the real field X and the reconstructed field X̂ as the
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Figure 7.13: Distortion at the base-station as a function of the transmission rate R
in a 25 × 25 network using a UEP encoder that generates 1,2, and 4 descriptions
with B = 8 bits.

average mean-square-error (MSE) per device and unit time. That is,

D =

∑N
i=1(X(i) − X̂(i))2

NR . (7.10)

7.4.3 Optimal transmission strategy
We investigate now the optimal transmission strategy that achieves the lowest distortion,
that is, {Ropt, M opt, Kopt} = arg min{R,M,K} D. First, note that for any number of de-
scriptions M and packet size K , there exists an optimal transmission rate Ropt(M, K) that
minimizes the distortion. A higher transmission rate per node allows a more accurate field
reconstruction at the base-station. However, if the network becomes congested, the packet
loss probability increases due to buffer overflow and the distortion increases. The optimal
value for Ropt(M, K) can be computed by analyzing the associated queueing network using
the approximation tools shown in Chapter 4. For illustration purposes, Figure 7.13 shows
the distortion at the base-station for values of R around Ropt(M, K) and different number of
descriptions M . We observe how the distortion decreases with R until the network becomes
congested and overflow losses start increasing distortion. These graphs where obtained by
simulating a 25 × 25 network using a UEP encoder with B = 8 bits, H = 36 bits, and
Sp = 20.

We analyze now the optimal number of descriptions that minimizes distortion. First, note
that due to the practical constraints in real applications, every information packet needs to
include a header. Therefore, the traffic transmitted through the network increases with the
number of descriptions. Moreover, the characteristics of the input traffic of the queues also
changes. If we assume that each description follows a different path towards the base-station,
this multipath routing generates an arrival distribution to the queues that increases overflow
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Figure 7.14: Distortion reduction at the base-station using an MD encoder with re-
spect to SD coding as a function of the header-payload ratio using 8 bits per sample.

losses (as discussed in Chapter 4). These two factors increase the packet loss probability and
consequently, increase distortion.

On the other hand, as we have shown in the previous section, an increasing number of
descriptions allows for a fine tuning of the redundancy we add, and consequently, achieves a
lower distortion. Moreover, if we allow for different packet sizes, the size K of each packet
is reduced with the number of descriptions. From a queueing point of view, this packet size
reduction decreases network congestion and, equivalently, decreases overflow losses. This is
illustrated through a simple example in Appendix 7.B.

This suggests that there exists an optimal number of descriptions M opt that depends on the
packet size K , and more particularly on the ratio H/K . We compare the achieved distortion
using an UEP encoder for different number of descriptions as a function of the ratio H/K .
For each (M, K) pair, we let nodes transmit at the optimal rate Ropt(M, K). Figure 7.14
shows the distortion improvement achieved by using M = {1, 2, 4} descriptions with respect
to SD coding as a function of H/K in a 25 × 25 network with Sp = 20 and B = 8 bits.
Similarly, Figure 7.15 shows the distortion for M = {1, 2, 3, 4, 6} descriptions with B =
12 bits. We compare also the use of UEP and MDSQ encoders. Due to its exponential
complexity, we considered MDSQ only for 2 descriptions and B = 8.

In the case of B = 8 bits, the optimal strategy for H/K < 0.5 consists in generating
2 descriptions using an MDSQ encoder. As expected, the benefit of using 2 descriptions
decreases as the rate H/K increases due to the traffic increase. For values of H/K > 0.5, the
lowest distortion is achieved by SD coding. For instance, in some media access mechanisms
for wireless networks each packet needs to include a long preamble for its correct reception
(B-MAC [60]). In this scenario, the use of MD coding might be disadvantageous.

In the case of B = 12 bits, due to the exponential complexity of MDSQ with the bits
per sample, we considered only a UEP encoder (even for the simplest case of M = 2, an
MDSQ encoder requires to generate a 2B/2 × 2B/2 matrix where 2B/2+1 − 1 diagonals



7.5 Summary 119

0 0.1 0.2 0.3 0.4 0.5
−5

−4

−3

−2

−1

0

1

2

3

H/K

A
ve

ra
ge

 D
is

to
rt

io
n 

[d
B

]

M=1
UEP M=2
UEP M=3
UEP M=4
UEP M=6

Figure 7.15: Distortion reduction at the base-station using an MD encoder with
respect to SD coding as a function of the header-payload ratio using 12 bits per
sample.

can be filled). For small H/K values (H/K < 0.15), the lowest distortion is achieved by
generating three descriptions, for which a gain of almost 2.5 dB is achieved with respect to
SD coding. To generate more than three descriptions does not decrease the distortion. As the
header size increases, the performance of MD degrades due the traffic increase. Obviously,
the more descriptions we generate, the more rapidly it degrades. Consequently, the optimal
number of descriptions decreases when the ratio H/K increases: for values of H/K between
0 and 0.15, the optimal strategy consists in generating 3 descriptions. When H/K is between
0.15 and 0.35, the optimal is M = 2. Finally, when H/K > 0.35 we use SD coding. From
previous results we can also conclude that the use of MD coding is clearly more advantageous
in systems with a high number B of bits per sample.

