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...Ci muoviamo in un pulviscolo

madreperlaceo che vibra,

in un barbaglio che invischia

gli occhi e un poco ci sfibra.

Eugenio Montale - Ossi di seppia

“Too little signal compared to the noise: the problem kept frustrating me.”

Marvin Minsky

...e sono lì, che miagolo nel buio e cerco una risposta,

e poi ti arriva la risposta, la risposta finalmente arriva...

...epperò è sbagliata!

Rocco Smitherson

“Boh!”

Andrea L., martedì pomeriggio, aprile 2002 e giovedì mattina, maggio 2003
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Abstract

This dissertation addresses the adsorption of proteins in microchannels with the aim of

improving the result of an immunoassay. To observe the adsorption of fluorescently labelled

immunoglobulins G in laser ablated polymer microchannels, a confocal microscope was built.

By optically scanning the specimen, and observing one focal plane at time, this tool allows for a

high signal-to-background, which leads to a low limit of detection (10-9 M).

A numerical model for the adsorption kinetics of proteins on the walls of a microchannel has

been developed using the finite element method (FEM). The model illustrates the adsorption

limitation sometimes observed when the microdimensions of these systems induce a global

depletion of the bulk solution. A new non-dimensional parameter is introduced to predict the

final value of the coverage of any microsystem under static adsorption. A working curve and a

criteria (h/KΓmax > 10) are provided in order to choose, for given adsorption characteristics, the

value of the volume-to-surface ratio (i.e. the channel height h) avoiding depletion effects on the

coverage (relative coverage at least 90% of the theoretical one).

Simulations were compared with confocal microscopy measurements of IgG antibody adsorption

on the walls of a PET (poly(ethylene terephthalate)) microchannel. The fit of the model to the

experimental data show that the adsorption is under apparent kinetic control.

Two ways of loading proteins on microchannel surfaces for immunological applications have

been analysed with the FEM model: the “stop-flow” and the continuous flow processes. The

“stop-flow” method consists of successive static incubation periods where the bulk solution

depletes upon the adsorption process. A multi-step “stop-flow” protein coating is studied and

compared to a coating under continuous flow conditions. For the “stop-flow”, a non-dimensional
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parameter is here introduced, indicating the adsorbing capacity of the system, by which it is

possible to calculate the number of loads necessary to reach the optimum coverage.

For the continuous flow, the effects on the adsorption of the kinetic rates, flow velocity and wall

capacity have been considered. This study shows the importance of a careful choice of the fluid

velocity to minimise the sample waste. For diffusion controlled and kinetics controlled

processes, two flow velocity criteria are provided in order to obtain the best possible coverage,

with the same amount of sample as with the “stop-flow”.

Surface modifications have been conceived in order to improve the adsorption and the activity of

the physisorbed antibodies. The microchannels have been coated with titania nanomaterials,

chosen because of their biocompatible properties. Crystalline and amorphous TiO2 have been

used and the adsorption with respect to the native PET was improved by 3 times. A study of

adsorption as a function of the pH solution and different ionic strengths has been done in order to

infer the forces acting during the adsorption: it was found that hydrophobic forces helped by

electrostatic ones occur during IgG adsorption onto titania phases.

The “stop-flow” method was employed to coat the TiO2 modified microchannels with the

capture antibodies and improve the result of a microimmunoassay. When strong adsorbing

phases are used, the limit of detection of the assay was lowered by one order of magnitude.

The FEM model was used to obtain the kinetic rates of adsorption and desorption of IgG

antibodies on PET with a novel biosensor conceived in this lab, which measures capacitive

changes in the surface microchannel while the adsorption takes place. As the FEM model

foresees a three-dimension region where the adsorption might take place, it can be used to study

the adsorption in TiO2 gels developed in our lab.
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Résumé

Ce travail de thèse s’interesse à l'adsorption de protéines dans des microcanaux dans le but

d'améliorer le résultat d'un immunoassay. Pour observer l'adsorption des immunoglobulines G

dans des microcanaux polymériques un microscope confocal a été construit. Cet instrument

permet de sectionner optiquement le spécimen, en observant un plan focal à la fois. On obtient

ainsi un intense signal par rapport au bruit de fond, ce qui mène à une basse limite de détection

(10–9 M). Un modèle numérique pour la cinétique d'adsorption des protéines sur les parois d'un

microcanal a été développé en utilisant la méthode des éléments finis (FEM). Le modèle illustre

la limitation d'adsorption parfois observée quand les microdimensions de ces systèmes induisent

un épuisement global de la solution. Un nouveau paramètre adimensionnel est présenté pour

prévoir la valeur finale de la couverture de n'importe quel microsystème sous adsorption statique.

Un critère (h/KΓmax > 10) est fournis afin de choisir, pour des caractéristiques données

d'adsorption, la valeur du rapport de volume-à-surface (c.-à-d. la taille du canal h) évitant des

effets d'épuisement sur la solution (couverture relative au moins 90% que la théorique). Les

simulations ont été comparées aux mesures par microscopie confocale de l'adsorption d'IgG sur

les parois d'un microcanal en PET (poly(ethylene terephthalate)). L'interpolation du modèle aux

données expérimentales prouve que l'adsorption s’effectue sous contrôle cinétique. Deux

manières de charger des protéines sur des surfaces de microcanal pour des applications

immunologiques ont ensuite été analysées avec le modèle FEM : le "stop-flow" et l’écoulement

continu. Le "stop-flow" se compose des périodes successives d'incubation statique où la solution

s’épuise via le processus d'adsorption. Une couverture de protéines obtenue par "stop-flow"

successifs est étudiée et comparée à une couverture obtenue avec l'écoulement continu. Pour le

"stop-flow", un paramètre adimensionnel est présenté. Il permet d’indiquer la capacité
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adsorbante du système. Il est alors possible de calculer le nombre de charges nécessaires pour

atteindre la couverture optimale. Pour l'écoulement continu, les effets sur l'adsorption des

constantes cinétiques, de la vitesse d'écoulement et de la capacité de la paroi ont été considérées.

Cette étude montre l'importance d'un choix soigneux de la vitesse de la solution afin de réduire

au minimum la perte de reactif. Concernant les contrôles diffusionel et cinétique, deux critères

pour la vitesse d'écoulement sont fournis afin d'obtenir la meilleure couverture, avec la même

quantité de solution qu'avec le "stop-flow".

Des modifications de surface ont été conçues afin d'améliorer l'adsorption et l'activité des

anticorps adsorbés. Les microcanaux ont été recouverts par des nanomatériaux de TiO2, choisi en

raison de leurs propriétés biocompatibles. Les TiO2 cristallin et amorphe ont été employés et

l'adsorption dans un microcanal a été améliorée par 3 fois. Une étude de l'adsorption en fonction

du pH et des différentes concentrations ioniques a été faite afin d’evaluer les forces agissant

pendant l'adsorption.

La méthode "stop-flow" a été utilisée pour accrocher des anticorps de capture sur les parois des

microcanaux modifiés et pour améliorer le résultat d'un microimmunoassay. Quand des phases

adsorbantes fortement sont employées, la limite de la détection de l'analyse a été abaissée par un

ordre de grandeur.

Le modèle FEM a été employé pour obtenir les vitesses d'adsorption et de désorption des

anticorps d'IgG sur de microcanaux en PET, par mesure de capacitance avec un nouvel

biodétecteur conçu dans ce laboratoire. Comme le modèle FEM prévoit une région

tridimensionnel où l'adsorption pourrait avoir lieu, ce dernier peut être employé pour étudier

l'adsorption dans des gels de TiO2 développés au laboratoire.
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Controlled Protein Adsorption for Microimmunoassays

Introduction

1.1 From Babylonia to Immunoassays

Yesterday, as I was browsing a booklet from the city library of Lausanne, some lines and

illustrations about the history of documents, from the clay tablets of Babylonia (Fig. 1.1) to the

modern DVD, struck me. They were vague lines about the magic virtues or simply the usefulness

of writing. However, it astonished me that of all the things to say about these different kinds of

documents, what was underlined were the density of signs per cm2 and the duration of each

Figure 1.1. Photo of a cuneiform tablet from the

Archaeological Museum of Baghdad.

Figure 1.2. Manuscript of the Anabasis

(1374), by Xenophon, Milan, Biblioteca

Ambrosiana.
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document. So I learnt that in an Egyptian papyrus (about 200 b.C.) we can find 1 sign per cm2

and it can last 5000 years; that a medieval manuscript like the one depicted in Fig. 1.2 (XIII

century) has 15 signs per cm2 and it lasts 1000 years; a newspaper (XIX century) 25 signs/cm2

and we can read it for 100 years, while an “old” floppy disk has 20000 “signs” and a “modern”

DVD 500 000 000 and they are supposed to last 15 and 10 years respectively. And yet we cannot

reach the density of signs/cm2 (whatever it means) achievable in our brain, lasting, unfortunately

(or not?) one life.

Anyway, documents have become denser, so that they can be smaller and more practical and

portable. And they last less time: do people today say things that are less important than the

things said by the Babylonians?

The same path towards small dimensions (and short times) can be perceived in many technology

domains (if we agree that clay tablets are a first form of technology). The first cuneiform sign

was engraved in the stone of immunoassays by Rosalyn Yalow and Solomon Berson.

Immunoassays are exquisite analytical tests that use antibodies, so that it is nature that provides

us the fundamental tools we use to study biological processes. An immunoglobulin G antibody is

schematically represented in Fig. 1.3. Immunoassays derive their unique characteristics from

three important properties of antibodies: 1-their ability to bind to an extremely wide range of

natural and manmade chemicals, biomolecules, cells and viruses. This is because antibodies are

proteins, and the binding sites are derived from a huge number of potential combination of amino

acid sequences; 2-exceptional specificity for the substance, called antigen, to which each

antibody binds; 3-the strength of the binding between an antibody and its target.
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1.2 Towards the first immunoassay (homogeneous radioimmunoassay)

Yalow and Berson performed the first immunoassay, a radioimmunoassay (RIA) for insulin. It

was not a sudden discovery but the results of years of research on diabetes. At the beginning of

the 50’s, Mirsky1 had hypothesised that diabetes might not be due to a deficiency of insulin

secretion, but rather to an abnormally rapid degradation of insulin by hepatic insulinase. To

check this hypothesis, Yalow and Berson studied the metabolism of I131-labelled insulin in

patients who had already received insulin in the past (both for treatment of diabetes or as a shock

Fc fragment

Fab fragment

COOHCOOH

NH3

NH3

NH3

NH3

CH3 CH3

CH2 CH2

CH1 CH1

VH VH

VL VL

CL CL

antigen
binding antigen

binding

carbohydrate

constant
region

variable
region

COOH COOH

Figure 1.3. Scheme of an immunoglobulin G molecule. The heavy chain is in heavy gray; the light

chain is in light gray. The dotted lines represent the disulfide bridges connecting the heavy to the light

region and the two heavy regions together. Among the different domains composing the antibody, we

can notice the variable region, made up by a domain in the light and one in the heavy chain. The two

“arms” of the molecule are the antigen-binding fragment.



Introduction. Controlled Protein Adsorption for Microimmunoassays4

therapy for schizophrenia – the 50’s were years of pioneering in many domains and in many

ways!), observing that insulin disappeared more slowly from their organism than from the

plasma of patients who never received insulin.2 The suspicion arose that the delay in the

disappearance of insulin was due to the binding of insulin to antibodies that had developed in

response to the administration of exogenous insulin. As classical immunological techniques were

not sensible enough at that time, they introduced radioisotopic methods with high sensitivity.

At that time Rosalyn Yalow was a health physicist at the Veterans Administration Hospital in the

Bronx. Looking beyond the atomic bombing of Hiroshima, she became adsorbed with the

potential of radioactivity in medicine. Berson succeeded in enrolling in New York University

Medical School (after 109 medical school rejections). Radioactivity in medicine was the

leitmotif of their research.

With radioactivity they detected the antiinsulin-insulin complexes and demonstrated the

ubiquitous presence of insulin-binding antibodies in insulin treated patients. The paper

describing these findings2 was rejected by Science and initially rejected by the Journal of

Clinical Investigation: when awarded the Nobel Prize for medicine in 1977, Rosalyn Yalow

entertained the audience with the story of this rejection.3 The concept purported about by that

paper was too far ahead for the immunologists of the 50’s, so that, in order to publish, they had

to change “insulin transporting antibody” with “insulin binding globulin” in the title, and they

had to document that the binding globulin was indeed an antibody by showing how it met the

definition of antibody given in a standard textbook of bacteriology and immunity: theirs was a

difficult revolution, as they had to upset the classical concepts using the widely accepted bases.

What was difficult to accept at that time was that small proteins like insulin and small peptides

such as vasopressin and oxytocin are antigenic in some species, and that the equilibrium
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constants for the antigen-antibody reaction can be as great as 1012 litres per mole. Today

antibodies are produced for most different molecules, as small as caffeine and trinitrotoluene.

In that paper they also reported that the binding of labelled insulin to a fixed concentration of

antibody is a quantitative function of the amount of insulin present, thus posing the bases for the

radioimmunoassay in plasma. Years of research and experiments had yet to pass before the

theoretical concepts could be translated into an immunoassay.

Radioimmunoassay is simple in principle. The competing reactions that form the basis of RIA

are shown in Fig. 1.4. The concentration of unknown unlabelled antigen is obtained by

comparing its inhibitory effect on the binding of radioactively labelled antigen to the specific

antibody with the inhibitory effect of known standards. The validity of RIA (as well as of all the

LABELLED
ANTIGEN

Ag• +

SPECIFIC
ANTIBODY

Ab

+

Ag

Ag-Ab

UNLABELLED
ANTIGEN

in known standard solutions or
unknown samples

LABELLED ANTIGEN-
ANTIBODY COMPLEX

Ag•-Ab→←

↑↓

UNLABELLED ANTIGEN-
ANTIBODY COMPLEX

Figure 1.4. Competing reactions that form the basis of radioimmunoassay (RIA). Adapted from

Yalow R. S. (1977).
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other kind of competitive immunoassays, as we will see) is dependent on the identical

immunological behaviour of the antigen in unknown samples with the antigen in known

standards. The immunogenic reaction is so specific that it can permit ready distinction, for

instance, between corticosterone and cortisol, steroids which differ only in the absence of or

presence of respectively a single hydroxyl residue, or caffeine and theophylline, differing in just

one methyl group.

The cascade reactions following a revolution are often many and unpredictable. RIA clarified our

understanding of diabetes and the physiology of glucose homeostasis. It demonstrated that type 1

diabetes was an insulin deficient state, whereas type 2 was characterised by a resistivity to

insulin.4 Berson and Yalow demonstrated also that sometimes obesity can be associated with

hyperinsulinemia and insulin resistance.5

Radioimmunoassay was applied to many diverse areas in biomedical investigation and clinical

diagnosis. Up to the seventies RIA was still much used. However, it has been slowly replaced by

fluorescent immunoassay, which has high sensitivity and an obvious advantage in safety. On the

annual report of an immunoassay company it was related that their market of RIA decreased by

only 11% from 1977 to 1999 (while the sales for their system for chemiluminescence increased

linearly with the years).

1.2.1 Homogeneous and heterogeneous immunoassays

Today, an incredible number of different types of immunoassay exists, with different

configurations, exploiting the most diverse principles for detection. The variety of assay types

stems from the advantages of each for different types of analytes and samples.

In this dissertation heterogeneous assays will be treated, i.e. assays in which the antigen or the

antibody is bound to a support. Solid phase (heterogeneous) immunoassays (SPI) were
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introduced by Catt and Tregear in 1967.6 SPI has become one of the most used kinds of

immunoassay. The principle of SPI is based on the ability of antibody-coated polymers to bind

an antigen. The materials originally used for the support were poly-(tetrafluoroethylene-g-

isothiocyanatostyrene)7 or sephadex-isothiocyanate8 but it soon became apparent that some

unsubstituted polymers like polypropylene and polystyrene may adsorb antibodies that can then

bind an adequate quantity of antigen. Until Catt and Tregear immunoassays were performed in

the homogeneous way.

1.2.2 Sandwich and competitive immunoassays

Homogeneous and heterogeneous immunoassays can also be classified as unlabelled and labelled

ones. Labels are molecules attached to the antibody or the antigen allowing the detection, as they

normally are fluorescent or radioactive. When no label is used, secondary immune reactions such

as precipitation and agglutination are used. The labelled immunoassays can be divided into

sandwich (or “two site assay”) and competitive. There is a lack of agreement on the

denomination of competitive immunoassay, so that the definitions of “type I-reagent observed”

for the sandwich and “type II-analyte-observed” for the competitive immunoassay are preferred.

The classical configuration for the “type I” is with the capture antibody bound to a surface,

which binds the antigen, which, in turn binds a labelled antibody. Clearly, to perform this assay,

the antigen must be big enough to bind to two different antibodies. The maximal sensitivity is

attained as the amount of capture antibodies on the support approaches infinity, for which

femtomolar detection limit of antigen can be detected; the theoretical sensitivity of the assay is

one molecule of analyte; the antigen-antibody reaction is less influenced by substances such as

salt and urea; the assay time is relatively rapid. An advantage of this technique is also the
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enhanced specificity obtained from two separate recognition steps provided by the two

antibodies that are generally selected to recognise two different epitopes on the antigen.

“Type II” assay is basically the one invented by Berson and Yalow and it can be used to

quantitate both substances of high molecular weight and haptens (a small separable part of an

antigen that reacts specifically with an antibody). To have the maximal sensitivity, the

concentration of the capture antibody must be the lowest possible, in order to give way to the

competition between the labelled and the non-labelled antigen. However, the sensitivity of the

assay is dependent upon the affinity constant of the antibody: theoretically it is about 10-14 M,

two orders of magnitude higher than with a “sandwich assay”.9 The assay reaction is slow since

equilibrium must be reached.

The first choice normally falls onto the “type I”, both for the sensitivity and for the time-to-

result. Of course, when the antigen is too small (less than 1000 Da) or the two epitopes are too

close to each other to allow two antibodies to bind, a “type II” assay is the only choice we have.

Further subclassifications come in play depending on the size of the immunogenic couple

antigen-antibody, their affinity, and the species in which the antibodies are raised. For instance,

six kinds of different “type II” assays can be performed,10-15 and even subtler subdivisions are

possible. 16, 17

Today, one of the most used kind of immunoassay is the enzyme linked immunosorbent assay

(ELISA) born with the aim of amplifying the signal of the test thanks to an enzyme covalently

linked to the antigen, generating a fluorescence probe. The enzyme should permit fluorimetric,

luminometric or colorimetric measurements. The enzymes of choice are normally alkaline

phosphatase (ALP) and peroxidase. The first removes 5’ phosphate groups from DNA and RNA,

but also from nucleotides and proteins; the second catalyses a reaction in the form ROOR’ +
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electron donor (2e- + 2H+) →  ROH + R’OH. The substrates normally used are the p  –

nitrophenyl-phosphate (PAPP) for ALP and H2O2 / 3,3’,5,5’-tetramethylbenzidine (TMB) for the

second. In both cases a fluorescent molecule that can be detected at 405 and 450 nm, which is

also electroactive, is produced. In general, they increase the detection limit of a sandwich

immunoassay by 2-10 times, which permits a visual evaluation in large-scale screenings.

1.2.3 Microimmunoassay: a door opened to better performance and new research domains

An obvious breakthrough of immunoassays is towards high throughput analysis, shorter times

for the response, less amount of reagents used…all that leads to talk about miniaturisation.

Widman and his group at Ciba Geigy sowed the seed for a miniaturised total chemical analysis

system (µTAS) in 199018 rendering clear the advantages of miniaturisation (and eventually the

results have given him reason). Evolving towards “micro”, heterogeneous immunoassays benefit

from the high surface-to-volume ratio in the microchannel, and homogeneous assays typically

take advantage of the multiplexing and very fast electrophoretic separations made possible by

microchip format.

Inevitably, with the advantages, the problems raised, stimulating other domains of research. For

instance in Fig. 1.5 the detection limits as a function of the detection volume for different

techniques are reported.18 It is clearly shown that µTAS requires very sensitive techniques to

have the same limit of detection as for larger systems.

All the detection techniques for microimmunoassays can be divided into optical and

electrochemical. The most commonly observed form of detection is fluorescence, primarily due

to its high sensitivity and ease of integrating a label.15 Fluorescein based probes were very used

until recently, but the research in fluorolabels has resulted in products that have extraordinary

characteristics like low photobleaching, high quantum efficiency when bound to proteins or
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nucleic acids, pH insensitivity allowing maintenance of fluorescence intensity over a broad

range, unlike fluorescein which loses fluorescence below pH 8.0.

A promising type of fluorescence is fluorescence polarisation, which detects the change in

anisotropy caused by the slower rotation of bound with respect to the free label. 1 9

Chemiluminescence, which requires no external light, and light scattering are other ways of

exploiting light for detection. 20-24

Figure 1.5. Detection limits as a function of the detection volume for electrochemical and

fluorescence methods. The range of detection for immunoassays is shown, with the limits for

competitive and sandwich immunoassays. The area at the bottom left corner represents the

concentrations at which less than 1 molecule per volume of detection occurs.
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Kitamori applied the thermal lens concept in microimmunoassays.25 The thermal lens effect (see

Fig. 1.6), discovered by Gordon et al.,26 is a photothermal effect and results when energy from a

laser beam passing through a sample is absorbed, causing heating of the sample along the beam

path. The lens is created through the temperature dependence of the sample refractive index. The

lens usually has a negative focal length since most materials expand upon heating and the

refractive index is proportional to the density. This negative lens causes beam divergence and the

signal is detected as a time dependent decrease in power at the centre of the beam. With this tool,

detecting the secondary antibody conjugated with colloidal gold, secretory human

immunoglobulin A,27 carcinoembrionic antigen,28 and interferon-γ29 were successfully

determined with good sensitivity, reducing the time-to-response from tens of hours to some

minutes.

Figure 1.6. The coaxial excitation and probe beams are focused into the liquid sample causing

localized temperature increase. The refractive index of the material is thus modified in such a way that

the medium behaves as a lens by temperature increase of the material: this is the "Thermal Lens

Effect". Since the size of thermal lens linearly depends on the amount of the absorbed molecules,

quantitative analysis can be carried out by measuring the probe beam divergency.

Excitation and probe beams

Microchannel

Sample Thermal lens
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Electrochemistry is the other detection branch for immunoassays, and among all the

electrochemical techniques, voltammetry is the one of choice since its performance improves

when using microelectrodes.30, 31 In the micrometer range, in fact, a shift from planar to non-

planar (e.g. hemispherical) diffusion occurs, causing an increase in the collection efficiency of

the electroactive species at the surface. 32 The practical result is an increase in the signal-to-noise

ratio, which generally translates into a lower detection limit. Our lab presented a sandwich

immunoassay for the detection of the D-dimer, an important element of the blood coagulation

mechanism, performed in a disposable polyethylene terephthalate (PET) microfluidic chip.33

1.3 Proteins onto Surfaces

The surface activity of proteins is a fundamental property of these complex macromolecules that

derives from their large size, amphipathic nature, and the many types of chemical interactions

that can occur between proteins and surfaces. Therefore, interfaces of almost any type that come

into contact with protein solutions tend to become quickly occupied by proteins, leading to

profound alterations in the physicochemical and biological properties of the interfaces. Proteins

at interfaces are important in many applied areas, including separation and purification, the

biocompatibility of biomaterials, mammalian and bacterial cell adhesion, blood coagulation at

solid and membrane surfaces and, of course, solid phase immunoassays and biosensor

development. Despite a fairly long history of study of proteins at interfaces, many of the

fundamental mechanisms remain only partly understood, and research on proteins at interfaces

remains very active.34

Protein surface adsorption was already under study to find blood-compatible plastics35 when the

first heterogeneous immunoassays came out. In the 1960’s thrombogenicity of plastics was
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already known as the major drawback to their use in artificial organs in contact with blood, and

surface modifications were already envisaged to avoid clot events.36, 37

Heterogeneous immunoassay have profited from the know-how of that time and triggered further

studies in antibody adsorption on different surfaces. The goals to reach in immunoassays and

medical devices are opposite: while in the first case good adsorption is needed to improve the

final response, in the latter adsorption is to be avoided, or possibly, just the proteins that could

render the prosthesis compatible (like heparin) are to be adsorbed.

Surface modifications to enhance the adsorption of the capture antibodies must also keep into

account the denaturation of the antibody due to the adsorption process.38 In 1992 Butler said that

“in the area of SPI, the technological cart is ahead of the scientific horse”. Actually, he observed

that immunoassay technology has had already expanded, largely because of convenience and

simplicity, without regard for an understanding of the immunochemistry of those antigen-

antibody interactions which occur in close proximity to hydrophobic, synthetic solid phases to

which one reactant has been immobilised, most typically by passive adsorption. The activity of

adsorbed antibodies, in fact, is found to be even less than 1% of the original one.

The best solutions for this problem seemed to be the binding of the antibodies to the surface

through the avidin-biotin system.39 In any case the best stability and sensitivity are achieved

when antibodies are covalently attached to a polymer.40

In miniaturised systems, non-specific binding effects can easily become a dominant and limiting

factor. In addition, the amount of reagent immobilised is relatively low as compared to “macro”

systems and thus, the stability of the biological reagents becomes of paramount importance. The

problem of the non-specific binding was brilliantly resolved39 by depositing sequentially a

biotinylated Immunoglobulin G IgG, neutravidin and biotinylated dextran. The resulting
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hydrophilic surface easily resists the adsorption of proteins. In addition, the dextran surface layer

can be replaced by any biotinylated probe or antibody to efficiently functionalise the surface.

Beads have also been used because they can dramatically increase the surface area in a small

fluid volume.28, 41 Polystyrene beads with a paramagnetic iron core can be collected by a magnet

for the detection, after the capture step.42-46

1.4 Computational Models for Immunoassays

We can now imagine that setting up a novel immunoassay can be time consuming and expensive.

Modelling can help by saving both time and money, predicting the optimal conditions (antigen

concentration, primary and secondary antibody titers, and time for chromogen development) for

the linear dependence of absorbance on antigen concentration. An enormous number of models

are created to predict, simulate and improve immunosystems, especially in the immunosensor

domain. The microdimensions and the fluidics add even more parameters to the study.

Computational models in immunology first arose to describe the antigen-antibody interaction.47

The phrase “computational model” does not have a simple definition. “Model” implies a

simplification of the system under study, while “computational” entails the use of some form of

quantitative technique to deduce information relating to the system. The use of a computational

model involves an attempt to use both data gathered and assumptions and knowledge of the

system under study to infer additional information regarding the system. If the assumptions are

true and the model was carefully constructed, the predictions of the model should be eventually

observed, or the experiments can be planned on the base of these predictions. I have to add the

depressing note by Merrill48 that “verifying the predictions does not prove that the assumptions

are true, only that they may not be inconsistent with observations”. In the study of a complex
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system, such as an immunosystem, models are essential even if they can be very simple. If a

model, based on a collection of hypotheses and assumptions, reveals that there are no

contradictions between these hypotheses, it means that these assumptions are at least sufficient to

specify a simplified version of the system. Then, the assumptions and the purpose of the model

must be evaluated critically, as well as the reasonableness of the results obtained from applying

the model. A comprehensive bibliography on models for protein adsorption and immunosensors

is presented in the following chapters.

