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He who becomes the slave of habit, who follows the same routes
every day, who never changes pace, who does not risk and
change the color of his clothes, who does not speak and
does not experience, dies slowly.

He or she who shuns passion, who prefers black on white,
dotting ones ”i’s” rather than a bundle of emotions,
the kind that make your eyes glimmer,
that turn a yawn into a smile, that make the heart pound
in the face of mistakes and feelings, dies slowly.

He or she who does not turn things topsy-turvy,
who is unhappy at work, who does not risk certainty
for uncertainty, to thus follow a dream, those who do not forego
sound advice at least once in their lives, die slowly.

He who does not travel, who does not read,
who does not listen to music, who does not find grace in himself,
she who does not find grace in herself, dies slowly.

He who slowly destroys his own self-esteem,
who does not allow himself to be helped,
who spends days on end complaining about his own bad luck,
about the rain that never stops, dies slowly.

He or she who abandon a project before starting it,
who fail to ask questions on subjects he doesn’t know,
he or she who don’t reply when they are asked something
they do know, die slowly.

Let’s try and avoid death in small doses, reminding oneself
that being alive requires an effort far greater than
the simple fact of breathing.
Only a burning patience will lead to the attainment of
a splendid happiness.

Pablo Neruda
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Abstract

Quality assessment is a central issue in the design, implementation, and performance testing of all
systems. Digital signal processing systems generally deal with visual information that are meant
for human consumption. An image, a video, or a 3D model may go through different stages of
processing before being presented to a human observer, and each stage of processing may introduce
distortions that could reduce the quality of the final display. To conceive quantitative metrics that
can automatically predict the perceived quality, the way humans perceive such distortions has to
be taken into account and can be greatly beneficial for quality assessment. In general, an objective
quality metric plays an important role in a broad range of applications, such as visual information
acquisition, compression, analysis and watermarking. Quality metrics can be used to optimize
algorithm parameter settings and to benchmark different processing systems and algorithms.

In this dissertation, new objective quality metrics that take into account how distortions are
perceived, are proposed and three different signal processing systems are considered: video water-
marking, video object segmentation and 3D models watermarking.

First, two new objective metrics for watermarked video quality assessment are proposed. Based
on several different watermarking algorithms and video sequences, the most predominant distortions
are identified as spatial noise and temporal flicker. Corresponding metrics are designed and their
performance is tested through subjective experiments.

Second, the problem of video object segmentation quality evaluation is discussed, proposing
both subjective evaluation methodology and perceptual objective quality metric. Since a perceptual
metric requires a good knowledge of the kinds of artifacts present in segmented video objects, the
most typical artifacts are synthetically generated. Psychophysical experiments are carried out to
study the perception of individual artifacts by themselves or combined. A new metric is proposed
by combining the individual artifacts using the Minkowski metric and a linear model. An in-depth
evaluation of the performance of the proposed method is carried out. The obtained perceptual metric
is also used to benchmark different video object segmentation techniques for general frameworks as
well as specific applications, ranging from object-based coding to video surveillance.

Third, two novel metrics for watermarked 3D model quality assessment are proposed on the basis
of two subjective experiments. The first psychophysical experiment is carried out to investigate the
perception of distortions caused by watermarking 3D models. Two roughness estimation metrics
have been devised to perceptually measure the amount of visual distortions introduced on the model’s
surface. The second psychophysical experiment is conducted in order to validate the two proposed
metrics with other watermarking algorithms.

All of the proposed metrics for the three kinds of visual information processing systems are
based on the results of the psychophysical experiments. Subjective tests are carried out to study
and characterize the impact of distortions on human perception. An evaluation of the performance
of these perceptual metrics with respect to the most common state of the art objective metrics is

xiii
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performed. The comparison shows a better performance of the proposed perceptual metrics than
that of the state of the art metrics. The performance is investigated in terms of correlation with
subjective opinion. The results demonstrate that including the perception of distortions in objective
metrics is a reliable approach and improve the performance of such metrics.



Version Abrégée

Le contrôle de qualité est un problème essentiel dans l’implémentation, la conception et les tests
de performance de tout système. L’analyse du signal numérique traite généralement d’information
visuelle destinée à l’oeil humain. Avant d’être présenté à l’oeil humain, une image, une vidéo ou
un modèle 3D passe par différentes étapes de traitement, ce qui conduit à ajouter d’une étape à
l’autre des distorsions qui peuvent altérer la qualité du signal final. Afin de développer une métrique
quantitative qui peut automatiquement évaluer la qualité perçue, la manière dont sont perçues les
distorsions par l’oeil humain doit être prise en compte et peut s’avérer très bénéfique pour le contrôle
de qualité. En général une mesure objective de qualité peut jouer un rôle important sur une grande
variété d’applications telles que l’acquisition, la compression, l’analyse et le tatouage numérique
d’informations visuelles. Les mesures de qualité peuvent être utilisées d’une part pour optimiser le
réglage de paramètres de l’algorithme et d’autre part pour tester et évaluer différents algorithmes
et systèmes de traitement. Dans ce mémoire, on propose de nouvelles mesures objectives de qualité
qui prennent en compte la perception humaine des distorsions.

On considérera dans cette thèse différents systèmes de traitement du signal: tatouage numérique
vidéo, segmentation d’objet vidéo et des modèles de tatouage numérique 3D.

Dans un premier temps, deux nouvelles mesures pour le contrôle de qualité du tatouage numérique
vidéo sont proposées. En se basant sur différents algorithmes de tatouage numérique et de séquences
vidéo, les distorsions prédominantes sont issues du bruit spatial et temporel. Ces mesures sont con-
struites et leur performance est testée à travers des expériences subjectives.

En deuxième lieu, l’évaluation de la qualité de la segmentation d’objet vidéo est discutée à
l’aide d’une méthodologie d’évaluation subjective et une mesure de qualité perceptuelle objective.
Sachant qu’une mesure perceptuelle demande une bonne connaissance des types d’artéfact présents
dans l’objet vidéo segmenté, quatre des artéfacts les plus courants sont générés synthétiquement.
Des expériences psychophysiques sont menées pour l’étude de la perception d’artéfacts isolés ou
combinés. La mesure perceptuelle est testée sur différentes techniques de segmentation d’objet
vidéo que ce soit dans un cadre général ou dans des applications plus spécifiques allant du codage
basé objet à la vidéo surveillance.

Pour terminer, deux nouvelles mesures de contrôle de qualité pour les modèles 3D de tatouage
numérique, basées sur des expériences subjectives, sont proposées. La première expérience psy-
chophysique est menée pour étudier la perception des distorsions causées par les modèles de tatouage
numérique 3D. Deux métriques grossières d’estimation ont été élaborées pour mesurer perceptuelle-
ment la quantité de distorsion visuelle introduite sur la surface du modèle. La deuxième expéri-
ence psychophysique valide les deux métriques proposées avec d’autres algorithmes de tatouages
numériques.

Toutes les métriques proposées pour les trois types de systèmes de traitement d’information
visuelle sont basées sur les résultats d’expériences psychophysiques. Les tests subjectifs sont réal-
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isés pour étudier et caractériser l’impact des distorsions sur la perception humaine. On réalise
l’évaluation de la performance de ces métriques perceptuelles par rapport à l’état de l’art. L’étude
comparative montre une meilleure performance des métriques perceptuelles proposées dans cette
thèse par rapport à l’état de l’art. On évalue la performance en terme de corrélation avec l’opinion
subjective. Les résultats démontrent que l’approche consistant à inclure la perception des distorsions
dans les métriques objectives est fiable.
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Introduction 1
1.1 Motivations

The field of digital data processing deals, in large part, with signals that are meant to convey
reproductions and manipulations of visual information for human consumption. A visual data may
go through many stages of processing before being presented to a human observer, and each stage of
processing may introduce distortions that could reduce the quality of the final display. For example,
a compression algorithm can be applied to visual data to reduce the bandwidth requirements for
storage or transmission. In watermarking systems, imperceptible data can be inserted in the visual
information to authenticate the ownership. In various areas of multimedia, such as content-based
information retrieval, remote surveillance and entertainment, analysis systems are developed for
the access and manipulation of multimedia content. The amount of distortions that each of these
systems could add depends mostly on its intrinsic characteristics and the physical properties of the
processed visual data.

One obvious way of determining the quality of visual information is to measure it by means
of psychophysical experiments with human subjects. After all, these signals are meant for human
consumption. However, such subjective evaluations are not only time-consuming and expensive, but
they also cannot be incorporated into systems that adjust themselves automatically based on the
feedback of measured output quality.

The goal of this research is to develop quantitative measures for objective quality assessment
that can automatically predict the quality perceived by human subjects. Generally speaking, an
objective quality metric can play an important role in a broad range of applications, such as image
acquisition, compression, communication, analysis and watermarking. First, it can be used to
dynamically monitor and adjust visual quality. Second, it can be used to optimize algorithms
and parameter settings of visual data processing systems. Third, it can be applied to benchmark
processing systems and algorithms.

In short, the objective quality measurement (as opposed to subjective quality assessment by
human observers) seeks to determine algorithmically the quality of visual data. The purpose of this
thesis is to design algorithms whose quality prediction is in good agreement with subjective scores
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2 Chapter 1. Introduction

from human observers for different kinds of visual information.
A growing interest has emerged over the last few years within the computer vision community

in the investigation of quality of new kinds of visual information. In this thesis, particular focus will
be given to the investigation of the quality of three types of visual data:

• watermarked video sequence;

• segmented video object ;

• watermarked 3D object.

Quality assessment is of great impact within different research areas. It can be considered the
focal point of a converging series of multidisciplinary researches such as vision, image and video
analysis and experimental psychology.

1.2 Investigated Approach

Traditionally, researchers have focused on measuring signal fidelity as the means of assessing visual
quality. Signal fidelity is measured with respect to a reference signal that is assumed to have“perfect”
quality. In this thesis, full reference quality assessment methods are adopted to assess visual quality
of the different kinds of visual data. During the design or evaluation of a system, the reference
signal is typically processed to yield a distorted (or test) visual data, which can then be compared
to the reference using so-called full reference methods. Typically, this comparison involves measuring
the “distance” between the two signals in a perceptually meaningful way. This can be achieved by
studying, characterizing and deriving the perceptual impact of the distorted signal to human viewers
by means of subjective experiments. Our approach consists in taking into account the most common
artifacts produced by processing algorithms and carrying out subjective experiments in order to:

1. study and characterize the impact of different distortions;

2. propose an automatic procedure for evaluating the performance of the processing algorithms;

3. validate the proposed automatic method on the basis of correlation with the human perception
of visual quality.

ITU-T Recommendation [65] describes standard methods for subjectively testing the quality mea-
surement of processed images and video. Such methods based on psychophysical experiments can
be applied in image and video processing systems like encoding and watermarking. However, there
are image and video analysis systems such as image and video segmentation where these standard
procedures for subjective testing cannot be straightforwardly applied. In this case, methods for
subjective quality assessment have to be adapted to the fact that the output, the segmented re-
gion/object, constitutes only a part of the input, the original video. For example, how to display
(e.g. on what background) the segmented region/object has to be carefully studied in the subjective
evaluation procedure.

For different reasons, these standard methods have to be adapted also to 3D object subjective
quality evaluation. In fact, the way the visual inspection of a 3D object is performed is different
from that of a processed image/video. Displaying 3D objects includes rendering condition setting
(such as illumination) and human interaction with the object (such as zoom and rotation), which do
not need to be considered in processed image or video quality assessment. Therefore, in this thesis,
methods to investigate the quality perceived by human observers are proposed both for segmented
video objects and 3D objects.
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In order to design objective quality assessment methods whose predictions are in agreement with
human perception, two different approaches can be followed. Both approaches are based on the
Human Visual System (HVS) since all visual perception tasks have the HVS in common. The first
approach tries to model the HVS. If the visual system model is accurate, the model can be used
for designing reliable objective metrics. However, the human visual system is extremely complex,
and many of its properties are not entirely understood till today. Thus, another approach is used in
this thesis to develop perceptual quality assessment metrics. A priori knowledge about the signal
processing and analysis methods as well as the pertinent types of introduced distortions is used. In
order to investigate the perceptual impact of different kinds of distortions a series of psychophysical
experiments is performed in this thesis. On the basis of these experiments, the perceptual objective
metrics are derived. Although such metrics are not as versatile, they normally perform well in a
given application area. Their main advantage lies in the fact that they often allow a computationally
more efficient implementation than approaches which directly model the HVS.

To the best of our knowledge, a comparison among different objective methods for quality assess-
ment in the addressed visual information areas has received little attention by the image processing
community so far, as well as the study of their performances on real processing algorithms. In this
thesis, the performances of the proposed objective metrics on several processing algorithms, for the
different kinds of data addressed, are evaluated. A comparison with the state of the art objective
methods used in the literature is carried out.

1.3 Organization of the Thesis

The remainder of this dissertation is divided in three parts according to the kind of visual informa-
tion processing system it deals with. Image and video processing quality assessment is discussed in
Part I. Background knowledge related to this research is reviewed in Chapter 2. First, standard
techniques for image and video subjective quality assessment are presented. Then, the approaches
to derive objective quality assessment methods in agreement with human perception are discussed.
Chapter 3 focuses on a particular type of video processing, the watermarking. Different watermark-
ing techniques are applied to a set of video sequences and subjective experiments are carried out to
investigate the perceptual impact of distortions due to the insertion of the watermark. Then, two
new quality assessment objective metrics are proposed and discussed in terms of their correlation
with subjective data with respect to a state of the art simple metric.

In Part II, quality assessment of segmented video objects is addressed. Chapter 4 describes the
framework for segmentation quality assessment. First, the state of the art methods for image and
video subjective evaluation are reviewed. Then, the proposed experimental method for subjective
tests, the instructions, the experimental tasks and the synthetically generated segmentation errors
are described. Finally, the novelty of the proposed approach for segmentation evaluation that
consists in deriving a perceptual objective metric from subjective experiments is explained. Chapter 5
introduces the new perceptual metric proposed for quality assessment of segmented video sequences.
First, the objective metrics found in literature for segmentation evaluation are described. Then, a
new objective metric is proposed and discussed. Finally, the results of the subjective experiments
are presented, the overall perceptual objective metric is derived and its performance, also compared
to the state of the art methods, is described. In Chapter 6, the proposed metric is tested on video
sequences with real artifacts produced by several segmentation algorithms. A general framework is
then considered to discuss the correlation between the subjective and objective results. Furthermore,
some of the most common applications of video object segmentation are illustrated and subjective
experiments are proposed for different applications. Finally, according to the particular application,
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the parameters of the proposed metric are tuned on the basis of subjective results and then the
performance compared to the state of the art objective metrics. Appendix A shows the errors
synthetically introduced for video object segmentation quality assessment. Appendix B reports the
scripts for all the subjective experiments carried out in this work.

In Part III, methods for quality assessment of watermarked 3D objects are investigated. Chap-
ter 7 reviews previous works related to perceptual image watermark insertion, to mesh simplification
and perceptually-guided rendering. Distortions introduced by common 3D watermarking algorithms
are described. On the basis of subjective experiments two new metrics based on the roughness esti-
mation of the model’s surface are proposed. The performance of the introduced metrics is compared
to two of the most common geometric metrics used to measure the similarity between two 3D objects.

In order to provide an overview on all the possible viewing conditions for 3D model quality
assessment, Appendix C describes the background on 3D rendering conditions.

1.4 Main Contributions

The significant contributions of the work presented in Part I are summarized below:

• design and development of two new objective metrics for the quality assessment of water-
marked video. Flicker and noise effects are identified by means of subjective experiments and
the two objective metrics are proposed and compared to a simple state of the art metric.

The main contributions of Part II are:

• an extensive survey of literature methods both for subjective and objective quality assess-
ment. Both image and video segmentation quality assessment methodologies are presented
and their advantages and disadvantaged are discussed;

• realization of several psychophysical experiments to study and characterize the distortions
introduced by segmentation algorithms on the basis of a proposed methodology for subjective
experiments;

• design and development of a new perceptual objective metric. In order to assess the quality
of segmented video objects, a metric based on the perception of errors in the segmentations is
proposed;

• application of the proposed metric to the evaluation of real segmentations in different appli-
cations, such as video compression, video manipulation and video surveillance.

Part III dedicated to 3D watermarking quality assessment is a jointly work with Dr. Massimiliano
Corsini [25]. The main contributions are:

• realization of two psychophysical experiments on the basis of a proposed methodology for
collecting subjective data for 3D model quality assessment. The first one is for designing two
perceptual objective metrics and the second one is for validating the proposed metrics with
different watermarking algorithms;

• design and development of two new perceptual objective metrics for watermarked 3D object
quality assessment on the basis of the roughness surface estimation. By means of subjective
experiments the perceived distortion amount is included to derive these two perceptual metrics.
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Objective and Subjective

Quality 2
2.1 Introduction

Digital data are subject to a wide variety of distortions during acquisition, analysis, processing,
compression, storage, transmission and reproduction, any of which may cause a degradation of the
visual quality . Visual quality plays an important role in various applications [163]. But what do we
mean by quality?

Every person has a notion of quality that may depend on the context. It is difficult to find a
general definition of quality applicable in all contexts. A definition of quality can be found in a
dictionary [98] that is:

Quality, (i.e. the degree of excellence which a thing possesses), refers to a characteristic (physical
or nonphysical, individual or typical) that constitutes the basic nature of a thing or is one of
its distinguished features.

As an example, in the context of videoconferencing applications, the term ‘quality’ typically refers
to Quality of Service (QoS) [158] which is described as “good picture quality, good sound, etc...,”.
The biggest difficulty lies in the fact that there is no quantification or evaluation of what good is.

For this reason, when evaluating the visual quality of data a large panel of human observers is
needed to produce a Mean Opinion Score (MOS). Standard procedures [65, 66] for psychophysical∗

experiments have been established as valuable research tools in the image and video processing field
for a better understanding of how humans judge quality and the perceived distortions. In order
to develop the subjective quality evaluation methods proposed in the following chapters for new
kinds of processing systems, the techniques available today for compressed image and video quality
assessment [56, 65, 66] are reviewed in this chapter.

As the nature of image/video processing used for compression is different from that for im-
age/video segmentation (or the way the visual inspection of a 3D object is performed is different
from that of an image/video) the subjective methods for quality assessment will also be different
from those of the more investigated systems, such as video compression systems [48, 102, 175].

∗Psychophysics is the branch of psychometric (the study of human response to various stimuli) which deals with

stimuli that can be expressed in terms of physical parameters.

7
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Once the procedure for subjective experiments is established, the second step is to consider
the subjective ratings/responses obtained from psychophysical experiments as benchmarks for the
development of objective quality metrics. In fact, the goal of this research is to develop objective
measures that can automatically predict the quality perceived by human observers. In order to assess
how distortions are perceived by humans and to build a perceptual objective metric, subjective
experiments have to be carried out. In such a way, a relation between the perceptual quality of
image/video sequences and the objective measure of the distortions can be derived. When this
relation, the perceptual objective metric, is found, further subjective experiments which are an
expensive and time consuming practice to evaluate the visual quality can be avoided.

A great effort has been made in recent years to develop objective quality metrics that correlate
with subjective quality measurements in image and video processing systems [40, 45, 63, 105, 152,
156, 161, 164, 168]. The knowledge developed in such a field is taken into account in order to propose
objective metrics for the different kinds of visual information processing systems considered in this
thesis.