These results differ from the theoretical results, where an increasing number of descrip-
tions always achieves a lower distortion. Depending on practical network parameters such
as header and packet sizes, there exists an optimal number of descriptions that achieves the
lowest distortion. We see here that this optimal parameter depends heavily on these network
parameters and need to be explored for each application.

7.5 Summary
In this chapter, we investigated the interaction of the source coding mechanism and the rout-
ing mechanism: we showed that there is much to be gained if the upper layers are also
considered in the design of routing algorithms.

We presented multiple description (MD) coding as the natural source coding to use over
dense networks that provide multiple paths between any source-destination pair. MD coding
is a powerful approach to combat packet losses in networks where retransmission is not al-
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ways possible. We studied the use of MD coding in two different scenarios: real time data
transmission and central data gathering in a network with constrained buffers.

In a real time data transmission scenario, we analytically computed the distortion at the
receiver for a simple network model. We showed that the most sophisticated scheme (multiple
descriptions source coding and multipath routing) performs significantly better than the usual
single path and single description scheme. The improvement is larger in the case of low rates
and small hard time constraint.

We studied also the generalization of two well-known MD coding techniques to handle
an arbitrary number of descriptions. We applied these techniques in a square grid network
with small buffers performing central data gathering. We showed that, depending on the
network conditions, there exists an optimal number of descriptions that achieves the minimum
distortion. This indicates that practical parameters, such as header sizes and rate per node,
should be carefully taken into account when setting up a multiple description coding system.

7.A Queueing network analysis

7.A.1 Single path routing
We analyze in this Appendix the equivalent queueing network problem for the single path
single description scheme illustrated in Figure 7.5. We model both links l1 and l2 as two
G/D/1 queues, q1 and q2 respectively, with a constant service time 1/μ = B/Cl. The
average arrival rate to q1 is given by λq1 = 2/T . Since the arrivals to q2 come only from
the output of q1, the interarrival time between any two arrivals is larger than the service time
1/μ. Therefore, we can model q2 as a constant delay of 1/μ.

The system delay probability density function fτ(ds1,dd1) can be calculated as the product
of these two queues delay probability density functions in the Laplace transform domain:

fτ(ds1,D1)(s) = fτ(ds1,ds2)(s)fτ(ds2,dd1)(s). (7.11)

To compute the delay distribution fτ(ds1,S2) associated to the first queue q1, we start by
deriving the arrival process Ai to q1. Since l1 represents a simplex channel, q1 receives the
addition of the traffic generated in ds1 and in ds2. Therefore, its arrival can be described as:

Ai = A1
i + A2

i , i = [0, 1, ...], (7.12)

where,
A1

i = i.T + a1(i),
A2

i = i.T + a2(i),

with a1 and a2 being two independent random variables uniformly distributed between 0 and
T . To compute the interarrival time distribution A(t) induced by this process we consider two
consecutive intervals, the (i−1)-th and the i-th, of length T and denote by ti the time between
two consecutive arrivals. We compute now the cumulative distribution function p(ti ≤ d),
where d takes values in the interval (0, 2T ).

We define a new random variable yi, that represents the arrival order of A1
i in the i-th

interval. That is, yi = 1 if A1
i < A2

i , and 2 otherwise. Then:

p(ti ≤ d) =
∑

yi∈[1,2] p(ti ≤ d/yi)p(yi). (7.13)
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Figure 7.16: (a) Computation of p(ti ≤ d/yi = 1) = 0. (b) Computation of
p(ti ≤ d/yi = 2) = 0.

We define:
P1 = p(ti ≤ d/yi = 1)p(yi = 1),
P2 = p(ti ≤ d/yi = 2)p(yi = 2).

We analyze now separately two different intervals: [0 ≤ d ≤ T ] and [T ≤ d ≤ 2T ].
- First case: [0 ≤ d ≤ T ]:
If yi = 1 and a1(i) ≥ d, then clearly p(ti ≤ d/yi = 1) = 0. If a1(i) ≤ d, the

probability that one arrival from previous interval happens in the period (A1
i −d, A1

i ) is given
by 1 − (

T−d+x
T

)2
. This is illustrated in Figure 7.16(a). Putting all together, P1 is given by

the following expression:

P1 =

∫ d

0

1

T 4

(
T − x

T

) (
1 −

(
T − d + x

T

)2
)

dx.