1.5 Thesis plan

In this dissertation, adsorption of proteins in microchips is studied by a confocal microscope

built-on-purpose, and laser induced fluorescence. A finite element model (FEM) has been

implemented to simulate the systems studied and find new ways to coat microchannels in order

to have an efficient immunoassay. Surface modifications have also been developed in this aim.

In particular, in chapter 2 it is described how the confocal microscope was conceived and built.

As we have just seen, fluorescence detection is the method of choice for microsystems because

of its high sensitivity. Confocal microscopy enhances this aspect of fluorescence. The samples

are “optically sectioned”, so that the background signal can be rejected, obtaining high signals

compared to the background.

In chapter 3 the FEM model is described and calibrated on the Langmuir assumptions, which are

the most general and those with which a lot of systems can be studied by simply changing the

base assumptions (many derivations from the Langmuir assumptions can be found49-51).

Adsorption in microsystems is studied and the huge amount of data obtained from simulations is
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gathered to draw a picture of the effects of the microsystem surface-to-volume ratio on the

protein adsorption.

In chapter 4 two ways of coating microchannels in view of an immunoassay are described. The

continuous flow is normally used in microfluidic systems, as it allows hyphenation with

numerous other techniques. The “stop-flow” method consists on stopping the flow to allow the

analyte more time to diffuse to the active wall. It was proposed in 1962,52 mainly in

chromatography53-55 and its effect on the analyses has been studied.52,56 The “stop-flow”

methodology is here simulated in a multi-step way and the adsorption obtained is compared with

that obtained in flowing conditions.

In chapter 5 a study of protein adsorption on TiO2 coated microchannels is presented. The

detection is done by way of the confocal microscope. TiO2 is very interesting for its

biocompatible characteristics. Normally, protein adsorption is studied in macro-systems. With

this study the behaviour of TiO2 microchannels is already at hand for immuno-applications (and

it allows to save a lot of money, as labelled fluorescent molecules are very expensive). The

effects of the sorbent phase on the activity of the antibody are observed.

In chapter 6 the “stop-flow” method is applied to immunoassays performed in TiO2 modified

microchannels. The results are compared to those obtained in non-coated PET microchips

without “stop-flow”, especially in terms of the final sensitivity of the tests.

As with the confocal microscope it was difficult to observe the protein adsorption in “real-time”

under flowing condition, in chapter 7 the FEM model is used to interpret data obtained in flow

conditions with a new technique (Super-Capacitance-Admittance-Tomoscopy) developed in our

lab to study protein adsorption and bioreactions in microsystems. The FEM model is flexible

enough to describe different systems, enabling their deeper knowledge.
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Confocal Microscopy to Observe Proteins Adsorption in

Microchannels

2.1 Introduction

“Too little signal compared to the noise: the problem kept frustrating me.”

Marvin Minsky

The confocal microscope is one of the principal tools for bioanalysis. Thanks to it we can

have impressive 3D images of biological samples such as neurons, muscular tissues, cells. It

was invented by Marvin Minsky in 1955 during his postdoc at Harvard, “to understand

brains, at least at the microscopic level”. Minsky was obsessed by the problem of mapping

the brain cells in a three dimensional way.1

A critical obstacle was represented by the tissue of the central nervous system being solidly

packed with interwoven parts of cells. Consequently, even staining all of them, it was still

hard to see anything at all. As Marvin Minsky says: “This is not merely a problem of opacity,

because if you put enough light in, some will come out. The serious problem is scattering.

Unless you can confine each view to a thin enough plane, nothing comes out but a

meaningless blur. Too little signal compared to the noise: the problem kept frustrating me.”

Finally, one day, he thought that “the way to avoid all that scattered light was to never allow

any unnecessary light to enter in the first place.” The core idea of a confocal microscope was

thus set, that is, eliminating with a pinhole all the light not initially aimed at the focal point.

A confocal microscope selects the light illuminating the sample with a pinhole, eliminating

most of the scattered light. In Appendix 1 an excerpt from Minsky’s memoir about the

invention of the microscope is reported, describing its structure (one of the clearest



                                                                            chapter 2. Confocal Microscopy to Observe Proteins Adsorption in Microsystems24

descriptions I have read). The light is then condensed on one point of the sample and the

fluorescence is again selected by another pinhole. The simplest scheme for a confocal

microscope is reported in Fig. 2.1. If we use the condenser to collect the fluoresced light and

a dichroic mirror to discriminate the incoming from the outgoing light as done in Fig. 2.2, we

have the configuration of the microscope that is normally adopted today. Then, as the

specimen is illuminated one point at a time, it must be scanned. Today this is done by moving

the beam with a series of mirrors. The specimen itself, however, can be scanned as well. The

point-by-point information is then put together in a final image by numerical devices. Minsky

did not patent his invention, nor published it, but he set the bases for one of the most useful

scientific tools.

Though confocal microscopy is essentially used in biology,2 it has also applications in

chemistry. Thanks to its restricted field of view, concentrations in the picomolar range of

amino acids were detected after separation by capillary zone electrophoresis.3 Fluorescein

2nd pinhole

light source
condenser

lens

objective

lens

detector

1st pinhole specimen

focal plane

not in focal planes

Figure 2.1. Scheme for a confocal microscope. The light is focused into the first pinhole that selects

all the beams not conjugated with the focal plane. After having analysed the specimen, the fluoresced

light is focused into a second pinhole, which is conjugated with the first and the focal plane. This

pinhole rejects again all the light coming from not-in-focal planes. The detector is normally a PMT

(photomultiplier tube).
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derivatives at 5 × 10-12 M were detected in microtiter plates.4 Detection in gels and capillary

arrays was achieved by Mathies and co-workers.5, 6 The analysis of matrixes for

chromatography, the visualisation of protein adsorbed on different supports, the study of

diffusant in polymer films are other possibilities offered by this technique.

Over the last few years, our laboratory has investigated the mass transport properties of

proteins in microsystem. In particular, microimmunoassays in disposable polymer chips

integrating electrodes for electrochemical detection have been developed.7, 8

For the present work, there was the need to study the behaviour of proteins in polymer

supports used in microimmunoassays (behaviour that often means adsorption, as I lately

understood). Furthermore, fluorescence is the method of excellence for detecting

concentration in microdevices. The amounts of protein used in microsystems are often very

dichroic mirror

light source

pinholes

detector

objective

specimen
not in focal plane

focal plane

Figure 2.2. Scheme of an epifluorescence confocal microscope (like the one mounted in this work).

The light to and from the specimen passes by an objective. A dichroic mirror passes the incident light

and reflects the fluorescence.
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small: normal concentrations are in the nanomolar range, so that a sensitive technique must

be used. When the pinhole used is small, confocal microscopy allows to enhance the signal-

to-background and signal-to-noise ratios (thanks to rejection of light coming from the planes

out of focus with the analysed sample plane), improving the limit of detection.

A previous PhD student of the lab (François Bianchi) had began to put in place a confocal

microscope:9 it was easy to realise its potential usefulness in the field I wanted my

dissertation to develop. It was not rigorously a confocal microscope, for the pinhole system

was not present and the scan of the specimen was not possible. Following the guidelines of

Ocvirk,10 a confocal microscope has been built and optimised so that imaging (not in an

immediate way) and, above all, measuring and obtaining profiles of fluorescent molecules on

transparent supports can now be carried out with it.

The scope of this work is also to establish a method of investigation. The microscope was

used to study the adsorption of IgG antibodies on different surfaces and under different

conditions. The method can be improved, but the results that can be obtained are already

satisfactory.

The goal here is to give an insight of IgG adsorption in these systems and possibly improve

it. The higher adsorption concentration (called Γmax) is obtainable when a compact monolayer

of proteins is formed. In order to know the Γmax value for IgG in our systems, we silanised the

microchannels and then we activated this coating with glutaraldehyde. This method is proved

to give a monolayer on smooth surfaces studied by atomic force microscopy (AFM). The

value found in this way matches well the theoretical value calculated with the molecular area

of an antibody.

As the adsorption on non-silanised microchannels is always lower than this value, new

surface modifications are explored, which can be able both to enhance the surface
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concentration of antibodies and to keep their natural activity even after adsorption. The

confocal microscope was also tested as a detector for capillary electrophoresis experiments

performed in microchannels. Some non-optimised but promising results are reported,

witnessing the usefulness of the microscope for these applications.

2.2 Experimental Part

2.2.1 Microchannel fabrication

The technique to fabricate the polymer microchannels has been fully described.7-9 Briefly, the

ethanol and water rinsed polymer films ((poly(ethylene terephthalate), PET, 100 µm thick,

Melinex; polystyrene, PS, 125 µm thick, Goodfellow) are exposed to a mask patterned 193

nm beam from an ArF excimer laser. The speed of the displacement of the substrate, the

fluence and the repetition rate of the laser define a 50 µm deep cavity. The channels for

adsorption studies are 210 µm wide at the top and 170 µm wide at the bottom, 50 µm high

and 1.5 cm long. The channels for capillary electrophoresis had the classical double T shape,

with three 1 cm long arms and one 5 cm long separation channel. Beside the separation

channel, near the detection point, a simple 0.4 cm long “check channel” was made. This was

filled with a fluorescent solution in order to find the z position of the objective to be used in

the capillary electrophoresis experiment, performed just after translating the laser spot from

the “check channel” to the separation channel. The segment defining the sample plug volume

was 0.4 mm long. To allow apertures in the channel, laser drilling was performed at the

channel extremities without moving the substrate. After ablation, the debris are removed by

gentle rubbing with a methanol wetted tissue. The channel structure, with microholes at each

end, is then sealed with PET/polyethylene (PET/PE) lamination at 130 °C and 2 bar pressure

with an industrial lamination apparatus (Morane, U.K.). The photoablated PET presents the
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favourable characteristics already described7 and also the following: a) pronounced

transparency to the light used to excite the labelled antibody; b) the debris produced by the

laser ablation are easily removable and, however, do not generate important noise.

Polystyrene has also been tested but it is slightly less transparent, and the debris are noisier

and more difficult to remove. Normally, accommodating glass chips and bulky holders under

the objective of the microscope is not a negligible problem; the polymer chips fabricated in

that way presented the obvious, nonetheless important advantage of needing a submillimeter

working space.

2.2.2 Reagents and Procedure

A 1mg/ml (6.67⋅10-6 M) solution of labelled antibody (Fluorolink Cy5 labelled antirabbit

IgG, Amersham Pharmacia Biotech) was prepared in deionised water, and by serial dilution

of it with 0.01M PBS (SIGMA) at pH 7.4, further solutions were obtained. The washing

buffer is a 0.1% Tween-20 (SIGMA) solution in PBS. The adsorption of the fluorolabelled

antibody was performed by filling a channel with a drop of 8 µl of a given solution

concentration, placed at the inlet and pushed in with a pipette. After a certain incubation time

t, the channel was emptied by flushing air, and then washed three times with 10 µl of

washing buffer. As it has been already pointed out,7 the volume of washing solution is about

100 times that of the channel, which ensures a very efficient washing step. The quantity of

antibody adsorbed in the channel was then measured by the confocal microscope. Each

channel was used just once. This procedure has been followed for different concentrations.

To enhance the quantity and favour the adhesion of the antibody onto the channel, the surface

was silanised.11, 12 Open channels were cleaned in a series of solvents (chloroform, isopropyl

alcohol, methanol, and then water) and then transferred to a 1.5% v/v solution of (3-amino-

propyl)triethoxysilane in toluene for 2 h. During that time the chips were silanised due to the

hydrolysis of the silane and condensation with reaction groups on the surface. The silanised
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substrates were sonicated in the series of solvents to remove any unbound silane. The amino-

functionalised substrates were then activated by incubating the silanised channels in a 10%

v/v solution of glutaraldehyde (Grade II, 25% in aqueous solution) in PBS for 1h at room

temperature. After the channels were rinsed thoroughly with deionised water to remove any

unreacted glutaraldehyde, the antibody solution was let to adsorb as previously described. A

scheme of the entire process is presented in Fig. 2.3.

OH

OH

OH

OH
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NH2
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OH
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OH

+ +OHC(CH2)3CHO H2N-protein+EtO Si
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NH2

CH(CH2)3CH N-proteinO Si N

OH

OH

Figure 2.3. Overall scheme of the protein immobilisation method via silanisation and successive

activation by glutaraldehyde.
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Another method to improve the adsorption activity of the ablated PET is by enhancing the

amount of carboxyl groups on PET.13, 14 First, hydrolysis of the PET ester was performed in a

1:1 mixture of 0.25 M NaOH (Fluka) and acetonitrile (Fluka) at 65°C overnight to expose

COOH groups. Then, the channels were washed with water and then oxidised with 0.32 M

KMnO4 (Fluka) in 0.6 M H2SO4 for 1.5 hours at 70°C. Two washing steps with 6 M HCl and

two others with water follow to remove the brown manganese oxide.

Some microchannels were also coated with gold nanoparticles, with an average size of 19

nm, prepared by reducing a tetrachloraurate salt with trisodium citrate.15 The nanoparticles

solution was let to dry in the channels overnight and the unattached nanoparticles were

finally removed, rinsing with water.

2.2.3 Microscope Instrumentation

The chips were placed on the xy moving plane. This is constituted by a micropositioner stage

(Newport, 2 cm range, 10 µm step) for the Y direction, and a DC-Motor Controlled

translational stage for the X direction (M.415 DG, GMP, controlled by a C842.20 DC-Motor

Controller, with 16cm range, 0.1 µm step) run by a Windows operating software (C-842

WinMove). The same stage was used for the z direction. The stages measure their movement

in counts, with a ratio 118.57 counts/µm (company information: manual). For imaging the

proteins adsorbed onto the channel surface, it is important to know exactly this ratio. To do

that, once the microscope was finally built as described below, 4 channels were drilled 1.5

cm distant one from another the same chip. The channels were filled with a Cy5 solution and

the chip was scanned at a velocity V = 20000 counts/sec. The average time to run 15000 µm

is 89.28 ± 0.11 sec (as it can be seen in Fig. 2.4) from which a ratio 119.04 counts/µm is

obtained, only 0.4% different from the one given by the company. Finally, this last value is

used to transform the time scale into a space scale in imaging applications.

Excitation light from a diode laser (630 nm, Melles Griot) was focused on a 200 µm pinhole,



chapter 2. Confocal Microscopy to Observe Proteins Adsorption in Microsystems 31

reflected by a steering mirror (02MFG015/003, Melles Griot) then passed through a 575-625

nm bandpass filter, reflected by a dichroic mirror, focused onto the chip to a ≈ 20 µm spot.

A 0.6 N.A., 40× infinite conjugate, microscope objective (LD Achroplan, Zeiss) was used.

The fluorescence emission was collected by the same objective, passed through the dichroic

mirror, a 660-710 nm band pass filter, and focused onto an 800 µm pinhole. The band pass

filters and the dichroic mirror constitute the filter set n° 26 by Zeiss. A photomultiplier tube

(PMT Hamamatsu H6240-01) was mounted on top of the microscope tube with a 670/10 nm

interference filter (03FIL054 Melles Griot). Signals from the PMT were recorded with a

program written in LabView. The collected separation data were smoothed using a seven-

point box smooth algorithm, included in Igor Pro (Wavemetrics, Lake Oswego, OR, USA).

2.2.3.1 Building microscope procedure

The optical pieces were mounted on a 60 × 60 cm Newport optical table (see Fig. 2.5). After

being focused on the first pinhole with a 10 cm focal point lens, the laser beam was again

adjusted in order to make the diameter equal to the objective diameter. To accomplish this

operation, another 10 cm focal point lens was moved by a micropositioner, by steps of 10

µm, until the right diameter was found. At this point, to align the detection set-up, the
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Figure 2.4. To know the ratio counts/µm of

the translational stages, 4 channels 1.5 cm

distant one from another one, filled with a

Cy5 solution, were scanned at a velocity V =

20000 counts/sec. The average time to run

15000 µm was 89.28 ± 0.11 sec from which a

ratio 119.04 counts/µm is obtained.
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microscope objective was removed and the chip was replaced with a mirror. The reflected

beam was superimposed on the incoming beam by adjustment of the beam steering mirror.

The objective was then mounted, the beam was focused on the second pinhole by displacing

a b c d e

f

g

h

m

n

p

q

r

s

i

t

u

Figure 2.5. Picture of the microscope (2 pictures were edited together to have the whole view of the

microscope: the mirror in the centre reflects the light coming from the laser at 45° towards the

microscope. The optical path can be followed from the left to the right: the light from the laser (a) is

focused by the lens (b) into the first pinhole (c). The second lens (d) focuses the laser beam to the

infinite. The mirror (e) is also used to convey the beam to the objective. The light is selected by a first

filter (f), then reflected by the dichroic mirror (g) to the objective (h) and reaches the sample, the

microchannel (i). The fluorescence passes the objective, and is focused into the second pinhole (m).

Then, after being filtered (n), reaches the PMT (p). In the column of the microscope to the right they

can be noticed, from the bottom: the horizontal translational stage (q); the moving support on which

the column is mounted, by which it is possible to place the dichroic mirror at the right height with

respect to the beam (r); a fine adjust (s) for the position of the objective relatively to the second

pinhole; the positioner for the pinhole (t); the vertical translational stage (u).
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the objective with respect to this. The pinhole was aligned with the beam and then the

objective was re-positioned again, in a feedback process, until no change was observed in the

signal. The position of the lens was then also re-adjusted: to do that a channel was filled with

a 10-8 M IgG labelled solution and different shapes of the channel were registered by

changing the lens position at each measurement. The final position was chosen when the

measured shape of the channel was sharper and more similar to the trapezoidal shape of the

experimental channel, as shown in Fig. 2.6. Data were obtained by moving the y translational

stage at a velocity of 42.17 µm/sec, which was fast enough not to produce photobleaching

and slow enough to obtain an accurate measure, respecting the sampling time of the LabView

program.

The spot diameter was measured. A channel was filled with 10-8 M IgG labelled solution, and

the z position at which the signal was maximum was found, i.e. at which the pinhole was in a

conjugate focal plane with the sample. Then, a filter paper was wetted with a drop of the Cy5
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Figure 2.6. Images of a channel stained with Cy5. The different scans were made with different

positions of the lens (b) in Fig. 2.5 to find the position of the lens at which the image was more precise

(called position 0 and corresponding to the full line scan).
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solution and the circle stain obtained was half covered with black tape. The zone between the

paper and the tape was scanned at a velocity of 8.43 µm/sec. The passage from dark (10% of

the signal corresponding to the background) to fluorescence (90% of the signal found in the

centre of the stain) is done in about 27 µm, as shown in Fig. 2.7, i.e. the spot diameter.

2.2.4 Capillary electrophoresis

The high-voltage control system for the chips has been described previously.16 High-voltage

(HV) supplies used in the system were from Spellman (CZE 1000 R). After optimisation of

the procedure for this geometry, the values chosen for the injection and the separation were

∆V = 300 V for 30 sec and 3000 V for 150 sec respectively. The detection point was fixed 1

cm upstream from the separation channel outlet. Pt electrodes were put in the polyethylene

PE reservoirs (as previously described).16 The injection-separation switch was achieved

through a homemade switch box commanded by a LabView program. The velocity flow of

our system is 0.67 mm⋅sec-1 by measuring the time for the dye front to travel from the
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Figure 2.7. Scan through a dark/fluorescent edge to know the diameter of the beam onto the specimen.
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injector to the detector. This velocity value has been optimised in order to avoid bleaching in

the Cy5 dye. Faster velocities caused also an excessive broadening of the peaks. Ocvirk,

whom guidelines for the construction of the confocal microscope I followed,10, 17 used higher

values for the separation voltage, resulting in velocities of 3.5 mm⋅sec-1: the dye he used was

fluorescein, which photobleaches much faster than Cy5.

2.3 Results and discussion

2.3.1 Optical characteristics of the confocal microscope

The aim of building this microscope is to obtain a precise device able to give a strong signal

in comparison to the background. The precision of a confocal microscope is measured by the

strength of the optical sectioning. This quantity is the rate at which the fluorescence intensity

decreases with the vertical distance between objective and object, and is known as the axial

response of a confocal microscope. Analogous to Wilson18 and Ocvirk, 10 a measure of the

sectioning power is defined by the vertical displacement given by full-width-at-half

maximum (FWHM) of the axial response. To evaluate our design, a channel filled with an

IgG solution 1.1⋅10-7 M was scanned vertically (velocity was 168.7 µm/sec). In Fig. 2.8 the

corrected fluorescence signals were ratioed by the noise. The background was estimated

scanning horizontally a chip full of PBS. For the 400, 800 and 1000 µm sized pinholes, the

FWHM displacements were 47.5, 71.5 and 71.4 µm, respectively. The 800 µm pinhole was

clearly the optimal choice. Fig. 2.8 shows that increasing the pinhole diameter from 400 to

800 µm results in an improvement of the (S-B)/N (where S is the signal, B the signal of the

background and N the noise) by a factor of more than 4. This improvement is consistent with

the increased probe volume occurring (with a larger pinhole a greater amount of light is

collected). A further increase of the pinhole to 1000 µm does not lead to an increase of the

(S-B)/N. This is due to the fact that the depth of field exceeds the channel depth and that the
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observed spot size is larger than the excitation diameter, so that significant background is

collected causing a decreased S/N. Finally, the 800 µm pinhole was used for the experiments.

A smaller pinhole would allow for a more precise axial resolution (however lowering the

signal to noise ratio). Another way to increase the resolution is by underfilling the diameter

of the laser beam entering the objective. This can be done displacing the lens (lens b in Fig.

2.5) before the optimal position.

2.3.2 Measurement of protein adsorption on microchips

To know the amount of the adsorbed proteins, a calibration curve was made. The

fluorescence from channels filled with different concentrated solutions of IgG antibodies was

collected; the plot is reported in Fig. 2.9 (dashed line). A weighted linear fit of all data points

gives a slope of 0.87 and a linear correlation coefficient of 0.998. The standard deviation was

calculated over 5 different measurements. The signal corresponding to C° = 3 nM is well

over the signal corresponding to 3 times the background. To obtain the surface concentration

Figure 2.8. Signal-to-noise ratio (signal corrected for background fluorescence, (S-B)/N) versus vertical

displacement of chip (∆z) for various pinhole diameters, 800, 400, 1000 µm from top to bottom, respectively.
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of the adsorbed protein, the molar concentration extrapolated from the calibration curve was

multiplied by the volume-to-surface ratio of the microchannel.

In the same figure, the calibration curve obtained with the 400 µm pinhole is also reported

(dotted lines). A weighted linear fit of all data points gives a slope of 0.90 and a linear

correlation coefficient of 0.992. It can be noticed that, due to the low signal/noise ratio, the

limit of detection is about one order of magnitude higher than with the 800 µm pinhole. A

similar plot for polystyrene chips gives a slope of 0.72 and a linear correlation coefficient of

0.996.

Figure 2.9. Log–log plot of fluorescence intensity, S, from IgG solutions, corrected for background

fluorescence, B, as a function of IgG concentration. Error bars are calculated from 5 measurements as

indicated under Experimental. A line 3s above the background signal (estimated from the s value for 3

nM) is shown to illustrate the signal detection limit floor. The dashed lines represent the 3s signal and

the calibration line obtained with a 800 µm pinhole (open circles); the dotted lines are obtained from

experiments with a 400 µm pinhole (open squares).
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After the adsorption and the rinsing steps, the amount of proteins on the walls was read from

the horizontal scans of the microchannels after a certain time t of adsorption. The time t

varied from 10 sec to hours when recording the kinetics of adsorption and was generally set

to 30 min for static isotherms. Typical scans over 30 minutes of IgG adsorption on PET is

represented in Fig. 2.10. From the values taken at the centre of the channel, a kinetic isotherm

can be registered. The peaks at the two sides of the channel are due to the collection of the

fluorescence from the proteins adsorbed onto the lateral walls. An extensive discussion of the

proteins adsorption on the microchannel surface is given in the following chapters.

2.3.3 Surface modifications

To enhance the adsorption in the microchannel and improve the performance of an eventual

microimmunoassay, some surface modifications were tested. The channel was silanised and

oxidised by permanganate. Gold nanoparticles were also adsorbed onto the surface.
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Figure 2.10. Scans of the microchannels in which adsorption occurred from 6.67 × 10-7 M IgG

solution. The scans are made at different times, and a kinetic of adsorption can be obtained from the

value of fluorescence taken at the middle of the channel.
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The silanisation is a technique widely used to obtain protein monolayer on different

surfaces.11 It is used when antibodies must be strongly attached to a surface, for instance

when antibody-antigen interactions are studied by atomic force microscopy. In this case, an

antibody covered surface is scanned with the microscope cantilever that is antigen-

functionalised. As the antibody-surface binding must be stronger than the antibody-antigen

one, this immobilisation technique is successfully used. In fact the protein is linked by

covalent bonds to the aldehyde substrate through its external amino groups. It is worth to give

emphasis to the fact that the amino groups engaged in the covalent bonds are not the terminal

ones, which, in IgG molecules, are in the antigen-binding fragment of the molecule (see Fig.

1.3). When adsorbing, in fact, antibodies preferably orient with the heavy chain constant

region (the Fc fragment) towards the surface.19 The amino groups of the lateral chains of the

amino acids of this part of the molecule are used to bind to the aldehyde. The treatment with

glutaraldehyde does not denaturate the antibodies, and they can be thus used for

immunological studies.
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Figure 2.11. Scans as in Fig. 2.10 in a silanised microchannel.
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In Fig. 2.11 we report the kinetic of adsorption of IgG onto a silanised surface. As the

adsorption does not change too intensely from 10 sec to 2 hours, and since at 10 sec the

signal is already very strong, a fast kinetic of adsorption can be deduced. The signal at

equilibrium (2 hours) is more or less 10-fold the one obtained on non-modified PET (the

adsorption on a silanised microchannel is the maximum that can be obtained assuming an

IgG monolayer). We will see that the IgG adsorption on PET occurs leaving 9/10 of the

surface free.

After the permanganate treatment the surface should be richer in carboxy-groups resulting

from the oxidation of hydroxyl, aldehyde or ketone groups. This change could lead to an

enhanced protein adsorption. However, the noise after the treatment (maybe due to

manganese oxide that remains onto the oxidised surface even after thorough rinsing) is too

strong for this procedure to be useful.

The gold nanoparticles used to coat the channel surface produce non-negligible scattering

and, therefore, they were not used in adsorption experiments.

In the following chapters we will relate some fruitful surface modification made with TiO2

materials on PET microchannels that were oxidised with NaOH.

Polystyrene is slightly less transparent, resulting in a higher limit of detection compared to

PET; the debris are noisier and more difficult to remove so that reading the values of

adsorbed proteins was more difficult. A scan of IgG adsorbed onto PS is shown in Fig. 2.12:

the two peaks besides the channel are due to scattered light by the debris redeposited on the



chapter 2. Confocal Microscopy to Observe Proteins Adsorption in Microsystems 41

two sides of the channel during the ablation. For these reasons PET was chosen as substrate

for the experiments in the following chapters.

2.3.4 The confocal microscope as a detector for capillary electrophoresis

The experiments for capillary electrophoresis in microchannels with confocal microscope

laser induced fluorescence detection were carried out to test a potential use of the microscope

in this field. Even though the results could be optimised, the usefulness of the device in this

field is assessed.