In general, in order to design reliable perceptual objective quality assessment metrics that mimic
the subjective responses, it is necessary to investigate:

• the methodology of subjective experiments,

• the significances of subjective data by means of statistical analysis,

• how to model the processed subjective data using fitting functions,

• the models to simulate the Human Visual System (HV S) responses in objective metrics, and

• the performance of the objective methods by their correlation with subjective scores.

These important issues for the quality assessment of any type of visual information are tackled
in this chapter. Section 2.2 discusses the subjective quality assessment procedures, the standard
methods and the grading scales for carrying out subjective tests, and investigates their requirements
and limitations. Section 2.3 presents how to perform the statistical analysis of subjective data
according to ITU Recommendations [65, 66], the psychometric functions usually adopted to fit the
processed data and the combination rule used in the literature [30] to build quality assessment
models. Section 2.4 describes how to develop and evaluate objective quality assessment models
based on HV S. Section 2.5 draws the conclusions.

2.2 Subjective Quality Assessment

The benchmark for any kind of visual quality assessment are subjective experiments, where a number
of subjects are asked to watch the test images or video and to rate their quality. As already
mentioned, quality is rather a nebulous concept. For this reason, when evaluating the quality of
visual data, a good compromise is to provide a term of comparison. The comparison may be explicit
when the two data are observed side by side and a choice of which one is better (or worse) can be
made. The comparison can also be implicit; in this case the judgment will depend on an internal
reference. In order to remove this internal reference, the subjects are usually shown with explicit
reference. Moreover, there can always be data with higher or lower quality. Hence, the judgment
scale should not be limited, giving room for better or worse quality responses. Subjective tests may
measure impairment scores rather than quality scores; or they can be asked to rate the degree of
distortion, the amount of defects or the strength of artifacts (see definitions in Tab. 2.1).
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Impairment (or defect) is a subjective measure of the degradation of visual information qual-
ity. In this case, the reference is assumed to have no impairments and any difference from the
reference represents a decreasing quality or an increasing impairment. Subjects are asked to rate
the image/video in terms of impairment. Sometimes distortions can be clearly visible but not so
objectionable. Thus, subjects may be asked to rate the video in terms of annoyance, that is how
much the impairment bothers the viewer.

Subjective experiments are carried out to provide the Mean Opinion Score (MOS) computed
by averaging all the gathered subjective measurements. The subjective measurement of quality,
impairment or annoyance may be carried out with different methodologies. The standard subjective
assessment methods [65, 66] for image/video quality assessment are described in Sec. 2.2.1. The
different judgment scales adopted in these subjective experiments are presented in Sec. 2.2.2. Further
requirements for subjective evaluation and some limits are presented in Sec. 2.2.3.

Table 2.1: Definitions used in developing quality assessment systems.
Term Definition

Distortion Any measurable change in the form of the original signal
during capture, processing, transmission, display.

Impairment An error or measure of the degradation of the signal.
or defect
Perceived Perceptual change due to a defect (perceptual dimension).

defect
Artifact Relatively pure perceptual feature of an impairment.

2.2.1 Subjective Measurement Methods

Standardized subjective quality assessment techniques are well established in the specific frame of
coded images and video sequences. ITU-T Recommendation P.910 [65] and ITU-R Recommendation
BT.500-6 [66] are the commonly used standards for the subjective assessment of still images and
video. As in this thesis other kinds of visual information will be taken into account, such as video
objects and 3D models, the proposed methodology for each case will be based on methods and
considerations addressed in ITU-R and ITU-T Recommendations listed below:

• Double Stimulus Continuous Quality Scale (DSCQS). This method involves two images or
sequences, one of which is a reference. The images or sequences are shown alternatively in
random order. The subjects are not told which one is the reference and are asked to rate
each picture independently. They rate each of the two separately on a continuous quality scale
ranging from “bad” to “excellent”.

• Double Stimulus Impairment Scale Method (DSIS). This method is intended for images or
sequences which cover a wide range of impairments. Subjects are shown the original picture
followed by the impaired picture, and are asked to rate the quality of the impaired picture
with respect to the original. Results are indicated on a discrete five-grade impairment scale:
imperceptible, perceptible but not annoying, slightly annoying, annoying, and very annoying.

• Stimulus Comparison Method. In this method, subjects are shown the two distorted scenes in
a random order and asked to rate the quality of one scene with respect to the other by using a
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discrete seven level scale (much worse, worse, slightly worse, the same, slightly better, better,
and much better). Continuous scales may also be used.

• Single Stimulus Method. This method does not use a reference. Subjects are shown the test
image or sequence and are asked to rate its quality. A number of different ways of recording
observer results are possible (continuous or discrete scales) and are described in details in
Sec. 2.2.2.

These four methods have generally different applications. The choice of a specific method depends
on the context, the purpose and where, in the development process of the data the test is to be
performed. DSCQS is the preferred method when the quality of the test and the reference sequence
are similar, because it is quite sensitive to small differences in quality. The DSIS method is better
suited for evaluating clearly visible impairments, such as artifacts caused by transmission errors.
Single Stimulus Method is useful when the effect of one or more factors need to be assessed. The
factors can either be tested separately or can be combined to test interactions. The Single Stimulus
Continuous Quality Evaluation (SSCQE) method relates well to the time varying quality of today’s
digital video systems. The Stimulus Comparison Method is useful when two impaired images or
sequences are required to be compared directly. This is the case for example when different image
or video processing systems are compared on the basis of the visual quality of their results.

2.2.2 Grading Scales

Grading scales can be continuous or discrete, categorical or numerical [66]. Discrete five-grade
impairment scale (5 imperceptible, 4 perceptible but not annoying, 3 slightly annoying, 2 annoying,
1 very annoying) or the discrete five-grade quality scale (5 excellent, 4 good, 3 fair, 2 poor, 1 bad)
are usually applied in the DSIS method, according to ITU-T Recommendations.

Excellent

Good

Fair

Poor

Bad
0

100

(a)
ExcellentBad

(b)

Figure 2.1: Continuous grading scales: (a) five point continuous scale, and (b) categorical contin-
uous scale.

Continuous rating system can be adopted to avoid quantization errors. The continuous scales
used in the DSCQS method are divided into five equal lengths which correspond to the normal
ITU-R five point quality scale. Figure 2.1 (a) shows a typical score sheet. The pairs of assessment
(reference and test) for each test condition are converted from measurements of length on the score
sheet to normalized score in the range of 0 to 100.

Both categorical scales and numerical scales are usually adopted in the Single Stimulus Method.
Categorical scales assess image quality and image impairment with the five-grade impairment scale or
the five-grade quality scale cited above. Numerical scales are also used in Single Stimulus procedures
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using a discrete 11-grade numerical scale (from 0 to 10). In continuous scaling, a variant of the
categorical method is that of assigning each image or image sequences to a point on a line between
two semantic labels (e.g. “bad” and “excellent” as in Fig. 2.1 (b)). In numerical scaling there is
the option to use a restricted scale (e.g. 0-100) and the variant with an open scale. Sometimes,
the value describes the judged level in “absolute” terms (without direct reference to the level of any
other image or image sequence). In other cases, the number describes the judged level relative to
that of a previously defined “ground-truth” (reference or gold standard).

2.2.3 Experiment Requirements and Limitations

The Recommendation BT.500 standard [66] specifies several other features to be considered in the
testing. They are listed below. Besides them, privacy issues should also be addressed when carrying
out subjective experiments.

• Number of subjects: at least 30, and preferably more. They should have normal or corrected-
to-normal vision, and should preferably be non-expert.

• Test scenes: these should be critical to the impairment being tested.

• Test session: the experimental part should take no longer than 30 minutes due to the possibility
of fatigue when evaluating images. In total, with the instruction part the test should not be
longer than 1 hour.

• Viewing conditions: specifications have been established for the room environment, ambient
lighting conditions and viewing distance.

• Stimulus presentation: random presentation of image or sequences is recommended.

Subjective testing is currently the accepted method for establishing the quality of a particular
processing algorithm. However, there are several difficulties associated with performing subjective
quality tests [112, 162]. These intrinsic difficulties have driven the research on objective quality
assessment. Some of these limitations are listed below:

• Most psychophysical experiments are conducted on simple patterns. But it is not known if a
limited number of simple-stimulus experiments are sufficient to build a model that can predict
the visual quality of complex structured natural images.

• Interactive visual processing (e.g. eye movement) influences the perceived quality. For exam-
ple, subjects will give different quality scores if they are provided with different instructions.
Prior information regarding the image content, or attention and fixation, may also affect the
evaluation of the image or image sequence quality.

• Subjective tests are extremely time consuming and costly. Many groups do not possess the
required equipment and have to conduct tests under non-standard conditions or in other
laboratories. It is also difficult to obtain a large number of subjects. The process of subjective
testing may take weeks or months, thus becoming a big limitation in the research of subjective
quality assessment.

• A large number of subjects is required since there may be a large variation in individual viewing
opinions, depending on the subject’s age, sex, motivation and other personal factors.
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• Subjective quality may vary depending on the length of the representation. Hamberg and de
Ridder [58] found that subjects take around 1 second to react to a particular distortion in
a scene and a further 2-3 seconds to stabilize their responses. Horita et al. [63] showed that
distortions in the first or in the last part of the representation jeopardize the overall quality
more than those appearing in the central part.

• The scale used by subjects can also introduce problems. For example, discrete scale with few
levels asks for many subjects to reduce the variance. Subjects are usually reluctant to give
very high or very low scores. For this reason open-ended scales may be used.

Objective methods which use subjective data as ground truth to assess the accuracy of their tech-
nique should take into account that their results are not perfect. Thus, perfect correlation with
subjective quality data may not be realistically reachable.

2.3 Subjective Data Analysis

Once the experimenter has performed the subjective experiment with an appropriate tool, chosen
among those described in the previous section, and performed the test by taking into account
all the requirements, he/she has finally gathered a collection of subjective data to be statistically
analyzed. At this point, the experimenter has to determine to which point the data can be trusted
and determine the confidence interval. Then, the performance of individual subject data has to be
investigated and statistical analysis can be applied to screen the outliers with standard methods [66]
as presented in Sec. 2.3.1.

After being analyzed, the data provided by the test subjects, have to be modeled by standard
functions (see Sec. 2.3.2) able to describe and to fit the mean opinion scores. Moreover, the goodness
of the fit has to be considered. In such a way the human perception of quality (or annoyance) can
be predicted in terms of psychometric functions.

Finally, since one or more artifacts can be present at the same time, a combination rule has to
be defined to obtain the overall quality (or annoyance). This rule in psychophysical experiments is
often based on the Minkowksi metric [30, 41, 89, 129, 162] which is described in Sec. 2.3.3

2.3.1 Processing the Subjective Data

In the first step, the subjective score values are combined into a single overall score for each test
scene using the sample mean. The subjective Mean Opinion Score (MOS) for the test scene j is
given by:

µj =
1

Nj

Nj∑
i=1

mij , (2.1)

where Nj is the number of test subjects in the experiment. This measure represents the averaged
subjective scores mij obtained from subject i after viewing the test scene j. By presenting the
results of a subjective test, all mean scores µj must be associated to a confidence interval which is
derived from the standard deviation and the size of each sample [92, 142]. Confidence intervals for
the mean subjective scores are usually calculated using Student’s t-distribution. The t-distribution
is appropriate when only a small number of sample is available [142]. The sample standard deviation
sj is calculated for each sequence j using µj and the confidence intervals are computed as:

δj = t(α/2,Nj−1)sj/
√

Nj , (2.2)
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where t(α/2,Nj−1) is the t-value associated with the desired significance level α for a two-sided test
with Nj −1 degrees of freedom. As the number of observations Nj increases, the confidence interval
decreases. The final results are the j Mean Opinion Score values with an associated 1−α confidence
interval, µj ± δj .

The second step in the analysis refers to the normalization to compensate for the boundary
effects of the voting scale on the subjective scores. This effect has been identified as the one in
which observers tend not to use the extreme values of the judgment scale, in particular for high
quality scores. This may arise from a number of factors, including psychological reluctance to make
extreme judgments [66, 102].

Finally, the MOS values and sample standard deviations are used in the subject screening pro-
cedure. In the screening procedure usually adopted (Annex 2 of ITU BT.500 Recommendation [66])
an expected range of values is calculated for each model. A subject is not rejected for always be-
ing above the expected range or always being below the expected range but for being erratic on
both sides of the expected range. This procedure is appropriate to reduce the variability of the
data in small sample sets. If necessary, after the screening procedures, the MOS and their relative
confidence intervals are recalculated without the data from rejected test subjects.

2.3.2 Psychometric and Fitting Functions

A psychometric function describes the relation between the physical intensity of a stimulus and the
subject’s ability to detect or respond correctly to it. The measurements are based on a number
of discrete trials at a number of different stimulus intensities. The psychometric function usually
increases monotonically with stimulus intensity. Sigmoidal functions such as the logistic function,
normal cumulative functions such as Gaussian and Weibull functions are commonly fitted to the
data by a non-linear least-squares method. All these psychometric curves are cumulative distribution
functions with a range [0,1].

These psychometric functions are in common use for describing the relation between some phys-
ical measure of a stimulus and the probability of a particular psychophysical response. But they
can be adapted and used for fitting MOS on quality or annoyance. Scaling (M − m) and offset
parameters, m (where m is the minimum on the grading scale and M is the maximum) can adjust
the psychometric functions to an arbitrary scale of quality or annoyance as follows.

The logistic function is symmetric and becomes

logistic(a, b, x) = m − M − m

1 + e−(a+bx)
, (2.3)

where the parameters a and b control the curve location and steepness, respectively, and x is the
objective measurement of the stimulus intensity.

The Weibull function is not symmetric and its shape depends on two parameters, S and k,

Weibull(S, k, x) = m + (M − m) ·
(
1 − e−(S·x)k

)
. (2.4)

The Gaussian psychometric function is the normalized cumulative distribution function for a Gaus-
sian distribution, that is

Gaussian(a, b, x) = m + (M − m) ·
√

2π ·
∫ ∞

−a+bx

e(− t2
2 )dt, (2.5)

where a shifts the curve along the x-axis and b controls the steepness of the function.
One of these functions is commonly fitted to the data by a least-squares method and it is assumed

that the correct form of the fitting curve is to be known and that the data are uncorrelated and
representative [92]. Moreover, the x-values are assumed to be known without uncertainty.
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In the case that the mean opinion value’s variance is not the same for all data points, a weighted
non-linear least-squares method can be used. Weights are calculated for each mean opinion value
such that they are inversely proportional to their standard deviation and multiplied by a normal-
ization constant chosen so that the sum of all weights is equal to one [56].

After the best parameters of the fitting curves are found in a least squares sense, the 95%
confidence bounds on the curve fits are estimated. After all these parameters have been estimated
(the best fitting curve, the parameters that give the best fit and the confidence bounds of the
curve), it is necessary to measure how good the fit is. Standard correlation coefficients used for this
purpose will be described in Sec. 2.4.2. Another way to represent the fit is to square the correlation
coefficient, also called the goodness of fit , r [61]:

r =
(std(y))2 − (std(x − y))2

(std(y))2
, (2.6)

where x and y are respectively the vectors of the values predicted by the model and the observed
ones, and std is the standard deviation. This correlation coefficient is also used in this thesis to
estimate the goodness of fit.

2.3.3 Minkowski Metric

In both subjective and objective image/video quality models, the relationship between individual
artifacts and the produced overall annoyance is often estimated by the Minkowski metric [89, 105,
162]. If an image/video is affected by one or more types of artifacts, the total impairment can be
estimated by knowing the individual artifact amounts and their individual perceptual contributions
to the produced overall annoyance.

The perceptual image quality Q (usually it is defined in a interval [0,1] for convenience) is linearly
related to the perceptual impairment [129] I by:

I = 1 − Q. (2.7)

Besides judging the total perceptual impairment, subjects can also distinguish among the various
underlying artifacts and are able to judge the perceptual impairments of these underlying artifacts
separately [30].

Minkowski metrics have been used as a combination rule for different artifacts in psychophysical
experiments [48, 89, 102, 105, 162]. In the Minkowski metric, the perceptual impairments are
combined into the total impairment I by means of:

Ip =
M∑
i=1

Ip
i , (2.8)

where M is the number of the underlying artifacts, p is the Minkowski parameter.
The use of the Minkowski parameter p has its roots in multidimensional scaling [88] where

Minkowski metric is used as a distance measure. A distance interpretation of the Minkowski metric
formalism is not the only possibility. It can be generalized by suggesting that observers take some
form of average when evaluating image quality. The application of this mathematical formalism has
been successful in both the image/video impairment and quality approaches.

The perceptual impairment of the underlying artifacts is found to be linearly related to the
perceptual strength S of these artifacts [105]:

Ii = ai · Si. (2.9)
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The interpretation is that the strengths of the perceptual attributes are attributes of low level vision,
whereas the impairments are cognitive attributes. The constants ai represent the relative weights
of the artifacts in the total perceptual impairment. On the basis of Eq. (2.7), the difference in
the perceptual quality between an original image/video and an impaired version equals the total
impairments caused by the underlying artifacts. This difference can be rewritten as:

I = (
M∑
i=1

wi · Sp
i )

1
p , (2.10)

where wi are the reformulated perceptual weights. The interpretation of the error measure as a
distance measure in perceptual space is straightforward. If the artifacts are visible, the resulting
loss in perceptual quality is proportional to the p-norm of a vector in a perceptual multidimensional
space (dimension given by M ) spanned by these artifacts.

Different Minkowski exponents p have been found to yield good results for different experiments
and implementations in the literature [30]. As an example, for subjective experiments with coding
artifacts, p = 2 (Euclidean metric) was found to give good results. Intuitively, a few high distortions
may draw the viewer’s attention more than many lower ones. This behavior has been observed and
generalized with higher exponents (p = 4) in proposed combinations for large impairments in [30].

The Minkowski metric will be used to analyze the data from subjective experiments where sub-
jects were asked individual artifact annoyance and overall annoyance. In such a way, the perceptual
weights will be derived in order to build the subjective quality model. The same rule will be used
to combine the individual objective measures and the overall annoyance measured in subjective ex-
periments in order to derive the perceptual weights in the objective metric and build the objective
quality model.

2.4 Objective Quality Assessment

Images, video sequences and 3D objects are ultimately viewed by humans, thus the only “correct”
method of quantifying visual quality is through subjective evaluation. However, subjective eval-
uation is usually too inconvenient, time-consuming and expensive. The goal of objective quality
assessment is to find a way to predict what people will say about the image/video quality without
performing any subjective test. In order to reach this goal, the first step is to investigate what
method people use to judge the quality and whether they agree on the judgment. For this reason,
in the previous sections, we have presented how a subjective experiment has to be run, which are
the different experimental conditions that should be followed and how the gathered data should be
processed. The second step is to model the way humans perceive image/video distortions in order to
develop quantitative measures that can automatically predict perceived image/video quality. This
section addresses the issues involved in designing objective quality assessment methods.

The development of an objective quality metric is important since it can be used in different
stages of image/video processing and analysis systems as follows.

• Monitoring . It can be used to monitor and adjust on-line the image/video quality.