On the other hand, if yi = 2, that is a1(i) > a2(i), then the probability of A2
i to arrive in

the period (A1
i − d, A1

i ) is given by:

P2 =

∫ T−d

0

1

T

d

T
dx +

∫ d

0

1

T

x

T
dx.

This situation is illustrated in Figure 7.16(b).
- Second case: [T ≤ d ≤ 2T ]:
If a1(i) ≤ d−T , given that T ≤ d, the probability of one arrival in the (i− 1)-th interval

between (A1
i − d, A1

i ) is obviously equal to 1. Thus we can divide P1 in two contributions:
0 ≤ a1(i) ≤ d − T and d − t ≤ a1(i) ≤ T . If d − t ≤ a1(i) ≤ T , then the probability that
there is one arrival in the (i− 1)-th interval between (A1

i − d, A1
i ) is given by 1− (T−d+x

T )2.
Adding both contributions we have:

P1 =

∫ d−T

0

1

T
(
T − x

T
)dx +

∫ T

d−T

1

T
(
T − x

T
)(1 − (

T − d + x

T
)2)dx. (7.14)

If A1
i is the second arrival in the i interval, that is a1(i) > a2(i), the probability of A2

i to
arrive in the period (A1

i − d, A1
i ) is given by:

P2 =

∫ T

0

1

T

x

T
dx
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Putting all together, the interarrival time distribution A(t) in q1 is given by:

A(t) =

{
t(t3−8t2T+6tT 2+12T 3)

12T 4 , if t ≤ T
−4T 4+32tT 3−24t2T 2+8t3T−t4

12T 4 , if T ≤ t ≤ 2T.

Using this interarrival distribution we can easily compute the delay probability distribu-
tion fτ(ds1,S2) applying the G/D/1 formulas [38]. To simplify the analysis we make the
following approximation: under low to moderate load, the system time cumulative distribu-
tion function can be approximated by the following linear expression:

Fτ(ds1,ds2)(t) ≈
[
β + μ(1 − β)

(
t − 1

μ

)](
u

(
t − 1

μ

)
− u

(
t − 2

μ

))
+ u

(
t − 2

μ

)
,

(7.15)
where we defined β =

√
(1 − ρ1) and ρ1 is the queue utilization factor of q1.

Using this approximation and 7.11, the overall delay cumulative distribution function
Fτ(ds1,dd1) is given by:

Fτ(ds1,dd1)(t) ≈

⎧⎪⎨
⎪⎩

0, if t ≤ 2
μ ,

β + μ(1 − β)(t − 2
μ), if 2

μ ≤ t < 3
μ ,

1, if 3
μ ≤ t.

7.A.2 Multipath routing
We analyze in this section the equivalent queueing network problem for the multipath single
description scheme illustrated in Figure 7.6. We model both links l1 and l2 as two G/D/1
queues, q1 and q2 respectively, with a constant service time 1/μ = B/Cl and an average
arrival rate λ = 1/T . Note that both available paths for the pair (ds1, dd1) are equivalent. We
concentrate on the analysis of the path (ds1, ds2, dd2).

To resolve this queues system, we use Kleinrock’s independence approximation [37]:
several packet streams on a transmission line has an effect akin to restoring the independence
of inter arrival times. Given that we have a new incoming flow that arrives at q2 (the new
packets generated at ds2 that reach dd2 through dd1), we can assume that interval times and
packet lengths are independent, and compute the system delay probability density function
as the product of two identical probability density functions in the transform domain. That is,

fτ(ds1,D1)(s) = fτ(ds1,S2)(s)fτ(ds2,D1)(s) =
(
fτ(ds1,S2)(s)

)2
. (7.16)

The analysis of the queue q1 is similar to the analysis in the single description case (Ap-
pendix 7.A.1). Operating on (7.15), the Laplace transform of the probability density function
is given by:

fτ(ds1,S2)(s) ≈ βe−
s
μ +

(1 − β)μ

s

(
e−

s
μ − e−

2s
μ

)
. (7.17)

Combining (7.16) and (7.17), the system delay probability density function is given by:

fτ(ds1,dd1)(t) = L−1(
(
fτ(ds1,S2)(s)

)2
)

≈ L−1

[
β2e−

2
μ

s + (1−β)2μ2

s2

(
e−

1
μ

s − e−
2
μ

s
)2

+ 2β(1−β)μ
s

(
e−

2
μ

s − e−
3
μ

s
)]

.