The electropherogram of a mixture of cytochrome C (10-8 M) and IgG (6.67 × 10-8 M)

antibody both labelled with Cy5 is shown in Fig. 2.13. The two proteins were run separately

in order to find out their retention time, which corresponds to 61 sec for the cytochrome C

and 81 sec for the IgG. Some products come after the IgG peak, probably some aggregates.

The number of theoretical plates (calculated from N = 5.55 (tR/wR)2, where tR
 is the retention

time and wR the full width at half maximum of the peak) for cytochrome C is 2158 and for

IgG is 1859, which is an average value for CE in microchannels.20

Figure 2.12. Scan as in Fig. 2.10 after a 30 min adsorption in a PS microchannel.
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The greatest disadvantage of this set up is the need of labelling the analytes. The possibility

of performing an inverse detection was tested, filling the channel with Cy5 dye and injecting

a non-labelled analyte. In Fig. 2.14 the electropherogram of the injection of non-labelled

imidazole (34 nM) is shown.

Figure 2.13. Electropherogram of a mixture of cytochrome C (10-8 M) and IgG (6.67 × 10-8 M). ∆V

for the injection was 300 V for 30 sec; ∆V for the separation was 3000 V for 150 sec.

3000

2500

2000

1500

1000

500

fl
uo

re
sc

en
ce

/c
ou

nt
s

120100806040200

time/sec

cytochrome C

IgG antibody

1200

1000

800

600

400

200

0

fl
uo

re
sc

en
ce

/c
ou

nt
s

200150100500

time/sec

Figure 2.14. Electropherogram of the injection of a 34.5 nM solution of non-labelled imidazole. The

buffer was a solution of Cy5 dye in PBS.
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Several runs were made with high reproducibility, for concentrations spanning through 8

orders of magnitude (34.5 mM, 0.345 mM, 3.4 µM and 34 nM). Though the 34.5 nM

injection was well defined, a great problem was defining a good ratio between the

concentrations of mobile phase dye and of the analytes. More concentrated solutions in low

concentrated dye buffer gave peaks very broad and “out of scale”, meaning that the dye

signal was not high enough to let the peak develop in its depth (it always touched the

background signal); on the other hand, increasing the concentration of dye led to the

disappearing of the peak. A quantitative analysis made in this way is impossible.

2.4 Conclusions

A confocal microscope was built in order to analyse protein adsorption in polymer

microchannels. It has a spatial resolution of about 20 µm and a depth resolution comparable

to the depth of the microchannels. With these characteristics we have an instrument that has a

good signal-to-noise and signal-to-background ratios, useful to detect the small amounts of

proteins normally used in microchannels. The limit of detection of the instrument is 3 nM,

when used with PET microchannels. The microscope can also image proteins adsorbed onto

the walls of the microchannels, but it will mainly be used as a tool to quantitate the

adsorption, as it will be illustrated in the next chapters.

As one of the aims of this dissertation will be improving immunoassays in microsystems, the

polymeric surface was modified in different ways. This will lead to enhance the surface

concentration of the capture antibody, which in turn will result in a higher signal from the

labelled antigens.

The most effective modification is by silanisation followed by activation with glutaraldehyde

(normally used to treat the samples in view of atomic force microscopy). In this way the

antibodies are covalently linked to the surface and form a monolayer: this is the highest
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surface concentration obtainable (which is 10-fold higher than when non-modified PET is

used). The microscope was also proved useful as a detector in capillary electrophoresis

experiments carried out in PET microchannels.
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Excerpt from Marvin Minsky, “Memoir on Inventing the Confocal Scanning Microscope,”

Published in Scanning, vol.10 pp128-138, 1988.

An ideal microscope would examine each point of the specimen and measure the amount of

light scattered or absorbed by that point. But if we try to make many such measurements at

the same time then every focal image point will be clouded by aberrant rays of scattered light

deflected points of the specimen that are not the point you’re looking at. Most of those extra

rays would be gone if we could illuminate only one specimen point at a time. There is no way

to eliminate every possible such ray, because of multiple scattering, but it is easy to remove

all rays not initially aimed at the focal point; just use a second microscope (instead of a

condenser lens) to image a pinhole aperture on a single point of the specimen. This reduces

the amount of light in the specimen by orders of magnitude without reducing the focal

brightness at all. Still, some of the initially focused light will be scattered by out- of-focus

specimen points onto other points in the image plane. But we can reject those rays, as well,

by placing a second pinhole aperture in the image plane that lies beyond the exit side of the

objective lens. We end up with an elegant, symmetrical geometry: a pinhole and an objective

lens on each side of the specimen. (We could also employ a reflected light scheme by placing

a single lens and pinhole on only one side of the specimen - and using a half-silvered mirror

to separate the entering and exiting rays). This brings an extra premium because the

diffraction patterns of both pinhole apertures are multiplied coherently: the central peak is

sharpened and the resolution is increased. (One can think of the lenses on both sides of the

microscope combining, in effect, to form a single, larger lens, thus increasing the difference

in light path lengths for point-pairs in the object plane.)

The price of single-point illumination is being able to measure only one point at a time. This

is why a confocal microscope must scan the specimen, point by point and that can take a long

time because we must add all the time intervals it takes to collect enough light to measure

each image point.

The most serious design problem was choosing between moving the specimen or moving the

beam. So far as I know, all modern confocal microscopes use moving mirrors or scanning

disks. At first it seemed more elegant to deflect a weightless beam of light than to move a

massive specimen. But daunted by the problem of maintaining the three-dimensional

alignment of two tiny moving apertures, I decided that it would be easier to keep the optics

fixed and move the stage.
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Protein Adsorption in Static Microsystems: Effect of the Surface to

Volume Ratio

(based on Lionello, A.; Josserand, J.; Jensen, H.; Girault, H. H. Lab on a Chip 2005, 3, 254-

260)

3.1 Introduction

Immunoassays, tests that identify a substance (for instance a protein) by its capacity to act as

an antigen, are standard tools for the diagnosis of different physiological conditions, from

pregnancy to diseases like AIDS or hepatitis. Sometimes these tests are supplied in easy-to-

use formats and can provide a response in a few minutes at best. In fact, in the microtiter well

of a standard ELISA, one of the most used immunoassay format, the distances that molecules

need to diffuse in order to interact (to adsorb, in the case of the primary antibody) with the

solid support are in the order of millimeters. As already illustrated,2 a large protein like an

immunoglobulin G (IgG antibody, 150 kDa) diffuses 1 mm in more than 3 hours; diffusion

time thus often limits the speed of the analysis. To improve the throughput of immunoassays,

the implementation of microfluidics in immunoassays has been proposed.3 Compared to the

classical ones, a microimmunoassay presents the following advantages: limited reagent

consumption and faster analysis time due to a larger surface-to-volume ratio and the

improved mass transport efficiency.

Adsorption of macromolecules has proved to be a challenging subject both theoretically and

experimentally. Adsorption and transport processes under the Langmuir isotherm

assumptions have been modelled mathematically4 to better understand the phenomena

involved in capillary electrochromatography.5, 6 Several models exist for protein mass

transfer,7 for their adsorption on ion exchange particles8-11 and on sorbent matrices.12, 13

Mathematical models have also been used to describe the adsorption kinetics of proteins14
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and polyelectrolytes15 on planar surfaces. Computer methods have been employed for

decades to study adsorption processes in electrochemical systems characterised by semi-

infinite linear diffusion1,16 in order to get a better understanding of the phenomena involved.

A simulation of protein adsorption in cylindrical geometry from a non-flowing, dilute

solution has also been reported.17 The studies dealing with transport and adsorption of

proteins on a substrate define different regimes, depending on the adsorbate-sorbent couple.

A diffusional limitation of the processes is observed when the adsorption kinetics is much

faster than the diffusion:18 each protein molecule that reaches the surface is immediately

adsorbed and the concentration of analyte near the wall tends to zero. On the other hand,

when adsorption is much slower than diffusion controlled mass transport, kinetics plays an

important role.19-21

In this work, a numerical model using the finite element method has been developed to study

adsorption in polymer microchannels (in order to describe an allergy test based on an

immunoassay). It takes into account the diffusion of one species in the channel, coupled with

the adsorption kinetics at the sorbent wall, following the Langmuir isotherm assumptions. It

allows the investigation of the mutual influence of the adsorption rates, the bulk and the

surface concentrations and the solute diffusion coefficient. It provides the time evolution of

the concentration in solution and at the surface, revealing how the former can affect the latter

in a microsystem. A new non-dimensional parameter characteristic of any microchannel was

defined, by which it is possible to calculate the final value of the coverage in that

microsystem.

The study of adsorption of macromolecules has been reported using a variety of measurement

techniques, with different protocols and calibrations.18,22-25 Adsorption kinetics of

immunoglobulins in a photoablated polymer microchannel, similar to the ones used in this

work, was studied using radiometric detection18 and by electrochemical detection.24 The
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experimental results presented here are obtained by laser-induced-fluorescence confocal

microscopy. A confocal microscope was set up as explained in chapter 2 and optimised

following Ocvirk et al.26 to investigate the adsorption of a fluorescently labelled IgG on PET

microchannels. This technique has already been used to study concentration profiles of a

“diffusant” in polymer films,27 adsorption of proteins to chromatographic matrices28 and to

porous adsorbents.29, 30 The detection is made by optical sectioning of the sample. The sample

preparation is therefore easier and quicker than for methods requiring mechanical sectioning.

It is also a very sensitive method, the high signal-to-background ratio of the set up allowing

the detection of very low concentrations.

The finite element simulations are fitted to the experimental results, in order to determine the

rates of adsorption. It is questionable17 whether the adsorption of molecules as heterogeneous

as proteins can be described adequately with a few parameters and a general model form.

However, if a model can be in accordance with the experimental data in some given

conditions, the fitted parameters help to understand the influence of these conditions in order

to further optimise them.

3.2 Theory

3.2.1 Adsorption

The present model is intended for a general case in which a molecule A is adsorbed on a

sorbent surface where the active sites B are present. It is based on the Langmuir isotherm

model, which uses the active sites concept in the adsorption expression in order to address the

reduction of its rate with the coverage of the wall. The model has found wide applications for

the adsorption of proteins on substrates or ligands immobilised on a support material.8, 9, 12

The Langmuir isotherm model represents a simplified case of protein adsorption, since it

assumes (a) reversible adsorption, (b) constant properties of the molecules (proteins) even
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after the adsorption, (c) no lateral interactions between adsorbed molecules, (d) each active

sites B adsorbing only one molecule A and (e) all the adsorption sites having the same

affinity for the adsorbate molecules. Although these assumptions are not strictly valid in

theory for macromolecular adsorption, the Langmuir model has proven to be useful in

practice.31

Under such assumptions we can represent the adsorption equation by:

A B AB
off

on

+  →← k

k
(3-1)

where A is the solute molecule in solution (of bulk concentration C), B is the site active for

adsorption on the surface, AB is the adsorbate immobilised (of concentration Γ) onto the

active site. The initial surface concentration of the active sites is Γmax (i.e. the maximum

attainable surface concentration of immobilised adsorbate) and the surface concentration at

time t is Γmax – Γ(t). The constants kon and koff represent the rates of adsorption and desorption

of the adsorbate onto the active sites. As a consequence, the kinetics of the process is

described by:

d
d on max

Γ
Γ Γ Γ

( )
( )( ( )) ( )

t

t
k C t t k t= − − off (3-2)

The ratio of the constants kon / koff determines the equilibrium constant K (eq. (3-3)). Since a

monolayer is supposed to be formed, the quantity Γmax – Γ(t) decreases while Γ(t) increases

until the equilibrium is reached. At equilibrium dΓ(t)/dt = 0 in eq. (3-2) and Ceq = C° (i.e. the

initial concentration of A, in cases where the bulk depletion is negligible), leading to eq. (3-

3). This assumption is consistent with semi-infinite linear diffusion,1, 16 and its validity in the

case of a microsystem will be discussed later.

K
k

k C
= =

° −
on

off

eq

max eq

Γ

Γ Γ( )
(3-3)

Eq. (3-3) can be written as follows:1
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Γ
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KC1
ψ
ψ

(3-4)

where ψ =K⋅C°. The parameter ψ can be seen as an indicator of the capacity of the system to

reach the maximum coverage of the wall.

3.2.2 Diffusion adsorption for a small coverage (analytical expression)

In the range of small coverage of the adsorbent (i.e. Γeq << Γmax), Γeq can be neglected in the

denominator of eq. (3-3) and the adsorption isotherm can be linearised as follows:

Γ Γeq max= °KC (3-5)

Fick’s law can then be solved analytically,15 leading to:

Γ
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
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
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Dt

K

D t
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/ /

(3-6)

where erfc represents the complement of the error function. The passages to get to eq. 3-6 are

described in Appendix A.

3.2.3 Diffusion adsorption (present model)

When the channel is submitted to transient diffusion conditions, the typical flux conservation

of the bulk concentration C is given by eq. (3-7). The boundary condition at the active wall is

expressed by eq. (3-8), linking the analyte consumption flux at the active wall to the time

evolution of its adsorbed form:

∂
∂

+ ∇ − ∇•
C
t

D C( ) = 0 (3-7)

∂
∂
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∂
∂









 = − −

=

Γ
Γ Γ Γ

t
D

C
y

k C k
y 0

on off( )max (3-8)

where D is the analyte diffusion coefficient.

3.2.4 Numerical model

The evolution of C and Γ in the present FEM model is calculated by the following set of

equations, which are applied to the 2-D geometry described in Fig. 3.1. Note that the
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boundary condition (3-8) is introduced in (3-7) as a consumption term assigned to the active

wall, leading to eq. (3-10). The second term of eq. (3-10) equals zero in the bulk.

∂
∂
C
t

D C k C k+ ∇⋅ − ∇( ) = − ′ − ′( ) + ′on max offΓ Γ Γ (3-9)

∂
∂
′

+ ∇⋅ − ∇ ′( ) = ′ − ′( ) − ′
Γ

Γ Γ Γ Γ
t

D k C kwall on max off (3-10)

The notation Γ′ = Γ/δ is here introduced to homogenise the dimensions of the two sides of eq.

(3-9) and (3-10), δ representing the thickness of the active wall (see Fig. 3.1). Because of the

introduction of δ, Γ′ is given in mol⋅m-3 instead of mol⋅m-2. The integral form of the model is

derived in the Appendix of chapter 4 using the Galerkin's formulation

The following conditions are assumed: (i) – The solutions are sufficiently diluted to assume

that the variations of the concentration do not modify the viscosity and the density of the

fluid, which is also assumed to be uniform. (ii) – The channel walls are assumed to be

smooth.

3.3.5 Numerical technique

The finite element software Flux-Expert™ (Astek Rhône-Alpes, Grenoble, France) is

performed on a Silicon Graphics Octane 2 Unix workstation. The model is formulated in a 2-

D Cartesian form and calculations are performed in 1-D and 2-D geometries as shown in Fig.

3.1a and b. The model presents 2 regions: the channel containing the bulk solution and the

adsorption wall. In the channel, the analyte is characterised by its diffusion coefficient D.

Γmax, kon and koff are assigned to the active wall.

It must be stressed that the adsorption wall has a dimension δ, elongated to homogenise the

mesh size and to reduce the computational time: in this wall, the diffusion coefficient D′ is

adapted to insure a uniform surface concentration Γ′ at any time during the calculation. In

what follows, Γ will be used to respect the physical meaning, even if Γ′ was used for all the

calculations. The active layer is always 1 mesh thick.
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For all the simulations, a non-linear algorithm based on the gaussian inversion method has

been used. The iterative scheme is performed with a precision criterion of 1% for

convergence of the calculation at each time step. The typical time step value is 10-2 sec. but it

was decreased to 10-4 seconds, for high solute concentration. The mesh sizes have been

verified to be sufficiently small not to influence the results. The typical mesh size ranges

from 0.1 µm (active layer) to 5 µm (top of the channel) for the validation (Fig. 3.1a) and from

5 to 20 µm for the comparison with experimental results (Fig. 3.1b). The initial conditions for

transient calculations are: C = C° in the channel and Γ = 0 in the wall. The physical boundary

condition (3-8) being introduced as a consumption term, the only numerical boundary

(a) (b)

h

δ

y

d

h

δ L

L

Figure 3.1. Schemes of the model, where the diffusion coefficient of the analyte D is defined in the

light gray bulk region (of height h), while the initial number of active sites Γmax, the diffusion

coefficient to insure a uniform coverage D′, the forward and reverse rates of adsorption kon and koff are

assigned to the dark gray wall (of thickness δ). (a) 1-D geometry used for the model validation with h

= 200 µm and δ = 0.1 µm. (b) 2-D geometry used for comparison with experiments. For symmetry

reasons, the adsorbing surface is present on the bottom, the left and the right part of the channel (h =

50 µm; δ = 5 µm; d = 200 µm).
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conditions of the model are the Neumann homogeneous ones (no flux) at the non-active

walls. For the 1-D calibration (Fig. 3.1a) the height is sufficient (200 µm) to insure semi-

infinite diffusion conditions at the beginning of the adsorption (first 6 sec).

3.3 Experimental Section

3.3.1 Reagents and procedure

A 1mg/ml (6.67 × 10-6 M) solution of labelled antibody (Fluorolink Cy5 labelled antirabbit

IgG, Amersham Pharmacia Biotech) was prepared in deionised water. From this, further

solutions were obtained by serial dilutions with 0.01M PBS (SIGMA). The washing buffer is

made of a 0.1% Tween-20 (SIGMA) solution in PBS. The adsorption of the fluorolabelled

antibody was performed by filling a channel with a drop of 8 µL, placed at the inlet and

pushed in with a pipette. After a certain incubation time t, during which adsorption occurs,

the channel was emptied by air flushing, and then washed three times with 10 µL of washing

buffer. If adsorption times were higher than 3 minutes, incubation was carried out in a Petri

box with a wet tissue inside to avoid evaporation of the drops. As it has been already pointed

out,18 the volume of washing solution is about 100 times that of the channel, which ensures a

very efficient washing step. Adsorbed proteins don’t desorb or desorb very slowly (hours):32

consequently we assume that they are not removed during the washing step. The quantity of

adsorbed antibody was then measured by the confocal microscope, scanning the channel

along the Z-axis: the strongest signal from the channel bottom wall was then collected,

representing the adsorbed antibodies. Each channel was used just once. Each average value

and its standard deviation were taken from 5 measurements. For PET, a surface capacity for

antibody adsorption 4-fold higher than for PE used for lamination has been measured:18

consequently, in the geometry of Fig. 3.1b, adsorption on PE has been neglected. The PET

adsorbing wall is on the bottom, the right and the left parts of the channel.
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3.3.2 Calibration

To convert the counts from the PMT into concentrations, a calibration curve was drawn with

concentration solutions ranging from 3 × 10-9 to 6.67 × 10-6 M. Channels were filled at

different concentrations and photons were counted (see paragraph 2.3.2). At low

concentrations, counts and concentrations are proportional (the linear fit was obtained with a

regression coefficient of 0.998). The limit of detection of the system is 2 × 10-9 M. At this

point, the bulk concentration is multiplied by the volume-to-surface ratio (V/S) of the

channel, to have a surface concentration. It is worth to emphasise that all the unbound

proteins are eliminated from the channel, after three washing steps with an important quantity

of buffer.18 All the proteins measured are adsorbed. It must be stressed that the values found

for the kinetic constant of desorption are very low: the proteins cannot desorb in the washing

timeframe that is much shorter than the time required for desorption. Experimental results

can now be compared with Γ values from simulations.

3.4 Results and Discussion

To validate the model, the simulation results are compared both with the analytical solution

given by Delahay and Trachtenberg15 and with the numerical results given by Reinmuth.16

3.4.1 Linear Adsorption Isotherm (Γ << Γmax)

In the range of small wall coverage (for small values of C° and at low elapsed times) the

variation of the surface concentration Γ is given by the analytical solution (3-6). This solution

is presented in Fig. 3.2a (where Γ is normalized by the theoretical value Γeq) and compared

with the simulations (1-D geometry of Fig. 3.1a and parameters listed in Tab. 3.1).
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The numerical results show a good agreement with the analytical expression as long as we

are in semi-infinite conditions, i.e. until 6 seconds. After this time, the solution concentration,

not renewed, starts to deplete because of the microdimensions of the geometry (here 200

µm). It is worth noting that the ratio Γ/Γeq given by eq. (3-6) is independent of the bulk

concentration because at low coverages and under diffusion control, both Γ and Γeq are

proportional to C°.15

The values of koff that insure a diffusion limited regime are estimated in the inserted graph

(Fig. 3.2b) for D = 5 × 10-10 m2⋅sec-1 and for K maintained constant at the value 2.5 × 106

m3⋅mol-1. The value 100 sec-1 is chosen for further diffusion limited calculations, as its plot

shows a difference of 0.6% compared with the case koff = 10 sec-1 for Γ at 6 seconds.
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Figure 3.2. (a) The plots represent the time evolution of the wall concentration given as Γ/Γeq. The

analytical solution for a linear isotherm (eq. (6),15) is compared with the simulation results. The values

for both plots are D = 5 × 10-10 m2⋅sec-1, Γmax = 3.5 × 10-11 mol⋅m-2, K = 2.5 × 106 m3⋅mol-1 (kon = 2.5 ×

108 m3⋅mol-1⋅sec-1, koff = 100 sec-1). The simulation is run with a concentration value C° = 4 ×  10-9

mol⋅m-3 (the independence on C° was verified obtaining the same plots with a lower concentration).

(b) Plots for calibration of koff. The values for koff in (a, b, c, d, e) are 0.1, 1, 10, 100, 1000 sec-1

respectively. At t = 6 sec, Γ show a difference of 6% between (c) and (d), while Γ is equal for (d) and

(e) (kon is varied in order to maintain a constant K). The other parameters are the same as in Fig. 3.2a.
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ϑ =
4
2 2

πDt

K Γmax

parameters calibration experimental

D / m2⋅sec-1 5 × 10-10 4 × 10-11

Γmax / mol⋅m-2 3.5 × 10-11 9.26 × 10-10

C°/ mol⋅m-3 4 × 10-8 – 4 × 10-6 6.67 × 10-6 – 10-3

K / m3⋅mol-1 2.5 × 106 1.15 × 104

kon / m
3⋅mol-1⋅sec-1 2.5 × 105 – 2.5 × 109 11.5

koff / sec-1 0.1 – 1000 10-3

tmax (elapsed in simul.)/ sec 6 1800

Γmax′/ mol⋅m-3 (δ /µm) 3.5 × 10-4 (10-7) 1.86 × 10-4 (5 × 10-6)

parameters ratios calibration experimental

ψ = KC° 10-1 – 10 7.7 × 10-2 – 11.5

4.9 at tmax 8 × 103  at tmax

tdiff = l2 (2D)-1 / sec 40 130

treac = kon
-1C° -1 / sec 1 – 10-3 1.3 × 104 – 87

Γeq/Γmax 6.7 × 10-2 – 9 × 10-1 5.6 × 10-2 – 0.89

Table 3.1. Parameters for the calibration and the experimental comparison. The time of reaction treac in the

calibration case has been calculated for kon = 2.5 × 108 m3⋅mol-1⋅sec-1.

3.4.2 Calibration in semi-infinite diffusion system (short times)

To validate the model, the simulations are compared with the analytical results for the

adsorption kinetics given by Reinmuth for a semi-infinite diffusion system under the

Langmuir conditions,1 and a good agreement was found. (Calibration was done also with the

analytical solution for the linear adsorption isotherm16 with less than 0.6% error). The

simulations are performed with the geometry of Fig. 3.1a and the values of Tab. 3.1.

In order to make the comparison, the dimensionless time ϑ is introduced:

ϑ =
4
2 2

πDt
K Γmax

(3-11)
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As shown in Fig. 3.3, the time evolution of the dimensionless surface concentration Γ/Γeq

versus ϑ 1/2 is in a good agreement with the analytical model1 for ψ ranging from 0.1 to 10. It

also illustrates that the time to reach equilibrium coverage decreases with the initial

concentration C° (i.e. with ψ, which has been called “the motivating force to adsorption”1).

The values of koff that insure a diffusion limited regime of adsorption have been estimated.

The PET microchannel surface is not smooth as modelled, so that the microscopic area, with

all of its undulations, crevices and asperities is larger than the geometric, or projected area.

An analogy with the treatment for diffusion to microelectrodes made by Bard33 can be made.

The diffusion layer generated during the adsorption is much larger than the scale of

roughness: therefore, on the scale of the diffusion layer, the channel surface appears flat; the

surfaces connecting equal concentrations in the diffusion layer are planes parallel to the

surface; and the area of the diffusion field is the geometric area of the electrode. Molecules
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Figure 3.3. Time evolution of the wall concentration given as Γ/Γeq: plots of the simulation (markers)

compared with the results of Reinmuth (lines)1 for a semi-infinite linear diffusion controlled system.

The parameters are D = 5 × 10-10 m2⋅sec-1, Γmax = 3.5 × 10-11 mol⋅m-2, K = 2.5 × 106 m3⋅mol-1 (kon = 2.5

× 108 m3⋅mol-1⋅sec-1, koff = 100 sec-1). C° = 4 ×  10-8, 4 × 10-7, 4 × 10-6 mol⋅m-3 for ψ  = 0.1, 1, 10

respectively.
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diffusing to the surface come, on the average, from so far away that the added distance (and

time) required to reach an active place on the surface becomes negligible.

3.4.3 Finite height 1-D diffusion adsorption process: depletion effect (long times)

After 6 seconds, the solute starts to be depleted because of the microdimensions of the

geometry (the present model is 200 µm high). This phenomenon is illustrated in Fig. 3.4a,

showing the variation of C/C° with the distance from the wall (y) for different times after the

beginning of the adsorption and for the same parameters as Fig. 3.3 (diffusion control).

Concentration depletion extends to the whole height after 10 seconds.  At 100 seconds the

equilibrium is reached: Ceq is about 82% of C° (instead of Ceq = C° as in a semi-infinite

system). Consequently the concentration at equilibrium in eq. (3-4), Ceq, is not equal to C°

any longer, and this equation should be rewritten as:
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Figure 3.4. (a) Variations of C/C° with distance from the active wall (y) for different times (in

seconds) after the beginning of adsorption. C° and the other parameters are the same than in Fig. 3.3.

(b) Time evolution of Γ in a microsystem showing that Γeq
theor is not reached.
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Γ

Γ
eq

syst

max

eq

eq1

µ

=
+

KC

KC
(3-12)

The final value of Γeq
µsyst is therefore lower than the theoretical one attainable in a bigger

system or in a system where the solution is renewed (e.g. with a flow).

The time evolution of Γ/Γeq is shown in Fig. 3.4b: it is illustrated that Γeq
µsyst (whose value

can be calculated from eq. 12) is reached instead of Γeq
theor (corresponding to Γeq of eq. (3-4)).

In Tab. 3.2 the ratios Γeq
µsyst/Γmax obtained in this system are compared with theoretical ones,

Γeq
theor. We can observe that Γeq

µsyst is nearer the theoretical one at high ψ (high C°) due to the

lower bulk depletion.