• Optimization. It can be used off-line to optimize algorithms and parameter settings of im-
age/video processing and analysis systems [35].

• Benchmarking . It can be used to compare and rank different image/video processing systems
and algorithms.
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The objective metrics developed in this thesis will be used to benchmark different processing algo-
rithms and will be compared to the state of the art objective metrics currently in use.

Objective quality metrics can be classified according to the availability of the original (impairment-
free) image/video with which the impaired version has to be compared. In the approach called full
reference quality assessment , the complete reference image/video (ground truth) is assumed to be
known. If the reference is not available a no reference or “blind” quality assessment is desirable. In
a third type of method, the reference is only partially available in the form of a set of extracted
features as side information to help to evaluate the quality of the visual data. This is referred to as
reduced reference quality assessment. This thesis focuses on full reference quality assessment.

The objective model should mimic the human visual and perceptual system, so that the measured
quality agrees with the subjective quality as perceived by the viewer. Section 2.4.1 describes the
models that can be used to build an objective metric based on the HV S. Moreover, the most
common objective metrics used in image/video quality assessment are mentioned in this section.
Section 2.4.2 presents the attributes that characterize an objective quality metric in terms of its
prediction performance with respect to subjective scores.

2.4.1 Objective Models and Metrics

Several studies about the HV S behavior have been carried out, especially with respect to video
quality assessment metric development. The objective metric for video quality evaluation can be
very application dependent (e.g. regarding the relevant artifacts), and thus a variety of HV S models
need to be considered. Two main families of models have been identified by Lubin [84]: performance
modeling and mechanistic modeling. Both models aim at modeling psychophysical quantities but
with different approaches:

• Performance modeling . These models do not try to directly simulate the human visual func-
tions, but instead provide input-output functions that have a behavior comparable to that of
the visual system [145, 169, 176]. They usually involve a lower computational complexity than
perceptual models and generate a numerical value for the quality evaluation.

• Mechanistic modeling . These models describe the HV S and its functional behavior using the
available knowledge about the processing of visual information by a human viewer [85, 174].
Examples of functions used to model this behavior are: contrast sensitivity, masking and
luminance adaptation. The output of the perceptual models can take the form of a spatial
map of just noticeable differences, or the values in the map can be combined to produce a
single value.

Until now, both the mechanistic and performance modeling have produced objective measures of
the perceived quality in compressed or watermarked images or video [85, 145, 169, 174, 176]. Some
guidelines for developing quality metrics for the different kinds of visual information addressed in
this thesis can be extracted from these models. Furthermore, some of the objective metrics proposed
in the literature may serve as a basis for developing new ones, more appropriate for 3D models or
video objects quality assessment.

There are various quality metrics in the literature to objectively evaluate the quality of an
image or video. A simple classification groups the objective metrics into mathematical metrics and
perceptual metrics. Mathematical metrics measure quality in terms of relative simple mathematical
functions, usually with pixel-by-pixel weighted differences between the reference R and the distorted
image/video D. Peak Signal to Noise Ratio (PSNR) and Mean Squared Error (MSE) are the most
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widely used mathematical metrics which are defined as:

MSE =
1
I

I∑
i=1

(Ri − Di)2, (2.11)

PSNR = 10 · log10
R2

M

MSE
, (2.12)

where I is the total number of pixels in the image and RM is the maximum possible reference
intensity value. These metrics are the most common but are widely criticized as well, for not
correlating with the perceived quality measurement. Perceptual metrics are used in mechanistic
modeling incorporating HVS characteristics [161] such as luminance contrast sensitivity (Weber’s
law), frequency contrast sensitivity (Contrast Sensitivity Function) and masking effects [112, 143].
The Just-Noticeable-Difference (JND) is a very important concept in objective metrics using HV S

features and ideally it provides each signal being represented with a threshold level of error visibility,
below which errors are imperceptible. The JND is adopted in the Sarnoff Visual Discrimination
Model proposed by Lubin [85]

In this thesis, the performance modeling approach will be used. The reason why we chose
the aforesaid approach for the segmentation quality evaluation for example, is that while in image
compression systems the output and the input should be similar as much as possible, in segmentation
systems they are quite different. A segmentation system has a restructuring function with the output
being organized differently than the input: a pixel matrix is transformed in a label matrix. While
in the case of compression the degradation in the texture quality is evaluated, in the second case no
degradation is involved. Segmentation quality is more related to the structural matching between
the real-world objects and the segmented objects. Therefore, low-level HV S characteristics do not
need to be incorporated into the quality assessment model.

2.4.2 Objective Model Assessment

The goal of objective quality assessment is to design algorithms whose quality prediction is in
good agreement with subjective scores from human observers. There are different attributes that
characterize an objective quality model in terms of its prediction performance with respect to Mean
Opinion Score, MOS [56]. Two of these attributes are accuracy and monotonicity which are defined
as follows.

• Accuracy is the ability of a metric to predict subjective ratings with minimum average error
and can be determined by means of the Pearson linear correlation coefficient. For a set of N

data pairs (xi, yi), it is defined as follows:

Pearson =
∑N

i=1(xi − x)(yi − y)√∑N
i=1(xi − x)2

√∑N
i=1(yi − y)2

, (2.13)

where x and y are the means of the respectively objective and subjective data.

This assumes a linear relation between the data sets, which may not be the case. Therefore, in
this thesis psychometric functions will be used to take into account the HV S behavior such as
saturation effects. Then, linear correlation will be used to obtain relative comparisons between
subjective and objective data.

• Monotonicity measures if increases (decreases) in one variable are associated with increases
(decreases) in the other variable, independently of the magnitude of the increase (decrease).
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Ideally, differences of a metric’s rating between two sequences should always have the same sign
as the differences between the corresponding subjective ratings. The degree of monotonicity
can be quantified by the Spearman rank-order correlation coefficient, which is defined as:

Spearman =
∑N

i=1(χi − χ)(γi − γ)√∑N
i=1(χi − χ)2

√∑N
i=1(γi − γ)2

, (2.14)

where χi is the rank of xi and γ is the rank of yi in the ordered data series. χ and γ are the
respective mid-ranks. The Spearman rank-order correlation makes no assumption about the
relationship between xi and yi.

Both correlation coefficients will be used in this thesis to investigate the performance of the proposed
objective metrics.

2.5 Conclusions

In this chapter, standard methods for carrying out the subjective experiments, statistical methods
for data analysis and objective models and metrics proposed in image/video compression quality
assessment have been presented. Even if other processing systems different from compression will
be considered in the next chapters, some of the methods and considerations remain valid in 3D or
object segmentation quality assessment.

Subjective rating of annoyance of visual impairments is sometimes used instead of quality rating
which is rather a nebulous concept. Unrestricted grading scales are used to leave always room to
human judgments for something better or something worse. Statistical analysis of subjective results,
normalization and screening procedures are performed according to standard procedures.

Standard psychometric functions used for fitting the subjective data have been described. The
Minkowski metric usually adopted in psychometric experiments to combine different artifacts in
the overall impairment model has been presented. Performance modeling can be used to build
objective quality assessment methods that try to indirectly simulate the HV S. The Spearman and
Pearson correlation coefficients are applied to test the performance of the proposed objective quality
assessment methods versus subjective ratings.

These tools will be used to propose subjective experiment methodologies and objective metrics
for the visual information tackled in this thesis.



Video Watermarking

Quality Assessment 3
3.1 Introduction

In the previous chapter, we presented standard methods to carry out subjective tests and to derive
objective metrics for evaluating the quality of processed images and video. In this chapter, as a first
contribution, we present a subjective and objective study of quality on a particular type of digital
processing: video watermarking.

The rapid spread of digital media (audio, images, video and 3D models) and the ease of their
reproduction and distribution has created a need for copyright enforcement schemes in order to
protect content creators and owners. In recent years, digital watermarking has emerged as an
effective way to prevent users from violating copyrights. More precisely digital watermarking regards
the embedding of a digital information, called watermark in a host multimedia content, such as
image, video or even 3D model. A general scheme of a watermarking system is depicted in Fig. 3.1.
In brief, a secret key is used to embed and extract the watermark inserted in the multimedia
content. Embedding and recovering are the procedures that enable the insertion and extraction of
the watermark. The basic idea of watermarking is to associate the digital information to the digital
host in imperceptible way to the human eye yet resistant to (intentional or unintentional) alterations
of the watermarking. This association can be used for several applications. For example, in the case
of copyright protection, the watermark conveys information about the owner/creator of the digital
multimedia content, and it can be used to proof ownership in legal dispute.

The assessment and the comparison of the performance of watermarking procedures are complex
since various aspects have to be evaluated as described in the next section. The visibility of the
watermark is an important aspect in this process.

In this chapter, we propose two new metrics for evaluating the visual impact of video watermarks.
Based on several different watermarking algorithms and video sequences, the most prominent impair-
ments are identified as spatial noise and temporal flicker. We design the corresponding measurement
algorithms and corroborate their performance through subjective experiments.

The chapter is organized as follows. In Sec. 3.2 we describe the motivations of digital water-
marking and present the state of the art benchmarks for watermarking algorithms. Section 3.3

19
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Embedding Attacks Recovery
Recovered
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KeyKey

Figure 3.1: General scheme of watermarking system.

outlines the proposed approach to evaluate the visual distortion given by watermarking algorithms.
In Sec. 3.4 the watermarking algorithms used in the experiment are described along with the artifacts
caused by their insertion. Section 3.5 presents the video sequences used to test the proposed metrics
as well as the design of the subjective experiments. Section 3.6 describes the new metrics proposed
in this thesis to assess the watermarked video quality. The results are reported and discussed in
Sec. 3.7. Section 3.8 presents some conclusions.

3.2 Video Watermarking - Motivation and Context

Video watermarking is mainly utilized in three frameworks: copyright control, broadcast monitoring
and more recently quality assessment [16].

As far as copyright protection for DVD is concerned, the watermark can be used to attach
information to the content about the restrictions on copying. For example, if a DVD player detects
a “never copy” statement on a recorded disk (which can be distinguished from an original), it can
be designed to reject it.

Broadcast monitoring systems include video watermarking embedder and detectors that add
identifying data to the video signal prior to transmission by terrestrial, cable and satellite broad-
casters. Detectors have access to the right key and can detect the digital identifier from the video
signal. These identifiers are imperceptible to television audiences and survive all common video pro-
cessing operations. Broadcasts can then be monitored using these detectors to verify that program
and advertisement transmission comply with contractual requirements and do not occur without
the permission of the broadcast owner.

Not all watermarking technologies are aimed at robust proof of copyright ownership. Some are
intended for adding value (like embedding lyrics in a song). Some are not intended to be robust, but
fragile, for data authentication or quality assessment in compression and transmission techniques.
The latter has recently been proposed in literature [16] and it consists in making use of a data hiding
techniques to embed a fragile mark into perceptually important areas of the video frame. At the
receiver, the mark is extracted from the perceptually important areas of the decoded video. In such
a way, a quality measure of the video is obtained by computing the degradation of the extracted
mark.

In any of the above mentioned applications, the embedded watermark must be imperceptible
enough to remain invisible during normal viewing. On the other hand, the more information we
want to add to the digital host, the more difficult it becomes to hide the information without
introducing a relevant distortion. The best developed watermarking algorithms adapt to the video
content in order to achieve the best possible compromise. However, the predominant requirement
is that watermarks must work without bothering the user.

Besides visibility (i.e. how easily the watermark can be discerned by the user) two other factors
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must be considered in watermarking:

• capacity , i.e. the amount of information that the watermark can convey and be recovered
without errors;

• robustness, i.e. the resistance of the watermark to alterations of the original content such as
compression, filtering or cropping.

These three factors are inter-dependent; for example, increasing the capacity will decrease the ro-
bustness and/or increase the visibility. Therefore, it is essential to consider all three factors for
a fair evaluation or comparison of watermarking algorithms. Various consortia such as Certimark
(http://www.certimark.org) or the Content ID Forum (http://www.cidf.org) have been working on the
definition of procedures for such evaluations.

In particular, a series of benchmarks has been studied and developed to test the robustness of
watermarking algorithms. One of the first benchmarks for image watermarking has been the Stir-
Mark [119] package, developed by Petitcolas [120, 121]. StirMark benchmark is one of the most
used benchmarks for still image watermarking. Some of the image alterations implemented in Stir-
Mark are: cropping, flip, rotation, rotation+scaling, Gaussian filtering, sharpening filtering, linear
transformations, random bending, aspect ratio changes, line removal and color reduction. Jane
Dittmann et al. have also been working on an audio version of StirMark called AudioStirMark [79].
Other benchmarks for still image watermarking are the Optimark [111] software, and the Check-
mark [117, 118] developed at the Computer Vision and Multimedia Laboratory of the University of
Geneva. Optimark benchmark includes several image attacks plus some watermarking algorithms
performance evaluation methods such as statistics to evaluate detector performances (e.g. Bit Error
Rate (BER), probability of false detection, probability of missing detection), the estimation of mean
embedding and detection time. The CheckMark software is one of the most recent benchmarks
for still images and includes some new classes of attacks such as non-linear line removal, collage
attack, denoising, wavelet compression (JPEG2000), projective transformations, copy attack, etc.
The CheckMark package was primarily developed by Shelby Pereira [118].

While benchmark tests have already been proposed for the robustness of watermarking algo-
rithms, much less attention has been directed at measuring the visual effects of the watermarking
process.

3.3 Proposed Approach

An accurate measurement of quality as perceived by a human observer is a great challenge in image
or video processing in general. The reason for this is that the amount and visibility of distortions,
such as those introduced by watermarking, strongly depend on the actual image/video content. In
order to have at disposal a variety of content, we chose to use some of the VQEG [157] test scenes
depicted in Fig. 3.2.

The benchmark for any kind of visual quality assessment are subjective experiments, where a
number of people are asked to watch the test clips and to rate their quality. Formal procedures for
such experiments have been described in the previous chapter. Subjective experiments have been
carried out according to the described methods which defined the viewing conditions, criteria for
the selection of observers and test material, assessment procedures, and data analysis methods.

Once the subjective results have been obtained, they are compared to the error measures tra-
ditionally used in this field to evaluate the quality. In fact, engineers have turned to basic error
measures such as mean squared error (MSE) or peak signal-to-noise ratio (PSNR), assuming that
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(a) mobile and calendar (b) harp and piano (c) race car (d) computer graphics

Figure 3.2: Sample frames from the test clips.

they would yield quality indications comparable to human perception. However, these simple mea-
sures operate solely on the basis of pixel-wise differences and neglect the important influence of video
content and viewing conditions on the actual visibility of the artifacts. Therefore, they cannot be
expected to be reliable predictors of perceived quality.

The shortcomings of these methods have led to the generation of two perceptual quality metrics
presented in the remaining of this chapter [177]. On the basis of the subjective experiments the
artifacts introduced in the watermarked video sequences have been identified and a performance
model has been applied to build the objective metric. This approach to derive the objective metric
is based on a priori knowledge about the processing methods as well as the pertinent types of
artifacts (see Sec. 2.4.1). It is often a computationally more efficient implementation than models
which directly include the HVS characteristics [85, 174].

In the following, we first identify the artifacts caused by watermarking by means of subjective
experiments, and then we try to find objective metrics to measure their perceptual annoyance. The
proposed metrics are full reference metrics: they compare the video under test with a reference video
to measure the quality of the degraded video with respect to the reference.

3.4 Watermarking Algorithms and Artifacts

Most video watermarking techniques today are derived from algorithms for still images. Therefore,
we adopt a number of watermarking schemes for still images and apply them to each frame of a
video sequence. We chose four algorithms from the literature∗, as well as a genuine video water-
marking algorithm for video sequences developed by AlpVision†. A brief description of each of these
algorithms is given in the following.

The scheme of Cox et al. [27] is based on the discrete cosine transform (DCT). The DCT of the
entire image is computed, and a sequence of n real numbers is generated from a uniform distribution
of zero mean and unit variance, which is then placed into the n highest magnitude coefficients of the
transform matrix. Additionally, a scaling parameter α can be specified to determine the amplitude
of the watermark.

Dugad et al. [39] used a three-level discrete wavelet transform (DWT) with an eight-tap Daubechies
filter. The watermark is generated by a sequence of n real numbers and is added to the coefficients

∗ The source code for these algorithms can be downloaded from http://www.cosy.sbg.ac.at/˜pmeerw/Watermarking/

source/.
† See http://www.alpvision.com for more information.
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Table 3.1: Tested watermarking algorithms and their parameters (n is the length, α the strength
of the embedded watermark).

Watermarking Algorithm Parameters (default)

Cox n = 100, α = 0.3
Wang n = 1000, α = 0.3
Xia n = 1000, α = 0.2
Dugad n = 1000, α = 0.2
AlpVision n = 100

above a given threshold in all sub-bands except the low-pass band. The watermark amplitude can
again be controlled by a scaling parameter.

Wang et al. [160] adopted a successive subband quantization scheme in the multi-threshold
wavelet codec to choose perceptually significant coefficients for watermark embedding. The water-
mark is inserted in the coefficients above a certain threshold in the current subband while taking
into account the scaling factors α and β, which are adjustable by the user.

Xia et al. [182] decomposed an image into several bands by a DWT. The watermark is added
to the largest coefficients in the high- and middle-frequency bands of the DWT. A parameter α is
tuned to control the level of the watermark. The output of the inverse DWT is modified in such a
way that the resulting image has the same dynamic range as the original.

The video watermarking scheme developed by AlpVision is based on a technique initially pro-
posed for still images [76, 77]. It uses spread-spectrum modulation to insert a watermark with a
variable amplitude and density in the spatial domain. In contrast to the other four algorithms, it
considers the temporal content changes in the video.

The default settings of each algorithm were used for all parameters (see Tab. 3.1). The resulting
watermarks are shown in Fig. 3.3 for a sample frame from one of our test clips. As can be seen,
some watermarking algorithms take into account masking phenomena in the human visual system
to a certain extent and insert their watermarks mainly in image regions with high spatial activity
(bottom right part of the frame).

The transition of watermarking from still images to video sequences would require some changes
to the algorithms described above. However, the goal of this chapter is not to provide an algorithm for
watermarking video sequences but to assess the perceptual quality of watermarked video sequences.

The most prominent feature in video sequences is the increased sensitivity to changes introduced
by the watermarking process. Figure 3.4 illustrates the visibility problem. The block position is no
longer restricted to a single image (x and y axes) but extends to the time axis, t. The modification
of blocks that are close to each other in x and y as well as in t can result in flickering effects.

Homogeneous areas within frames are particularly sensitive to this type of degradation as are
regions containing sharp edges. Two criteria for checking sensitive areas before actually computing
the error introduced by watermarking have to be considered: edge and smooth area detections. In
the edge areas the noise effect can be noticed. This is due to the fact that the watermarking signal
can be considered as a noise-like signal, caused by the noisy nature of the pseudo signal embedded in
the original signal. On the other hand, the flickering artifact introduced by the visibility problem in
consecutive frames (see Fig. 3.4) affects smooth areas. It is caused by modification of closely spaced
blocks on the sequential frames and the homogeneous areas are more sensitive to these effects.