(7.18)
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Computing the inverse Laplace transform and integrating, we derive the probability density
function common to both descriptions:

Fτ(ds1,dd1)(Δ) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if Δ < 2B
Cl

,

F1, if 2B
Cl

≤ Δ < 3B
Cl

,

F2, if 3B
Cl

≤ Δ < 4B
Cl

,

1, if 4B
Cl

≤ Δ,

(7.19)

where

F1 = β2 + 2β(1 − β)
(

Cl

B

) (
Δ − 2B

Cl

)
+ (1 − β)2

(
Cl

B

)2

“
Δ− 2B

Cl

”2

2 ,

F2 = 1+2β−β2

2 + (1 − β)2
(

Cl

B

)2

[
B
Cl

(
Δ − 3B

Cl

)
−

“
Δ− 3B

Cl

”2

2

]
,

with β =
√

(1 − ρ), where ρ is the queue utilization factor of any of the queues.

7.B Queueing example
Consider just a single M/M/1/Q queue with a buffer size of Q packets, average arrival rate
λ, and average service time μ. Applying M/M/1/Q formulas, the utilization factor is given
by ρ = λ/μ, and the probability of packet overflow po by:

po =
1 − ρ

1 − ρQ+1
ρQ. (7.20)

Suppose now that we generate M times more packets of 1/M the size. Given that the service
time is proportional to the packet size, this is equivalent to consider λ′ = Mλ and μ′ = Mμ
and Q′ = MQ. Obviously, the utilization factor does not change, that is, ρ′ = ρ. However,
the new probability of packet overflow p′

o is clearly reduced:

p′o = ρ(M−1)Q 1 − ρQ+1

1 − ρMQ+1
po < po. (7.21)

Note also that as the average waiting time in the queue is proportional to 1/μ, packet delay is
also reduced. Consequently, to reduce the probability of losing packet due to buffer overflow,
smaller packets are preferable.
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Chapter 8

Conclusions

The difficulties of routing in large scale sensor networks mainly stem from the constraints im-
posed by the simplicity of sensor devices: limited power, limited communication bandwidth
and processing capabilities, and small storage capacity. In this thesis, we concentrated on the
study and design of distributed routing algorithms for sensor networks: routing decisions at
each node are only based on local information. Particularly, we analyzed the routing problem
for common traffic scenarios encountered in sensor networks, namely uniform communica-
tions and data gathering. We also studied the routing problem under common limitations
imposed by sensor nodes such as small buffers and temporary node failures. For each of
these scenarios, we studied capacity limits and derived constructive routing strategies that
maximize the transmission rate per node. We now summarize the key results of our work and
discuss open issues.

8.1 Summary of main results
Point-to-point routing

We started by studying the problem of designing point-to-point routing algorithms for large
scale sensor networks. We formulated the routing problem as a problem of constructing
suitable random walks on random dynamic graphs. Particularly, we designed constrained
random walks on a particular family of random graphs (random lattice networks) that we
chose as an abstraction for the behavior of large sensor networks. We presented distributed
algorithms for computing the local parameters of random walks that induced a uniform traffic
distribution in the network. Using this routing formulation, we were able to route messages
without any notion of discovering / maintaining / repairing routes.

Multiple sources and/or destinations routing

As a natural extension to point-to-point routing, we considered the problem of multiple
sources and/or destinations routing in lattice networks. Particularly, we considered three dif-
ferent communication models: uniform communication, central data gathering, and border
data gathering. For each of these models, we studied capacity limits and derived constructive
routing strategies that achieve this capacity.

125
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Finite buffers

One of the main limitations of sensor nodes is their small memory size, which translates into
a limited space for the temporary storage of packets. In this thesis, we analyzed routing al-
gorithms for networks where nodes have a limited buffer space. This analysis required to
compute the distribution on the queue size at the nodes, which is a hard problem even for
simple networks. We proposed alternative approximation models to the usual Jackson’s The-
orem (or independence approximation) to obtain a more accurate distribution on the queue
size at the nodes. Using these approximations, we derived the routing condition to minimize
overflow losses: nodes receive all traffic exclusively from one neighbor. According to this
condition, we designed the routing algorithms that maximized the throughput per node under
the same three communication models mentioned above.