To illustrate how the channel dimensions influence the adsorption, the ratio between the

experimental and the theoretical coverage was plotted versus the height of the channel as

shown in Fig. 3.5. Fitting the results obtained by simulations with different channel heights

(i.e. for different h in Fig. 3.1a) leads to:
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Figure 3.5.  Calculated coverage normalised by the theoretical value versus the channel height for

different concentrations (expressed as ψ). All the parameters are those of Fig. 3.3.
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theoretical eq

max

Γ

Γ
experimental eq

max

Γ

Γ

Γ

Γ
eq

syst

eq
theor 1 1 2

µ

= − −a e a h( ) (3-13)

The parameters a1 and a2 are dependent on C° and the values are shown in Tab. 3.2.

ψ difference a1 a2/µm-1

10 9.09 × 10-1 9.02 × 10-1 -0.77 % 1 3.4⋅10-2

1 5 × 10-1 4.51 × 10-1 -9.8 % 0.93 2.2⋅10-2

0.1 9.09 × 10-2 6.66 × 10-2 -26.7 % 0.85 1.1⋅10-2

Table 3.2. Comparison between the theoretical and the experimental Γeq/Γmax reached in the microchannel of

Fig. 3.1a. The theoretical Γeq/Γmax values are calculated from eq. (3-4). The experimental Γeq/Γmax is obtained

from simulations run with the geometry of Fig. 3.1a and the values for the calibration of Tab. 3.1 (simulations of

Fig. 3.3, at longer times). a1 and b2 are constants for eq. (3-13).

3.4.4 ϕ: a parameter to define the non-ideality of microsystems for adsorption

Since an effective coverage is suitable in many applications (for instance, a microchannel for

ELISA should be uniformly and effectively covered with the primary antibody in order to

increase to sensitivity of the immunoassay), the general conditions to fulfill in order to avoid

depletion have been explored. To do that, the values of coverage at equilibrium in

microsystems (Γeq
µsyst) obtained from simulations were normalised with the equilibrium

coverage value obtained under semi-infinite diffusion (Γeq
theor, from eq. (3-4)). This

normalised adsorption Γeq
µsyst/Γeq

theor was correlated with the initial number of solute moles

present in that microsystem (N° = C°⋅V = C°⋅A⋅h, where V, A, h are the volume, the active

surface area and the height of the microsystem). To enable a consistent comparison with ideal

conditions this quantity was also normalised by the number of moles the wall can

theoretically adsorb under semi-infinite diffusion (Nwall
∞ =Γeq

theor⋅A). Keeping into account

eq. (3-4) the ratio N°/Nwall
∞ can be written as follows:
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N
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C h h
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°
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°
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wall eq
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1 1ψ ϕ ψ (3-14)

where ϕ (= h/KΓmax) represents the asymptotic limit of eq. (3-14) for ψ <<1 (i.e. very low

initial concentration or low K values). The parameter ϕ is independent of the initial solution

concentration and is, consequently, an intrinsic characteristic of any microsystem where

adsorption takes place. It corresponds to the lowest possible coverage that can occur in a

microsystem in relation to the corresponding ideal system.
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Figure 3.6. Working curves to estimate the

coverage in a microsystem; the plots show the

evolution of the coverage in a microsystem

compared to the coverage in the corresponding

ideal semi-infinite system in function of ψ and

for different values of ϕ = h/KΓmax. Each full line

curve is obtained for growing values of ψ. The

lowest abscissa value of each full line curve

corresponds to ϕ (from left to right ϕ = 0.06,

1.14, 2.3, 5.6, 12.7, 20) and the corresponding

Γeq
µsyst/Γeq

theor is the lowest attainable in that

microsystem (simulations run with ψ  = 10-3).

The points have been verified for different h

(different h values in Fig. 3.1a), K  and Γmax

values, changing C° in order to keep ψ constant.

The dotted line, connecting all the points with

abscissa equal to ϕ, represents the limit under

which the coverage cannot fall in a microsystem

characterised by the corresponding ϕ. Fig. 3.6(b)

is an enlargement of Fig. 3.6(a) to show the ψ

values. The ψ  values are written near the

corresponding point.

(a)

(b)
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The ratio Γeq
µsyst/Γeq

theor is represented in Fig. 3.6 as a function of N°/Nwall
∞ (3-14). Each full

line curve represents the normalised adsorption (micro/ideal system) as a function of ψ for a

different ϕ value (i.e. a different microsystem).

As just said, the lowest possible abscissa value for each curve is ϕ. In this way, the dotted

line connecting all the ϕ values represents the lowest equilibrium coverages that can occur in

different microsystems (compared to the theoretical ideal systems).

In Fig. 3.6b it can be observed that for the same ψ values, Γeq
µsyst/Γeq

theor increases with ϕ. In

fact when the volume-to-surface ratio, i.e. h is small compared to KΓmax, the depletion of the

solution is very high, and the analyte amount adsorbed at equilibrium is small compared to an

ideal system (it can be 0.05% of the corresponding semi-infinite system for ψ = 0.01 and ϕ =

0.06).

When the h value is high compared to KΓmax, the microsystem behaviour tends to that of an

ideal system: for instance for ϕ ≥ 9 (i.e. h is 9 times the product KΓmax) we can consider of

being above the microsystem limitation which is due to the solution depletion, as

Γeq
µsyst/Γeq

theor is never less than 90% (reachable for ψ =0.01 and less; see horizontal dashed

line in Fig. 3.6).

After having estimated the ϕ value of a microsystem of interest, the plots in Fig. 3.6 can be

used as working curves to predict the final coverage in that microsystem.

3.4.5 Isotherm of IgG adsorption on PET

The experimental isotherm of IgG adsorption on photoablated PET microchannels is shown

in Fig. 3.7a, where the Γeq values are measured at 30 min (corresponding to the final values

of the time evolutions of Fig. 3.7c). The initial solution concentration C° is assumed not to

deplete during the adsorption phenomenon, since relatively high C° values are used as shown

in Tab. 3.1. This assumption is verified with the simulations below (see: Appendix B: validity



                                                                            chapter 3. Adsorption in Microsystems: the Effect of the Surface to Volume Ratio66

remark), since a moderate depletion of the bulk concentration cannot be detected with the

confocal microscope. To obtain Γmax and K (necessary for the simulations fitting the

experimental kinetics of adsorption shown in Fig. 3.7c and carried out with the geometry of

Fig. 3.1b), the adsorption isotherm equation (eq. (3-3)) is linearised as follows:34
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Figure 3.7.  (a) Isotherm of adsorption of anti-

rabbit IgG on laser-ablated PET obtained from

the experimental results at 30 min of Fig. 3.7c.

The fit has the only purpose of illustrating the

trend of the isotherm. (b) (inside) Linearisation

of the adsorption isotherm, following eq. (15):

regression coefficient = 0.999, slope = 1.08 × 109

m2⋅mol-1, intercept = 9.40 × 104 m-1, from which

Γmax = 9.26 × 10-10 mol·m-2 and K = 1.15 × 104

m3·mol-1. (c) Simulations (lines) compared with

experimental results (markers). Calculations are

run with D = 4 × 10-11 m2⋅sec-1, Γmax = 9.26 × 10-

10 mol⋅m-2, K = 1.15 × 104 m3⋅mol-1 (kon = 11.5

m3⋅mol-1⋅sec-1 and koff = 10-3 sec-1). The initial

concentrations for experiments and simulations

are C° = 10-3, 6.67 × 10-4, 6.67 × 10-5, and 6.67 ×

10-6 mol·m-3.
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3.4.5.1 Γmax and K fitting

The linearised isotherm is reported in Fig. 3.7b (inside Fig. 3.7a). Reporting C°/Γeq versus

C°, Γmax and K are provided as the respective reciprocals of the slope and the intercept,

giving the fitted values Γmax = 9.26 × 10-10 mol·m-2 and K = 1.15 × 104 m3·mol-1. Γmax can

also be calculated by taking into account the area of the antibody molecule (14×14 nm2 35),

resulting in Γmax = 1.064 × 10-8 mol·m-2. This estimation implies a compact monolayer of IgG

molecules. The deviation from the fitted value can be explained by the fact that PET surface

is not so active in physisorption,36 leading to a decrease of the active sites concentration (in

the ratio of 1/10 mol·m-2).

3.4.5.2 Kinetic rates fitting: a reaction-limited case

The IgG adsorption on PET versus the incubation or adsorption time t is given in Fig. 3.7c

(markers) for different antibody concentrations. The corresponding simulations, represented

by lines, are performed with the geometry of Fig. 3.1b. The parameters for simulations are

reported in Tab. 3.1. The kinetics rates obtained from the experimental fitting are far below

the diffusion limitation ones (koff = 10-3 sec-1 instead of the [1 – 100] sec-1 range for near

diffusion control).

An evaluation of the conditions corresponding to limitations by diffusion or kinetics can be

done.37 In Tab. 3.1 we compare the characteristic reaction time treac = 1/konC° with the typical

time of diffusion tdiff = h2/2D, where h is the diffusion length (the values used are those of

Fig. 3.7c). The time tdiff equals 130 sec while treac varies from 87 sec (higher C° in Fig. 3.7c)

to about 3.6 hrs (lower C°): in the first case (high C°), the reaction occurs in the same time

order as diffusion, resulting in a mixed regime. At lower concentrations, the reaction is so

slow that only a small amount of antibodies is adsorbed, leading to a near-wall C value just

below C°. Simulations of the concentration show a weak gradient profile across the channel,

which is established in some minutes because the kinetics slows the process down (for
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comparison, the gradient shown in Fig. 3.4 for pure diffusional control is established in 0.1

sec).

Protein adsorption controlled by kinetics was reported several times. Van Dulm and Norde19

explained slow adsorption of albumin on negatively charged polystyrene with the fact that

albumin molecules have to cross an energy barrier caused by overlapping electric fields from

the negative charges on the sorbent and the protein. Wojciechowski et al.20 found a similar

behaviour for adsorption of fibrinogen on various surfaces. In an extensive study of

adsorption of different proteins on different substrates, Young, Pitt and Cooper21 found a

kinetic limited process for IgG adsorption on polyvinyl chloride, polyethylene and polyether

polyurethaneurea. Again, the existence of an energy barrier is given to explain this kind of

limitation, also encountered in our system.

Antibody adsorption on bare substrates is the most simple and one of the most popular

immobilization methods, even if it leads to low surface coverage and low activity of the

physisorbed antibodies.36 To overcome this limitations adsorption in gels,38, 39 porous

media30, 40 or bead-beds41 are often used to enhance the coverage.

3.5 Conclusions

The time evolution of the wall adsorption of one species in 1D and 2D microsystems has

been studied under static conditions. The employed finite element model considers the

diffusion of the species in solution, coupled to the adsorption kinetics on the sorbent surface.

The analyte diffusion coefficient, the density of the active sites present on the surface and the

kinetic rates of adsorption and desorption are taken into account. The model has been

validated under diffusion control by comparison with analytical models of the Langmuir

isotherm.
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It is observed that the adsorption can be limited by the depletion of the bulk solution, due to

the microdimensions of the system. Accordingly, for low initial solution concentrations, the

coverage values at equilibrium can be markedly lower than the theoretical ones. A working

curve and a new non-dimensional parameter (ϕ = h/KΓmax) are provided in order to predict

the depletion effect on the coverage values in any static situation. To overcome the

limitations induced by the microdimensions, the channel height h (i.e. the volume-to-surface

ratio) must be higher than 10 KΓmax, insuring 90% of the coverage obtainable in a semi-

infinite diffusion system. The next chapter will consider different ways of renewing the

solution in order to reach the full coverage in a microsystem.

Adsorption of fluorescently labelled IgG antibodies on the walls of a laser ablated PET

microchannel was measured by the confocal microscope described in details in chapter 2.

Fitting the simulations to the experimental time evolution reveals a kinetic controlled

adsorption. For symmetry reasons, the study carried out with this model can be extended to

microchannels adsorbing on all the four walls.
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Appendix A.

In the following the passages to get eq. (3-6) are described.

Fick’s law is written as:
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where A is an integration constant and s the parameter of the transform.

The constant A is determined from the transform of eq. (3-5) and there results:
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The surface concentration Γ is readily obtained by eq (3A – 4) keeping into account eq. (3-5),

and it results in eq. (3-6). The ratio Γ/Γeq given by eq. (3-6) is independent off the bulk

concentration of adsorbable substance because the adsorption is linearised in this treatment

(as described in eq. (3-5)).
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Appendix B: Depletion effect: validity remark

In Tab. 3.A the ratios Γ eq/Γmax obtained from

simulations are compared with the theoretical ones,

calculated from eq. (3-4). The values are similar only

for the higher C°  values, due to the depletion

occurring in this microsystem (h = 50 µm). Indeed,

at low C°, the initial assumption (Ceq = C°) is not

valid: therefore, the true values of C eq from

simulations at 30 minutes are employed to determine

a new isotherm of adsorption in function of Ceq (not

shown). For this, eq. (3-15) is rewritten by replacing

C° with Ceq. This isotherm provides 0.2% and 4%

deviation for Γmax and K respectively, confirming the

validity of previous fitted values used for Fig. 3.7c.

This iterative process is illustrated in the scheme

3.A.

START

Experimental

kinetics

Adsorption

isotherm

K and Γmax

Simulation fitting

kon, off and Ceq

Is

C°=Ceq?

STOP

NO

YES

Scheme 3.A
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theoretical eq

max

 
Γ

Γ
experimental 

Γ

Γ
eq

max

C°/ mol⋅m-3 difference % Ceq/C°

10-3 0.92 0.89 3.3 98 %

6.67 × 10-4 0.88 0.86 2.3 97 %

6.67 × 10-5 0.43 0.38 11.6 86 %

6.67 × 10-6 0.071 0.056 21.1 81 %

Table  3.A. Comparison between the theoretical and the experimental Γeq/Γmax attainable in the microchannel

used for comparison with experiments (Fig. 3.1b). The experimental Γeq/Γmax deviates more from the theoretical

one as C° is lowered. Ceq follows the same behaviour, deviating from C°.
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Dynamic Protein Adsorption in Microchannels by “Stop-Flow” and

Continuous Flow

(based on Lionello, A.; Josserand, J.; Jensen, H.; Girault, H. H. Lab on a Chip 2005, 10,

1096-1103)

4.1 Introduction

In chapter 3 we showed that during a microimmunoassay the solution of adsorbing species

might undergo a depletion due to the large surface-to-volume ratio intrinsic to microsystems.

This depletion leads to a smaller surface concentration of adsorbed species, either the primary

antibody or the antigen, that may result in a low signal during the detection. Renewing the

solution by sequential fillings of the microsystem (multiple “stop-flow” incubations) or by

continuously flowing the solution in the microchannel can alleviate this drawback.

The “stop-flow” method consists in stopping the flow to allow the analyte more time to

diffuse to the active wall. This “stop-flow” methodology is here simulated in a multi-step

way and the adsorption obtained is compared with that obtained with flowing conditions.

Many examples of continuous flowing heterogeneous microimmunoassays can be found

where the analyte is flowed past the antibody bound to a polymer surface1-4 or functionalised

surfaces.5 Sometimes, even the binding of the primary antibody is performed under flow

conditions.6

The process of adsorption under flowing conditions is also encountered in some biosensors

for the determination of the affinity and dissociation kinetic constants of biological systems.

In the “Biacore” biosensors, based on surface plasmon resonance detection principle, kinetic

constants are usually obtained with the software accompanying the sensor.7 Some deviations

from the experimental results were observed though, leading to the elaboration of models that

take into account the different aspects affecting the binding. A model to interpret the
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interaction between any number of soluble and immobilised species on a surface was

proposed8 in which special attention was brought to the rate constants of association and

dissociation as the main parameters governing diffusion or reaction controlled processes.

Another thorough study of the relations between the kinetic constants and the limitation

processes was done by Yarmush.9 Myszka and coworkers10 introduced the two compartments

model in which the analyte diffuses and binds to the ligand in an unstirred layer adjacent to

the surface. This model was improved11 and used several times12, 13 to analyse biochemical

binding processes. Another model has also been proposed for coupling transport phenomena

in a flow channel with hindered diffusion transport and reaction in the hydrogel layer of a

Biacore sensor.14 Also, with this device, the antibody/antigens systems were studied using a

Langmuir isotherm model.15

More generally, a mathematical approach to adsorption kinetic in a flow cell has been

developed by Filippov16 and mathematical models of adsorption and transport processes in

capillary electrochromatography have been presented.17

In the present work, the finite element method (FEM) is used to study the coupling of

adsorption kinetics to convection-diffusion phenomena in microchannels, providing the time

evolution of the concentration of one species, both in solution and on the walls of the

microchannel. It can be used to study the adsorption of the primary antibody onto a substrate

or to study the reaction between a biomolecule and the attached antibody. An analytical study

to provide the number of “stop-flow” steps necessary to obtain the full coverage is addressed

and validated with simulation results.

The continuous flow is studied with the FEM model and the conditions to obtain a uniform

coating along the channel are analysed. This leads to criteria for setting the flow velocities

that allow a comparison with the “stop-flow” procedure in terms of sample consumption. The

channel length used in the simulations is 1 mm long, and the flow velocity range is [10-100]
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µm⋅sec-1. The possibility to extend the present results to longer channels by using higher

velocity values (scaling based on the residence time conservation) has been experimentally

verified.

4.2 Theory

4.2.1 Adsorption in microchannels

We consider the adsorption process according to the Langmuir isotherm model. The

expression relating the concentration of analyte adsorbed on the surface, Γ, to the one in

solution C, at equilibrium, is:

(4-1)

where Γeq
theor is the surface concentration at equilibrium, Γmax is the initial concentration of

the active sites, K  is the thermodynamic constant of adsorption, and C°  the initial

concentration of the solution. The parameter ψ, “the motivating force to adsorption”, is equal

to KC°.18 In a microsystem submitted to static adsorption without renewing the solution, the

analyte concentration at equilibrium is no longer C° but Ceq. As a consequence, the maximum

surface concentration value attainable is Γeq
µsyst, lower than Γeq

theor, and eq. (4-1) should be

written as:

(4-2)

4.2.2 The “stop-flow” procedure (far from full coverage)

This procedure consists in renewing the solute by a fast injection that is then stopped to allow

an adsorption step under static conditions. As soon as the “intermediate” equilibrium Γeq
µsyst
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has been attained, the depleted solution is renewed again and again up to Γeq
theor. The number

of loads needed to attain Γeq
theor can be estimated in the case Γeq

µsyst << Γmax, i.e. when KCeq

<<1. Under this assumption, KCeq can be neglected in the denominator of eq. (4-2), which

becomes:

Γeq
µsyst = KCeqΓmax (4-3)

• 1 step adsorption - The total number of the analyte moles nTOT present in the channel is

equal to the number of moles injected, which distributes between the adsorbing wall and the

depleted bulk: nTOT = ninj = nwall
eq + nsol

eq, where ninj (=C°⋅Vol) indicates the number of moles

injected in the system, nwall
eq and nsol

eq respectively the moles adsorbed on the active surface

and those still in solution at equilibrium.

The mass balance can be rewritten as nTOT = Γeq
µsyst A + Ceq Vol, where A and Vol are the

active surface area and the volume of the microchannel. Keeping into account eq. (4-3), the

following equation is obtained:

n

n

K AVol

K AVol
wall

eq

TOT

=
+

=
+

=
−

−

Γ
Γ
max

max

1

11
1

1 ϕ
α (4-4)

where α indicates the relative adsorbing capacity of the system, giving the ratio between the

number of moles of adsorbed analyte and the total number of analyte present in the system.

The parameter ϕ is the dimensionless parameter introduced in chapter 3 that represents the

intrinsic ideality for binding of the microchannel (ϕ = Vol/AKΓmax). More precisely, with this

parameter ϕ it is possible to describe the adsorption in a microsystem compared to an ideal

system (in semi-infinite diffusion) with the same Γmax and K. A low ϕ value means that Γmax

and K are high compared to the volume-to-surface ratio, leading to a consequent important

bulk depletion effect.
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• Multi-step “stop-flow” – Contrary to the first step, the initial surface concentration on the

wall prior to another injection is not zero and at load N, a number nwall,N-1
eq of molecules has

already been adsorbed, leading to:

nTOT, N = ninj + nwall,N-1
eq (4-5)

The number of moles injected in the channel ninj is considered to be the same at each step (i.e.

C°⋅Vol). Due to the fact that the equilibrium conditions are independent of the initial

distribution of the species between the surface and the solution, eq. (4-4) can be extrapolated

to the step N giving eq. (4-6a); replacing eq. (4-5) in eq. (4-6a) gets to eq. (4-6b); by analogy

with eq. (4-6b), we can write nwall,N-1
eq = α (ninj + nwall, N-2

eq) that can be replaced in eq. (4-6b)

giving eq. (4-6c).

n

n
wall,N

eq

TOT, N

= α (4-6a)

nwall,N
eq = α (ninj + nwall, N-1

eq) (4-6b)

nwall,N
eq = α ninj + α (α (ninj + nwall, N-2

eq)) (4-6c)

Iterating N times this passage we obtain nwall,N
eq = (α +α2 + α3 +…+ αN) ninj. The geometric

series ax a
x
x
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1

 can be written in the present case, giving eq. (4-7):
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(4-7)

4.2.3 Continuous flow

When the channel is submitted to transient convection-diffusion conditions, the local form of

the flux conservation of the bulk concentration C is given by eq. (4-8). The boundary
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condition at the active wall is expressed by eq. (4-9), linking the analyte consumption flux at

the active wall19 to the time evolution of its adsorbed form:

  

∂
∂

+ ∇ − ∇ +•
C
t

D C( VC) = 0 (4-8)

∂
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t
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y

k C k
y 0

on off( )max (4-9)

where D is the analyte diffusion coefficient, kon and koff are the forward and reverse rates of

adsorption (the thermodynamic constant being K = kon / koff) and V is the fluid velocity vector

for the pressure driven flow (PDF). It is worth noting that the same kind of equations (but

without convection for eq. (4-8), i.e. the Fick’s law) is used for the simulation of the “stop-

flow” process.

The evolution of C and Γ in the present FEM model is calculated by the following set of

equations, which are applied to the 2-D geometry described in Fig. 4.1. Note that the

boundary condition (4-9) is introduced in (4-8) as a consumption term assigned to the active

wall, leading to eq. (4-10). To ensure that the adsorption term is only applied on the wall

region for both eq. (4-10) and (4-11) and eq. (4-A1-3, A1-4, in Appendix 1), the surface

concentration Γ′, and the kinetic rates kon and koff are defined only at the wall surface; C is

defined both in the bulk and at the wall. The second terms of eq. (4-10) and (4-11) equal zero

in the bulk. The present model has been calibrated with previous numerical results18, 20 for the

Langmuir adsorption isotherm.19
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The notation Γ′ = Γ/δ has the same meaning than in chapter 3 (see paragraph 3.2.4). Dwall is

fixed at 4 × 10-11  m2⋅sec-1. It is verified that the diffusion coefficient Dwall of the wall insures

a uniform concentration Γ′ in the direction normal to the surface at any time during the

calculation in a range of values from 4 × 10-10 to 4 × 10-12  m2⋅sec-1, due to the small

thickness of the active layer. Simulations were performed to check that, within this range,

variations don’t occur in the bulk and surface concentration profiles.

4.2.4 Numerical model and assumptions

In Appendix 1, eq. (4-8) and (4-9) are formulated using the Galerkin method. The finite

element formulation is implemented in the software Flux-Expert™ (Astek Rhône-Alpes,

France)21, which is performed on a Silicon Graphics Octane 2 Unix workstation. The

h

x

y

w

L

Figure 4.1. Scheme of the PET microchannel (not in scale): L = 4 cm (the detection point is fixed at

1.5 cm from the outlet), h = 50 µm and w = 200 µm. The channel is etched by laser ablation in a 100

µm high PET sheet. The shaded area inside the channel represents the 2D area used in the simulations

(in this case L = 1mm), where the PDF flow velocity is used (further information can be found in SI).

The adsorbing wall is on the bottom. (b) Mesh used for the simulations. The typical mesh size ranges

from 2 µm for the active layer on the bottom to 10 µm on the top of the channel.

(a)

(b)
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calculations are performed in the 2-D geometry described on Fig. 4.1a. The typical mesh size

ranges from 2 to 10 µm as shown in Fig. 4.1b. The active layer is 1 mesh thick. For the

continuous flow, the initial conditions are C = 0 in the channel and Γ = 0 in the wall. For the

zero-flow calculations (i.e. in the “stop-flow” process), the initial Γ value of each step n is

equal to the value of Γ  at equilibrium reached at the step n-1. The physical boundary

condition (4-9) being introduced as a consumption term, the only numerical boundary

conditions of the model are the Dirichlet conditions at the inlet (C = C° for x = 0) and the

Neumann homogeneous conditions at the external walls (∂C/∂n = ∂Γ′/∂n = 0 for y = -δ or y =

h or x = L).

For the pressure driven (PDF) flow, a Poiseuille parabolic profile has been imposed, while

for the electro-osmotic (EOF) flow, a uniform velocity profile has been imposed. For the

“stop-flow” simulations, the velocity is set to zero in the entire domain. The typical Courant-

Friederich-Levy (CFL) number V⋅∆t/∆x is 0.5, as the velocity imposed is 100 µm⋅sec-1, the

characteristic time step ∆t is 10-2 sec and the local cell ∆x size is 2 µm. The following

conditions are assumed: (i) – The solutions are sufficiently diluted so that the viscosity and

the density of the fluid (assumed to be uniform) are not modified by concentration variations.

(ii) – The channel walls are assumed to be smooth and the wall capillary forces are neglected

in the eventual case of a liquid/air interface. (iii) – The width w of the channel is much larger

than its height h so that the velocity gradient in the third dimension can be neglected (2D

Cartesian assumption). (iv) – For the multiple “stop-flow” process, the flowing load of the

solution is assumed to be instantaneous. (v) – Dead volume effects are neglected.

4.3 Experimental Section

The channel fabrication method by laser ablation and the characteristics of the confocal

microscope are described in ref. [22] and chapter 2 respectively. The chip is inserted in a
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Plexiglass holder allowing the infusion of the analyte solution through the inlet of the

microchannel at a constant flow rate. The device is coupled to 2 syringe pumps (Kd

Scientific; accuracy of the flow rate: ±1%) via PET microtubes (incubated 2 hours in a 5%

BSA (SIGMA) in 0.01 M  phosphate buffer solution (PBS) to avoid IgG adsorption)

connected to the Plexiglass holder with a T junction. A 10-8 M solution of labelled antibody

(Fluorolink Cy5 labelled antirabbit IgG, Amersham Pharmacia Biotech) in 0.01 M PBS was

pumped in a 4 cm long microchannel (50 × 200 µm in cross section, as shown in Fig. 4.1a at

a rate of 90 µL/h, corresponding to V = 2.5 mm⋅sec-1 leading to the same residence time of 10

sec. as the experimental channel length is 25 mm (see Fig. 4.9). The protein solution was

pumped for a time t0 during which adsorption occurs. After this, the washing buffer (0.1%

Tween-20 (SIGMA) in PBS) was pumped at the same inlet at a rate of 270 µL/h for 1 minute

to insure an efficient washing of the unadsorbed proteins.22 At this point, the fluorescence of

adsorbed antibody on the channel wall was measured with the confocal microscope, giving

the t0 value of Fig. 4.8. The protein solution was then pumped in the same channel for an

additional time t1, followed by washing and measurement, giving the t0 + t1 value of Fig. 4.8,

and so forth. No appreciable delay in stopping the flow was observed while switching from

the infusion of the proteins to the washing buffer. The detection spot was fixed at 2.5 cm

from the channel inlet. The mean value and its standard deviation were taken from 5

measurements and the minimum and maximum values from the measurements are used to

bound the average values in Fig. 4.8.