On the basis of these two visual effects, two objective metrics will be proposed in Sec. 3.6.
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(a) Cox et al. [27] (b) Dugad et al. [39] (c) Wang et al. [160] (d) Xia et al. [182]

Figure 3.3: Intensity errors produced by the watermark obtained by four different algorithms for
the frame shown in Fig. 3.2(b). Dark pixels denote negative values, bright pixels denote positive
values, medium gray denotes no change. The images were normalized individually to enhance the
visibility of the watermarks.

3.5 Experimental Method

A set of standards and grading techniques to subjectively evaluate quality of processed video and
multimedia content have been defined by ITU-R [66] and ITU-T [65] and have already been described
in Sec. 2.2. In this section, the video clips used in the subjective experiments and the method used
to carry out the tests are presented.

3.5.1 Test Clips

Four different test clips were watermarked for this analysis. These clips were selected from the set of
scenes in the first VQEG test [157] to include spatial detail, motion, and synthetic content. Each of
them has a length of 8 seconds with a frame rate of 25 fps. They were de-interlaced and sub-sampled
from the interlaced ITU-R Rec. BT.601 format [64] to a resolution of 360×288 pixels for progressive
display. The implementations of some watermarking algorithms mentioned in the previous section
are limited to frame sizes of powers of 2, therefore a 256×256 pixel region was cropped from each
frame in the video for watermarking and subsequent quality evaluation. A sample frame from each
of the four scenes is shown in Fig. 3.2. In the “mobile and calendar” sequence a toy train is running
and in the background a calendar is moving up and down on a textured wallpaper; the “harp and
piano” sequence is another indoor sequence: a man is playing a piano and a woman is playing a
harp in a smooth background while the camera is zooming on the woman; “race car” is an outdoor
sequence in which the driver is racing and goes off the road, finally, “computer graphics” has been
obtained synthetically in which a graphic ant is walking on a uniformed background.

3.5.2 Subjective Experiments

For the evaluation of our metrics, subjective experiments were performed. Non-expert observers were
asked to rank a total of 20 watermarked test clips from best to worst according to the perceived
noise and flicker in two separate trials. The test sheet was like that used in “categorical continuous
scale” depicted in Fig. 2.1 (b). The viewing order of the clips was not fixed; observers could freely
choose between clips and play them as often as they liked. They could also watch the original
clips for comparison. Five observers participated in the noise trial, and six in the flicker trial. For
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time

modified block

Figure 3.4: Visibility problem in consecutive frames.

comparison with the objective metrics, the data obtained from the subjective ratings were combined
to an average rank.

According to the subjective experiments, the most annoying artifacts in video are produced
by watermarking algorithms that add noise patterns with relatively low spatial frequencies, which
change from frame to frame and thus create clearly visible flicker. Algorithms that add mainly high-
frequency noise or temporally unchanging patterns to the video exhibit much less visible distortion.

3.6 Proposed Objective Metrics

From subjective experience with the numerous tested video watermarking algorithms, mainly two
kinds of impairments have been seen:

• Spatial noise, which is the fundamental fingerprint of most watermarks;

• Temporal flicker, which results from visible changes of the watermark pattern between con-
secutive frames.

Based on these observations, we have designed objective metrics that measure the perceptual impact
of these two impairments, which we refer to as Noise metric and Flicker metric, respectively in the
following. These metrics became part of Genista’s Video PQoSTM software,∗. Video PQoS is an

∗ See http://www.genista.com for more information.
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application for the measurement of artifacts affecting the perceptual quality of digital video. It
works with full reference quality metrics, i.e. it compares the video under test with a reference video
to measure the quality of the degraded video. In addition to the watermarking metrics, Video PQoS
also provides perceptual metrics for compression artifacts, metrics as defined by ANSI T1.801.03
[144], and fidelity metrics such as PSNR.

Noise Metric

For the computation of the noise metric, the watermark is first extracted as the difference d between
a frame in the processed sequence and the corresponding frame in the reference sequence: d(x, y) =
Yprc(x, y) − Yref(x, y).

Let D(u, v) be the coefficients of the two-dimensional discrete Fourier transform of d(x, y). Based
on the vector feature proposed in section 6.1.2 of ANSI T1.801.03 [144], the radial average rd of the
2D-DFT coefficients is computed as the absolute sum over the Fourier coefficients inside a ring Rk,
defined by k − 1 <

√
u2 + v2 < k for each k:

rd(k) =
1

NRk

∑
(u,v)∈Rk

|D(u, v)|, (3.1)

where NRk
denotes the number of coefficients within ring Rk.

Finally, the sum over the higher frequency range (fM . . . fH) of this radial spectrum rd(k) is
computed to yield the Noise metric:

Noise =
1

fH − fM

fH∑
k=fM

rd(k). (3.2)

We empirically choose the frequency limits to be fM = 16% and fH = 80% of the maximum spatial
frequency.

Flicker Metric

As before, the watermark is extracted as the difference d(x, y) between a frame in the processed
sequence and the corresponding frame in the reference sequence. This is done for two consecutive
frames, giving dn and dn+1. The change of this watermark from one frame to the next is computed
as c(x, y) = dn+1(x, y) − dn(x, y).

We again compute the radial frequency spectrum as described above, but this time using the
2D-DFT of c(x, y):

rc(k) =
1

NRk

∑
(u,v)∈Rk

|C(u, v)|. (3.3)

The sum over the low frequencies (fL . . . fM ) of rc,

sL =
1

fM − fL

fM∑
k=fL

rc(k), (3.4)

as well as the sum over the high frequencies (fM . . . fH) of rc,

sH =
1

fH − fM

fH∑
k=fM

rc(k), (3.5)

are calculated. We empirically chose the frequency limits to be fL = 1%, fM = 16%, and fH = 80%
of the maximum spatial frequency.
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To take into account spatial and temporal masking by the reference sequence, we estimate the
spatial and temporal activity in the reference sequence. This is again based on simple features defined
in ANSI T1.801.03 [144], namely the spatial information SI, which is the gradient computed from
the horizontally and vertically Sobel-filtered image, as well as the temporal information TI, which
is simply the pixel-wise difference between two consecutive frames. We normalize both SI and TI

with respect to the maximum possible values. Using the average spatial information (the average
gradient magnitude, to be precise) of the reference frame, SI =

∑ |SIr(x, y)|, and the average
temporal information of the reference frame, TI =

∑ |TIr(x, y)|, a scalar weight m is computed:

m = max
(
SI · TI, t

)
, (3.6)

where t is a threshold to avoid extreme values of masking. We empirically choose t = 0.007.
From the above, the Flicker metric is computed as:

Flicker =
sL + sH

m
. (3.7)

The proposed noise and flicker metrics will be validated by means of subjective experiments in
the next section.
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(a) Subjective noise ratings vs. Noise metric.
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(b) Subjective noise ratings vs. PSNR.
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(c) Correlations.

Figure 3.5: Perceived noise vs. Noise metric and PSNR (subjective data are shown with 95%-
confidence intervals).

3.7 Experimental Results

A statistical analysis of the data was carried out to evaluate the two proposed metrics with respect
to the subjective ratings. The subjective scores have to be condensed by statistical techniques
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(a) Subjective flicker ratings vs. Flicker metric.
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(b) Subjective flicker ratings vs. PSNR.
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Figure 3.6: Perceived flicker vs. Flicker metric and PSNR (subjective data are shown with 95%-
confidence intervals).

used in standard methods (see Sec. 2.3) to yield results which summarize the performance of the
watermarking system under test. The averaged subjective score values, (MOS ), is considered as the
averaged amount of perceived flicker/noise that anyone can perceive on a particular watermarked
video.

Two correlation coefficients are used here to quantify and compare the metrics’ performance
and have been described in Sec. 2.4.2, namely the (linear) Pearson correlation coefficient and the
(non-parametric) Spearman rank-order correlation coefficient.

The scatter plot of perceived versus measured noise for the above-mentioned watermarking al-
gorithms and test clips is shown in Fig. 3.5(a). For comparison, the scatter plot of perceived noise
versus PSNR is shown in Fig. 3.5(b). The respective correlation coefficients are shown in the re-
spective Fig. 3.5 (c).

Figure 3.6 shows the same data for perceived flicker, PSNR and the Flicker metric. The proposed
metrics clearly outperform PSNR in both cases as shown by the correlation coefficients. The plots
show that adding a temporal component such as flicker to the measurements is essential for the
evaluation of video watermarks, because PSNR is unable to take this into account. More surprisingly
perhaps, PSNR is not well correlated with perceived noise either. This shows the importance of more
discriminatory metrics for the perceptual quality evaluation of watermarks.
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3.8 Conclusions

In this chapter, the importance of perceptual quality assessment in watermarking has been discussed.
While this remains a difficult problem, a possible solution path was presented. We found that
watermarked video suffered mostly from added high-frequency noise and/or flicker in the performed
subjective tests. The watermarking artifacts, which may be hardly noticeable in still images, become
emphasized through the motion effects in video.

Two new metrics that analyze the video by specifically looking for watermarking impairments
have been introduced, namely a Noise metric and a Flicker metric, which measure the perceptual
impact of these specific distortions. Through subjective experiments we have demonstrated that
the proposed metrics are reasonably reliable predictors of perceived noise and perceived flicker and
clearly outperform PSNR in terms of prediction accuracy. The developed metrics are now part of
Genista’s Video PQoSTM software.
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Subjective Segmentation

Evaluation 4
4.1 Introduction

The unsupervised segmentation of digital images is a difficult and challenging task [143] with sever-
al key-applications in many fields: image classification, object recognition, remote sensing, medical
diagnosis, vision-driven robotics, interactive entertainment, movie production and so on. The perfor-
mance of algorithms for subsequent image or video processing, compression and indexing to mention
a few, often depends on a prior efficient image segmentation. Basically, by segmenting an image,
several “homogeneous” partitions are created. The number of homogeneity criteria depends on the
particular application and on the a priori knowledge of the problem. For example, in a video surveil-
lance application every moving object can be considered as an object of interest and, therefore, this
information is used in the segmentation process.

Because of the importance of this task, many segmentation algorithms have been proposed, as
well as a number of evaluation criteria. Nevertheless, very few comparative results of segmentation
algorithms have been conducted. Many researchers prefer to rely on qualitative human judgment
for evaluation. In fact, Pal and Pal [115] say that a “human being is the best judge to evaluate the
output of any segmentation algorithm”. On the other hand, subjective evaluation asks for a large
panel of human observers, thus resulting in a time-consuming and expensive process. Therefore,
there is a need for an automatic, objective methodology both to allow the appropriate selection
of segmentation algorithms (inter-evaluation) as well as to adjust their parameters for optimal
performance (intra-evaluation).

Recent multimedia standards and trends in image and video representation described in the
next section, have increased the importance of adequately segmenting semantic “objects” in video,
in order to ensure efficient coding, manipulation and identification.

During the last several years, some objective methods for video object segmentation evaluation
have been proposed, but no work has been done on studying and characterizing the artifacts typically
found in digital video object segmentation. A good understanding of how annoying these artifacts
are and how they combine to produce the overall annoyance is an important step in the design
of a perceptual objective quality metric. To this end, a series of specially designed psychophysical
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experiments is performed. In these experiments, we use test sequences with synthetic artifacts that
look like real artifacts, yet simpler, purer, and easier to describe. In this chapter, we present the
methodology used for the psychophysical experiments performed in this thesis.

The motivations of this work are described in Sec. 4.2. Methodologies for both image and video
subjective evaluation are reviewed in Sec. 4.3. The proposed experimental method for subjective
tests, the instructions and experimental tasks are described in Sec. 4.4. Section 4.5 introduces
the novelty of the proposed approach that consists in deriving a perceptual objective metric from
subjective experiments. This section also describes the synthetic artifacts introduced in the test
sequences. Section 4.6 includes the conclusions.

4.2 Motivations

The task of extracting objects in video sequences emerges in many applications such as object-based
video coding (e.g. MPEG-4) and content-based video indexing and retrieval (e.g. MPEG-7). The
MPEG-4 standard provides specifications for the coding of video objects, but does not address
the problem of segmenting objects in image sequences. Video segmentation is still a matter of
intensive research. Various other applications, such as editing and manipulation of video sequences,
video surveillance, or image and video indexing and retrieval applications, are equally dependent
on the availability of sophisticated algorithms for content identification, content segmentation, and
content description. While powerful solutions exist for some applications, the design of suitable
fully automatic algorithms, in particular for image sequence segmentation, still remains an unsolved
problem.

The MPEG-4 standard assists the coding of objects in image sequences separately in different
object layers. Thus, in MPEG-4, image sequences can be considered to be arbitrarily shaped, in
contrast to the standard MPEG-1 and MPEG-2 definitions [74]. Video sequences are decomposed
into individual objects in a scene and the objects are encoded entirely separately in individual object
layers. In general, this provides to the user an extended content-based functionality (the ability to
separately access and manipulate video content) and it is also possible to achieve increased image
quality for a number of applications. This requires the segmentation of video sequences into objects
of interest prior to coding. However, this can be an extremely difficult task for many applications.
If the video was originally shot in a studio environment using the chroma-key technology, image
segmentation can be easily performed, e.g. in the case of weather forecasting for news sequences. If
no chroma-key segmentation is available, as for most scenes under investigation, the segmentation of
the objects of interest needs to be performed using automatic or semi-automatic algorithms. To the
best of our knowledge, there is no universal algorithm that could potentially solve the segmentation
problem for all tasks. The video segmentation task still remains to a large extent an unsolved
problem. It is also an ill-posed problem resulting in a variety of tools and algorithms described in
literature, each of them specialized and optimized for a specific segmentation task.

In many applications, a considerable amount of user interaction with the segmentation process
is required. The effect of user interaction and subsequent improvements in segmentation quality
are not examined in this thesis. Rather, we aim at finding an automatic procedure for evaluating
the performance of a fully automated approach which correlates well with the perceived quality of
segmentation. The existence of an ideal segmentation –ground truth– manually extracted is assumed
so that the objective metric allows for the evaluation and ranking of segmentation algorithms on
that test data set.

In order to find such a perceptually driven objective methodology for segmentation assessment,
we have to derive it from subjective experiments. In fact, the perceived quality of a segmentation
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depends on the annoyance and visibility of the segmentation impairments [36, 37, 38]. An impairment
in a segmentation is any change compared to the ideal segmentation that if sufficiently strong
will reduce the perceived quality. Segmentation impairments can be introduced by incapability of
segmentation algorithms to deal with noise or shadows [28] present in the original video to as well as
by various limitation, artifacts and failures of the image analysis techniques. Most impairments have
more than one perceptual feature, but it is possible in segmentation to produce impairments that
are relatively pure. We will use the term artifacts to refer to the perceptual features of impairments
such as spatial and temporal positions, size, number, duration, shape and so on. The novelty of our
approach, compared to the state of art evaluation metrics, consists in taking into account the most
common artifacts produced by segmentation algorithms and carrying out subjective experiments
to 1) study and characterize the impact of different artifacts; 2) derive the perceptual annoyance
for each kind of artifact; and 3) find the perceptual interaction among artifacts when they are all
combined.

To this purpose, subjective experiments have to be performed and a protocol for subjective
evaluation of segmented video objects has to be proposed. The task of defining a formal protocol for
subjective tests for video object segmentation quality assessment is very useful, since to the best of
our knowledge, only informal tests have been performed [17], [23]. Common practices for evaluating
segmentation results are based on human intuition or judgment (subjective evaluation) and consist in
ad hoc subjective assessment by a representative group of observers. To be meaningful, the evaluation
must follow precise methodologies, both in terms of test environment set-up as well as of grading
techniques. The presented subjective protocol is an effort to make subjective evaluations in this field
more reliable, comparable and standardized. Little has been done towards defining a procedure to
evaluate the performance of objective metrics for segmentation [51]. Standard subjective evaluation
methodologies for image and video segmentation quality evaluation are not yet established but some
informal tests have been carried out. These methodologies, both for image and video, are reviewed
in Sec. 4.3.

Some works [93, 96, 187] on segmentation evaluation state that, once the specific application
is addressed, there is an obvious measure for evaluating the segmentation algorithm. For example,
in object recognition, it is typical to use a segmentation algorithm (which could be edge or region
based) to partition the image into a number of parts which are then used for object recognition.
This means that, in spite of Pal and Pal’s statement, it has to be evaluated how well the application
does perform using a particular segmentation algorithm, hence “the application is the best judge of
any segmentation algorithm”.

We do not wish to deny the importance of evaluating segmentation in the context of a task.
However, a first point in this thesis is that different segmentations can also be evaluated purely as
segmentation results by comparing them to those produced by an ideal segmentation algorithm. In
fact, by means of subjective experiments, a considerable consistency among subjective evaluations
can be found. Second, it is rarely feasible to build an entire system in order to test different seg-
mentation algorithms because of expense, and because the properties of the segmentation algorithm
will often determine what form the subsequent processing should take. Third, application-oriented
evaluations might not be able to take into account other functionalities provided by the segmenta-
tion, such as individual access to regions of interest (objects). Therefore, at first, we are interested
in evaluating segmentation without the implementation of subsequent processing and then to focus
on specific applications.
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4.3 Subjective Segmentation Evaluation Methods - Back-

ground

The problem of subjectively assessing the quality of segmentation has been investigated in differ-
ent contexts in literature: edge based segmentation, region based segmentation, and video object
segmentation. Nevertheless, there is no standardized procedure for subjective tests on any of these
segmentation methods. In literature, subjective judgments are based on human intuition.

In order to provide a clear overview of the adopted ad hoc subjective approaches, a distinction
is made between methods which deal with still images (Section 4.3.1) and those used for image
sequences (Section 4.3.2). The latter is more relevant to the scope of this thesis.

4.3.1 Still Images

In subjectively evaluating edge detection algorithms [96] and still image segmentation [91, 137, 165,
183], some approaches have been proposed.

There may be some problems in finding agreement among human viewers on how an ideal
segmentation should look like.

Heat et al. [96] used a subjective evaluation method to compare the outputs of different edge
detectors. They asked people to rate the performance of algorithms on a subjective quantitative scale
of one to seven. They used the criterion of ease of recognizability of objects (for human observers) in
the edge images: a score of seven indicates that the “information allows for easy, quick and accurate
recognition of the object”, and one indicates that “there is no coherent information from which to
recognize the object” (see Fig. 4.1). The authors checked the consistency of the subjects’ ratings
and found that subjects shared a concept of “edge goodness”. On the basis of these scores, they
could rate the performance of various algorithms. This approach to subjectively assess the goodness
of a segmentation could be used in video object segmentation evaluation in a specific application
case: surveillance and with emphasis on the purpose of the surveillance. For example, in intruder
detection the most important part to recognize is the face; in highway traffic monitoring the most
important part to be recognizable are the plates of the vehicles. On the basis of these specifications
this scheme could be used to subjectively evaluate the segmentation algorithms. However, a more
general method is needed for any video object segmentation application or to be slightly changed
according to the scenario.

In evaluating directly the output of segmentation schemes, Shaffrey et al. [137] used psycho-
visual tests on segmented images. In this subjective evaluation method, the subjects would choose
between two kinds of segmentation for each image as shown in Fig. 4.2. The judgment involves both
which segmentation the subject prefers and how quickly he/she chooses it. The results confirm that
human subjects’ judgments agree, thus allowing meaningful subjective evaluation of segmentation
algorithms. This approach is not suitable to characterize the perception of different segmentation
errors in video sequences: four images may be too many since subjects can concentrate only on one
of them.