Robust routing and capacity

We considered also the problem of routing in large and unreliable networks such as those
composed of sensors nodes. We studied routing algorithms that maximize the rate per node
for dynamic networks under two different failure modes: a Markovian model that reproduces
failures due to malfunction in the nodes, and an energy limited model which is related to
depletion of communication resources. We showed that achieving robust communications
and maximizing the achievable rate-per-node are incompatible goals: while robust commu-
nications require using of as many paths as possible between the source and the destination,
maximizing the rate per node requires to use only a few of the available paths. We showed
how to explore this trade-off, depending on the degree of unreliability of the network. We
proposed the use of a particular combination of two routing algorithms, the first one being
optimal when there are no node failures at all and the second one being appropriate when the
probability of node failure is high. The combination of these two routing algorithms defined a
family of randomized routing algorithms, each of them being suitable for a given probability
of node failure.

Random networks

Even if random networks are very different in nature from grid networks, we showed that sim-
ilar principles can be applied to analyze the buffer occupancy. We analyzed first a collision-
free network model for both infinite and finite buffers at the nodes. We studied the network
capacity and showed that for both infinite and finite buffers, the problem of finding the op-
timal routing algorithm that maximizes the rate per node is an NP-hard problem. Then,
we proposed distributed approximation algorithms that behave close to optimal. These ap-
proximation algorithms achieved an average maximum rate considerably higher than the rate
achieved with the usual shortest path routing algorithm.

Finally, we discussed the wireless case, where packet transmissions among different
nodes can interfere and result in a packet collision. We showed that the overflow loss process
is quite similar in both collision-free and wireless models, and proposed a simple method to
reduce overflow losses in wireless networks. This method consisted in adapting the back-
off window size linearly with the distance to the base station. This mechanism allowed to
significantly decrease overflow losses in the network.
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Sensor networks and multiple description coding

Finally, we investigated the interaction of the source coding mechanism and the routing mech-
anism: we showed that there is much to be gained if the upper layers are also considered in the
design of routing algorithms. We presented multiple description coding as the natural source
coding to use over dense and unreliable networks. Particularly, we considered the use of mul-
tiple description coding in two different scenarios: real time data transmission and central
data gathering in a network with constrained buffers. We showed that in both scenarios, the
jointly optimization of the source coding and the routing mechanisms performed significantly
better than the usual source coding and routing schemes. We studied also the generalization
of two well-known multiple description coding techniques to handle an arbitrary number of
descriptions. We applied these techniques in a square grid network with small buffers per-
forming central data gathering and showed that, depending on the network conditions, there
exists an optimal number of descriptions that minimizes distortion.

8.2 Discussion and future research
Delay

The goal of the routing algorithms we proposed in most of the chapters was to maximize the
rate per node: We calculated network capacities and presented routing policies that achieved
this capacity. However, as we have discussed in Chapter 7, many real applications have a
maximum tolerable delay, above which data becomes useless. A system may be designed
to deliver high throughput at heavy load, and yet it may experience intolerable delays at
light load. In these scenarios, a performance measure that combines delay and throughput is
needed. For instance, a compact measure of combined throughput and delay is offered by the
concept of “power” [24], whose simplest definition is the ratio of throughput over delays.

Energy

Sensor networks are tightly constrained in terms of energy, and hence a careful resource
management is required. In sensor devices, most of the energy is used in the radio commu-
nications. Some of the optimal routing algorithms we have presented required a significantly
higher number of transmissions than suboptimal algorithms. For instance, the routing algo-
rithm that minimizes overflow losses in lattice networks required O(N) transmissions, while
a shortest path routing algorithm requires only O(

√
N). It is of interest to explore this trade-

off between energy and throughput, and the possible connections with the delay.

Data correlation

Besides path diversity, a dense network provides an enormous quantity of information about
the physical process being measured. This information is typically highly correlated in time
and space among sensors. This correlation can be exploited to overcome sensor network
limitations by designing transport protocols and coding schemes that trade this redundancy.
Data correlation also allows to reduce the information rate that nodes inject into the network.
For instance, intermediate nodes can perform data aggregation and caching in addition to
routing. This could be especially useful in the optimal routing strategies that minimize buffer
overflow, where we forced Hamiltonian paths to reach the destination. One line along which
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this work could proceed further consists in studying the interaction of the routing problem
for finite buffers and the correlation in the data.

Wireless sensor networks

The results presented for wireless random networks are preliminary results of an ongoing
research. For instance, we restricted the possible routing algorithms to the class of shortest
path routing, i.e., messages transmitted between any two nodes can only be routed following
a shortest path. However, this class of routing algorithms does not necessarily lead to the best
possible solution in terms of maximizing the rate per node.

Real measurements

Given the difficulty in performing actual measurements in wireless networks, all the algo-
rithms have been evaluated through simulations. Therefore, a logical extension of this work
would be to implement and evaluate all the algorithms in a real wireless network.
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