The quantity of adsorbed antibody can be calculated from the fluorescence measurements

with a calibration curve as done in chapter 3. However, to compare experiments and

simulations, the fluorescence was normalised by the maximum value obtained at equilibrium.

The linearisation of the Langmuir isotherm of adsorption19 of this system led to know the

Γmax value for the IgG adsorption on the poly(ethylene terephthalate) (PET) microchannel. As
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this value is largely lower than the one theoretically obtainable, multi-layer adsorption is not

accounted for.

4.4 Results and Discussion

4.4.1 Stop-flow process

The “stop-flow” procedure is basically a sequence of adsorption equilibria alternated with a

stepwise renewing of the bulk solution. It is illustrated by numerical simulations in Fig. 4.2,

showing how the duration and the number of the sequential loadings required to reach Γeq
theor

decreases with increasing ψ. When ψ (i.e. KC°) is multiplied by two orders of magnitude, the

number of loads N to reach 99% of Γeq
theor is divided by 3 (from 3 to 1) and the time is

divided by a factor of 30.
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Figure 4.2. Time evolution of the coverage in a 50 µm high microchannel with sequential loadings of

the analyte solution. The number of fillings and the time needed to attain Γeq
theor increases at lower

concentrations. The parameters are D = 4 ×  10-11 m2⋅sec-1, Γmax = 2 × 10-8 mol⋅m-2, K = 104 m3⋅mol-1

(kon = 100 m3⋅mol-1⋅sec-1, koff = 0.01 sec-1; kinetics controlled adsorption). C° = 10-5, 10-4, 10-3 mol⋅m-3

for ψ  = 0.1, 1, 10 respectively. Γeq/Γmax
theor = 9.1⋅10-2, 0.5, and 9.9⋅10-1 for ψ  = 0.1, 1 and 10

respectively.
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For a low coverage situation (ψ = 10-2), the analytical solution (4-7) is represented in Fig. 4.3

(lines) in function of N and compared to the simulation results (markers) at different α

values. Any microsystem is characterised by an α value, which can be calculated by the

second term of eq. (4-4), and which is inversely proportional to 1+ϕ. The parameter α can be

used to predict how many loads are necessary to reach Γeq
theor (i.e. to reach 93% of the

plateaus of the plots in Fig. 4.3, for instance 3, 7, 20 loads are necessary respectively for α =

0.4, 0.6, 0.8 – this last not shown). The number of loads needed increases with α, (i.e. with

Γmax, K, and the surface-to-volume ratio A⋅Vol-1 of the microsystem). When α →1 (i.e. the

wall has a great adsorbing capacity), a great number of loads are needed: this is due to the

high Γmax /C° ratio values resulting from the assumption of low coverages (i.e. low ψ).
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Figure 4.3. Representation of the number of moles adsorbed at equilibrium compared to the number

of moles injected in the microchannel as a function of the number N of successive loads in a “stop-

flow” procedure. The lines are calculated with eq. (7). The markers represent the results from

simulations where at each step the ratio nwall
eq/ninj has been evaluated: the parameters are D = 4 × 10-11

m2⋅sec-1, K = 2.5 × 106 m3⋅mol-1 (kon = 2.5 × 108 m3⋅mol-1⋅sec-1, koff = 100 sec-1: diffusion limited case),

C° = 4 × 10-9 mol⋅m-3 (ψ = 0.01). α was varied changing Γmax, which is equal to 5.6 × 10-11, 1.4 × 10-

10, 3.2 × 10-10, 3.9 × 10-9 mol⋅m-2 for α = 0.4, 0.6, 0.8, 0.98 respectively.
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Meanwhile, at high α values, the number of moles adsorbed at each load remains high for a

wide range of steps, making the multiple “stop-flow” procedure effective.

4.4.2 Continuous flow

For the following simulations, the parameters used are shown in Tab. 4.1. The values of K

and Γmax are obtained from the study of the IgG antibodies adsorption on PET.19 The

diffusion coefficient D is that of IgG (D  = 4 × 10-11 m2⋅sec-1) and the C° value (C° = 10-5

mol⋅m-3, unless differently specified) corresponds to the one used in the experiments. A PDF

flow is imposed, with a value of V  = 100 µm⋅sec-1.9

parameters flow simulations

D / m2⋅sec-1 4 × 10-11

Γmax / mol⋅m-2 10-9

C°/ mol⋅m-3 10-5

K / m3⋅mol-1 104

kon / m
3⋅mol-1⋅sec-1 10 – 106

koff / sec-1 10-3 – 100

    Table 4.1. Parameters for the flow simulations.

4.4.2.1 Diffusion limitation

The longitudinal distribution of the adsorbed species is represented in Fig. 4.4 (continuous

lines) for different times of simulation. A diffusion limited adsorption (koff=100 sec-1)19 is

illustrated, which can occur when an antigen reacts with the adsorbed antibody: this reaction

also can be fitted by a Langmuir isotherm, the primary antibody representing the active site

for the adsorbate.23

As the proteins advance in the channel, they are instantaneously adsorbed leading to a

decreasing distribution of Γ along the wall. The entire wall is uniformly covered in 50 sec,

corresponding to 5tres (tres=L/V =10 sec.). Also the volume of sample solution used Volsample is
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equal to 5 times the volume of the channel Volchannel, as the following normalisation can be

done:

t
t

Vol

Vol
N

res

sample

channel

= = (4-12)

where t is the injection time and N corresponds to the number of channel volumes used.

To insure the uniformity of the coverage along the channel (as after 5 tres in Fig. 4.5) the

injection time must be long enough to allow the solute the time to reach the end of the

channel and then to diffuse to the wall. This means that the condition t ≥ tres + tdiff must be

respected, tdiff representing the transversal diffusion time, whose order of magnitude is h2/D.

In this approach the longitudinal diffusion (along the channel) is neglected. Keeping into

account the definitions of tres and tdiff we finally obtain:
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Figure 4.4. Simulation results of adsorption in a microchannel, under diffusion limitation (koff = 100

sec-1). The plots represent Γ/Γmax versus the distance from the beginning of the channel (x) at 1, 3, 6,

12, 30 and 60 sec. after the beginning of the injection. D = 4 × 10-11 m2⋅sec-1, Γmax = 10-9 mol⋅m-2, K =

104 m3⋅mol-1, C° = 10-5 mol⋅m-3, V = 100 µm⋅sec-1. As ψ = 0.1, Γ eq
theor/Γmax = 9.1×10-2.
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where the Peclet number PeL = V L/D. Eq. (4-13) yields the minimum experimental time

necessary to achieve the uniformity of the coating, if the velocity of the flow is fixed by other

experimental constraints.

To minimise the volume used (i.e. N in eq. (4-12)), we must increase tres, reducing the fluid

velocity. This is shown in Fig. 4.5a, where the impact of different fluid velocities on the

coverage uniformity along the channel is illustrated. The growth of the coverage at the
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Figure 4.5. (a) Evolution of the coverage at the

inlet (set of plot to the left) and at the outlet (set

of plots to the right) of the microchannel wall in

function of the volume of sample used,

normalised by the volume of the channel

(Volsample/Volchannel). On top axis time is

normalised by the residence time L /V . The

adsorption is diffusion controlled (koff = 100 sec-

1). Flow velocities are V = 100 (dotted lines), 30

(dashed line), 10 µm⋅sec-1 (dashed and dotted

line). The other parameters are those of Fig. 4.4.

The numbers under the stop-flow plots represent

the steps. (b) Evolution of the coverage at the

end of the channel in function of the residence

time for different ϕ values: Γmax was changed,

the other parameters are those of Fig. 4.5a. V =

30µm⋅sec-1 so that the case ϕ  = 5 corresponds to

the dashed lined plot in Fig. 4.5a.

(a)

(b)
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beginning and at the end of the channel is reported versus the relative amount of sample used,

and for the V  values = 100, 30, 10 µm⋅sec-1. It is illustrated how the difference between the

coverages at the beginning and at the end of the channel (i.e. the non-uniformity of the

coating) decreases when the velocity of the flow is reduced. As expected, the consumption of

sample to reach the full coverage decreases when the velocity decreases: to obtain at the

channel outlet 99% of the inlet coverage, 4.3, 2.5 and 1.9 Volchannel are respectively needed.

To choose the optimum velocity, one can fix a number Nmax of Volsample that should not be

exceeded. For example, if a waste not higher than that obtained with the “stop-flow” method

is wanted, this number Nmax can be fixed from Fig. 4.3, after calculating the coefficient α of

the system. Introducing Nmax in eq. (4-13) by the way of eq. (4-12), i.e. t/tres = Nmax, leads to:

  
V
__

max( )≤ −N
DL

h
1 2 (4-14)

that grants for 99% of uniformity along the channel with the desired waste.a We can apply

this methodology to the adsorption system represented in Fig. 4.5a, characterised by α =

0.167. From a plot like those in Fig. 4.3 or eq. (4-7), it is possible to calculate Nmax = 3 (for

99% of the Γeq
theor) with the “stop-flow” procedure, which is also confirmed by the full line

curve of Fig. 4.5a. From eq. (4-14), for Nmax = 3, we obtain V = 32 µm⋅sec-1: as just seen

above, this flow velocity leads to employ 2.5 Volchannel, respecting the desired sample

consumption. More generally, choosing for instance Nmax = 7 and 2 (the first not shown as it

is out of scale) leads to impose V  values ≤  96 and 16 µm⋅sec-1 (in agreement with the

velocity values used in Fig. 4.5a, for which 4.3, and 1.9 Volchannel are respectively used). The

criterion (4-12) is then confirmed as a valid rule to have less or the same waste than with the

“stop-flow” for a given degree of uniformity of the adsorbed analyte along the channel.

                                                  
a The validity of eq. (4-14) has been verified for systems where Peh = V h/D ≥ 10 (to neglect the vertical

diffusion).
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It must be stated that the criterion (14) is valid when the microsystem is characterised by a ϕ

value higher than 5 (as that of Fig. 4.5a). In Fig. 4.5b the coating evolution as a function of

time at the end of the channel is shown in systems with different ϕ values and for a solution

velocity V = 30 µm⋅sec-1. At low ϕ values the adsorbing capacity of the system (KΓmax) is

very high and the residence time must be greater than the time to fill the adsorbing wall

(which can be much longer than the tdiff to cross the channel). This leads to increasing the

time to complete the adsorption by orders of magnitude (20 times the tres for ϕ = 0.1, with tres

= 30 sec) and to reduce the velocity value given in eq. (4-14). However the ϕ values range in

which eq. (4-14) holds covers the majority of the common experimental cases (adsorption on

polymers without surface modifications).24

ϕ α
N “stop-flow”

analytic

N tres simul;

ψ = 10-3

N tres simul;

ψ = 0.1

0.1 0.91 47 45 30

0.2 0.83 25 29 14

0.5 0.66 11 13 7

1 0.5 6 6 5

2 0.33 4 4 3

5 0.166 3 3 3

Table 4.2. Number of “stop-flow” steps needed to reach 99% of the plateau values in plots like those of Fig. 4.3

and number of tres necessary to reach 99% of the full coverage with a continuous flow (V = 30 µm⋅sec-1) in

function of α and the corresponding ϕ (parameters of Fig. 4.5b). The values of tres necessary with the flow mode

are reported for ψ = 10-3 (value at which the kinetics of adsorption is independent of concentration) and for ψ =

0.1: for this latter value, an agreement with the calculated values is found just for α < 0.5.

A comparison between the number of “stop-flow” steps and the number of tres to be used with

the continuous flow to reach the full coverage (by simulations up to the equilibrium) is made

in Tab. 4.2 for different ϕ values. The number of “stop-flow” steps is obtained with the

analytical method that was compared with simulations results in Fig. 4.3. The two procedures

are always comparable (at ψ = 10-3 and V = 30 µm⋅sec-1, which respects eq. (4-14)). The
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difference with the simulations carried out with ψ = 0.1 is due to the fact that the analytical

solution presumes the independence from C° (ψ << 1).

In Appendix 2 the time to coat the surface is calculated in any ϕ condition. An analysis of the

boundary layer developed during the adsorption in done.

4.4.2.2 Time comparison between continuous flow and “stop-flow” in a diffusion limited case

In order to see which procedure is faster, the continuous flow and the “stop-flow” are

compared in Fig. 4.6 in function of the absolute time. With V  = 100 µm⋅sec-1 the flow leads

to the Γeq
theor value in about the same time as the “stop-flow” mode (60 sec. instead of 70 sec.

for the 99% of Γeq
theor). With V = 30 µm⋅sec-1 the time to reach the full coverage is doubled

(120 sec. for the 99% of Γeq
theor). As a consequence, for the same amount of analyte solution

used, the “stop-flow” is faster than the continuous flow.
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43 Figure 4.6. The results of Fig. 4.5a are

here presented versus the absolute time. D

= 4 × 10-11 m2⋅sec-1, Γmax = 10-9 mol⋅m-2, K

= 104 m3⋅mol-1, C° = 10-5 mol⋅m-3.
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4.4.2.3 Kinetic limitation

In Fig. 4.7, the kinetic rates of adsorption are very low as during the antibody adsorption on

the walls of a microtiter well (koff values are 10-2 and 10-3 sec-1, the last one corresponding to

the kinetics of IgG adsorption on laser-ablated PET obtained in chapter 3). The theoretical

coverage Γ eq
theor (i.e. 9.1 × 10-2 Γmax) is attained after a long time (100 minutes, not shown)

through quasi-uniform concentration profiles (as under incubation). In fact, the time required

for the adsorption (treac = 1/kon⋅C° = 1000 sec)12 is much greater than the difference of

exposition time of the wall to the analyte between the inlet and the outlet of the channel

(x/V =10 sec at the channel outlet for V =100 µm⋅sec-1).

Introducing a flowing continuous process doesn’t bring any improvement to this adsorption

step or would require a very low fluid velocity to let the residence time being greater than the

reaction time. By analogy to the case of diffusion limitation, we can derive the following

criterion for the velocity:

V < (Nmax-1) konC°L (4-15)
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Figure 4.7. Simulation results of adsorption in a microchannel, under kinetic limitation (koff = 10-2, 10-

3 sec-1). The other parameters are those of Fig. 4.4a
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From this criterion, we can predict if a flow can be experimentally used or not, especially

with low concentrations or slow kinetics.

In Fig. 4.8, a comparison between the “stop-flow” and the continuous flow under kinetic

limitation is shown in function of the absolute time, which is an important factor when the

kinetic strongly limits the adsorption. Under “stop-flow” conditions, 4 sequential static loads

are required to reach 99% of the theoretical Γeq
theor value, and a volume of 4 × 10-2 µL of

protein solution is needed (i.e. 4 times the channel volume). For Nmax = 4, a continuous flow

velocity V = 0.3 µm⋅sec-1 is calculated from eq. (4-15), and then imposed in the simulations.

A time t = 1.2 × 104 sec is needed to reach 99% of the theoretical coverage with this velocity
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Figure 4.8. Time evolution of the adsorption at the end of the channel under continuous flow and

stop-flow conditions for a kinetic controlled process (koff = 10-3 sec-1), V = 100 µm⋅sec-1, 0.3 µm⋅sec-1

and 0.1 µm⋅sec-1. The other parameters are those of Fig. 4.5. The markers (open squares) show the

experimental results for IgG adsorption on PET microchannels. The minimum and the maximum

values of the experiments (crosses) are used to bound the average values. A 10-8 M IgG solution in

PBS was pumped in the PET channel with a pressure driven flow with a velocity of 90 µL⋅h-1

(corresponding to V = 2.5 mm⋅sec-1 leading to the same residence time of 10 sec. as the experimental

channel length is 25 mm, as described in Fig. 4.8).
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value. This leads to use of 3.6 × 10-2 µL, which is comparable with the one used in the “stop-

flow”. The criterion (4-15) is then confirmed as valid to minimise the sample.

The case presented here is an extreme one, as the kinetics of adsorption is very slow and

requires flow velocity values that are difficult to achieve experimentally. On the other hand,

for intermediate cases of kinetics, the criterion (4-15) can be helpful to determine if the

continuous flow can be used or not.b

From an experimental point of view, controlling the flow in a microchannel is not always an

easy task. The “stop-flow” approach alleviates the difficulty as the sample renewal can be

done rapidly without controlling the flow rate, even if it implies a control of the sample

volume to avoid exaggerated waste.

The experimental results of the IgG adsorption on PET under flow conditions are also shown

(markers) in Fig. 4.8 to check the accordance with the simulations. High flow rates are

important to minimize transport limitations and to allow an accurate estimation of the kinetic

constants.14 Therefore a pressure driven flow rate of 90 µL⋅h-1 was imposed (corresponding

to the same residence time as for the simulation at V = 100 µm⋅sec-1, with the couple (L, V )

= (25 mm, 2500 µm⋅sec-1) instead of (1 mm, 100 µm⋅sec-1). (See the validation in Fig. 4.9).

A good agreement is found between the simulation and the experimental results. The

adsorption of IgG on PET is confirmed to be under kinetic control.19 The experimental

coverage values are slightly greater compared to the simulated ones. This can be due to the

fact that immunosorption kinetics may be enhanced by the forced convection during the

filling of the channel.22
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4.4.2.4 Changing length of the channel

In order to check the valid range for extrapolating the results to longer channels, the effect of

the channel length L has been studied for a constant residence time (by adapting the flow

velocity proportionally to L). Fig. 4.9 shows the longitudinal distribution of Γ versus the

dimensionless length of the channel x/L, for different velocities V  and channel lengths L.

For velocity values below 10 µm⋅sec-1, the Γ distribution is different, due to the competitive

contribution of the longitudinal diffusion (D/δdiff ~ 10 µm⋅sec-1 corresponds to δdiff ~ 4.2 µm,

where δdiff is the typical 1-D diffusion length). For V  values higher than 50 µm·sec-1, the

plots are similar, whatever the couple (L, V ). Consequently, the results of the previous

                                                                                                                                                             
b The validity of eq. (4-15) depends on the PeL (here PeL = 7.5) as the typical length for the longitudinal

diffusion δ ≅ L (the solute diffusion length here is δ = (πDt)1/2 ≅ 1 mm). Consequently, for δ = 1mm, Vdiff = D/δ

= 0.04 µm⋅sec-1, confirming that it can be neglected.
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Figure 4.9. Comparison of results for different couples (V , L) (i.e. flow velocity and channel length).

Plots represent Γ/Γmax in function of the normalised distance x/L. V  = 150, 100, 50 and 10 µm⋅sec-1

for L = 1.5, 1, 0.5, 0.1 mm respectively. D = 4 × 10-11 m2⋅sec-1. The other parameters are those of Fig.

4.5.
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figures can be applied, for example, to 1 cm channels (instead of 1mm) with ten times higher

flow rates (i.e. 1 mm⋅sec-1), i.e. conditions that are generally used experimentally.

The results of this work can then be extrapolated to longer channels, provided that the

residence time is respected (e.g. the results previously obtained for the couple (L, V ) = (1

mm, 100 µm⋅sec-1) also apply to results obtained in a system where (L, V ) = (1 cm, 1

mm⋅sec-1)).

4.5 Conclusions

Due to the solution depletion occurring during static adsorption in microsystems, two

methods to renew the solution are studied in order to obtain the best possible coverage of the

active adsorbing wall: the “stop-flow” and the continuous flow processes. To do this, a finite

element model has been developed considering the transient convection diffusion of one

species in solution coupled to the adsorption kinetics on the active surface.

As the multiple “stop-flow” procedure is done with sequential static loads, an analytical

expression is provided by which the number of necessary loads can be predicted (in a

situation far from full coverage, i.e. low concentrated solutions). Finally, a good agreement is

found with the simulations.

For the continuous flow process, the effects on the coating of different adsorption kinetic

rates have been studied. In diffusion limited cases, uniform adsorption coverages are obtained

for flow velocity values V < (Nmax–1)DL/h2, where Nmax corresponds to the number of

volumes of sample that we want to use. Nmax can be fixed equal to the number of steps for the

“stop-flow” mode, giving the velocity range for which the continuous flow is competitive

with the “stop-flow” in terms of sample waste (for 99% of coating uniformity along the

channel). Similarly, under kinetic control, the value V = (Nmax–1)konC°L ensures the

theoretical coverage using the same amount of sample as the “stop-flow”. These comparisons
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underline the interest of the “stop-flow”, especially with slow kinetics, low concentrations or

short channels implying too slow velocity values for the continuous flow.

Measurement of IgG adsorption in a PET microchannel under flow conditions has been

performed, showing a good agreement with the simulation results and confirming confocal

microscopy as a useful and simple tool to investigate adsorption in microsystems. The results

obtained with this model can be extended to longer channels, after scaling the velocity flow.
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Appendix 4.1

The global forms of the local equations (4-10) and (4-11) (and also of (3-9) and (3-10)) are

here described using the Galerkin formulation (multiplication by a projective function αp and

integration on the domain of study, Ω), where Ci = C, Γ′ for i = 1, 2 respectively. By setting

V = 0 we obtain the set of equations used in static conditions. The term Ai corresponds to the

2nd terms of eq. (4-10) and (4-11) defined only in the wall region.

  
α

∂
∂p

i
i i i i

C

t
D C C A d+ ∇ − ∇ +( ) −





=∫∫ • V Ω
Ω

0 (4-A1-1)

The convection term is derived by taking into account the continuity equation   ∇⋅V = 0 . By

decomposing the product between αp and the divergence, the second order derivative of (4-

A1-1) (divergence of the gradient) becomes:

α α αp i i p i i i p i∇ − ∇ = ∇ − ∇ + ∇ ∇• • •( ) ( )D C D C D C (4-A1-2)

Applying (4-A1-2) in (4-A1-1) and using the Ostrogradsky theorem, the divergence term is

rejected at the external boundaries of the domain where it expresses the diffusion boundary

condition of each species (here equal to zero, i.e. no diffusion flux at the external boundaries

of the domain).
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Appendix 4.2

The time to coat the surface can be calculated saying that the flux of solute to the wall must

be equal to the coverage value, once the equilibrium is reached, that is:

D
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L w n

t
L w

∂
∂

⋅ = =
∂
∂

⋅( ) ( )wall,eq

Γ
(4-A2-1)

where L and w are the length and the width of the surface area, and nwall,eq is the number of

moles adsorbed at equilibrium. Keeping into account the definitions of Γeq
theor, and

approximating 
∂
∂
C

n
 with 

C

h

°
δd ( )
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and as ϕ = h/KΓmax the following expression is obtained:

t
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+
1
1ϕ ψ

δ
( )

( ) (4-A2-3)

The choice of the boundary layer thickness δd(h) is of crucial importance. When the flow

velocity is so slow that the depleted solute is not renewed fast enough from the incoming

solution, the vertical gradient of C extends to the upper channel wall. This is shown in Fig. 4-

A2-1, illustrating the concentration normalised by C° in function of the height h, at different

x distances from the channel inlet, after t = 1 tres. The velocity of the flow is set at V = 10 µm

⋅ sec-1. After t = 1tres the solution is already depleted at 50 µm from the inlet, so that at the top

of the channel the concentration C < C°. In this case δd(h) can be chosen equal to the height

of the channel h. Fig. 4.A2-2 illustrates the boundary layer thicknesses as in Fig. 4.A2-1 but

for a velocity V = 30 µm⋅sec-1. As the velocity flow is higher than in Fig. 4.A2-1 and the

solution is more actively renovated, the C° value extends to the top of the channel up to x =

100 µm from the inlet. In this case, when the velocity is fast the equation for the boundary

layer thickness can be written more classically as:25
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A comparison of the time to reach the equilibrium as calculated with eq. (4-A2-3) and the

time from simulations is done in Tab. 4.A2-1, showing a quasi-direct proportionality up to ϕ

= 1.

Eq. (4-A2-3) has been tried on different cases of velocity, diffusion coefficients and

concentrations, failing for diffusion coefficients greater than 10-10 m2⋅sec-1, for which the

expression of δd(h) must change.
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Figure 4.A2-1. Normalised concentration profiles in a channel of height y at different positions (x) from

the inlet, at t = 1tres. (a) V = 10 µm ⋅ sec-1: the solution is already depleted at 50 µm from the inlet, so that

at the top of the channel the concentration C  < C °. (b) V = 30 µm ⋅ sec-1: as the velocity allows for

renewing the solution, the depletion begins occur after about 500 µm from the inlet.
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ϕ tcoat calc/sec tcoat simul/sec tsimul/tcalc

0.1 6800 960 0.14

0.2 3401 470 0.14

0.5 1359 230 0.17

1 680 150 0.22

2 341 108 0.32

5 136 84 0.62

Table 4.A2-1. Times to reach the equilibrium as calculated with eq. (4-A2-3) and times from simulations. The

ratio of the two is shown in the fourth column.
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Antibodies Adsorption on TiO2 Modified Microchannels

5.1 Introduction

Microimmunoassays have been developed1, 2 in order to overcome the slow response

obtained with normally formatted assays. Actually, the microdimensions shorten the path of

the primary antibody to the system walls, diffusion being the limiting factor of a classical

heterogeneous immunoassay.3

Due to the nL volumes, detection in such systems represents a challenge; normally it is done

exploiting fluorescent molecules generated by enzymes linked to the secondary antibodies4,5

or attaching a chromophore to one of the molecules of the immunotest. Enhancing the surface

concentration of primary antibodies results in an increase of the antigen concentration

revealed by the test. Many efforts have been made to reach this aim, as well as to strengthen

the interaction between the polymer surface and the primary antibody, in order to decrease

losses of primary antibodies during the frequent washing steps which occur while performing

an immunoassay. In the case of biosensors, high levels of protein loading are important in

order to increase the sensitivity and the signal-to-noise ratio of the analysis. This goal can be

achieved by modifying the adsorptive surface by silanisation6 and by coatings of

biomolecules 7 or inorganic materials such as TiO2.
8

Proteins adsorption on TiO2 is a subject of much interest in particular with regard to

biocompatibility. Titanium spontaneously generates a layer of oxides (primarily TiO2)
9 when

exposed to air or aqueous media. When a titanium medical device comes in contact with

blood, proteins interact with the TiO2 layer whose properties are more similar to those of a

ceramic than to those of a metal. Several studies have been performed on the interaction

between albumin, one of the most abundant protein in human body, and TiO2.
10,11 Some

studies have also been conducted with fibrinogen,  and prothrombin.9 Surprisingly, however,
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in a survey of the literature, only few studies have been found on the interaction between

TiO2 and IgG antibodies.9,12

Adsorption of proteins is a challenging process to study, since it involves different factors,13

such as protein-protein and protein-surface interactions, and also structural changes within

the proteins. It is widely recognised, though, that the strongest driving factor is the interaction

between the surface and the protein. Due to the fact that during the adsorption a large number

of water molecules are released from the protein and the surface, proteins bind preferentially

to hydrophobic surfaces. After the adsorption, the binding can be reinforced by

conformational changes in the protein.

In this work, the adsorption of antibodies in TiO2 coated PET microchannels is studied.

Titania is used under the form of nanomaterials in order to increase the active surface of the

microsystem. The adsorption is studied as a function of the pH and the ionic strength in order

to characterise the interaction of IgGs and TiO2. The detection is done with the confocal

microscope described in chapter 2.