An alternative approach is to allow human subjects to perform manually the segmentation of the
original image for which well-defined semantics exist but ground truth is hard to obtain. This ap-
proach consists in asking different subjects to manually segment the image and to see if a reasonable
consensus emerge. Warfield et al. [165] and Yang et al. [183] used multiple expert observers to agree
on ground truth in the context of medical imaging. Then, such estimated ground truth can be used
as a gold standard for validation. However, such approaches can be adopted only in the cases where
experts’ segmentations are available, such as specific anatomical or functional important structures
in a MR image [5].
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Figure 4.1: An example of edge segmentation evaluation sheet from Heat et al.’s method [96].
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(a) (b)

Figure 4.2: Test images for evaluating the best segmentation [137]: (a) shows the first stage of the
trial with the original image and (b) shows the second stage in which the segmentation schemes are
represented by their outline and masks with the original in the center.

Martin et al. [91] asked subjects to break up the scene in a“natural”manner by dividing the image
into pieces (between 2 and 20), where each piece represents a distinguished region in the image and
all pieces are approximately of equal importance. They found that different manual segmentations of
the same image are highly consistent even when no specific application is explained to the subjects.
A large database of natural images segmented by human observers has been made available [90].
Figure 4.3 shows different manual segmentations from the database. This dataset serves as ground
truth benchmark to compare different segmentations and boundary finding algorithms. In theory
, this approach could be also be adopted in video object segmentation, but practically it is not a
feasible method since it requires for too much time of subjects. For example for four video sequences
of at least 60 frames each, we found it requires 60 hours time for a subject to perform the manual
segmentations. In fact, in a trial we carried out, after the subject acquires some experience in
manually segmenting he/she needs in average 15 minutes per frame.

4.3.2 Image Sequences

Very little has been done in the literature to establish an experimental method for subjective tests
on image sequences [23, 51, 95]. To make subjective evaluation of video object segmentation more
reliable, comparable and standardized, the subjective evaluation must follow precise methodologies,
both in terms of test environment set-up as well as scoring techniques. As already mentioned, stan-
dard subjective evaluation methodologies for video quality evaluation [65, 66] can provide important
guidelines (e.g. for display configuration and experimental conditions) for subjective evaluation of
video segmentation quality evaluation.

A set of general guidelines for segmentation quality assessment has been proposed in the COST211
quat European project [51] entitled “Compare your segmentation algorithm to the COST 211 quat
analysis model”. These guidelines concern only how the typical display configuration should look
like (for further details see [23]), but they do not specify how the test should be carried out. In
this framework, the display layout is different whether the ground truth is made available or not. If
not available, the layout includes four images: 1) the original image, 2) the segmentation partition
(with a different color representing each object), 3) the foreground original segmented object under
analysis over a neutral background and 4) vice-versa: the remaining part of the original image with
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Figure 4.3: Each image has been segmented by 3 different people from the Berkeley segmentation
dataset [90].

the object area replaced by a neutral color. For subjective evaluation where the ground truth is
used, the original image is replaced by the reference object with original texture over a neutral
background, and the segmentation partition by the image with the original image overlaid with the
reference object area in a neutral color. Thus, this framework proposes to show people four images
at the same time and it does not specify how long the video sequences should be. We performed
some informal tests using this display configuration and noticed that for short video sequences (5-
10 seconds), four images may be too many since subjects can concentrate only on one of them.
Moreover, this layout also shows the original image sequence without any segmentation. This image
may not be needed, since the subject, once he/she has learned the task, forms his/her own implicit
segmentation and does not look any more at the original nor at the reference segmentation. Finally,
showing the masks of the object could be of some practical utility for the evaluators if the specific
application of the segmentation (e.g. automatic surveillance system) has been specified, otherwise
human attention would be attracted to the textured object segmentation.

In [95] some criteria related to the computational complexity of the segmentation system are
defined together with a number of questions to investigate subjectively the video object segmentation
quality for surveillance applications. For each video sequence, the subject can see the original video
sequence as many times as necessary. Then, the segmented video is presented only once and the
subject has to answer to 4 evaluation criteria (such as“how well have been important moving objects
individually identified?”, or“how well are boundaries provided?”). Table 4.1 reports the segmentation
evaluation criteria. The segmented regions provided by the algorithms are represented by the use
of colors.

In the informal tests that we performed, we tried to combine the use of different questions to
describe the different aspects of segmentation quality. The drawback of this method is that the
subjects have to perform a sort of memory test given the large number of questions they have to
answer after the video is played back. The capacity of a test subject to reliably assess several
elements of a video is limited. The memory of a video fades after time. This results in a tiring and
too difficult task to be accomplished by a subject.
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Table 4.1: Evaluation criteria in McKonen et al. [95]’s method.

Algorithm Evaluation Criteria Evaluation Method

1 Segments moving ‘semantic’ objects from the background. Subjective assessment
2 Tracks individual regions throughout the video sequence. Subjective assessment
3 Provides accurate region, or preferably object boundaries. Subjective assessment
4 Distinguishes between moving objects and image perturbations. Subjective assessment
5 Segments objects into associated sub-regions. Subjective assessment
6 Eliminates or correctly identifies shadows. Subjective assessment
7 Low computational complexity. Run-time data
8 Has few configuration parameters. Run-time data
9 The segmentation is illumination invariant. Post-assessment analysis
10 The segmentation performs well for outdoor sequences. Post-assessment analysis

Table 4.2: Viewing conditions during subjective test.

Variable Values

Peak luminance ≤ 0.04
Maximum observation angle 10 degrees
Monitor resolution 1024 × 768
Viewing Distance 35 − 40 cm
Monitor Size 19”

4.4 Proposed Method for Subjective Evaluation

The goal of this research is to find a way to predict what people will say about the quality of seg-
mentation without performing any subjective test. In order to reach this goal, we have to answer to
the following questions: 1) What method people use to judge the segmentation quality; 2) Whether
people generally agree on the quality of a segmentation (that is not trivial as discussed in Sec. 4.3.1);
3) Whether the expectation of quality affects ratings and other of these unknowns. An experiment
should, if designed correctly, at least answer one or more of these questions. To this end, with the
help of experts in psychophysical testing, we designed a series of psychophysical experiments. This
method aims at making subjective evaluations in segmentation evaluation more standardized. In
these experiments, we used test sequences with synthetic artifacts that look like “real” artifacts,
but simpler, purer and easier to describe. In the remaining of this chapter, we describe the display
layout, the instructions, the process of generating the test sequences and the data analysis used for
the experiments. In the next chapter we present the experimental results of the subjective tests on
the perceptual impact of different types of artifacts and how these artifacts combine and interact
to produce the overall quality. The display layout and viewing distance were in concordance with
subjective viewing for CIF format [64] images (see Table 4.2).
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4.4.1 Basic Methodology

In general, psychophysical experiments are expensive both in terms of time and resources. The
design, execution and data analysis consume a great amount of the experimenter’s time. Running
an experiment also requires a large investment of time from the subjects. As a result, the number of
experiments that can be conducted is limited. An appropriate methodology needs to be developed
to maximize the information collected per experiment.

For various reasons, the method of single stimulus continous annoyance scale was chosen as
the basis for our experiments (see Sec. 2.2.1). First, it was single stimulus, as once subjects have
learned the task they form their implicit segmentation, as mentioned in Sec. 4.3.2, and they do not
need a term of comparison displayed aside the segmentation under test in the evaluating procedure.
Second, continuos rating was used to avoid quantization errors. Finally, an annoyance scale was
chosen instead of quality rating rather nebulous concept as discussed in Sec. 2.2.

We aimed at building the experiment with as few a priori as possible. The fewer assumptions
about the attributes of interest, the better. Several types of questions can be made with this
method after each test video is shown. We were generally most interested in knowing how annoying
the defects (impairments) and how strong or visible a set of artifacts were in the impairment. A
few other questions were asked at the end of each experiment, such as how big the artifacts were,
when they occurred and what was the impact of the bad segmentation on the overall annoyance.
We could have asked each subject all these questions after every video. However, the ability of a
test subject to accurately judge multiple aspects of a video at the same time is limited [66] and not
reliable. Therefore, we preferred to ask some questions at the end of the experiment to collect the
overall impressions.

The methodology for the experiment is described in the following section. This methodology,
with minor variations, was applied to all the experiments carried out during our research. The
experiment scripts can be found in Appendix B.

4.4.2 Procedure

Prior to the start of each experiment, several tasks had to be accomplished. The first task was
the design and implementation of a graphical user interface in all the experiments. This task was
performed only once for all the experiments. Figure 4.4 shows the typical display used in subjective
experiments, developed in Visual Basic. The second and generally more challenging task was the
generation of segmented test video sequences. This task is described in Sec. 4.5.2. The final task
was the establishment of the procedure to carry out the subjective tests that was the result of many
informal tests and fruitful discussions with psychophysics experts (Mylene Farias and Prof. John
Foley from the University of Santa Barbara, California). In the literature, a set of standards and
grading techniques to evaluate quality of video and multimedia content have been defined in the
ITU-T [65] and ITU-R [66] Recommendations as presented in Chapter 2. However, there are no
prescribed standards for the evaluation of segmented video sequences. The protocol for subjective
evaluation of segmented video sequences we propose in this thesis is based on ITU recommendations
[65] and [66].

A test session is composed of five stages: 1) oral instructions, 2) training, 3) practice trials, 4)
experimental trials, and 5) interview. We will now explain in detail each of these stages.

Oral instructions

In the first stage, the subject was verbally given instructions and was made familiar with the task
of segmentation of meaningful moving objects. A script was elaborated to help the experimenter to
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Figure 4.4: Typical display configuration adopted in subjective experiment: in the center the
segmented video under test.

perform the experiment. The script contains oral instructions that should be read to the subject to
make sure he/she well understands the task to be performed. The scripts varied according to the
experiment type (see next section) and are presented in Appendix B.

After the test subject was properly seated at the adequate distance, the tasks to be performed
in the experimental trials were explained to the subjects. They were told to disregard the semantic
quality of content in the video and to only judge the impairments they see.

Training

The task to be performed in the experiments consists of entering a judgment about an impairment
seen in the video. In order to perform this task subjects need to have an idea of how segmentations
of a video with no impairments (ideal) compare with that of a video with strong impairments. In the
training stage, the original video sequences, the ideal segmentations (reference masks) and sample
segmented masks were shown to subjects to establish the subject’s range for the annoyance scale
(see Fig. 4.5 (a) and (b)). The display configuration showed the texture of the original image in
correspondence with the segmented objects/regions over a uniform green background (see Fig. 4.5
(c)). As previously mentioned, the reference segmented masks and the original sequences were only
shown in the training stage for two reasons. First, in real applications the reference and the original
video are not always available for subjective ratings. Second, in earlier experiments we noticed that
subjects do not pay attention to the reference mask or the original video after the training. In
fact, they make their own implicit segmentation to compare with the segmentation under test. This
procedure had the advantage of showing only one video at a time without distracting the subject.
This way the subjects’ attention was focused on the video to be judged.

In this stage, we chose a subset containing the impairments we believed were the strongest.
The subjects were told to mentally assign a maximum value of 100 to the worst impairment in the
subset (see Fig. 4.5 (c)). As said, explicit reference segmentation masks were not used. Instead,
the segmentation representation chosen allowed the original video sequence to be viewed in original
texture beneath the uniform background. Viewers were therefore able to see the moving objects and
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make their judgments as shown in Fig. 4.5.

Practice trials

After the training, in order to familiarize the subject with the experiment and to stabilize the sub-
jects’ responses, practice trials were performed with a small subset of the test sequences. Moreover,
instead of discarding the first trials as suggested in the ITU Recommendation [66], we included
practice trials to eliminate the first erratic answers.

Experimental trials

The experimental trials were performed with the complete set of test sequences presented in a
random order. All test subjects saw all the test sequences. The number of test sequences was
limited. Previous work in the area of psychovisual testing [48] suggests that a 30-minute time limit
should be placed on the length of the test. This is to guard against subject fatigue, which might
influence the results in an unpredictable manner. In pilot tests we found that each trial took about
10 seconds. An evaluation set therefore consisted of 150-180 video sequences. For each experiment,
several randomly ordered lists of the test sequences were generated. The lists were used sequentially
and repeated as necessary. Our test subjects were drawn from a pool of students aged between 22
and 30 years. The number of subjects varied from experiment to experiment but a minimum of 22
subjects were used to guarantee robust results [102].

The subjects were asked one question after each segmented video sequence was presented, “How
annoying was the artifact relative to the worst example in the sample video”. The subject was
instructed to enter a numerical value greater than 0. The value 100 was to be assigned to artifacts
as annoying as the most annoying artifacts in the sample video sequences. Although we tried to
include the worst test sequences in the sample set, we acknowledge the fact that the subjects might
find some of the other test sequences to be worse, and we specifically instructed them to go beyond
100 in those cases. The subjects were then told that artifacts would appear combined or alone and
they should rate the overall annoyance in both cases.

Interview

Finally, at the interview stage, we asked the test subjects for qualitative description of the defects
that were perceived. The qualitative descriptions are useful for categorizing the defect features seen
in each experiment and help in the design of future experiments. In Appendix B a list of interview
questions can be found at the end of each script.

4.4.3 Types of Experimental Tasks

According to the goal of the experiment, the subjects were asked to perform one of two different
tasks: judging the annoyance of an impairment and judging its strength. In this section, we describe
each experimental task. Further details can be found in the scripts in Appendix B.

Annoyance task

The annoyance task consists of giving a numerical judgment of how annoying (bad) the detected
impairment is. Examples of original and highly impaired segmentation are shown during the training
section. The most annoying segmentations in the training stage should be assigned the value of ‘100’.
The subject is instructed to enter a positive numerical value indicating how annoying the impairment
is after each test sequence is played back. Any defect as annoying as the worst impairments in the
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(a)

(b)

(c)

Figure 4.5: Display configurations for training stage: (a) the subject is told about how an ideal
segmentation looks like, (b) typical segmentation errors are displayed along with the ideal segmen-
tation, (c) the worst segmentations are shown to establish a subjective range of the annoyance
scale.
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(a) (b)

Figure 4.6: Dialog boxes used for the experimental tasks: (a) annoyance and (b) strength.

training stage should be given ‘100’, half as annoying ‘50’, one tenth as annoying ‘10’, and so forth.
Although the subjects were asked to enter annoyance values in the range of ‘0’ to ‘100’, they were
also told that values greater than 100 can be assigned if he/she thought the impairment was worse
than the most annoying impairments in the training stage. Figure 4.6 (a) displays the dialog box
used in the experiments. Annoyance values less than zero were not accepted, but the program did
not impose any upper limit to the annoyance values. Non-numbers were also rejected. After the
value has been accepted, the next video is shown.

Strength task

The strength task consists of asking the subjects for an estimate of how strong or visible a set of
artifacts are in the detected impairment. This type of task requires that subjects be taught how
each artifact looks like. Therefore, in the training stage subjects were shown a set of sequences
illustrating the set of artifacts being measured. In the trials, after the video was played back, the
subject was asked to enter a number in a scale with range from ‘0’ to ‘10’ corresponding to the
strength of that artifact or feature. If no impairments were seen, subjects were instructed not to
enter any number and just click ‘Next’ to go on to the next trial. Automatically the program set
‘0’ in this case. Figure 4.6 (b) displays the dialog box used for this task.

4.5 From Subjective to Objective Evaluation

In case of subjective evaluations, people watch the segmented images or video sequences and judge
the overall quality. To evaluate the segmentation quality objectively, as we aim in this research
work, some objective error measures related to the artifact such as the number of miss-classified
pixels, the distance of miss-classified pixels from the ground truth, etc. are needed. Perceived errors
are perceptual changes due to defects. In order to assess how objective errors are perceived by
humans and to build a perceptual objective metric, we use the subjective experiments described in
the previous section. We then derive a relation between the perceptual quality of video sequences
and the objective features of the artifacts. Since perception is fundamental in judging visual quality,
different kinds of artifacts, even with the same amount, are not visually significant at the same
degree, as they are perceived differently. Thus to accommodate human perception, different classes
of pixels with different relevance must be considered. In Sec. 4.5.1, we describe and provide a
mathematical expression for the different classes of segmentation errors we have identified.

If we want to analyze the perception of the identified classes of artifacts, we have to generate
different test sequences with various kinds of artifacts. The generated test sequences present pure
single synthetic artifacts that look like real artifacts and combinations of them. In Sec. 4.5.2, we
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Figure 4.7: Block diagram of the proposed approach: from subjective to objective video object
segmentation quality evaluation.

describe the test sequences designed to perform the subjective experiments on artifact perception.
The block diagram of the approach proposed to derive the objective evaluation is depicted in

Fig. 4.7. The segmented images or video sequences can be thought as being made of a combination
of ground truth (reference or ideal segmentation) and artifacts. The objective measures are then
obtained by subtracting the ground truth from the segmented video under test. In this block
diagram, the ground truth link to objective measures is dotted as ground truth may or may be not
used to derive these features (see next Chapter). These objective measures are then combined in
the overall quality by some mathematical formula forming the objective metric.

As mentioned, the goal of our research is to find this mathematical formula which links the ob-
jective measures of artifacts to the perceived overall quality of the segmentation. If we find how the
segmentation artifacts are perceived by subjects and described by psychometric functions (see Sec-
tion 2.3.2), we can use these functions in the mathematical formula and derive a perceptual objective
metric. In other words, we derive a relation between amounts of the introduced artifacts (which can
be determined objectively) and the perceptual artifacts by taking into account human perception of
errors. These errors are then related to the overall quality of the video by a mathematical formula
that combines the errors according to their perceptual weights. Finally, we derive a perceptual
objective metric which directly correlates the subjective evaluation (Mean Opinion Score, MOS)
and the objective features of the artifacts. Hence, the graph plotting these objective and subjective
quantities is related by a psychometric fitting curve that produces the perceptual objective metric
which will be the subject of the next chapter.

4.5.1 Segmentation Errors

It is well known that segmentation errors can affect the quality of a segmented video in two ways:
statically (spatially) and dynamically (temporally) [17, 86]. The spatial errors of the segmented
video are defined by the amount of mis-segmented pixels that can be easily estimated by a direct
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Figure 4.8: Various segmentations that have equal pixel distance measures and also the same
number of misclassified pixels [189].

comparison between reference and resulting segmentation mask, for a given frame k. By taking into
account the number of mis-classified pixels, an algorithm for object segmentation can in principle be
evaluated by estimating only these pixel errors. The sum of the distance between pixels that have
been assigned to a wrong class and the nearest pixels that actually belong to the correct class is
usually used as evaluation criteria [17, 86]. This simple objective measure suffers from the problem
that different configurations can be found for which the same pixel distance error is obtained. Some
examples [189] are depicted in Figure 4.8, where the pixel distance errors for the situation (a), (b)
and (c) are equal (the number of mis-classified pixels are also equal). Without further processing
the three mis-classified pixels in Fig. 4.8 (a), (b) and (c) could be measured as having the same
impact (since they are of the same amount and the sum of the distances is the same), whereas the
three mis-classified pixels in Fig. 4.8 (a) enlarge the shape of the object by adding some background
and the three mis-classified pixels in Fig. 4.8(b) are disconnected from the object and perceived as
added region. The consequences of these two cases are different, for example, both for the influence
on the size and the shape of the real objects. Moreover, the pixel distance error cannot distinguish
several isolated mis-classified pixels (Fig. 4.8(c)) from a cluster of mis-classified pixels (Fig. 4.8 (a)
and (b)), although the two kinds of artifacts are perceived differently. Therefore, we thought to
classify different clusters of error pixels according to their perceptual features: size and shape. We
group the cluster of error pixels according to the following characteristics: if they do or they do not
modify the shape of the object and afterwards their size.