5.2 Experimental Section

5.2.1 Reagents and Solutions

TiO2 nanowhiskers and nanorods were purchased from Catalysts and Chemicals (Japan).

TiO2 nanowhiskers are in anatase crystalline form, with a point of zero charge around 6.  The

active surface area of this material is 400 m2⋅g-1. TiO2 nanorods are amorphous: this material

exhibits the interesting feature of a negative surface charge from pH 3 to pH 9.5 obtained by

doping (supplier information). Nanorods with 320 and 400 m2⋅g-1 active surfaces area have

been used. All other chemicals (NaCl, HCl, NaOH) were of analytical grade and water was

purified with the Millipore Milli-Q system. A 1mg⋅mL-1 (6.67 × 10-6 M) solution of labelled

antibody (Fluorolink Cy5 labelled antirabbit IgG, Amersham Pharmacia Biotech) was
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prepared in water. From this, further solutions were obtained by serial dilutions with PBS

(SIGMA). PBS solution has the following composition: 0.01 M phosphate, 0.0027 M KCl

and 0.15 M NaCl. The washing buffer is made of a 0.1% Tween-20 (SIGMA) solution in

PBS. IgG solutions at different pH values were prepared by adjusting the initial pH to the

desired value by small amounts of 0.1 M NaOH and 0.1 M HCl. IgG solutions 0.001 M NaCl

and at different pH were also prepared. IgG are supplied as a lyophilised solid in PBS (0.01

M Potassium Phosphate, 0.15 M NaCl), pH 7.4, to be reconstituted with 1.0 mL of deionised

water. After reconstitution the 6.67 M (1mg⋅mL-1) IgG solution was diluted 100 times with

0.1 M and 0.001 M NaCl solutions at different pH. The final pH was measured with a

Tacussel pH-meter.

5.2.2 Microchannel Fabrication

The microchannel fabrication14, 15 has already been described in the previous chapters. To

enhance the binding between the TiO2 particles and the PET by exposing COOH groups, the

microchannels were oxidized before lamination.16 First, they were washed with distilled

water, methanol and hexane, and then dried. PET-CO2 surfaces were prepared by introducing

the clean, non-laminated microchannels into 1 M NaOH for 16 min at 60 °C. They were

subsequently rinsed with 0.1 M HCl, distilled water and hexane, dried at reduced pressure

and then laminated.

The coating of the microchannels with the titania particles was performed by filling the

channels with a solution of 1% of particles in methanol, and letting the adsorption take place

all night in a Petri box saturated in methanol to avoid evaporation. Before the adsorption of

IgG antibodies, the channels were rinsed three times with water.

IgG adsorption on TiO2 coated microchips was observed as previously described.

5.2.3 Kinetic Isotherms and Steady-State Isotherms

The kinetics of adsorption was measured as described in chapter 3. The isotherms of
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adsorption were recorded measuring the Γeq values, i.e. the adsorption values reached at

equilibrium as a function of the bulk concentration C° as described in chapter 3 (paragraphs

3.3 and 3.4.5) in Theory and Experimental. The equilibrium values of adsorption in this

chapter are experimental and obtained in microsystems. In previous chapters the notation

Γeq
µsyst was used: for simplicity Γeq will be used in this chapter. The equilibrium adsorption as

a function of different ionic strengths and pH values was also measured.

5.2.4 SEM pictures

The pictures were taken with a Philips XL 30 FEG electron microscope after delaminating

the microchannels of the PE/PET sheet. To observe the PET channels with SEM avoiding the

accumulation of charges on the surface, they were previously coated with a gold layer almost

20 nm thick.

5.3 Results and Discussion

5.3.1 Aspect of the Microchannel Surface

All the results for the two different kinds of TiO2 nanomaterials, with different active surface

area, are similar. We are reporting now only the results from the anatase 400 m2⋅g-1 rods.

(a)
(b)

Figure 5.1. SEM images: Laser ablated PET before (a) and after (b) oxidation. In Tab. 5.1 it can be

observed that the initial number of active sites Γmax increases from bare PET to oxidized PET. The SEM

picture of the laser ablated PET shows that the surface presents a lot of “hills”. These formations, smoothed

during the polishing, are enhanced with the NaOH oxidation: this can also explain the slight increase in

Γmax.
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In Fig. 5.1a, the SEM pictures of the surface of a laser ablated PET microchannel are shown

and compared with the ablated surface after treatment with NaOH in Fig. 5.1b.

The microstructures present on the surface, resembling hills about 1 µm high, must not be

confused with redeposited debris. They are the result of differential etching between

amorphous and crystalline regions of the polymer exposed to short pulses of the ultraviolet

radiation of the excimer laser at fluences higher than 100 mJ⋅cm-2. The hills correspond to the

more crystalline material and the valleys to the amorphous one. The aspect of the surface of a

TiO2 amorphous nanorods coated microchannel is shown in Fig. 5.2. The aspect of TiO2

anatase nanowhiskers coated microchannel is similar to the one coated with nanorods. A

compact and stable layer of particles is obtained: “hills” and “valleys” are entirely covered

with TiO2 nanoparticles, which are firmly attached to the surface. A confocal microscope

scan through the microchannel shows a uniform distribution of adsorbed IgGs on these

supports.

5.3.2 Kinetics of adsorption

The adsorption kinetics of IgG on the three surfaces (oxidised PET, anatase TiO2 and

amorphous TiO2) is represented in Fig. 5.3. The kinetics of adsorption on laser ablated, non-

oxidised PET (bare PET) at C° = 6.67 × 10-7 M is also reported (full rhombi, dashed lines) in

order to illustrate the improvement obtained after surface modifications. On all the three

Figure 5.2. SEM image of TiO2 nanorods

coated microchannel. The active surface is

further enhanced by fixing the nanorods and

nanowhiskers on the surface.
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phases the adsorption is faster at higher concentrations, as foreseen by the Langmuir kinetic

(eq. 3-2).

The transport of the proteins to the surface can be limited both by the diffusion in solution

and by the adsorption kinetics onto the surface. To investigate the mass transfer

characteristics, the isotherm kinetics in Fig. 5.3 have been fitted with the help of the finite

element model already described in the chapters 3 and 4. The values of K and Γmax used in

the simulations are those of Tab. 5.1, obtained by linearisation of the steady-state adsorption

isotherms as explained in chapter 3, and below in this chapter.
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Figure 5.3. Kinetic adsorption isotherms of IgG

adsorption on (a) oxidised PET; (b) anatase TiO2;

(c) amorphous TiO2. Solution concentrations: open

triangles: C° = 6.7 × 10-7 M; open square: C° = 6.7

× 10-8 M; open circles: C° = 6.7 × 10-8 M. All the

isotherms are compared with the kinetic of

adsorption on bare PET (full rhombi, dashed lines:

C° = 6.7 × 10-7 M). The fittings (full lines) are

performed with the finite element method model (K

and Γmax values in Tab. 5.1, koff are 10-4, 5 × 10-4 and

10-3 s-1 for oxidised PET (at C° = 6.67 ×  10-7 M),

anatase TiO2 and amorphous TiO2 respectively).
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The value of koff that has been taken for the diffusion limitation regime is 100 s-1 (the

difference with the case of 10 s-1 is 2% of that at 10 s): for this value all the proteins arriving

to the surface are immediately adsorbed. For higher values of koff (keeping constant the value

of K = kon/ koff) no change in the adsorption kinetics is observed, proving that the mechanism

is diffusion controlled.

support K⋅104/m3⋅mol-1 kon/ m
3⋅mol-1⋅sec-1 koff/ sec-1 Γmax⋅10-9/mol⋅m-2

bare PET 0.80 8 10-3 1.30

oxidized PET 8.43 8.43 10-4 1.38

amorphous TiO2

(320 m2⋅g-1) 3.58 35.8 10-3 2.20

amorphous TiO2

(400 m2⋅g-1) 2.59 25.9 10-3 2.40

anatase TiO2 4.88 24.4 5 × 10-4 3.13

Table 5.1. Values of K and Γmax as obtained from the linearised isotherms of Fig. 5.4.

The two rates kon and koff were lowered from the diffusion limiting values to fit the

experimental curve of Fig. 5.3. The values found for koff are 10-4 for oxidised PET (at C° =

6.67 × 10-7 M), 5 × 10-4 for anatase TiO2 and 10-3 s-1 for amorphous TiO2. This means that the

adsorption processes on all the surfaces are limited by the actual adsorption, as already

observed for IgG adsorption on PET.17

This is a non-negligible factor when envisaging microimmunoassays. Microdimensions, in

fact, allow speeding up the test when the adsorption of the capture antibody or the subsequent

immunoreaction is fast. If the adsorption is slow, the experimental times or the time-to-

response of a test can be considerably higher than expected. Adsorption of low concentrated
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solutes, for instance, can take more than 30 minutes to complete, as shown, for instance in the

adsorption kinetics on amorphous TiO2 in Fig. 5.3c.

5.3.2.1 Oxidised PET

Adsorption on oxidised PET presents a higher value for K than on bare PET.17 This is due to

the value of koff which is one order of magnitude lower on oxidised PET, while the kon values

are almost the same for the two surfaces. To evaluate the influence of the surface charge of

the two surfaces on the kon value, this quantity was calculated (using the values from

electroosmotic flow measurements from A. Ros’ Ph D dissertation18). The surface charge is δ

= ζκε, where κ is the Debye-Hückel parameter, ε is the dielectric constant of the solvent and

ζ is the zeta potential of the surface (ζ = µeoη/ε where µeo is the electroosmotic mobility of

the solvent per unit field strength which is accessible experimentally, and η is the viscosity of

the solvent).

The values for δ and ζ for the two surfaces are reported in Tab. 5.2.

surface µeo⋅10-8/m2⋅V-1⋅sec-1 ζ/mV δ/C⋅m-2

bare PET 5.4 78 0.067

oxidised PET 5.0 72 0.062

Table 5.2. Comparison of the calculated δ and ζ for bare and oxidised PET. κ = 12.4 m-1 from Grossman, 19 ε =

6.95 × 10-10 C2⋅J-1⋅m-1 for water,20 η = 0.001 N⋅s⋅m-2.20 µeo are from Ros.18

It can be observed that the surface charge is almost equivalent for the two cases: the proteins

approaching the two different surfaces experience an equivalent electrostatic force, which

confirms the kon values, close one another. What helps in stabilising the attachment in the

oxidised surface (and in the increasing of K) are, more likely, electrostatic forces and

covalent bonds. Carboxylic groups are indicated for covalent binding of IgG on polymers: all

these binding possibilities concur to increase the thermodynamic constant of adsorption.
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Furthermore, for oxidised PET, we found a lower kinetic rate at higher concentrations, kon

and koff being equal to 0.84 m3⋅mol-1⋅sec-1 and 10-3 s-1, respectively, for C° = 6.67 × 10-8 M

and 6.67 × 10-9 M instead of 10-4 s-1 for C°  = 6.67 ×  10-7 M. This is peculiar because,

normally, the same set of adsorption and desorption rates are used to simulate all the

adsorption kinetics, varying just in C° values. This behaviour has already been explained:21 at

larger surface coverages obtained at higher concentrations, the arriving proteins require a

specific orientation to avoid the repulsion from the molecules already attached and, at the

same time, to adsorb onto the surface, inhibiting the adsorption.

5.3.2.2 Anatase TiO2

On this substrate a fast and strong adsorption occurs: Γeq, reached in 10 minutes, has a

threefold value with respect to the one on bare PET. Anatase TiO2 has a point of zero charge

at pH 6, and the pI of the antibodies falls in a range between 6 and 8. When a protein pI

matches the point of zero charge of a surface, the classical mechanism for non-specific

adsorption is followed. In the isoelectric region IgG antibodies are in their compact

structure.22 The antibodies classically adsorbed in compact form through the Fc part at pH 7.4

hinder less the adsorption of further molecules, as would happen with unfolded forms.23

IgG surface binding on other surfaces than TiO2
24 was established to be due to hydrophobic

forces in cooperation with electrostatic forces. In the pH range 6.0 – 7.0, the predominant

TiO2 anatase surface groups are Ti2=O-, TiO- and Ti-OH.11 Possible electrostatic reactions are

the ion-dipole interactions between the monocoordinated surface –OH groups and the

aminium groups in the protein.

The fact that electrostatic forces can be claimed in the IgG/PET and IgG/TiO2 systems is

proved by the lower adsorption values found at relatively high salt concentration (see below),

where the electrostatic charges of the surface and the proteins are shielded.
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5.3.2.3 Amorphous TiO2 (Electrostatic Adverse Conditions)

IgG adsorption on amorphous TiO2 coated microchannels is quite fast, since only 20 minutes

are necessary for reaching the surface concentration at equilibrium Γeq at the highest bulk

concentration. It can be observed that the amorphous TiO2 coating enhances twofold the

adsorption, in comparison to the bare PET isotherm. This kind of amorphous TiO2 nanorods

have been chosen because the negative surface charge exhibited allows for exploring the

importance of electrostatic interaction for IgG adsorption on TiO2. For the negative surface of

amorphous TiO2, the predominant Ti2=O- and Ti-O- forms are postulated, so that the same

mechanism of adsorption described for the phases above can be envisaged.

5.3.3 Steady State Isotherms

The steady state adsorption isotherms of these systems are shown in Fig. 5.4 (see eq. 3-4).

The isotherms develop a well established plateau at around 1 µM concentration. Since it has

been proven by many studies10 that proteins adsorption reaches its maximum at a pH close to
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the isoelectric point (pI) of the proteins, the isotherms have been recorded at the pH of the

buffer solution, i.e. at pH 7.4. The pI of polyclonal antibodies should span from 6 to 8.

The steady state isotherms can be linearised (see Fig. 5.4b) reporting C°/Γeq versus C°, as

described in eq. 3-15. This gives the initial number of active sites Γmax and the

thermodynamic constant K as the values of the slope and the y-intercept respectively, which

are reported in Tab. 5.1. The lowest values of K and Γmax are those of bare PET, and they are

higher for treated surfaces.

The steady state isotherms of Fig. 5.4 show greater adsorption values on modified surfaces

compared to those on bare PET. The amount of adsorbed protein at low degrees of surface

coverage relative to the amount in solution is a measure of the protein affinity for the surface.

Thus, when this amount reaches a constant value at low concentrations in solution, it

indicates that a high affinity isotherm is operating. Low affinity isotherms are characterised

by a slight increase of the adsorbed protein (as on bare PET, where electrostatic repulsion is

active).

5.3.4 Adsorption on PET at Different Salt Concentrations

In Fig. 5.5a, Γeq as a function of pH for different ionic strengths is plotted for oxidized PET.

This is possible because the fluorescence properties of Cy5 don’t change with the pH, as

shown in Fig. 5.5b. The maximum of the adsorption on PET occurs at a concentration of 10-3

M NaCl, at pH 5, while at a higher concentration of 0.1 M NaCl the concentration is almost

independent from the pH (the surface concentration Γeq spans from 0.6 to 0.9 × 10-9 mol⋅m-2)

and is drastically reduced of about one half.
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This is probably the result of increased screening of the PET surface charge by the sodium

ions, weakening the strength of the electrostatic interaction with the protein. This again

reflects the electrostatic nature of the protein/PET interaction.

The electrolyte concentration or ionic strength can also influence the protein size and the

intermolecular interactions, which can be analysed by a model that considers protein

molecules as rigid spherical particles.11 The thickness of the double layer surrounding each

rigid sphere depends on the ionic strength of the buffer: it is equal to 1/κ, where κ, the

Debye-Hückel parameter is given by the Debye equation:

κ
ε

=


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
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






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k T
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1 2

1000 A

B

V

/

(5-1)

Here e is the elementary charge, NAv the Avogadro constant, zi and ci the number of charges

and the concentration of the electrolytes of the buffer, kB and T the Boltzmann constant and

the temperature.
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It can be inferred from this expression that an increase in the ion concentration (NaCl in our

case) could produce a decrease in the effective size of the rigid particle due to compactness of

the electrical double layer around the protein molecule. The dimensions of the double layer

depending on the ionic strength are reported in Table 5.3.

solution a ionic strengthb/M κ-1/nm Aeff/nm2 c Aκ/nm2 Aeff /Aκ

PBS pH 7.4 9.64 × 10-2 0.98 1268 143 9

NaCl 0.1 M 5 × 10-2 1.35 2371 161 15

NaCl 10-3 M 5 × 10-4 13.6 1380 1380 1

Table 5.3. Double layer thickness and area values for the rigid particle model under different experimental

conditions. a Buffer as indicated in text. b Ionic strength = 
1

2

2

z c
i i

i

∑ . c The values of Aeff are taken from eq. (5-3)

suing the values obtained experimentally in Fig. 5.5 and 5.6.

The diminution of the double layer extension, and thus the distance at which the repulsive

forces between particles become considerable, should allow a greater accumulation of the

protein molecules at the surface with the increase in ionic strength. This behaviour is not

observed here.

Giacomelli et al.10 have proposed an approximate calculation of the molecular area taking

into account the contribution of the double layer and the effect of the ions in solution. Thus, it

is possible to define Aκ as the area of the rigid particles as follows:

A Astrκ κ
= +









2

2

(5-2)

where Astr, the structural protein area, is here taken as 100 nm2. The results calculated

according to eq. (5-2) are also shown in Table 5.3. It can be observed that at high ionic

strength the Aκ values are remarkably lower than the areas calculated with the experimental

data in Fig. 5.5 and 5.6 (see also below in Fig. 5.7a). This fact (together with the fact that we
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observe a greater accumulation of proteins with the decrease in ionic strength) suggests that

the particles do not behave as rigid ones. We can conclude that the electrostatic repulsion

between molecules is negligible, that the effect of the double layer should be minimum and,

therefore, that the electrostatic interactions between the proteins and the surface are the main

responsible for the behaviour described in Fig. 5.5.

The calculation for the area is valid at low ionic strengths, suggesting that electrostatic

repulsion between molecules plays a role in the final surface concentration (even if a

correlation with higher ionic strength situations is not allowed).

5.3.5 Adsorption as a Function of pH

The dependence of Γeq on pH is plotted in Fig. 5.6. The overall charge of the protein at

different pH is indicated on the top of the graph, and the charge on the surface on the bottom.

The dashed lines and the triangles show the value of fluorescence measured after desorption:

the results are discussed below. For oxidized PET, important values of adsorption occur

between the pH values of 5 and 7.4 (and the maximum is reached at 7.4). The Γeq equilibrium

values are lower on both sides of the pI and this decrease is stronger at the basic side of the

curve. On anatase TiO2, the maximum is at pH 7.4. On amorphous TiO2, the maximum value

occurs at pH 9.5.

Both on oxidised PET and anatase TiO2 (Fig. 5.6a, b) IgG adsorption is consistent with the

trend normally observed10 for electrostatic adsorption: the maximum adsorbed amount is

found at the pI of the protein. Adsorption on anatase TiO2 at pH 7.4 exhibits the most

important value registered in this work. On the contrary, at pH values far from the pI, the

general electrostatic repulsion between the ionised groups on the surface of a protein causes

unfolding of a protein which has a substantial net charge: in fact, such repulsions would be

minimised in the unfolded state.
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The Γeq values are lower at both sides of the pI because of the electrostatic repulsion between

the protein and the sorbent or between already adsorbed proteins and the newly arriving

proteins. For the adsorption in acidic conditions, it must be noticed that a domain in the Fc

part of the antibody (the CH3 domain shown in Fig. 1-3) unfolds at pH 4,25 leading to

oligomerisation of the two chains of the domain. This exposes hydrophobic groups, such as

the lateral chain of tryptophan, which are normally buried in the protein, rendering them

available for bonding.
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The binding of proteins to surfaces carrying the same overall charge of the sorbent surface

(Fig. 5.6c) as on amorphous TiO2 at high pH is due to the fact that proteins always have

patches of the opposite charge on their surface, that allow localised binding. Binding under

adverse electrostatic conditions would also indicate that hydrophobic interactions are able to

overcome electrostatic repulsion: Gibbs et al.26 says that IgG binds best at slightly basic pH,

which exposes hydrophobic groups due to partial denaturation. Hydrogen bridges between

TiO2 and the aminium group can occur with the following schemes:11 Ti-OH + R-NH3
+ →

Ti-OH⋅⋅⋅ :NH2-R + H+ and Ti-O- + R-NH2: + H2O → Ti-OH⋅⋅⋅ :NH2-R + OH-, as proved

below by results from desorption.

5.3.6 Strength of the Adsorption

Reversibility of the adsorption process was tested by filling with water the microchannel that

had reached the equilibrium of adsorption and waiting overnight for desorption to take place.

After washing, the amount of antibodies still adsorbed was measured with the confocal

microscope. The results plotted in Fig. 5.6 with the dashed lines show that desorption is

stronger for the antibodies that adsorbed in basic and very acid conditions, while it is less

pronounced when the adsorption occurred at the pI. After adsorption, proteins normally

undergo structural modifications that stabilise their interaction with the surface. Usually, not

more than 10% of desorption is found on most systems, and almost no desorption is found on

oxidised PET and TiO2 anatase.

Dramatic desorption is measured from amorphous TiO2 corroborating that part of the

bonding can occur through hydrogen bonding and electrostatic forces.27 The fact that not all

the antibodies are removed from the surface suggests that two types of proteins, weakly and

strongly bound, are present.10 This was also suggested in other works. At pH 4, almost no

desorption was found. Structural rearrangements are registered at acid pH in
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immunoglobulins G; as explained above, the interior of the protein is exposed, increasing the

number of available active sites of the molecule to the TiO2.

Data are also shown in Fig. 5.7 as a function of the effective area10, Aeff, giving the area, in

nm, which is available for each antibody molecule defined as:

A
Neff =

1018

Γmax AV

eq. (5-3)

where 1018 is a conversion factor and NAv is the Avogadro constant. Γmax is expressed in

mol⋅m-2. It is possible to calculate the maximum number of IgGs adsorbable on a surface with

the area of the molecule, 10 nm×10 nm, leading to a value of Γmax of 10-9 mol⋅m-2. In other

words, we will obtain a surface density of 1 molecule per 100 nm2.

To obtain this maximum value, the surface must be very active like after silanisation

followed by activation with glutaraldehyde (as for AFM experiments and, in this work, as

explained in paragraphs 2.2.2 and 2.3.2). If the adsorption occurs on a surface that does not
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grant a packed monolayer, each molecule is allowed an area bigger than the theoretical 100

nm2.

In the case of PET, a decrease of active sites concentration was measured17 in the ratio of

1/10 mol⋅m-2. This is equivalent to saying that each molecule has an available surface area of

1000 nm2, or that the surface density is of 1/1000 nm2, which is what happens at pH 7.4.

Since the conditions for adsorption are less favourable at acid and basic pH, the effective area

is 7000 nm2 (i.e. the surface density reaches 1/7000 nm2) at pH 9. The maximum of the

adsorption on anatase TiO2 is at pH 7.4, where a value of the available area for adsorption is

about 500 nm2.

The same plot is reported for IgG adsorption on amorphous TiO2. As the adsorption is

enhanced, the area available for each molecule decreases: here, the area is about 750 nm2 at

the maximum, i.e. at pH 9.5. The adsorption decreases at acid and basic pH. In other

studies,10, 11 Aeff represents the molecular area, changing with structural modifications that

depend on the adsorption environment. In this work, Aeff has more to do with the concept of

area still available for adsorption.

5.3.7 Competition between PBS and IgG for the adsorption on TiO2

The experiments leading to the results of Fig. 5.5 are carried out in PBS, which is the

environment in which antibodies maintain their structure, granting for a good antigen-

antibody interaction. It has been shown that the phosphate ion binds to TiO2 as a bidentate

ligand28 and that saturated coverage is reached at a phosphate concentration of less than 0.01

M.12 It has been demonstrated that phosphate can displace the weakly bound IgG antibodies

at concentrations higher than 0.01 M and at pH 7. This can explain the lower value found for

adsorption at pH 7 than at pH 10 on amorphous TiO2.

To check the importance of the competition between phosphate ions and IgGs for the active

sites on amorphous TiO2, the adsorption was carried out in 0.001 M PBS and 10-3 M NaCl. In
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Fig. 5.8 (full line), showing the values of Γeq as a function of pH, it can be observed that in

these conditions the maximum is again shifted to pH 7.4, and that the plot as a function of pH

exhibits the classic features. The antibodies that could not adsorb on the TiO2 because of the

high phosphate concentration (as shown in Fig. 5.5c) can now bind, though weakly. The

values after desorption (dashed line) are also plotted: important values of desorption are

registered in all the pH range, stressing again the importance of hydrogen bonding at high pH

and of electrostatic forces at low pH in this phase.

5.4 Conclusions

The adsorption of IgG polyclonal antibodies on TiO2 nanomaterial coated microchannels is

studied. In the literature only another contribution on this subject is found to enlighten the

competition between the phosphate group and IgG for adsorption in titania.

TiO2 is used under the form of anatase nanowhiskers with a point of zero charge at pH 6, and

amorphous TiO2, with a p.z.c. below pH 3. The two materials are similar in their active

surface area. The kinetics of IgG adsorption on TiO2 is compared to the kinetic of adsorption

on bare and oxidised PET, revealing that both the thermodynamic constant and the Γmax are

5x10
-9

4

3

2

1

0

Γ
eq

 µ s
ys

t /m
ol
⋅ m

-2

987654

pH

++ + --

-- ----

Figure 5.8. Dependence on pH of the plateau

values of the adsorption on amorphous TiO2 in

10-3 M NaCl. Open circles, full line: values for

the adsorption; open squares, dashed line:

values for the desorption. The overall charges

of the proteins and the surface at each pH

value are shown on top and bottom of the

graph respectively.



chapter 5. Antibodies Adsorption on TiO2 Modified Microchannels126

increased up to three times compared to that of PET, when the maximum possible

amelioration is about 10 times in the case of a monolayer of IgG.

The kinetics of adsorption is also faster for the TiO2 anatase. In any case, the kinetic is

adsorption limited: the simulations carried out with the finite element model described in

chapter 3 give kinetic constants which are much lower than those for a diffusion limited

process. Energetic barriers between the surfaces and the IgG molecules can explain this fact.

It was found that electrostatic forces play a major role in the binding, both on PET and TiO2:

lower adsorption values, in fact, were found at high salt concentrations, where the

electrostatic charges of the surface and the proteins are shielded. The adsorption as a function

of pH follows the normal trend for PET and anatase, with a maximum in the adsorption at the

pI of the protein and lower values at acid and basic pH. For the amorphous TiO2 the

maximum occurs at pH 9.5. This would indicate that the binding occurs mainly through

hydrophobic forces or, more likely, hydrogen bonds, even because a strong desorption is

measured for this substrate.
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Multi “Stop-Flow” for Microimmunoassays

6.1 Introduction

The advantages of the integration of immunoassays, such as the reduced assay time and the

lowered consumption of samples have been reported several times even in this dissertation. On

the other hand, miniaturisation implies some drawbacks that must be overcome to widely diffuse

microimmunoassays. During the immunotest, some steps require the incubation of the molecule:

in chapter 3 we have studied the problem of the solute depletion that can occur in this case. This

phenomenon, implicit in microsystems, eventually leads to a smaller adsorption of the

biomolecules involved in the immunoreaction, finally causing a decrease in the signal from the

probes that are being analysed. Renovating the depleted solutes and performing the incubation in

more than just one step with a multistep “stop-flow” procedure can be a way to alleviate (and

resolve) the problem. This can easily be done, as miniaturised systems can be easily connected to

pumping devices.

In chapter 3 we observed that solute depletion is more important when the analyte is at low

concentration and when the sorbent is very active in adsorption. It could seem we fall into a

paradox: on one side, in order to enhance the final signal, we look for phases that adsorb more

actively the antibody or the antigens; on the other side, these phases deplete the solution even in

a strong way, decreasing the performance of the test. The multi “stop-flow” procedure comes

handy, as it is especially effective with those phases that are more active than the simple PET,

used until now in our lab.

While developing heterogeneous immunoassays, another fundamental issue is often overlooked:

the decrease in the activity of the passively adsorbed antibodies,1 due to conformational changes
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upon the process of adsorption,2-7  resulting in a loss of sensitivity of the test. A classical

example of this problem is represented by polyclonal capture antibodies that immobilised on

Immulon 2 polystyrene, used in the microtiter wells for a common ELISA, retain only 10% of

their activity. It is necessary to research new phases that could overcome this problem.

In this study, heterogeneous immunoassays are carried out in microchips presenting three

different sorbent phases: PET, amorphous TiO2 nanorods and anatase TiO2 nanowhiskers. The

stop flow is used to obtain the ideal coverage on the surface of the microchannel and to enhance

the final response of the assays in the three cases. The three phases studied here present different

capacity binding values (a parameter defined in the chapter 4 of this dissertation); this allows to

exploring the effects of this quantity on the sensitivity of immunoassays performed with the

multi “stop-flow” procedure.

For this study, the immunoassays are carried out in the competitive format (the main features of

a competitive immunoassay were explained in chapter 1). In this format the antigen competes

with a labelled antigen for a few active sites, namely the antibodies adsorbed on the polymer

support at low surface concentration. This allows an efficient competition between the two forms

of antigen, in order to obtain a reproducible calibration curve for an assay with a low limit of

detection (LOD), i.e. with good sensitivity. Different calibration curves as a function of the

concentration of the antigen and for different surface concentrations on the capture antibody are

shown in Fig. 6.1. It is illustrated that for any given concentration of the antibody, increases in

antigen concentration only alter the (fluorescence) signal above a critical region of antigen

concentration. Below that point, in the region of constant proportional binding, changes in

antigen concentration give only imperceptible changes in the percentage of total antibody bound.

The position of this critical region decreases with decreasing concentration of antibody. The use
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of low antigen concentrations therefore necessitates the use of correspondingly low antibody

concentrations to maintain the assay in the region where further addition of antigen gives

detectable displacement of the labelled antigen binding. In other words, to have a low LOD, i.e. a

good test performance, low surface concentrations of capture antibody must be used.

To obtain this, the antibodies are adsorbed from low concentrated solutions. We can easily

imagine that, if we perform this operation on a strong adsorbing phase, the consequences of the

solution depletion on the test performance can be disastrously surprising, as the antibody surface

concentration obtained can be much lower that the theoretical one: in that case, the LOD will be

good, but the signal extremely low.

antigen concentration

si
gn

al

region of
constant
fractional
binding

limits of detections

1 2 34 5

increasing antibody
surface concentration

plots for
increasing
antibody surface
concentrations

Figure 6.1. Effect of the antibody surface concentration on the calibration curves for a competitive

immunoassay.
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In this work, the multi “stop-flow” is used to increase the surface concentration of antibodies and

also during the antigen-antibody reaction, incubating the antigen manifold. The results of the test

are analysed in terms of the activity of the capture antibody. The confocal microscope is used

here as a fluorescence detector as already done, and also to pattern the homogeneity of the

adsorbed antibodies: a constant and homogeneous signal from the entire channel is required in

fact for a reliable and reproducible immunoassay.

6.2 Experimental

6.2.1 Immunoassays

The PET microchannels were built by laser ablation, oxidised and coated with TiO2 nanorods

and nanowhiskers as already described in the previous chapters.

The immunoassays were performed on the different phases according to the following steps:

capture anti-goat IgGs (SIGMA) raised in mouse were adsorbed for 1 hour from a 10-2 mg⋅mL-1

solution in PBS (SIGMA; pH 7.4). The channels were then washed 3 times pushing in the

channel a 0.1% solution of Tween-20 (SIGMA) in PBS with a pipette. After blocking the surface

with a 5% solution of BSA (SIGMA) for 2 hours and washing, the immunoassays were carried

out in the competitive format. To do that, 10 µL of 6.7 × 10-8 M solution in PBS of Cy5 linked

anti-rabbit IgG raised in goat (Amersham-Pharmacia) were mixed to 40 µM of differently

concentrated solutions in PBS of non-labelled anti-rabbit IgG raised in goat (SIGMA): the

labelled and non-labelled complements to the capture antibody were let react for 1 hour. Then,

the channels were washed with the Tween-20 solution and the fluorescence measured with the

confocal microscope as already described.
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6.2.2 Stop-flow for the capture antibody

Several incubation steps of one hour were performed with the capture antibody. The channel was

washed just after the final N step and, after blocking with BSA, the two complements to the

antibody was let incubate as described above and the fluorescence measured. Different channels

were used for the result for each number of steps N.

6.2.3 Stop-flow for the antigen

After the N (depending on the phase) incubations of the antibody, the channel was washed and

blocked with BSA. The mixture of labelled and non-labelled antigen was incubated several

times. After the last step N, the channel was washed and the fluorescence measured.

6.2.4 Activity of the antibodies on the three phases

It can be measured with an immunoassay. In order to know the surface concentration of the

capture antibodies, Cy5-linked anti-goat immunoglobulins G (from Amersham) were adsorbed

on PET, TiO2 nanowhiskers and nanorods modified microchannels from a 6.7 × 10-7 M solution

in PBS (pH 7.4), in carbonate buffer (pH 9.2) and citrate buffer (pH 4) for 30 minutes and the

fluorescence measured. The same non-labelled antibodies (from SIGMA) were used to coat other

microchannels in which, after washing and blocking with BSA, the reaction with the fluorescent

complement (Cy5 linked anti-rabbit IgG raised in goat (Amersham)) to the antibody was

performed at pH 7.4. The fluorescence was finally measured. The ratio of the fluorescence from

the antigens to the fluorescence of the antibodies is taken as an indication of the activity of the

capture antibodies.

6.2.5 Confocal microscope scanning of the channels

The different surface treated microchannels were coated with a 6.7 × 10-7 solution of Cy5 linked

anti-mouse IgG for one hour. After washing, the channels were scanned with the confocal
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microscope. Different scans distant 10 µm from one another were carried out in order to have an

image of the uniformity of the protein in the channel.

6.3 Results and Discussion

6.3.1 How to use ϕ and α

The final value of the antibody surface concentration in an ideal system can be obtained from eq.

3-4, knowing the concentration C° of the antibodies, the thermodynamic constant K of the

system antibody-sorbent and the concentration of active sites on the support Γmax. However, as

just said, the final value of the adsorbed analyte will be lower than the theoretical value. The

final value of the coverage in the microsystem can be obtained using the plots of Fig. 3-6,

knowing the ideality in binding of the microchannel ϕ  (= h/KΓmax), defined in this dissertation in

eq. 3-14, and the “motivating force to adsorption” ψ (=KC°),8 both depending on K and therefore

on the type of surface employed. Once that we know ϕ for a determined system, the relative

adsorbing capacity of that system α can be calculated (α = 1/(1+ϕ), from eq. 4-4). This

parameter renders us able to know the number of steps necessary to attain the theoretical

coverage with a multi “stop-flow” procedure.

The surfaces studied here are PET, amorphous TiO2 nanorods and anatase TiO2 nanowhiskers.

The values of ϕ and α for these systems are reported in Tab. 6.1. The plot for ϕ values between 0

and 5 is proposed in Fig. 6.2a, as it comprises the values for the microsystems here studied. The

plots for the corresponding α values are given in Fig. 6.2b (obtained in the same way of the plots

of Fig. 4.3).

From the plots of Fig. 6.2a it can be observed that the adsorption in a microsystem compared to

an ideal one increases when ϕ increases. This effect can be explained by observing that a
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microsystem is more similar to an ideal semi-infinite diffusion system when the first has a high

ideality in binding ϕ, i.e. K or Γmax low compared to the height of the system.

This is exactly what happens in any semi-infinite diffusion system where the adsorption is small

compared to the amount in solution (which is infinite!). From Fig. 6.2b it can be observed that

number of necessary loads to obtain full coverage increases when the relative adsorbing capacity

of the microsystem α increases.

Support ϕ α N

bare PET 4.8 0.24 3

oxidised PET 0.42 0.78 9a

amorphous TiO2

(320 m2⋅g-1)
0.63 0.70 7

amorphous TiO2

(400 m2⋅g-1)
0.8 0.65 7

anatase TiO2 0.32 0.82 10b

Table 6.1. Values of α and ϕ for the different sorbents coating the PET channels. N represents the number of multi

“stop-flow” steps necessary to obtain the full coverage, as described in Fig. 6.2b. The values of K and Γmax used to

calculate ϕ and α are those obtained from the isotherms described in chapter 5 for the same surfaces (Tab. 5.1).

a) Number of steps to obtain 95% of the full coverage: the PET is oxidised to fix TiO2 particles on PET; b) number

of steps necessary to obtain 90% of the full coverage with the plots of Fig. 6.2b.

When ϕ is high, the surface has a low α value, so that it loads all the adsorbate that it can adsorb

in only a few steps. On the contrary, the process works with an optimal effectiveness when the

surface can load a lot of adsorbate for a lot of steps.
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Figure 6.2(a). Working curves to estimate the coverage in a microsystem as depicted in chapter 3

(Figure 3.6). The dotted line shows the lowest possible values of Γ eq
µsyst/Γeq

theor obtainable in a

microsystem characterised by a defined ϕ (from left to right ϕ = 0.32 for TiO2 anatase, ϕ = 0.68 and 0.8

for TiO2 amorphous coated microchannels and ϕ = 4.8 for PET). Each full line curve is obtained for

growing values of KC°.

(b). Representation of the number of moles adsorbed at equilibrium compared to the number of moles

injected in the microchannel as a function of the number N of successive loads in a multi “stop-flow”

procedure. The plots, calculated as those of Fig. 4.3, represent the cases of PET, TiO2 nanorods and TiO2

nanowhiskers coated microchannels. They are useful to calculate how many multi “stop-flow” steps are

needed to reach the full coverage of the walls. When α = 0.24 (PET) 3 steps are necessary, while when α

= 0.65 (amorphous TiO2), and 0.82 (anatase), 7 and 10 steps (to reach 90% of the coverage) are needed.

The experimental results for PET, amorphous TiO2 and anatase, are shown with +.
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Performing the multi “stop-flow” on bare PET is useless because the relative adsorbing capacity

α is low. For the competitive immunoassay, we can consider performing the adsorption of the

antibody from a solution with a concentration C° = 10-8 M, which leads to ψ = 0.08, since the

thermodynamic constant for IgG adsorption on PET is K = 0.8 × 107 M-1 (ψ = KC°). For PET ϕ

= 4.8 and from Fig. 6.2a, we can see that for these conditions a coverage in the microsystem of

about 80% of the theoretical coverage is possible. From Fig. 6.2b it can be observed that for
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PET, with α = 0.24, 3 steps are needed to reach the plateau of the plot, i.e. the theoretical

coverage.

In chapter 5 it is shown that with amorphous TiO2 nanorods the adsorption of the capture

antibody is improved twice. It was shown that hydrophobic forces and hydrogen bonds might

play a major role in the IgG adsorption on this phase. As α = 0.65, 7 multi “stop-flow” steps are

needed to reach 99% of Γeq
theor (Fig. 6.2b). In this case the multi “stop-flow” procedure will be

very effective and useful as the coverage after one step, in fact, is less than 50% of the theoretical

one (as shown in Fig. 6.2a for ϕ = 0.7).

Anatase TiO2 nanowhiskers represent a more efficient phase. As seen in chapter 5, they improve

the capture antibody binding by 3 times with respect to PET. The driving force of the adsorption

seems to be mainly electrostatic forces. This phase is very active in adsorption: α is very high (α

= 0.82, and the ideality for binding of the microsystem is very low: ϕ = 0.32). The coverage after

one step adsorption is about 20% of the theoretical one (see Fig. 6.2a), therefore, the multi “stop-

flow” is very useful in this case. 10 steps are required to reach 92% of the theoretical coverage,

as shown in Fig. 6.2b.

6.3.2 The “stop-flow” for the microchannel coating

In Fig. 6.3 the results of immunoassays performed in PET microchannel are shown. The

antibody was coated with the multi “stop-flow” procedure. Theoretically 3 steps were required: 4

steps were performed before the immunoreaction showed the saturation was reached, with a gain

in the fluorescence signal of 15%. The LOD after one step (i.e. as after a normal immunoassay)

is 7 × 10-9 M, while after 4 loads is 10-8 M. Obviously, after increasing the antibody surface

concentration, we follow here the classical behaviour of competitive immunoassay shown in Fig.

6.1, improving the signal with a loss of sensitivity.
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The same procedure is followed for IgG adsorption on amorphous TiO2 and the results are

shown in Fig. 6.4. Theoretically 7 steps were required to obtain the full coverage: 6 steps were

performed and no change in the fluorescence is displayed after 5 steps. An increase of more than

40% of the signal is obtained, with a reduction of sensitivity from 3 × 10-9 M to 10-8 M. The

difference of LOD loss with respect to PET is easy explainable by observing that, in the case of

PET, Γeq
µsystem is 80% of Γmax

theor and in the case of TiO2 is 40%: the increases in the Γeq
µsyst
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Figure 6.3. Immunoassays for which the IgG adsorption on PET was performed with a multistep “stop-flow”

procedure. The fluorescence intensity from the IgG raised in goat used as a complement to the capture anti-

goat antibody in the assays is given as a function of the concentration of goat IgG. A constant concentration

of the labelled antigen was used in all the experiments (C° = 10-8 M) and aliquots of 10 µL were added to the

aliquots at different concentrations of 40 µL of the non-labelled anti-mouse IgG. Since the two species in the

sample compete for antibody binding, the amount of labelled antigen decreases when the concentration of

antigen in the sample increases. The concentration of the antigen in a given sample can therefore be

determined by tracking the amount of antibody-bound fluorescent antigen.

The coating of the capture antibody has been carried out with a multistep “stop-flow”: one step was

performed for the first lowest plot, then the reaction with the antigen was done and the fluorescence

measured. In another channel, a two steps coating was done and so forth, up to the N step.
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towards Γmax
theor at each “stop-flow” step are smaller for PET than for amorphous TiO2 and this

translates into lower decrease in sensitivity.

Fig. 6.5 shows that on anatase TiO2 the saturation is reached after 8 coatings (instead of 10),

which is well in accordance with the 10 steps theoretically required. The increase in the signal is

more than 50% with no appreciable decrease in sensitivity (10-8 M).

It is interesting to observe that the same trend in the signal gain as in the gain of the coverage

theoretically predicted is followed for the three phases. In Fig. 6.2a it is shown that for PET after

the first coating Γeq
µsyst is 80% of Γeq

theor; for amorphous TiO2 we have 40% and for anatase TiO2

about 20%. From the results of the multi “stop-flow”, the value for Γeq
µsyst at the first step is
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Figure 6.4. Immunoassays for which the IgG adsorption on amorphous TiO2 was performed with the same

multistep “stop-flow” procedure as in Fig. 3. The LOD at the beginning of the procedure is 3 × 10-9 M, while

at the end, after 6 step is 10-8 M
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85%, 60% and 47% of Γeq
theor for the three systems respectively. The gain in fluorescence is the

same as Γeq
theor - Γeq

µsyst.

We can now comment the experimental data displayed in Fig. 6.2b (crosses) which were

calculated from the results of Fig. 6.3, 6.4 and 6.5 at antigen concentration C° = 10-9 M. The

moles of antibody adsorbed at each step (obtained from the fluorescence counts with the

calibration plot described in chapter 2) were divided by the number of moles of antibody

injected. The results fit well in the case of PET (unless a factor due to the activity of the antibody

on the different surfaces, as explained below). In the case of the titania surfaces a good

agreement is found for the first 4 steps. The slight deviation found after is due to the fact that the

antibody concentration used (C° = 10-8 M) gives ψ = 0.08 for PET, 0.3 for amorphous TiO2 and

0.5 for anatase. In the first case we are in the good conditions for the “stop-flow”, while for the
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Figure 6.5. Immunoassays for which the IgG adsorption on anatase TiO2 was performed with the same

multistep “stop-flow” procedure as in Fig. 6.2.
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titania phases ψ is higher, leading to a weaker depletion effect: consequently the saturation is

reached in fewer steps than expected.

6.3.3 The “stop-flow” for the immunoreaction

The usefulness of the multi “stop-flow” was also tested for the reaction between the antigen and

the antibody. This was possible because of the low concentrated solutions implied in the test (the

multi “stop-flow” assumes low concentrated solutions). The thermodynamic data on the antigen-

antibody reaction also suggest that the multi “stop-flow” can lead to significant results in this

case. The thermodynamic constant K of the immunogenic reaction has values from 108 to 1012 M-

1.9 The active sites concentration Γmax is a percentage of the total number of antibodies adsorbed

on these supports, which normally ranges from less than 1% to about 10% for passive adsorbed

antibodies. Only the active antibodies can be taken into account: this means that the active

antibodies surface concentration should be around 10-10 and 10-9 mol⋅m-2. Knowing that the

microchannels are 50 µm high, a ϕ value between 0.5 and 5 can be estimated, which is in the
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Figure 6.6. Results for immunoassays performed on PET microchannels with a multistep “stop-flow”

procedure for the antigen immunoreaction. The “stop-flow” incubations were realised until no change in the

signal was observed (here 5 steps were done). No change in the LOD was obtained.

The coating of the antibody was also realised with the “stop-flow”: the first, lowest plot in fact corresponds to

the highest plot of Fig. 6.3.
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range for an efficient multi “stop-flow”.

The results of an immunoassay where the multi “stop-flow” was performed for the

immunoreaction between the antibody and the antigen are shown in Fig. 6.6, 6.7 and 6.8 for

PET, amorphous and anatase TiO2 respectively. The capture antibody coating was also done with

the multi “stop-flow” as just described above, i.e. the first lowest plots in the figures 6.6, 6.7 and

6.8 correspond to the last highest plots in Fig. 6.3, 6.4 and 6.5. The multi “stop-flow” incubations

of the antigens were performed until no change in signal was observed.

For PET (Fig. 6.6), 4 steps were performed, gaining 10% of the maximal fluorescence signal but

without improving the limit of detection (LOD), which is 10-8 M. On amorphous TiO2 coated

microchannel (Fig. 6.7), an increase in the signal of about 40% and a LOD one order of
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Figure 6.7. Results for immunoassays performed on

amorphous TiO2 coated microchannels with the

same multistep “stop-flow” procedure for the

antigen immunoreaction as in Fig. 6.6. A LOD gain

from 3 × 10-9 M to 10-9 M is obtained.

Figure 6.8. Results for immunoassays performed on

anatase TiO2 coated microchannels with the same

multistep “stop-flow” procedure for the antigen

immunoreaction as in Fig. 6.6. A LOD gain from 10-

8 M to 10-9 M is obtained.
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magnitude better are observed. This amelioration is comparable to that obtainable using an

enzyme labelled antigen. A similar result is obtained on anatase TiO2 and shown in Fig. 6.8,

where the gain in fluorescence is about 30% with an improvement in the LOD to 10-9 M.

6.3.4 Activity of the physisorbed antibodies

In order to verify the antibodies activity, a simple immunoassay was performed and the

fluorescence from the antigen was displayed in Table 6.2 as the percentage of active antibodies

adsorbed in acid, neutral and basic pH. The value registered in this work for the activity of

antibodies adsorbed on PET at pH 7.4 is 7%. In chapter 5 it is shown that there is an important

variation of the amount of antibodies adsorbed at different pH. Here it is verified that there is no

substantial change in the activity of the antibodies adsorbed in acid and basic conditions. This

shows that the possible structural changes, which occurred in basic and acid environments, are

then recovered in the neutral pH at which the antibody-antigen reaction occurs. The antibodies

adsorbed on amorphous TiO2 at three different pH exhibit almost the same activity (~ 11%).

It is worth noticing that the value of 14% for the activity for the IgG adsorbed at pH 4 is relative

to a value of adsorbed capture antibody, which in chapter 5 we observed to be almost 3 times

lower than that at pH 7.4: therefore, we endorse the position of J. E. Butler, saying that at acid

pH the adsorption decreases even if a higher proportion of functional activity might be retained.

support pH 4 pH 7.4 pH 9.2

bare PET 9.3 % 7 % 6.9 %

amorphous TiO2

(400 m2⋅g-1)
14.5 % 11.7 % 12.1 %

anatase TiO2 10.5 % 11.0 % 11.9 %

Table 6.2. The proportion of functional active sites of the capture antibody after passive adsorption on oxidised

PET, amorphous TiO2 and anatase at pH 4, 7.4 and 9.2.
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Adsorption on anatase shows the same features, even if the activity is incremented almost twice

with respect to PET. As already observed1 for passive adsorption of IgGs on polystyrene, these

data show that in these microsystems there is a dramatic loss of the protein function, even if on

TiO2 the activity is double with respect to PET. This is due to molecular alterations, which in

turn can alter function. Many studies on adsorbed monoclonal antibodies have suggested an

adsorption induced denaturation.10 In monoclonal antibodies, losses of 97 % of the activities

have already been observed, while for polyclonal antibodies the losses are around 90 – 93%,

which is in accordance with the values found in this work. The activity of the capture antibody

on TiO2 coated microchannels, doubled with respect to that of PET, certainly plays a role in the

efficiency of the multi “stop-flow” procedure because the competition between labelled and non-

labelled antigens can achieve completion in more steps that for the capture antibodies adsorbed

on PET.

As a decrease in activity hampers a homogeneous distribution of the passively adsorbed
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Figure 6.9. Confocal scan of a PET microchannel: the microchannel was scanned horizontally 10 times with

steps of 10 µm. The fluorescence spike in the centre of the channel represents at least one possible aggregate

of labelled antibody. The edges of the channel exhibit a stronger fluorescence because the signal from part of

the vertical wall is collected.
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antibodies on polystyrene, the sorbent phases were scanned with the confocal microscope after

adsorption of the fluorescent IgG. On PET, aggregates of proteins are observed.

The scan of the channel in Fig. 6.9 shows a peak almost 70 µm wide. Since the longitudinal

resolution of the microscope is 20 µm, this probably means that several aggregates may lay

within this distance. Aggregates of proteins may be adsorbed because of the potentially larger

number of contact sites with the surface.1 Such a mechanism would be proven by the correlation

between adsorption avidity and molecular weight, which suggests that large molecules are

preferentially adsorbed. It was also speculated that clusters of IgGs adsorbed on polystyrene

represent the surviving functional capture antibodies.1 Because of that, the activity of the

adsorbed proteins in view of an immunoassay will not be homogeneous all over the coated

surface.
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Figure 6.10. Confocal scan of an amorphous TiO2

coated microchannel: the microchannel was scanned

horizontally 10 times with steps of 10 µm. An

aggregate is present in the centre of the channel like

in Fig. 6.9. The edges of the channel exhibit a

stronger fluorescence than in the rest of the surface

as explained in Fig. 6.9. The signal from the edges is

higher than in PET because the adsorption on the

walls is more important.

Figure 6.11. Confocal scan of an anatase TiO2

coated microchannel: the microchannel was scanned

horizontally 15 times with steps of 10 µm. The

distribution of antibodies al over the surface is

regular. The spikes at the edges of the channels

represent the fluorescence from part of the walls

collected by the microscope, as in Fig. 6.9.
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Aggregates of proteins were observed also on amorphous TiO2 as shown in Fig. 6.10: they

render the coating and the antibody activity non-homogeneous. The distribution of the antibodies

after the adsorption is perfectly regular on anatase TiO2, as it can be seen in Fig. 6.11. Anatase

coated microchannels could thus be a possible candidate for a disposable microimmunoassay.

6.4 Conclusions

The multistep “stop-flow” procedure has been used to improve the final limit of detection (LOD)

of microimmunoassays. The tests were performed in the competitive format using the couple

anti-goat IgG / goat IgG. The antigen was Cy5 labelled for fluorescence detection by confocal

microscopy. The supports for the assays were PET microchannels that were also coated with

amorphous TiO2 nanorods and anatase TiO2 nanowhiskers. The ideality for binding ϕ was

calculated for the three different microchannels. With this value it is possible to know the

percentage of coverage of the capture antibody obtainable in a microsystem with respect to the

one of a bigger system: starting the adsorption from the same concentration solution, we will

have relatively a less covered surface in the more adsorptive systems due to the bulk solution

depletion. This can lead to surprisingly low signals, especially using those active supports that

are supposed to improve the performance of the test.

This is an even trickier disadvantage for the competitive format than for the “two site” assay.

Theoretically, a competitive immunoassay gives the best results when the surface concentration

of the capture antibody tends to zero. The adsorption of the antibodies is then performed from

low concentrated solutions, for which the depletion effect is more evident. For PET the coverage

should be 80% of the ideal one, for amorphous TiO2 it should be less than 50%, and for anatase

TiO2, around 20%.
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To obtain the ideal coverage, the “stop-flow” procedure is indicated. We calculated that we

needed 3, 7 and 10 steps to obtain the ideal capture antibody coverage in the three phases

respectively. Experimentally 4, 6, and 8 steps were required experimentally to attain no variation

in the signal from the antigen that reacted with the antibody. A slight decrease of the limit of

detection (higher LOD) was observed after the “stop-flow”, as it should be, in competitive

immunoassays when high surface antibody concentrations are used. Lower coverages should be

tried risking a diminution of the fluorescence signal and therefore a worse test result.

The usefulness of the “stop-flow” procedure has been verified even for the immunoreaction in

the three systems. This led to an improvement of one order of magnitude for the LOD on the

titania phases, which is comparable to the improvement obtainable using, for instance, an

enzyme labelled antigen. An explanation for the difference of behaviour between PET and TiO2

can be the doubled activity found for antibodies adsorbed on TiO2 phases compared to that of

PET adsorbed IgG. This allows for the competition between labelled and non-labelled antigens

to arrive to completion in more steps than in PET microsystems.

The microsystems were also scanned with the confocal microscope to verify the uniformity of

the capture antibodies coverage, revealing that the anatase nanowhiskers, which coat uniformly

the entire microchannel surface, are a reliable material for micro-immunoapplications.
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The FEM Model for Biosensoring

7.1 Introduction

Direct immunosensors detect biomolecular interactions measuring changes in capacitance,1

mass,2 fluorescence.3 Optical sensors measure the change of an intrinsic optical property of a

surface where a dielectric material (as a biomolecule) is loaded. They represent the most widely

used instrument to obtain dynamic data of biomolecular interactions. One of the most exploited

phenomena is the surface plasmon resonance (SPR). SPR is excited at a metal/dielectric interface

by a monochromatic light beam under conditions of total reflection. It is observed as a deep in

the intensity of reflected light at a specific angle. The position of the resonance angle depends on

several factors, one of which is the refractive index of the medium in close proximity to the non-

illuminating side of the metal film. The refractive index is, in turn, directly correlated to the

concentration of dissolved material in the medium.