In order to understand how we classified the different clusters of pixel, let us define the different
kind of pixel errors. Pixel errors can be divided into two sets [86]: undetected pixels (false negative)
and incorrectly detected pixels (false positive). Let us define a region i, Ri(k), at frame k as a set of
pixels with the following properties: 1) Ri(k) is spatially connected; 2) Ri(k)∪Rj(k) is disconnected
∀ i �= j.

We also indicate R(k) as the set of all the j regions of interest (objects ) belonging to the reference
segmentation, that can be expressed as:

R(k) =
⋃

0≤j<J

Rj(k) and
⋂

0≤j<J

Rj(k) = ∅ (4.1)

where J is the number of reference segmentation objects. J can also take the value zero when no
object is present in the reference segmentation. Similarly, the set of pixels segmented at frame k,
C(k) is the union of the i regions/objects Ci(k):

C(k) =
⋃

0≤i<I

Ci(k) and
⋂

0≤i<I

Ci(k) = ∅ (4.2)

where I is the number of resulting segmentation regions/objects. In the case I is zero, no region
has been segmented in the resulting segmentation.
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Figure 4.9: Reference segmentation overlapped with the resulting segmentation, at frame k: (a)
shows the two kinds of subsets of false positives, P(k), (b) shows the two kinds of subsets of false
negatives, N (k) .

The set of false positive pixels, P(k), whose elements are the segmented pixels not belonging to
the reference segmentation, can be expressed as:

P(k) = C(k) ∩ R′(k) (4.3)

where R′(k) denotes the complement of R(k). Similarly, false negatives N (k) appearing in the
reference segmentation R(k) and not in the resulting segmentation C(k), can be expressed as:

N (k) = C ′(k) ∩ R(k) (4.4)

A further investigation of the segmentation errors has been carried out. In the following equa-
tions, let us define the condition empty intersection γi,j(k) between the j− th object in the reference
segmentation and the i − th region in the resulting segmentation as:

γi,j(k) =

{
1 if

(
Ci(k) ∩ Rj(k) = ∅)

0 otherwise

The different errors have been mathematically expressed in Eqs. (4.5)-(4.10) and depicted in
Figures 4.9 (a) and (b). P(k) can be divided into two different kinds of subsets: added background
and added regions. The added region set, Ar(k) is a set of regions in C(k) not present in R(k):

Ar(k) =
⋃
i∈Q

Ci(k), (4.5)

where Q = {i | γi,j(k) = 1, 0 ≤ j < J }. In the following, let |Ar(k)| denote the cardinality of
Ar(k). |Ar(k)| therefore represents the number of added region pixels at frame k.

Added background Ab(k) does not constitute a region itself in C(k) but it is a set of false positive
pixels erroneously segmented along the boundary of an object which is an object both in C(k) and
R(k). Ab(k) therefore is composed of those pixels that do not satisfy condition in Eq.(4.5.1) and
are subsets of P(k):

Ab(k) = P(k) \ Ar(k) (4.6)

where \ denotes a set difference. Let |Ab(k)| denote the cardinality of Ab(k) that is the total amount
of added pixels.
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Different classes of sets, depending on the properties of their elements, can also be distinguished
inside N (k). Missing objects M(k) are objects in R(k) not present in C(k):

M(k) =
⋃
j∈S

Rj(k) (4.7)

where S = {j | γi,j(k) = 1, 0 ≤ i < I }. Holes H(k) are sets of N (k) that intersect the reference
segmentation and do not satisfy condition in Eq.(4.5.1):

H(k) = N (k) \ M(k). (4.8)

In H(k) we can differentiate between holes inside the object, Hi(k), and boundary holes, Hb(k),
situated on the border of the object. Hi(k), are sets of those false negative pixels completely inside
the objects and satisfy the following condition:

Hc(k) ⊂ cl
(
R(k)

)
(4.9)

where cl(·) is the set closure operator. In the following sections, the total amount of pixels in Hc(k)
is denoted by |Hc(k)|.

Boundary holes are sets of false negative pixels that intersect the boundary of the reference
object and modify the shape:

Hb(k) ∩ ∂Rj(k) �= ∅ (4.10)

where ∂ is the boundary set operator. Let |Hb(k)| denote the cardinality of Hb(k) that is the total
amount of pixels of boundary holes.

In the proposed approach, to study and analyze the different impact on the perceptual quality
of different artifacts, we consider the above defined specific artifacts that well represent all the seg-
mentation errors: Ar(k), Ab(k), Hb(k) and Hi(k). The single, pure artifacts and their combination
are introduced in test sequences as described in Sec. 4.5.2 and their effect on the overall perceived
quality will be investigated by means of subjective experiments (see Sec. 5.4). The objective mea-
sures of these artifacts |Ar(k)|, |Ab(k)|, |Hb(k)| and |Hi(k)| are perceptually weighted to contribute
in a perceptual objective measure for segmentation evaluation, as presented in the next chapter.

4.5.2 Generation of Synthetic Segmentation Errors and Test Sequences

Another important step in designing the subjective experiment is to choose a set of original video
sequences to be used. A total of four video sequences of assumed high quality are used in this
work: ‘Hall monitor’, ‘Group’, ‘Highway’ and ‘Coastguard’. In these video sequences we selected
60 frame slots to obtain five seconds long video sequences (12 fps). They are in 4:2:0 YUV format,
288 lines × 352 columns. These video sequences are commonly used in the research community
to test segmentation algorithms. ‘Hall monitor’ and ‘Coastguard’ are MPEG-4 video sequences,
‘Group’ is an European IST project Art.live∗ sequence and ‘Highways’ is an MPEG-7 test sequence.
Representative frames of video sequences used are shown in Figure 4.10.

Since only a limited number of sequences can be shown during a 30-minute test session, the total
number of originals is kept small. Table 4.3 shows the original used for each experiment.

The second step is to introduce the artifact in the test sequences, by modifying the ideally
segmented reference masks, the ground truths. For two of the sequences (‘Group’ and ‘Highway’)
the reference masks were obtained manually. For the other two sequences, they were obtained from
the MPEG website†.

∗http://www.tele.ucl.ac.be/PROJECTS/art.live/
†http://mpeg.telecomitalialab.com
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(a) (b)

(c) (d)

Figure 4.10: Sample frames of original video sequences: (a) ‘Highway’, (b) ‘Group’, (c) ‘Hall
monitor’, (d) ‘Coastguard’.

Table 4.3: Summary of original video sequences used in subjective experiments.

Video frames Add reg. Add back. Border Hol. Inside Hol. Flick. Expect. Comb.

’Coastguard’ 1-60
√ √ √ √ √

’Group’ 81-140
√ √ √ √

’Hall monitor’ 32-91
√ √ √ √ √ √ √

’Highway’ 66-125
√ √ √ √



4.5. From Subjective to Objective Evaluation 51

Synthetic spatial errors

The results of segmented images or video sequences can be thought as being made of a combination
of the reference segmentations and some errors. In this work, we introduce segmentation errors
that are relatively pure and study them both individually as well as combined, for an assessment
of their perceptual contribution. Four different kinds of spatial errors have been synthesized and
combined to the reference segmentations: added background Ab(k), added regions Ar(k), holes
inside Hi(k), and boundary holes Hb(k). Sample frames of the generated spatial artifacts are shown
in Appendix A.

The annoyance produced by added region artifacts, Ar, was studied by varying their size, position
and shape. We artificially mis-segmented three portions of the background completely disconnected
from the correctly segmented foreground objects. In a first experiment, the impact of the shape and
the position of the added regions with the same size was under investigation. Therefore, we kept
the number of regions equal to three and used four different size values, and we varied the position
and shape of the artifact for each test sequence. The shape of the added region was modeled using
a super-ellipsis function. By modifying the super-ellipse parameters, a continuum of several shapes
can be formed, ranging from a ellipse to a rectangle. The topology of the reference segmentation
was varied in the following way. First, we positioned the group of three added regions in three
different random positions (p1, p2 and p3) going from very far from the reference objects to closer.
Then, for each of these positions, two different shapes (square and circles) were generated with four
different sizes, |Ar| (2×2, 5×5, 10×10, 20×20). The total number of test sequences for this part of
the experiment was 75, which included 72 test sequences (3 reference segmentations × 3 positions
× 4 sizes × 2 shapes ) plus the 3 reference segmentations without any artifact of ‘Hall monitor’,
‘Highway’ and ‘Group’.

The added background test sequence was synthetically generated by adding increasingly more
background to the Rj objects. By dilating the reference mask, five levels of dilation were gener-
ated. Then the number of pixels added at each frame was c, 3c, 4c, 5c, and 8c, where c is the
number of pixels on the ground truth contours. Therefore, five values of added background |Ab| were
investigated in the experiment and inserted in one reference segmentation, ‘Hall monitor’.

In the objective metrics proposed in the literature, holes are only considered in terms of uncorre-
lated set of pixels and their distances from the reference boundary of the object [17, 23]. According
to [86] the more distant a hole is from the boundary of the object, the more annoying the artifact
becomes. It has been concluded that as one moves away from the border, holes become more an-
noying. Boundary holes only make the object thinner. Therefore, they are less annoying for the
human observer than inside holes.

In our experiment, we studied if this condition is still valid for large holes. In this case the
annoyance caused by a boundary hole could be worse than for a closed hole (completely inside the
object). This could be justified by the fact that if the shape of the object is completely modified
by a large hole on the boundary, the object can become harder to recognize. On the other hand, in
the presence of a large closed hole completely inside an object, the object can be still recognizable
and, consequently, this artifact becomes less annoying. For this purpose, we synthetically inserted
a group of three holes at three positions: on the contour of the object (boundary hole), and in two
inner positions (inside holes). For each position, we generated 4 sizes (3×3, 5×5, 9×9, 13×13) of
holes. The total number of test sequences for this part of the experiment was 52 which included
48 test sequences (4 reference segmentations × 3 positions × 4 sizes) plus the 4 original reference
segmentations of ‘Hall monitor’, ‘Highway’, ‘ Coastguard’ and ‘Group’.
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Figure 4.11: Temporal insertion of artifacts during 10 frames in different moments of the video
sequence.

Synthetic temporal errors

Since a video is a sequence of images in which spatial errors take place, the temporal effect of
segmentation errors must be considered. A given error may be perceived differently, depending on
its temporal context. Observers are sensitive to temporal errors, i.e., changes in error characteristics
along time. In video segmentation, an error may vary its characteristics through time. A non
smooth change of any spatial error deteriorates the perception of the error itself. The temporal
artifact caused by a variation of the spatial error is called flickering . By carrying out subjective
tests on real segmentation, flickering has been observed to be one of the most annoying artifacts
introduced by segmentation algorithms. In fact, if an imprecise segmentation mask is stable along
time, it is perceived less annoying than a more precise segmentation presenting abrupt changes. We
performed two kinds of experiments with temporal errors. We tested the flickering and the effect
produced by a bad (or good) segmentation at the end (or beginning) of segmented video sequences.

In the first experiment, different variations of any spatial error could be implemented to test the
flickering perception. We chose to change the position of added regions along the test sequence. The
test video sequences with the temporal errors presented the same number of added regions with the
same shape and size. But their positions changed every 1, 3, 5, 12 and 30 frames (let fT denote
the flickering period) by starting from a very fast and annoying flickering, and by ending with a
temporally smooth change of added region position.

A second experiment on the temporal perception of artifacts was performed. In this experiment,
we wanted to find whether there is an expectation effect and how this affects the overall perceived
quality. By expectation we mean the effect that a good segmentation at the beginning could create
a good overall impression on assessing the quality of the sequences under test and vice versa. Three
regions of the same size (10×10) were added always at the same position along the entire video
sequence. The added regions appeared and disappeared along the time causing a temporal artifact.
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Table 4.4: Tested segmentation artifacts and their values.
Tested Artifacts Amount

Added region 2 × 2, 5 × 5, 10 × 10, 20 × 20.
Added background c, 3c, 4c, 5c, 8c
Border hole 3 × 3, 5 × 5, 9 × 9, 13 × 13
Inside hole 3 × 3, 5 × 5, 9 × 9, 13 × 13
Flickering period 1, 3, 5, 12, 30
Expectation B1, B2, B3, B4, B5, B6, B7, B8, B9

This temporal artifact can be expressed by an indicator function B(t1, t2) whose value is 1 for t in
the interval [t1, t2] and zero otherwise.

Figure 4.11 shows an illustration of how added regions were inserted in the sequences in order to
create the temporal artifacts. Condition B1 corresponds to the reference sequence, while condition
B2 corresponds to a sequence with the added regions present in all 60 frames. Conditions B3−B5 are
cases where the added regions were inserted in 10 out of 60 frames. They were inserted in different
parts of the video sequence: at the beginning (B(1, 10)), at the end (B(50, 60)), and in the middle
(B(25, 35)). Conditions B6 − B9 correspond to combinations of these three previous occurrences.
A total of 9 test conditions and two test video sequences ‘Hall monitor’ and ‘Coastguard’, were
used, which means 20 test sequences (2 reference segmentations × 9 conditions) plus 2 reference
segmentations.

The spatial and temporal errors and their values are summarized in Table 4.4. Sample frames
of the generated synthetic artifacts are given in Appendix A.

Synthetic combined errors

The last experiment was performed to understand how artifacts combine and interact to produce
the overall annoyance. This experiment takes into account the interaction of different artifacts and
the artifact perception is more complicated to model. The first step generated segmentations with
one type of artifact at a relatively high level of annoyance. Three synthetic added regions, added
background, boundary holes and inside holes were created. They were added at different amounts
as summarized in Table 4.5. For each reference segmentation, 12 test sequences (3 amounts × 4
artifacts) were created: with only added region artifacts Ar (at low, medium and high level of
annoyance), with only added background Ab (at low, medium and high level of annoyance), with
only boundary holes Hb (at low, medium and high level of annoyance) and with only inside holes
Hi (at low, medium and high level of annoyance). Then, an impaired video was created by varying
the combinations of these 12 test sequences, as given by the following equation:

S = (R\H) ∪ A (4.11)

where S is the segmentation under test, R the reference segmentation, H the hole artifact, A
the added artifact. The different amounts of artifacts used, |Ar(k)|, |Ab(k)|, |Hb(k)|, |Hi(k)| are
indicated in Table 4.5. Depending on the amount of the artifact the appearance of the overall
impairment on the segmentation changed, making it more over-segmented or under-segmented. The
45 combinations of |Ar(k)| , |Ab(k)|, |Hb(k)|, |Hi(k)| values used to generate the test sequences are
shown in columns 2-5 of Table 4.5. We did not use all possible combinations of the four artifacts
since it would have made the experiments too long.
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Table 4.5: Set of amount combinations (pixels) for added regions, added background, inside holes and

border holes used in the experiment.

combination Added region, |Ar| Added background, |Ab| Inside hole,|Hi| Border hole, |Hb|

1 0 0 0 0
2 180 0 0 0
3 0 180 0 0
4 0 0 180 0
5 0 0 0 180
6 60 0 0 0
7 0 60 0 0
8 0 0 60 0
9 0 0 0 60
10 24 0 0 0
11 0 24 0 0
12 0 0 24 0
13 0 0 0 24
14 60 60 60 60
15 24 24 24 24
16 60 60 0 0
17 0 60 60 0
18 0 0 60 60
19 60 0 0 60
20 60 0 60 0
21 0 60 0 60
22 180 0 24 0
23 0 180 0 24
24 24 0 180 0
25 0 24 0 180
26 180 24 24 0
27 0 180 24 24
28 24 0 180 24
29 24 24 0 180
30 180 0 60 60
31 60 180 0 60
32 60 60 180 0
33 0 60 60 180
34 60 60 60 180
35 180 60 60 60
36 60 180 60 60
37 60 60 180 60
38 24 180 24 24
39 180 24 24 24
40 24 180 24 24
41 24 24 24 180
42 180 24 180 60
43 60 180 24 180
44 180 60 180 24
45 24 180 60 180
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As stated, four original video sequences were used in this experiment: ‘Hall monitor’, ‘Group’,
‘Highway’ and ‘Coastguard’. A total of 180 test video sequences were derived from these original
video sequences (4 segmentation × 45 combinations) to investigate the relationship between the
overall annoyance and the artifact strengths.

4.6 Conclusions

In this chapter, we have underlined why a good image/video segmentation is important. In partic-
ular, we have focused on video object segmentation. The task of extracting an object from video
sequences has been illustrated for applications such as object-based coding and video object indexing
and retrieval.

The state of the art methodologies for psychophysical experiments of segmentation quality assess-
ment have been described both for still images and video sequences. In addition, the advantages and
disadvantages of each approach have been presented. On the basis of this discussion a new method-
ology for subjective evaluation of video object segmentation has been proposed. The method of
single stimulus continous annoyance scale has been chosen as the basis for our experiments as a
result of many informal tests and discussions with psychophysics experts.

The experiment setup and the instructions given to the subjects have been described. The five
stages of the proposed methodology have been illustrated in details: oral instructions, training,
practice trials, experimental trials and interview.

The proposed approach to obtain a perceptual objective metric from the subjective experiments
has been presented. The process of generation of test sequences has been introduced. The synthetic
test sequences developed for our experiments have been described. Spatial and temporal artifacts
commonly found in video object segmentation have been inserted in the test sequences. The in-
vestigated artifacts are: added regions, added background, border holes, inside holes, flickering and
expectation effect. Moreover, combinations of all artifacts have been created to study how they
interact in the overall annoyance.

In the next chapter, the psychophysical experiments carried out with the described test sequences
are presented and their results analyzed. On the basis of these results, the perceptual objective
metric, for segmentation evaluation, proposed in this thesis will be introduced.
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Objective Segmentation

Evaluation 5
5.1 Introduction

In the previous chapter, we presented the proposed experimental method for performing subjective
experiments. In these experiments we aim at investigating the annoyance and the perceived strength
of typical segmentation artifacts. We explained how we generated the synthetic test sequences with
typical artifacts under study: added regions, added background, inside and border holes.

In this chapter, our goal is to find, by means of subjective experiments, a perceptual objective
metric. With various subjective experiments, we show how to derive the psychometric curves for each
artifact metric. Since different strengths of artifacts contribute differently to the overall annoyance,
subjective experiments are performed to find out how perceptual artifacts combine to produce the
overall annoyance. On the basis of this last experiment, a perceptual objective metric that combines
all the perceptual artifact metrics is introduced in this chapter. The results are shown and a
comparison among the state of the art objective methods is presented.

The objective metrics found in the literature for segmentation evaluation are described in Sec. 5.2.
A new objective metric is proposed and described in Sec. 5.3. Section 5.4 describes the results of the
subjective experiments and presents the perceptual artifact metrics. Section 5.5 discusses the overall
perceptual objective metric and its performance, also compared to the state of the art methods.
Section 5.6 draws the conclusions.