The biosensor cell has two regions as shown in Fig. 7.1, the flow channel and the region in

which the biointeraction takes place. One of the reactants, the ligand, is immobilised on the

sensor surface, while the other, the analyte, flows continuously over the surface.

The major advantage of this instrument is the label-free detection in real time of the binding and

the dissociation processes. A disadvantage is the need to immobilise the ligand to enhance the

number of bound analyte molecules. Several immobilisation chemistries are suitable for SPR

immunoassays in order to immobilise the antibodies in a functional and controlled orientation.

Alkanethiols,4 silanes,5 polipeptides6 were used to attach the recognition elements to the SPR

sensor. The most famous method involves a flexible hydrogel matrix7 composed of

carboxylmethylated dextran chains that forms a porous three dimensional linking system. The
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hydrogel is attached to the sensor surface and extends about the length of the plasmon originated

from the gold surface (100 nm). Adsorbing or linking a biomolecule to the gel can dramatically

change its activity as the protein’s tertiary structure at, or near the active site where the bond of

interest is located may be altered by the immobilisation, thus changing its properties. The

hindrance encountered by the analyte in the hydrogel represents a further disadvantage.9-14

In our lab a new kind of biosensor has been developed. It is based on the capacitive coupling

between electrodes placed on one side of a dielectric substrate (the polymer in which the channel

is etched) and the solution in contact with the other side, in the microchannel. The principle is to

form a capacitor where the charges on one side are those of the electrodes, and the charges on the

other side are the ionised groups generated on the PET surface by photoablation process.15

flow channel

hydrogel

prism

light source

ligand

analyte

Figure 7.1. The BIACORE optical biosensor (not to scale). The hydrogel is 100 nm high approximately;

the flow channel for a standard instrument is 2.4 mm long, 50 µm high and 500 µm width.8 The ligand

(antigen, receptor...) is immobilised in the hydrogel, the analyte (antibody, messenger...) flows in the

channel and diffuses in the gel where binds to the ligand. The light beams probes the hydrogel and detects

changes in the local refractive index due to the accumulation of analyte mass. The depth of the evanescent

wave is 100 nm towards the hydrogel, i.e. the thickness of the hydrogel itself.
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This technique has been called super-capacitive admittance tomoscopy (SCAT). With the SCAT

we can study the adsorption of (biological) molecules on a surface or the interaction between

biomolecules (when one of them is adsorbed on the polymer surface). The molecules need not to

be labelled, as in an optical biosensor, even if they need to be attached to the surface coupled

with the electrodes when a biomolecular interaction is at study.

The surface can, however, be of various kinds, depending on the modification of the polymer

surface. In this way the effects of the surface on the activity of the biomolecules can be studied.

The diffusion of the molecules is not hindered, unless, of course, adsorption in a gel is studied.

As this is an intrinsic surface analytical technique, the dynamic data of the bioadsorption are

obtained. This was not possible with the confocal microscope, unless rinsing in order to isolate

the surface signal from the signal of the channel, thus interrupting the adsorption process. The

SCAT is more practical and less time-consuming. The amount of data collected allows a correct

interpretation of the adsorption dynamic.

The most important information obtainable from biosensors is the adsorption and desorption

rates of a biointeraction by fitting the experimental data with a numerical model. SPR sensors are

interesting as they have stemmed an enormous amount of numerical studies.8,16 However, a

model17 that could study the hindered transport in the hydrogel was developed 5 years after the

apparition of the first model for the BIACORE (the most famous SPR based sensor). Moreover,

until Sikavitsas’s model in 2002,18 details such as the diffusion in the direction of the flow,

which can affect the results especially at the entrance of the channel or using a PDF flow, were

not kept into account.

The aim of this chapter is to prove that the model developed in this dissertation work fits well the

data collected under flow conditions by super-capacitive admittance tomoscopy (SCAT). SCAT
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coupled to the FEM model is useful to study the dynamic of adsorption of biomolecules onto

different surfaces, or the interactions of biomolecules when one is linked to the surface coupled

to the electrodes. This is of paramount importance for studying the dynamic of the

immunoreaction in heterogeneous immunoassays on different surfaces.

A comparison with previous results from mathematical models for the BIACORE will be given,

underlining that our FEM model could eventually describe hindrance in a gel by an accurate

choice of the diffusivity of the adsorbing layer.

7.2 Experimental

7.2.1 Device structure

The channel in which the solution flows has been prepared by laser ablation and laminated as

usual (the channels are 50 µm deep, 100 µm wide). On the other side of the PET film, two

parallel microchannels with the same dimensions as the flow channel were photoablated

perpendicularly to it (see Fig. 7.2). The distance between the two parallel microchannels is 200

µm centre to centre. The two channels were filled with a commercial screen-printing graphite ink

(ElectraΩ ED5000 series, from Electra Polymers (England) in which gold nanoparticles (∅ = 19

nm) were mixed in order to increase the charging capacity (an aliquot of 50 µL of colloidal

solution containing 48 mg⋅L-1 of gold nanoparticles id added to 500 mg of graphite ink). After

curing at 60°C for 4 hours, the PET film was laminated on both sides as previously described.

The distance between the electrodes and the microchannel is 5 µm and the detection surface area

per microelectrode is 66 × 100 µm.
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The admittance measurements were performed by applying an AC modulated signal with

frequency ranging from 1 kHz to 1 MHz (for the calibration of the instrument) and amplitude of

3 Volts (finally, the experiments are performed at 1 MHz).

A frequency response analyser is used (FRA 1255B, Solartron UK) together with a Dielectric

Interface 1296 (Solartron, UK), which extends the frequency range from 10 µHz to 10 MHz. The

Figure 7.2. (a) Scheme of the super capacitance admittance tomoscope (SCAT). Two channels are etched

perpendicularly to the flow channel, 5 µm distant from it and 200 µm from each other. The three channels

(the flow one, 50 µm deep, and the electrodes, 45 µm) are 100 µm wide. R represents the resistance of the

PET dielectric layer between the electrodes and the channel (it results in R1 in the circuit of Fig. 7.3), R2

the resistance between the two electrodes, and RS the solution resistance through the bulk of the channel;

C is the capacitance of the electrode/PET/channel (it results in C in Fig. 7.3) interface and C2 is the stray

capacitance between the electrodes. (b) Top view of the microchannel, with the two microelectrode on

the bottom, not in contact with the solution.
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current measurement range of the system varies from 6 mA to 100 fA; therefore high values of

impedance (100 Ω to 100 TΩ) and low capacitance values (1 pF to 0.1 F) can be collected. Data

acquisition is made with the company made software SmaRT, which allows for a sampling time

of 5 sec.

The evolution of the admittance measurements performed on the device filled with a buffer

solution shows that the device can be regarded as a capacitive system at frequencies higher than

10 kHz (data not shown).

The system can be modelled using the equivalent circuit in Fig. 7.3, for which the admittance

corresponds to:

Y
j R C

R

j RC

R R j R RCS S

( )ω
ω ω

ω
=

+
+

+
+ +

1 12 2

2

1 1

1 1 1

where R1 represents the resistance of the PET dielectric layer between the electrodes and the

channel, R2 the resistance between the two electrodes, and RS the solution resistance through the

bulk of the channel; C1 is the capacitance of the electrode/PET/channel interface and C2 is the

stray capacitance between the electrodes. Any surface channel modification results in a

modification of the C1 value. When charged molecules are adsorbed on the channel surface, the

capacitance C1 changes inducing a variation in the admittance Y (or impedance Z).

C1

R1
RS

R2

C2

Figure 7.3. Equivalent electric circuit of the device.
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It is well known that the PET capillary surface-solution interface behaves like a capacitor. At a

given potential, there will exist a charge on the polymer, qE, and a charge in the solution, qS = -

qE. The charge in solution is made up of an excess of either cations or anions in the vicinity of

the capillary surface. As it is known, the whole array of charged species resembles that existing

at the electrode-solution interface, and it is called electrical double layer, which is roughly

modelled in Fig. 7.4. At a given potential, the electrode-solution interface is characterised by a

double layer capacitance, Cd (however, unlike real capacitors, whose capacitances are

independent of the voltage across them, Cd is often a function of potential).

The closest layer to the surface of the microchannel, the inner layer, contains solvent molecules

and sometimes other species (ions or molecules) that are said to be specifically adsorbed. This

inner layer is also called the compact, Helmoltz or Stern layer.19 The locus of the electrical

centres of the specifically adsorbed ions is called the inner Helmoltz plane (IHP), which is at a
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Figure 7.4. Proposed model of the double layer region under conditions where anions are specifically

adsorbed.
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distance x1 from the surface. Solvated ions can approach the metal only to a distance x2; the locus

of the centres of these nearest solvated ions is called the outer Helmoltz plane (OHP). The

interaction of the solvated ions with the charged electrode involves only long range electrostatic

forces, so that their interaction is essentially independent of the chemical properties of the ions.

These ions are said to be non-specifically adsorbed. Because of thermal agitation in the solution,

the non-specifically adsorbed ions are distributed in a three-dimensional region called the diffuse

layer, which extends from the OHP into the bulk of the solution. The excess charge density (the

charges divided by the electrode area) in the diffuse layer is σd, hence the total excess charge

density on the solution side of the double layer σS is given by σS = σi + σd = -σE where σi and σE

are the charge densities of the IHP and of the surface respectively.

Biomolecules non-specifically adsorbed to the polymer surface contribute to increase the excess

charge density (and of course an even major change occurs for covalently bound molecules).

This causes a change in the capacitance C1 that results in a change of the measured admittance.

Also ions like phosphate contribute to this change. The background due to the solution must be

carefully measured to be subtracted from the total signal.

7.2.2 Protein adsorption under flow conditions

Solutions of labelled antibody (Fluorolink Cy5 labelled antirabbit IgG, Amersham Pharmacia

Biotech) with concentrations ranging from 6.6 nM to 0.66 µM in 0.01 M PBS were pumped in a

1 cm long microchannel by a syringe pump (Kd Scientific) at a rate of 90 µL/h. The IgG adsorb

onto the polymer surface and the variation in the admittance is recorded versus time at 1 MHz.

The kinetic isotherms obtained were simulated with the FEM model already described to obtain

the kinetic rates of adsorption and desorption of the system. In order to fit the experimental data,

these were normalised by Arg (Zmax) (assuming that the experimental plateau corresponds to the
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theoretical maximum) and the 0 in the y-axis was taken at the signal given by the buffer solution;

the modelled curves were normalised by the thermodynamic maximum.

7.3 Results and Discussion

7.3.1 The Damköhler number

To decide which values of the rates of adsorption kon and desorption koff give a kinetic or

diffusion controlled adsorption with our model, we have to perform the simulations with the

parameters of the case studied, raising the rates up to when a further augmentation doesn’t lead

to an increment in the velocity of adsorption. Diffusional, kinetic and mixed regimes are easily

defined. In a diffusional regime, a change in the kinetic rate doesn’t lead to an enhancement in

the velocity of adsorption. Under kinetic limitation, the diffusivity of the analyte does not

influence the adsorption. We are under a mixed regime when the influence of the two is

comparable.

A non-dimensional number, the Damköhler number Da = kon Γmax δ /D can be used to quantitate

if the adsorption is governed by kinetics or mass-transfer. The Da number is used for instance to

discuss BIACORE results since with this tool, both under kinetic and diffusion control, mass-

transfer limitations in the hydrogel can create important deviations from the model. Talking in

absolute terms of diffusion or kinetic limitation becomes, thus, meaningless, and the Da number

reveals its usefulness. This number is the ratio of the intrinsic forward reaction-rate to the

diffusional rate and it is of critical importance in the models for optical biosensors. In the

BIACORE, for instance, Γmax represents the total immobilised ligand concentration: it is usually

called CL and its units are mol⋅m-3, so that we can use the quantity Γ′ of our model, which has the

same dimensions, so that Da = kon Γmax′ δ
2 /D. The Da number has an experimental meaning
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when the analyte diffuse in a matrix that can lower its diffusivity. In the present study, we cannot

speak of a Da number for such a phase; however, as our model presents a 2D adsorption region,

we will use it here in the context of the modelling.

The effect of different Da values in the SCAT is shown in Fig. 7.5, where the coverage at the end

of the channel in function of time is plotted. The parameters used for the simulations are those

obtained in paragraphs 3.4.5.2 and 4.4.2.3 for IgG adsorption on PET. As the curves are

normalised by Γmax, the maximum shown on the axis is not 1 as it would have been with a

normalisation by Γeq. It is shown that the plots become more similar as the Da number increases,

reaching the diffusion control. Over Da = 50, no further adsorption is observed. Under Da = 5 ×

10-3, a pure kinetic controlled adsorption is observed as the reaction time is treac = 1/konC° = 1000

sec and the diffusion time towards the wall of the channel, where there is the sensor, is tdiff =

h2/2D = 31 sec. (Similar plots in the BIACORE show a kinetic controlled adsorption faster than

diffusion controlled, due to the hindrance slowing down the entire process).

Figure 7.5. Simulation results of the wall concentration (Γ/Γmax) in function of time for different Da

number at the end of the channel. D = 4 × 10-11 m2⋅sec-1, Γmax = 10-9 mol⋅m-2, K = 104 m3⋅mol-1, C° = 10-5

mol⋅m-3 (values for IgG adsorption on PET). The Da number was changed by changing the kon from 10 to

108 m3⋅mol-1⋅sec-1 and koff from 10-3 to 100 sec-1.
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The data of Fig. 7.5 can be reported as reaction-rate vs. the bound concentration plots, averaging

all the values over the length of the channel. This is done in Fig. 7.6. The short initial transient

period is due to the analyte passing through the channel. The reaction rate reaches its maximum

when the wall is still void of analyte and then the reaction rate decreases continuously to reach

zero at equilibrium. As the bound concentration was normalised by Γmax, the maximum abscissa

value is 1. The linear fit of the last part of the experimental data plotted in this form is the usual

method for estimating kinetic constants in experimental BIACORE experiments. It is clearly

shown that the ideal situation to obtain the kinetic constants is at low Da values. The plots are, in

fact, very close to linearity. At high Da, a slight deviation from linearity is shown, so that the

interpolation must be done in a smaller part of the curve (the last part).
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Figure 7.6. Rate of reaction vs. bound concentration

as a function of Da. The same parameters of Fig. 7.5

are used for the simulations.
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Figure 7.7. Variation of the adsorption at the end of

the channel, at low Da numbers (under kinetic

control). The same parameters as in Fig. 7.5 are used

for the simulations; kon = 10 m3⋅mol-1⋅sec-1; D = 4 ×

10-11 and 4 × 10-12 m2⋅sec-1 for Da = 5 × 10-4 and 5 ×

10-3 respectively.
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In Fig. 7.7, it is shown that, at low Da values, a variation of just 1% is observed in the adsorbed

analyte if D varies by an order of magnitude. This effect is more important at high Da values.

When using a gel to attach a biomolecule to the surface, the kinetic rates can be miscalculated;

with the SCAT this cannot happen.

7.3.2 Experimental SCAT results

The kinetics of IgG adsorption on laser ablated PET channels measured with SCAT are shown in

Fig. 7.8a-d. As foreseen from the Langmuir isotherm, the equilibrium is reached sooner at higher

concentrations: about 200 sec are needed when C° = 6.67 × 10-7 M, while 400 sec for C° = 1.65

× 10-8 M. All the curves were fitted with the FEM model and an adsorption rate value kon = 150

m3⋅mol-1⋅sec-1 is found. For C °  = 6.67 ×  10-7 M, lower kinetic rates were found. This

phenomenon was already found studying the adsorption by confocal microscopy: at larger

coverages, the protein specific orientation needed to find an active site in the reduced available

surface slows down the adsorption. The difference between experimental and simulated curves is

at worst 15% in the case of C° = 1.65 × 10-8 M.

The kinetic rates found are one order of magnitude higher than those obtained with the confocal

microscope, even though they are still under kinetic control. This can be due to a delay occurred

while measuring the fluorescence and also to the fact the data collected automatically with the

SCAT technique are much more numerous, allowing for a more precise determination of the

rates. The reaction-rates versus bound concentration are shown in Fig. 7.9. All the curves show

more or less the same linear trend (in BIACORE experiments, a concave shape of the curve is

sometime observed at high concentration, meaning that the apparent association rate constant

decreases as the reaction proceeds to completion. Low concentrations of the ligand are therefore

recommended to obtain good results).
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Figure 7.8. Experimental results for the adsorption of IgG antibodies on a PET microchannel by SCAT

(full line). C° = 6.7 × 10-4, 8.25 × 10-5, 6.7 × 10-5, 1.65 × 10-5 mol⋅m-3 for a, b, c, d respectively; V = 90

µL⋅h-1. The argument of the impedance is reported as a function of time. The simulations are run with D =

4 ×  10-11 m2⋅sec-1, Γmax
 = 9.26 × 10-10 mol·m-2 and K = 1.15 × 104 m3·mol-1; these last two values are

obtained from the linearisation of the isotherm of Fig. 7.11. kon = 150 m3⋅mol-1⋅sec-1, koff = 1.3 × 10-2 sec-1.

The experiment at 6.67 × 10-7 mol⋅m-3 was better fitted with kon = 50 m3⋅mol-1⋅sec-1 and koff = 5 × 10-3 sec-

1 (dotted lines – crosses). V = 100 µm⋅sec-1, which corresponds to V = 90 µL⋅h-1 for the 2.5 mm long

experimental channel.
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 All the curves have the same slope (slightly higher at higher concentration): the average value of

the kinetic constant obtained in this way is kon = 105 m3⋅mol-1⋅sec-1, quite close to the one from

the model. Under the conditions of these experiments Da values were small (Da = 7.5 × 10-3),

therefore presenting no mass-transfer problems.
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Figure 7.9. Reaction rate as a function of the bound concentration with time of the experimental results

(markers) and the simulations (full lines) of Fig. 7.8.

Figure 7.10. Maximum Damköhler number for operation in kinetic regime as a function of Peclet number

(adapted from Yarmush).17 The IgG adsorption on PET studied in this work is represented by the full

triangle.



chapter 7. The FEM Model for Biosensoring 163

Yarmush plotted the limiting Da values that define kinetically, intermediate and mass-transfer

controlled regimes in function of the Peclet number. It is true that in our discussion on the

different regimes in chapter 4, the importance of the Peclet number has been overlooked.

Anyhow, as it can be seen in Fig. 7.10, the variation of Da for a kinetic controlled process is just

0.007 for Pe varying from 0 to 6 × 104. The conditions of our experiments fall well in the kinetic

controlled regime, as we stated previously.

Figure 7.11. Maximum association rate constant at which the reaction took place in a kinetic regime

(adapted form Yarmush).17 Experimental points marked correspond to result reported in the literature: 1 –

Karlsson et al.;20 2 – End et al.;21 3 – Cooper et al.;22 4 – Borrebaeck et al.;23 5 – Van Cott et al.24 Open

squares represent conditions in the kinetic regime and full squares represent condition in the mass-

transfer-limited regime. The triangle represents the result from this work.
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The operating variables at which the transition from kinetic to mass-transfer controlled regime

occurs are presented in dimensional form in Fig. 7.11 for a diffusivity value of 6 × 10-11 m2⋅sec-1

(which is close to the one used in our experiment: no variations are felt in our models when Dwall

changes so little). Even in this representation, it is evident that our experiment is under kinetic

controlled regime. Yarmush reports many studies that did not keep into account the affectation in

the measurements because of mass-transfer resistances (full squares in Fig. 7.11).

A drawback of SCAT is that it doesn’t provide direct information on the amount of bound

analyte. Assuming that the thermodynamic equilibrium is reached for all the concentrations used,

a comparison is made in Fig. 7.12 between the isotherm obtain by fluorescence and the SCAT

measurements. In this way we will be able to quantitate the analyte adsorbed.
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Figure 7.12. Comparison between the isotherms of IgG adsorption on PET microchannels obtained by

fluorescence (on the right axis – open squares) and by SCAT (left axis – open circles).



chapter 7. The FEM Model for Biosensoring 165

7.4 Conclusions

In this chapter the FEM model already described was used to simulate results obtained from

surface signals in real flowing conditions, verifying that the results obtained by confocal

microscopy in pseudo-flowing conditions can be trusted. The FEM model is also proved to be a

powerful tool to obtain information such as the kinetic rates, from such systems.

For the experiments, a new technique introduced in this lab was used, the super-capacitance

admittance tomoscopy (it is not the aim of this work to give a thorough description of it, nor of

the instrument). Nevertheless, some comments about the results and the effectiveness of the

technique can be made.

The SCAT doesn’t need a specific phase like a gel where the ligand must be bound. In this way

the simulation results can give a truthful account of the dynamic of the reaction at study. The

surface where the ligand is can be of various kinds, thus allowing the study of the effects of the

binding on the ligand.

Even if a 3D-adsorption phase is not present in the SCAT, it has been foreseen by the FEM

model, so that a description of results obtained in gel matrixes can be provided. The

determination of the kinetic constants under mass transport limitation remains in both cases

intrinsically impossible.

Results of IgG adsorption on PET channels from SCAT are simulated with the FEM model. The

study confirms a kinetic limited adsorption, already stated by confocal microscopy, which in turn

is confirmed as a good, though more time-consuming tool to study fluorescently labelled

biomolecules adsorption on a transparent support.

A comparison between the confocal microscopy and the SCAT results is given in order to build a

calibration isotherm adsorption useful to quantitate SCAT results.
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General Conclusions

To study protein adsorption in microchannels, a confocal microscope was built. With this

tool we can observe the specimen one focal plane at time, eliminating the noise coming

from the optical planes out of focus, so that we can obtain high signals compared to the

background. This is very important in microenvironments, where the concentrations are

often under the nanomolar range, and femtomoles of analyte must be detected.

This confocal microscope works exciting molecules at 650 nm wavelength. It has a

horizontal resolution of about 20 microns and a vertical one comparable to the

microchannel dimensions. The adsorption of fluorescent labelled proteins can be studied

with it, and immunoassays with fluorescent detection can be performed, with a limit of

detection in the nanomolar range.

The problem of adsorption in microsystem is approached with the help of a finite element

(FEM) model. The model has been conceived for adsorption phenomena following the

Langmuir assumptions, which are the more general and adaptable to different systems.

As an example, even if not strictly valid for the protein adsorption, they can used also to

study the immunoreaction between an antibody and an antigen.

Microchannels behave as adsorptive systems differently from ideal systems where the

solute diffusion is semi-infinite. During the adsorption the solution depletes of the solute

absorbing onto the walls. The solution concentration lowers as the adsorption proceeds

resulting in a lower value of the adsorption compared to what expected from theory. This

can lead to surprisingly low values of adsorption, and a deceptive low limit of detection

for immunoassays. The FEM model provided an important amount of data that collected
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together allow for drawing a picture of adsorption in microsystem. In this way we could

define a parameter ϕ  = h  / KΓmax, called the “ideality for binding of a microsystem”.

Through a working curve of the values of the adsorption on microchannels compared to

ideal systems as a function of ϕ (Fig. 3-6), it is possible to know the coverage obtainable

in a microsystem.

To alleviate the problem of the depletion, the adsorption can be performed in a static way

and the depleted solution can be renovated many times, until the optimum coverage is

reached. A parameter α, the “relative adsorbing capacity of the system”, is introduced by

which it is possible to predict the number of “stop-flow” steps than must be carried out to

reach the optimum equilibrium. This multi step “stop-flow” procedure is simulated with

the FEM model. The solution of the adsorbing species can also be continuously flown

into the microchannel. The “stop-flow” is compared to the flow mode in terms of waste

of product and time to reach the desired adsorption value. For the continuous flow, two

criteria for the fluid velocity are found that should be respected in order to avoid a waste

greater than with the “stop-flow” method.

The confocal microscope is used to observe IgG antibody adsorption on PET

microchannels and the data obtained have been fitted with the FEM model, revealing a

kinetic limited process. The value of adsorption in PET microchannels can be improved

as well as the activity of the antibodies attached to the polymer. With this aim, the

channels were coated with TiO2 nanomaterials (anatase TiO2 and amorphous TiO2). The

IgG adsorption is studied in these systems under different pH and salt concentrations,

leading to the conclusion that adsorption on PET and anatase TiO2 occurs through

electrostatic interactions, possibly helped by hydrophobic forces, as it normally occurs
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with proteins (adsorption on oxidised PET is mainly due to covalent and electrostatic

forces). On amorphous TiO2 electrostatic forces can play an important role. On the titania

phases, the IgG adsorption is 3 times higher and the protein activity is doubled with

respect to PET.

The “stop-flow” is used to improve the limit of detection of immunoassays performed in

PET microchannels and in microchannels coated with the TiO2 nanomaterials. The

parameters ϕ andα are used to predict the coverage obtainable in each system and the

number of steps needed to have the best response.

The results confirm the prediction: PET is a phase that adsorbs little, so that little

improvement is expected and is obtained. The titania phases allow for an improvement of

the limit of detection of 1 order of magnitude, as if an enzyme label was used.

The FEM model was used to fit the results obtained with a novel immunosensor

developed in our lab, which measures the variation of capacitance occurring in the

microchannel while the adsorption occurs. The fitting of the data allows to knowing the

kinetic rates of adsorption and desorption of the system studied. The FEM model has

been also compared to other models for biosensors: as it is a flexible tool, it can be used

to study adsorption even in 3D phases like gels.



General Conclusions172



Andrea Lionello
Rue des Echelettes 8

1004 Lausanne
(021)624.85.52

andrea.lionello@epfl.ch

Personal information Born on May 26, 1972 in Genoa, Italy. Italian citizen.
Married, father of one child (Leonardo, born February 27, 2004).

Education Laurea in Chimica (July 1999). University of Genoa.
Dissertation in inorganic chemistry: “Crystal structure of the
RCuZn, RAgZn and RAgAl intermetallic compounds (R = rare
earth metals)”.

Maturità classica (July 1991). Liceo Classico G. Mazzini,
Genoa.

Employment Research grant at the Italian National Research Centre (2000-
2001) Genoa, Italy.
Study of superficial properties of metallic and ceramic materials
to produce joints.

Publications Lionello A., Josserand J., Jensen H., et al., Dynamic
Protein Adsorption in Microchannels. Lab on a Chip 2005, in
press.

Lionello A., Josserand J., Jensen H., et al., Protein
Adsorption in Static Microsystems: Effect of the Surface to
Volume Ratio. Lab on a Chip 2005, 5, 254-260.

Costa G.A., Mele P., Lionello A., et al., Wetting of
YBCO by liquid silver, International Journal of Modern Physics
B 17 (4-6): 960-965.

Leisure activities Ski de randonnée, cycling, reading.


	3419_ti.pdf
	_blank.pdf
	These_3419_Lionello_01_intr.pdf
	These_3419_Lionello_02_ch01.pdf
	These_3419_Lionello_03_ch02.pdf
	These_3419_Lionello_04_ch03.pdf
	These_3419_Lionello_05_ch04.pdf
	These_3419_Lionello_06_ch05.pdf
	These_3419_Lionello_07_ch06.pdf
	These_3419_Lionello_08_ch07.pdf
	These_3419_Lionello_09_fin.pdf
	These_3419_Lionello_10_CV.pdf