5.2 Objective Segmentation Evaluation Methods -

Background

To avoid systematic subjective evaluation of segmentation, an automatic procedure is preferred. This
procedure is referred to as objective segmentation evaluation method. Quality metrics for objective
evaluation of segmentation may judge either the segmentation algorithms or their segmentation
results. These are referred to as analytical or empirical methods, respectively [186]. Analytical
methods evaluate segmentation algorithms by considering their principles, their requirements and
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their complexities. The advantage of these methods is that an evaluation is obtained without im-
plementing the algorithms. However, the properties of algorithms, such as the computational cost,
could change quickly if alternative architectures and implementations are carried out. Moreover,
because of the lack of a general theory for image segmentation, and because segmentation algo-
rithms may be complex systems composed of several components, not all properties (and therefore
strengths) of segmentation algorithms may be easily evaluated. Empirical methods, on the other
hand, do not evaluate the segmentation algorithms directly, but indirectly through their results.
Empirical methods are further divided into empirical discrepancy, metrics when the segmentation
result is compared to an ideally segmented reference map (ground truth), and empirical goodness
metrics, when the quality of the segmentation result is based on intuitive measures of goodness such
as gray-level or color uniformity, shape regularity or contrast between regions. The advantage of this
second class of methods is that it requires only that the user defines a goodness metric. Therefore,
they do not require manually segmented images to be supplied as ground truth data. In addition,
they can be used in an on-line manner, so that the effectiveness of an algorithm can be monitored
during actual application. A major disadvantage of such an approach is that the goodness met-
rics are at best heuristic, and may exhibit strong bias toward a particular algorithm. For example
the intra-region gray-level uniformity goodness metric will cause any segmentation algorithm which
forms regions of uniform texture to be evaluated poorly.

Even if goodness methods are less complex than discrepancy methods (they do not require a
manual segmentation) and they can be used for on-line evaluation, for algorithms performance
comparisons, discrepancy methods can be applied on a predefined data set (they require a manual
segmentation). Analogous to the case of the empirical goodness methods, a discrepancy measure
must be explicitly defined, but this is likely to be easier to do and exhibits less bias when compared to
former methods because of the availability of a ground truth. In image compression, the disparity
between the original image and the decoded image has often been used to objectively assess the
performance of the compression algorithms. A commonly used discrepancy measure is the mean-
square signal-to-noise ratio [143]. However, in contrast to image encoding, image segmentation is
a process that changes the image units. In other words, image encoding is an image processing
process, while image segmentation is an image analysis process, in which the input and the output
are different matters. So other specific discrepancy measures have been proposed in the field.

To properly evaluate the performance of segmentation techniques, objective methods have been
proposed both for image and video segmentation. They are described respectively in Secs. 5.2.1
and 5.2.2, respectively.

5.2.1 Still Images

Some works dealing with image segmentation assessment have been reported in the literature for
evaluating still image segmentation [15, 46, 55, 91, 99, 131, 183]. More attention has been dedicated
in the past several years to evaluate edge detection algorithms [32, 49, 184]. However, these tech-
niques are specific for edge detection and cannot be directly applied to video object segmentation
evaluation.

In [188], an extensive survey of existing methods for evaluating image segmentation has been
published. Goodness methods for image segmentation evaluation have been proposed, among others,
by Borsotti et al. [15] and Rosenberger et al. [131], where metrics for intra-object homogeneity and
inter-object disparity are proposed. Borsotti adds to its evaluation measure a penalization related to
the number of objects in the segmented image (the quality is lowered in case of over segmentation).

Although goodness evaluation methods can be very useful for on-line evaluation, their results
do not necessarily coincide with human perception of the goodness of segmentation. In fact, as
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mentioned above, in the case of an image presenting uniformly textured regions, an intra-region gray-
level uniformity metric would not provide the same results when compared to subjective evaluations.
For this reason, when a reference mask is available or can be generated, discrepancy evaluation
methods are preferred.

A discrepancy method based on shape features (circularity and elongation), under-merging and
over-merging error is proposed in [183]. Recent discrepancy evaluation methods include compactness
evaluation of both under and over detected pixels [55] and a discrepancy approach based on spatial
accuracy [99] which was originally proposed for the evaluation of video object segmentation by
Villegas et al. [86].

A potential problem for a measure of consistency between segmentations of still images is that
there is no unique segmentation of an image, as mentioned in Sec. 4.3.1. Martin et al. [91] proposed
two error measures that take small values when one segmentation is simply a refinement of the
other. In addition, the two measures are independent from the coarseness of pixelation, robust
to noise along region boundaries and tolerant to different number of segments. Then, the authors
validate the proposed error measures on a database of manual segmentations. It is shown that the
error measures between different segmentations of the same image are low since they are the simple
refinement of the each other, while the errors between segmentations of different images are high.

An interesting approach is described in [46], where a measure incorporating multiple measures
–both discrepancy and analytical– (e.g. the segmentation accuracy versus the execution time)
performs the evaluation in a multi-dimensional fitness/cost space.

According to [49], in order to compare the performance of segmentation algorithms, it is not
sufficient to check whether the order proposed by the objective measure coincides with the order
proposed by human observers. To be reliable, an error measure has to prove to have no drawbacks
in which the measure shows a very important difficulty or anomaly. The authors adopt a simple
analysis of quality curves to detect, if in any practical situations, five classical evaluation discrepancy
measures show a significant difficulty or anomaly. In particular, they check the quality curves
whether they have similar values corresponding to very distant thresholds for ten edge segmentation
algorithms under test. If the measure presents such anomaly for one edge detector it is discarded
from the comparison of algorithms.

In medical image segmentation other metrics are commonly used in quantitative evaluation.
Alonso [2] et al. proposed a method incorporating specific metrics that compare the medical image
segmentation to the ground truth, such as the preservation of the mean, the standard deviation, the
perimeter and the area.

Finally, another way to define an evaluation measure is by considering it as a particular case of
shape similarity metric, a problem with a long tradition in the pattern recognition literature [185].

5.2.2 Video Object Segmentation

Although several quality measures have been developed for still image segmentation they are not
directly applicable to video object segmentation. In this section we will present the state of the
art evaluation metrics for video object segmentation [17, 23, 43, 44, 97, 123, 154, 180] and video
object tracking evaluation [11, 104, 106, 110, 135]. In particular we will provide the details of three
methods [104, 154, 180] that will be used in the comparison between the proposed metric and the
state of the art methods.

We distinguish between video object segmentation and tracking evaluation since they are two
different matters. Video tracking is the process of locating a moving object (or several ones) in
time using a camera. An algorithm analyzes the video frames and outputs the location, optionally
in real time. It is mainly used in video surveillance systems. The issues involved in video object
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(a) (b)

Figure 5.1: Samples of ground truth for tracking evaluation through bounding box. ‘Highway’
video sequence: (a) frame #89, (b) frame #101.

Figure 5.2: Sample of ground truth for tracking evaluation through center of gravity.

tracking are different from those of video object segmentation evaluation since the ground truth on
which these algorithms compare their performance is different. In fact, video surveillance systems
concern algorithms for detecting, indexing and tracking moving objects and the system has to be
characterized and evaluated in other ways. The ideal output (ground truth) of a tracking system can
be of two types: bounding box and/or center of gravity. In the former case, regions that contain the
detected moving objects of interest are segmented with a set of rectangular areas called bounding
boxes as shown in Fig. 5.1. Detection and false alarms rates in this case are derived by counting how
many times interesting and irrelevant regions are detected. In the latter, the manual ground truth
consists in a set of points that define the trajectory of each object in the video sequence (center of
gravity) as depicted in Fig. 5.2. In this case, the motion detection and tracking algorithm is then
run on the video sequence and tracking results and ground truth centers of gravity are compared to
assess tracking performance. Figure 5.3 (a) depicts the original frame and (b) shows the result of a
ideal video object segmentation - ground truth. As depicted, it does not represent a binary detection
problem. Several types of errors (such as shape errors along the boundaries of the object, content
similarity, etc,.) should be considered (not just mis-detection and false alarms). Thus, proposed
tests based on the selection of rectangular regions with and without objects are unrealistic since
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(a) (b)

Figure 5.3: Sample of original video sequence ‘Group’ in (a) and the corresponding ideal object
segmentation (ground truth) in (b).

practical segmentation algorithms have to segment the image into foreground –objects of interest–
and background, and do not have to classify rectangular regions selected by the user.

First, we will present some techniques for tracking evaluation and then we will provide an
overview on object segmentation evaluation which is more relevant to the topic of this part of
the thesis.

Tracking evaluation criteria

Recently, a number of measures have been proposed for video object tracking evaluation. Since
we are interested in how the object is segmented and the evaluation of tracking raises different
problems briefly discussed in this section, the reader is introduced to fora such as PETS [155] and
CAVIAR [125] for a complete overview on that issue.

Table 5.1: Objective Measures used in evaluating video tracking systems.

Method Measure Source

Discrepancy False Alarm Ellis [11], Nascimento [104], Oliveira [110], Oberti [106]
Discrepancy Misdetection Ellis [11], Nascimento [104], Oliveira [110], Oberti [106]
Discrepancy Split and/or Merge Ellis [11], Nascimento [104], Oberti [106]
Discrepancy Area Matching Ellis [11], Nascimento [104]
Discrepancy Occlusion management Ellis [11]
Discrepancy Center of gravity Ellis [11], Senior [135]

In the following, we will refer to some representative works [11, 106, 110, 135] that can be found
in the literature and specifically to Nascimento and Marques’s metric [104] that can be applied also
to a more general object segmentation evaluation case. Table 5.1 shows all the state of the art
methods grouped by discrepancy measure.

Standard measures used in communication theory such as mis-detection rate, false alarm rate
and Receiver Operating Characteristics (ROC) are used in [106, 110]. An ROC curve is generated
by computing pairs (Pd, Pf ), where Pd is the probability of correct signal detection and Pf is the
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false alarm probability. For example, Oberti et al. [106] compute the false-alarm (Pf ) and the
mis-detection probabilities (1 − Pd) on the basis of discrepancies between the resulting objects and
matching area (false alarm) or between the reference area and the matching one (mis-detection).
The global performance curve summarizing the curves obtained under different working conditions
is obtained by imposing an operating condition (Pf = 1 − Pd) and by plotting the corresponding
values against different values of the variable of interest (scene complexity, distance of objects from
sensors).

In [110], a specific parameter of the tracking algorithm is varied and the false alarm/detection
and split/merge rates are plotted against it. Senior et al. [135] employed the trajectories of the
centroids of tracked objects and their velocities to evaluate their discrepancy measures.

An interesting framework for tracking performance evaluation uses pseudo-synthetic video [11].
Isolated ground truth tracks are automatically selected from the PETS2001 dataset, according
to three criteria: path, color and shape coherence (in order to remove tracks of poor quality).
Pseudo-synthetic video are generated by adding more ground truth tracks and the complex object
interactions are controlled by the tuning of perceptual parameters. The metrics used are similar
to those in the previously described works: tracker detection rate, false alarm rate, track detection
rate, occlusion success rate, etc.

However these approaches have several limitations. As already mentioned, object detection can
not be considered as a simple binary detection problem. Several types of error should be considered
and just mis-detection and false alarms are not enough. For example, the proposed test in [135] is
based on employing the centroid and areas of rectangular regions but practical algorithms have to
segment the image into background and foreground and do not have to classify rectangular regions
selected by the user.

To overcome these limitation Nascimento and Marques [104] used several simple discrepancy
metrics to classify the errors into region splitting, merging or split-merge, detection failures and
false alarms. In this scenario, the most important thing is that all the objects have to be detect-
ed and tracked along time. Object matching is performed by computing a binary correspondence
matrix between the segmented and the ground truth images. The advantage of this method is that
ambiguous segmentations are considered (e.g., it is not always possible to know if two close objects
correspond to a single group or a pair of disjoint regions: both interpretations are adopted in such
cases). In fact, by analyzing this correspondence matrix, the following measures are computed:
Correct Detection (CD): the detected region matches one and only one region; False Alarm (FA):
the detected region has no correspondence; Detection Failure (DF): the test region has no corre-
spondence; Merge Region (M): the detected region is associated to several test regions; Split Region
(S): the test region is associated to several detected regions; Split-Merge Region (SM): when the
conditions M and S simultaneously occur.

The normalized measures are obtained by normalizing the amount of FA by the number of
objects in the segmentation, NC , and all the others by the number of objects in the reference, NR,
and finally by multiplying the obtained numbers by 100. The object matching quality metric
at frame k, mqm(k), is finally given by:

mqm(k) = w1 · CD(k)
NR

+ w2 · FA(k)
NC

+ w3 · DF (k)
NR

+ w4 · M(k)
NR

+ w5 · S(k)
NR

+ w6 · SM(k)
NR

(5.1)

where wi are the weights for the different discrepancy metrics. It is evident that this metric is able
to describe quantitatively the correct number of detected objects and their correspondence with
the ground truth only while the metrics described in the next section are able to monitor intrinsic
properties of the segmented objects such as shape irregularities and temporal instability of the mask
along time.
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Video object segmentation evaluation criteria

Empirical goodness methods have been defined not only for still image but also for video in [23, 44].
In [23], goodness metrics are developed and grouped into two classes: intra-object homogeneity
(shape regularity, spatial uniformity, temporal stability and motion uniformity) and inter-object
disparity (local color and motion contrast with neighbors). The goodness metrics are all combined
in a composite metric with weights differentiated according to the type of content (stable or moving
content). Erdem et al. [44] utilized a spatial color contrast measure, color histograms differences along
the temporal axis and motion vector differences along the boundaries of the segmented objects, all
combined in a single performance measure. Piroddi et al. [123] improved Erdem’s goodness method
in terms of sensitivity as well as noise immunity.

To evaluate a video scene with segmented moving objects by means of discrepancy methods,
Erdem and Sankur [43] combined three empirical discrepancy measures into an overall quality seg-
mentation evaluation: mis-classification penalty, shape penalty, and motion penalty. In [23], Correia
and Pereira first measured the individual segmentation quality through four spatial accuracy cri-
teria: shape fidelity, geometrical fidelity, edge and statistical content similarity and two temporal
criteria: temporal perceptual information and criticality. Second, they computed the similarity fac-
tor between the reference and the resulting segmentation. Furthermore, the multiple-object case
was addressed by using the criteria of application-dependent “object relevance” [22] to provide the
weights for the quality metric of each object. Finally, they combined all these three measures in an
overall segmentation quality evaluation.

Another way to approach the problem is to consider it as a particular case of shape similarity
as proposed in [97] for video object segmentation. In this method, the evaluation of the spatial
accuracy and the temporal coherence is based on the mean and standard deviation of the 2-D shape
estimation errors.

We proposed to evaluate the quality of the segmented object through spatial and temporal
accuracy joined to yield a combined metric [17]. This work was based on the two other discrepancy
methods [86, 180] described below.

During the standardization work of ISO/MPEG-4, within the core experiment on automatic
segmentation of moving objects, it became necessary to compare the results of different proposed
object segmentation algorithms, not only by subjective evaluation, but also by objective evaluation.
The proposal for objective evaluation [180] agreed by the working group uses a ground truth in order
to evaluate the segmentation results. This metric is usually adopted by the research community due
also to its simplicity. A refinement of this metric has been proposed by Villegas et al. [86, 154].
These two metrics have been chosen as term of comparison for the new metric proposed in this
thesis. Below, the descriptions of these two metrics are provided.

MPEG Evaluation Criteria

A moving object can be represented by a binary mask, called object mask, where a pixel has object-
label if it is inside the object and background-label if it is outside the object. The objective evaluation
approach used in the ISO/MPEG-4 core-experiment has two objective criteria: the spatial accuracy
and the temporal coherence. Spatial accuracy is estimated through the amount of error pixels in the
object mask (both false positive and false negative pixels) in the resulting mask deviating from the
ideal mask (see Eq. (4.1)-(4.4)):

Sqm(k) =
|P(k)| + |N (k)|

|R(k)| . (5.2)

Temporal coherence is estimated by the difference of the spatial accuracy between the mask, M ,
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at the current and previous frame,

TqmM (k) = Sqm(k) − Sqm(k − 1). (5.3)

The two evaluation criteria can be combined in a single MPEG quality measure, MPEGqm(k),
through the sum:

MPEGqm(k) = Sqm(k) + TqmM (k). (5.4)

In this metric, the perceptual difference of different classes of errors, false positive and false negative,
is not considered and they are all treated the same in Eq. (5.2). In fact, different kinds of errors
should be combined in the metric in correct proportions to match evaluation results produced by
human observers.

Weighted Evaluation Criteria

Within the project COST 211 [51] the above approach has been further developed by Villegas and
Marichal [86, 154]. For the evaluation of the spatial accuracy, as opposed to the previous method,
two classes of pixels are distinguished: those which have object-label in the resulting object mask,
but not in the reference mask (false positive) and vice versa (false negative), and they are weighted
differently. Furthermore, their metric takes into account the impact of the two classes (see Eqs.
(4.3)- (4.4)) on the spatial accuracy, that is, the evaluation worsens with pixel distance d to the
reference object contour. The spatial accuracy, qms, is normalized by the sum of the areas of
reference objects as follows:

qms(k) =
qms+(k) + qms−(k)∑NR

i=1 Ri(k)
=

∑D+
max

d=1 w+(d) · |Pd(k)| + ∑D−
max

d=1 w−(d) · |Nd(k)|∑NR

i=1 Ri(k)
, (5.5)

where D+
max and D−

max are the biggest distance d for, respectively, false positive and false negative;
NR is the total number of objects in the reference R;

∑NR

i=1 Ri(k) is the sum of the area of all the
objects i in the reference; w+(d) and w−(d) are the weighting functions for positive and negative
respectively. They are expressed as:

w+(d) = b1 +
b2

d + b3
, w−(d) = fS · d, (5.6)

where the parameters bi and fS are fixed empirically [154]: b1 = 20, b2 = −178.125, b3 = 9.375 and
fS = 2. These functions represent the fact that the weights for false negative pixels increase linearly
and they are larger than those for false positives at the same distance from the border of the object
as depicted in Fig. 5.4. In fact, as we move away from the border, missing parts of objects are more
important than added background.

Then, in [86, 154], two criteria are used for estimating temporal coherence, the temporal stability
qmt(k) and the temporal drift qmd(k) of the mask. First, the variation of spatial accuracy criterion
between successive frames is investigated as follows, the temporal stability is equal to the normalized
sum of the differences of the spatial accuracy into two consecutive frames for false positive and false
negative pixels:

qmt(k) =
|qms+(k) − qms+(k − 1)| + |qms−(k) − qms−(k − 1)|∑NR

i=1 Ri(k)
. (5.7)

Second, the displacement of the gravity center,
−−→
GCx,y, of the resulting object and the reference

object mask is computed for successive frames to estimate the possible drifts of the object mask,−−→
qmd(k): −−→

qmd(k) = [
−−→
GCx,y

E (k) −−−→
GCx,y

R (k)] − [
−−→
GCx,y

E (k − 1) −−−→
GCx,y

R (k − 1)] (5.8)
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Figure 5.4: Weighting functions for false positives and false negatives for the method of Villegas
et al. [154].

that is displacement from time (k − 1) to time (k) of the centers of gravity of the masks, GC. The
value of drift is the norm of the displacement vector normalized by the sum of the reference object
bounding boxes,

qmd(k) =
||−−→qmd(k)||

1
NR

∑NR

i=1 BBx,y
i (k)

, (5.9)

where BBx,y
i (k) is the bounding box of the object i in the reference mask R at time k. The authors

proposed to define a single quality value by linearly combining all the three presented measures as
the weighted quality metric, wqm(k):

wqm(k) = w1 · qms(k) + w2 · qmt(k) + w3 · qmd(k). (5.10)

The values of the weights wi are extremely application dependent. If no application is specified all
the three weights can be thought equal to 1

3 .
In this method, the perceptual difference between two kinds of errors is taken into account.

The drawback is that the weighting functions defined in Eq. (5.6), that should be ‘perceptual’
weights of the evaluation criteria, are defined by means of empirical tests. These empirical tests are
not generally sufficient to guarantee the definition of ‘perceptual’ weights. As well as in all other
proposed evaluation criteria in the literature, the relevance and the corresponding weight of different
kinds of errors should be supported by formal subjective experiments performed under clear and
well defined specifications.

In Tab. 5.2 all the evaluation criteria for still and video sequences are summarized. Table 5.3
reports for each state of the art objective method all the evaluation criteria used in that specific
method, whereas, Tab. 5.4 shows the objective methods grouped according to the evaluation criteria.

The averaging of the three quality metrics, MPEGqm, wqm and mqm, over a whole sequence
of K frames (k = 1, ..,K) processed by the system under test, makes the evaluation criteria more
robust:

MPEGqm =
1
K

K∑
k=1

MPEGqm(k) wqm =
1
K

K∑
k=1

wqm(k) mqm =
1
K

K∑
k=1

mqm(k). (5.11)

We will compare our proposed objective metric with the results of these three state of the art metrics
averaged over a set of K = 60 frames.
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Table 5.2: Evaluation criteria used in empirical and analytical evaluation of image and video object
segmentation systems.

# Method group Measure

G-1 Goodness Intra-region uniformity
G-2 Goodness Inter-region contrast
G-3 Goodness Intra-frame color differences
G-4 Goodness Inter-frame color histogram differences
G-5 Goodness Motion differences along the boundaries
D-1 Discrepancy Positions of mis-segmented pixels
D-2 Discrepancy Classes of mis-segmented pixels
D-3 Discrepancy Number of mis-segmented objects
D-4 Discrepancy Shape changes
D-5 Discrepancy Temporal stability
D-6 Discrepancy Temporal drift
A-1 Analytical Execution time

Table 5.3: Summary of evaluation criteria used by each reviewed method.

Image/Video Source Measures

Image Borsotti [15] G-1,G-2
Image Rosenberger [131] G-1,G-2
Image Everingham [46] D-4, A-1
Image Alonso [2] D-4
Image Yang [183] D-4
Image Goumeidane [55] D-2
Image Mezaris [99] D-2
Video Correia [23] G-1,G-2,G-5,D-3, D-4
Video Cavallaro [17] D-1,D-2, D-5
Video Erdem [44] G-3, G-4, G-5
Video Erdem [43] D-4, D-5
Video Piroddi [123] G-3, G-4, G-5
Video Villegas [154] D-1,D-2, D-5, D-6
Video MPEG [180] D-2, D-5
Video Mech [97] D-4
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Table 5.4: Objective Measures used in evaluating image and video object segmentation systems.

Criteria Measure Objective Metric Source

G-1 Intra-region uniformity Borsotti [15], Rosenberger [131] Image
G-2 Inter-region contrast Borsotti [15], Rosenberger [131] Image
G-3 Intra-frame color differences Erdem [44] Video
G-4 Inter-frame color histogram differences Erdem [44] Video
G-5 Inter-frame motion differences Correia [23], Erdem [44] Video
D-1 Positions of mis-segmented pixels Cav. [17],Erdem [43], Villegas [154] Video
D-2 Classes of mis-segmented pixels Cav. [17],Villegas [154], MPEG [180] Video
D-2 Classes of mis-segmented pixels Goumeidane [55], Mezaris [99] Image
D-3 Number of objects Correia [23] Video
D-4 Shape changes Erdem [43], Correia [23], Mech [97] Video
D-4 Shape changes Alonso [2],Yang [183], Everingham [46] Image
D-5 Temporal stability Villegas [154],MPEG [180],Erdem [43],Cav. [17] Video
D-6 Temporal drift Villegas [154] Video
A-1 Execution time Everingham [46] Image

5.3 Proposed Objective Evaluation Metric

The proposed objective metric is defined based on two kinds of errors, namely objective errors and
perceptual errors. Objective metrics quantify the deviation (objective error) of the segmentation
under test from the ground truth and are described in this section. Perceptual metrics weight these
deviations (perceptual errors) according to human perception by means of subjective experiments
and are presented in Sec. 5.4.

As represented in Fig. 4.7, the proposed objective metric, described in this section, will produce
the objective results for each segmentation that will be then, as discussed in the next section,
compared to the MOS (Mean Opinion Score) to provide the final perceptual objective assessment.

5.3.1 Spatial Artifacts

As defined in Sec. 4.5.1, a direct comparison of the results of the segmentation under test with the
reference segmentation allows us to identify two types of errors: false positive pixels, P(k), and false
negative pixels N (k) at frame k. An estimation of absolute spatial error at frame k can be defined
as:

F(k) = P(k) + N (k). (5.12)

A simple normalized spatial error estimate can be computed by normalizing the total amount of
false detection, F(k), by the sum of reference, R(k), and the result segmentation areas, C(k). The
relative spatial error, Serror so obtained is given by:

Serror(k) =

{
0 if |R(k)| = 0 and |C(k)| = 0,

|F(k)|
|R(k)|+|C(k)| otherwise.

(5.13)

where | · | denotes the cardinality operator; the normalization factor |R(k)| + |C(k)| represents the
area of the union of both foreground objects. Hence, the relative spatial error can be obtained in the



68 Chapter 5. Objective Segmentation Evaluation

(a) (b)

Figure 5.5: Example of border holes with the same amount but different distance from the ideal
contour (a) large spatial errors (b) small spatial errors.

same manner, for each of the segmentation artifacts we defined in Eqs. (4.5)-(4.6) and Eqs. (4.9)-4.10:
Ar(k), Ab(k), Hi(k), Hb(k).

The relative spatial error SAr
(k), for all the j added regions , Aj

r(k), is obtained by simply
applying Eq. (5.13) as follows:

SAr
(k) =

∑NAr

j=1 |Aj
r(k)|

|R(k)| + |C(k)| , (5.14)

where NAr is the total number of added regions.
Similarly, for all the j holes inside the segmentation, Hj

i (k), the relative spatial error, SHi
(k), is

given by:

SHi
(k) =

∑NHi

j=1 |Hj
i (k)|

|R(k)| + |C(k)| , (5.15)

where NHi is the total number of holes inside the objects.
The spatial error for added background and holes on the border of the object is formulated in

a different way. In fact, both kinds of errors are located around the object contours and have to
be distinguished from the numerous deviations around the object boundary and a few but larger
deviation [97] (as depicted in Fig. 5.5). These two cases (Fig. 5.5(a) and (b)) are perceptually very
different. In the first one (a), a part of the the left hand and shoulder and a part between the
legs of the person are added. Thus, there are large estimation errors mainly at three regions of
the object contour. The second one (b) is a dilated version of the original object, which therefore
has a lot of small spatial errors around the object contour. Although the two results look very
different, they give similar values of spatial error if evaluated by approaches from the literature such
as [17, 43, 104, 154, 180] or by simply applying Eq. (5.13). As in [97], we compute for each error
pixel the distance, d, to the ground truth object contour. Moreover, in our approach, we distinguish
between the two kinds of error pixel: added background Ab(k) and holes on the border Hb(k). In
such a way, we will obtain different perceptual weights for different classes of error, since added
parts and missing parts are perceived very differently. From the distance values∗ d, we calculate the
mean d and the standard deviation σd, which are then normalized by the maximal diameter, dmax,

∗For distance computation, 8-connectivity has been used.
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of the ground truth object to which the cluster of errors belongs:

1 +
d + σd

dmax
. (5.16)

By combining Eqs. (5.16) and (5.13), we obtain for the border artifacts the corrected relative spatial
error. For j added backgrounds, Aj

b(k), the relative spatial error SAb
(k), is given by:

SAb
(k) =

(
1 +

∑NAb

j=1 (d
j

Ab + σj
dAb) · |Aj

b(k)|
dmax

) · 1
|R(k)| + |C(k)| , (5.17)

and, similarly for j holes on the border, Hj
b(k), the relative spatial error SHb

(k) is given by:

SHb
(k) =

(
1 +

∑NHb

j=1 (d
j

Hb + σj
dHb) · |Hj

b(k)|
dmax

) · 1
|R(k)| + |C(k)| . (5.18)

In these measures, while the mean distance is a measure for the average distance between the
ground truth and the segmented object contour, the standard deviation gives an idea of how different
the measured distances are. The standard deviation is small if the deviation between the original
and the estimated contour is quite similar for all the contour pixels. The standard deviation grows
with the difference of the measured distance values. This factor is able to take into account the
different perceptual impact of the two artifacts depicted in Fig. 5.5 (a) and (b), even if they have
the same area.

5.3.2 Temporal Artifacts

The most subjectively disturbing effect is the temporal incoherence of an estimated sequences of
object masks. In video segmentation, an artifact often varies its characteristics through time. A
non smooth change of any spatial error deteriorates the perceived quality. The temporal artifact
caused by an abrupt variation of the spatial errors between consecutive frames is called flickering. By
carrying out subjective tests on real segmentation, flickering has been observed to be one of the most
annoying artifacts introduced by segmentation algorithms. In fact, if an imprecise segmentation is
stable along the time, it is perceived less annoying than a more precise segmentation presenting
abrupt changes along time. To take this phenomenon into account in the objective metric, we
introduce a measure of flickering, F(k) that can be computed for each kind of artifact(k)=[Ar(k),
Ab(k), Hi(k), Hb(k)]:

Fartifact(k) =
|artifact(k)| − |artifact(k − 1)|
|artifact(k)| + |artifact(k − 1)| , (5.19)

where the difference of the amount of an artifact between two consecutive frames is normalized by
the sum of the amount of this artifact in current frame k and the previous frame k − 1. With this
formula if the error disappears/appears suddenly it is evenly penalized by the normalization since
it causes in the human observer an annoyance due to the unexpected change in the segmentation
quality. By doing so, also the surprise effect [134] can be taken into account into the metric. This
effect is meant to amplify the changes in the spatial accuracy. Moreover, Eq. (5.19) is supported by
subjective experiments as we will see in Sec. 5.4.2.

To model this effect, we combine Eqs. (5.13) and (5.19) to construct an objective spatio-temporal
error measure ST(k) at frame k for each artifact:

STartifact(k) = Sartifact(k) · 1 + Fartifact(k)
2

, (5.20)
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Figure 5.6: Weighted function considering human memory in video quality evaluation proposed
in [63].

where we weigh each value of the relative spatial error Sartifact(k) with its correspondent value
of flickering, Fartifact(k). This takes into account not only the quality but also the stability of the
results.

In modeling the relation between instantaneous and overall quality [58], we can identify two
other phenomena related to the temporal context, namely the fatigue effect and the expectation
effect. The fatigue effect is related to the fact that after a while the humman gets used to a certain
visual quality thus judging it more acceptable if it persists long enough. In subjective experiments
on coded video sequences [63] the characteristics of short-term human memory have been studied.
Figure 5.6 shows the characteristics of the weighting functions for the short-term characteristics of
human memory. The first gradient is called the beginning effect of human memory (it lasts around
50 frames) and presents higher values at the first frames. With our subjective experiments, we aim
at finding the weighting function for 60 frame long video sequences.

In fact, our test video were only 5 seconds time long (60 frames) and thus not long enough
to cause fatigue effect in the human observers. On the other hand, since they were short video
we experienced a different phenomenon: expectation effect. By expectation we mean that a good
segmentation at the beginning could create a good overall impression on assessing the overall quality
of the sequence under test and vice-versa. To model this effect, the overall objective spatio temporal
metric, ST is formulated as follows:

STartifact =
1
K

K∑
k=1

wt(k)STartifact(k), (5.21)

where the temporal weights wt(k) that model the expectation effect will be defined by means of
subjective results in Sec. 5.4.2. Since our subjective data take values between 0 and 100, STartifact(k)
is scaled by multiplying it by 100.

5.4 Perceptual Impact of Segmentation Artifacts

An automatic method of segmentation typically introduces a combination of errors as described
in Sec. 4.5.2. To evaluate objectively the segmentation quality in comparison with a reference
segmentation, some features related to the artifact are derived (such as the number of added regions,
distance of boundary holes from the ideal contour and so on). As proposed in Sec. 4.5.2, we
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indentified and analyzed four kinds of typical errors in real object segmentation, namely, added
regions, added background, border holes and inside holes.

Many objective segmentation quality metrics have been proposed, as mentioned above, but
no effort has been devoted to the study and characterization of typical errors from a perceptual
significance point of view. In our approach, in order to study the perceptual impact of segmentation
artifacts, we performed different subjective experiments: one for each kind of synthetic artifact and
finally one for studying the relationship and their perceptual combination in the overall annoyance.

For each single pure artifact, we tested the proposed artifact metrics (see Eqs. (5.14)- (5.20)).
The values for each artifact metric were extracted from the video sequences generated as described
in Sec. 4.5.2. The same video sequences were used in the subjective experiments and once the
subjective data were processed, the MOS (Mean Opinion Score) was obtained for each test video
sequence. The values of the artifact metrics were plotted versus the values of MOS (Mean Opinion
Score) as depicted in the block diagram of Fig. 4.7. As described in Sec. 5.4.1, the best fitting
psychometric curves were found (among those described in Sec. 2.3.2) that relate the subjective
data to the artifact metric output. We use the obtained psychometric curves, one for each artifact,
to obtain four perceptual artifact metrics.

The results of the perceptual impact of temporal changes in the quality of segmentation and its
influence in relation to the length of the video sequence are analyzed in Sec. 5.4.2. The perceptual
combination of the four artifacts is analyzed in Sec. 5.4.3 where, the relationship between artifacts
and the overall annoyance is found. Finally, in Sec. 5.5, a perceptual objective spatio temporal metric,
PST is proposed on the basis of subjective data.

Standard methods [66] are used to analyze and to screen the judgments provided by the test
subjects. Subjective scores are the judgments given by the subjects to each test sequence. The data
is first processed by calculating the MOS. Second, outliers are rejected by a screening standard
procedure [66]. Depending on the task, the MOS is called MAV (Mean Annoyance Value) since
in this case the subjective scores correspond to ‘annoyance’ scores. For strength tasks, the MOS is
called MSV (Mean Strength Value), since in this case they correspond to ‘strength’ scores.

5.4.1 Perceptual Spatial Errors

In this section, we present a series of results obtained from psychophysical experiments using spatial
synthetic artifacts. We define them spatial as their features (such as shape, position and area) do
not vary along the time. In these experiment, we investigate the annoyance of added regions, added
backgrounds, border holes and inside holes. We derive for each artifact a perceptual artifact metric,
PSTAb

, PSTAr
, PSTHi

, PSTHb
, by fitting the artifact metric and subjective results with suitable

psychometric curves.

Added region’s experiment

The goal of this experiment was to estimate the annoyance of the added region artifacts by varying
its amount. Moreover, we also wanted to test whether different positions and shapes of added region
artifacts are perceived the same way. In this experiment, 28 naive subjects were asked to perform
the annoyance task. The dialog box used in this experiment is shown in Fig. 4.6 (a).

As described in Sec. 4.5.2, we tested different amounts of added regions with two shapes (square,
s1 and circle, s2) and three positions slightly further from the ground truth objects (p1, p2, and the
further p3). Figure 5.7 (a) shows the MAV s for the two different shapes as a function of the added
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Table 5.5: Fitting Parameters S and k for Weibull function.

Artifact S k r Pearson Spearman

s1 0.0163 0.3030 0.92 0.92 0.92
s2 0.0127 0.3009 0.91 0.94 0.91
p1 0.0201 0.3309 0.93 0.88 0.93
p2 0.0121 0.2869 0.93 0.92 0.93
p3 0.0127 0.2939 0.93 0.93 0.93
all 0.0148 0.3042 0.94 0.92 0.94
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Figure 5.7: Values of annoyance predicted with artifact metric STAr
for both added region shapes,

square s1 and circle s2, vs. observed subjective annoyance. In (a) the confidence interval at 95% are
plotted along with subjective data. In (b) the fitting Weibull functions are depicted for each shape.

region artifact metric, STAr:

STAr =
1
K

K∑
k=1

STAr(k) =
1
K

K∑
k=1

∑NAr

j=1 |Aj
r(k)|

|R(k)| + |C(k)| ·
(1 + FAr

(k))
2

(5.22)

The objective results versus the subjective annoyance and the correspondent 95% confidence intervals
are shown in Fig. 5.7 (a). It can be noticed that the perceived annoyance that increases with the
size of artifact is not very different for the two different shapes s1 and s2. These data were fitted
with two Weibull psychometric functions (see Sec. 2.3.2), w(x, S, k):

w(x, S, k) = 1 − e−(Sx)k

where x = STAr (5.23)

and the fitting parameters, S and k, for the two curves s1 and s2 are reported in rows 1-2 of Tab. 5.5.
The typical correlation coefficients (see Sec. 2.4.2) are reported along with the fitting parameters
in columns 4-6 of Tab. 5.5. The two fitting curves depicted in Fig. 5.7 (b) for the different shapes
look very similar: the positive trend of the perceived annoyance and the increase of the size of the
artifacts are alike.

In Figure 5.8, we plotted an overall fitting curve with its confidence interval for all the data for
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Figure 5.8: Values of annoyance predicted with artifact metric STAr
vs. observed subjective

annoyance, fitted with an overall Weibull function.

both shapes. The question of interest is whether the rate of increase of annoyance with increasing
amount of added regions is the same for squares and circles.

To test this hypothesis we used the statistical F test [34]. In Eq. (5.23) we can assume that S

and k are constant for the two shapes, yielding a model with just two parameters. In such a case,
the model fitting all the data for both shapes has the parameters reported in row 6 of Tab. 5.5 and it
is shown in Fig. 5.8. On the other hand, S and k could vary for the two different shapes as depicted
in Fig. 5.7 (b) and a total of four parameters (Ss1, Ss2, ks1, ks2) would better describe the data (see
rows 1-2 of Tab. 5.5).

In order to compare the two models describing the data, one with only two parameters and the
other with four, the sums of square errors from the fits of the two models were compared. If the
errors in the models are independent and normally distributed, the quantity

F =
Ŝ0 − Ŝ1/(df0 − df1)

Ŝ1/df1

(5.24)

has the central distribution Fc(df0−df1, df1), where df0 and df1 are the degrees of freedom for Ŝ0 and
Ŝ1, respectively, which is the sum of squared residual errors under the two hypotheses [34, 92, 101].
The values of F calculated are shown in Tab. 5.6. The value was smaller than the critical F -value
indicating that the two-parameter model describes the data as well as the model with four paramters.
This means that the rate of increase in annoyance with increasing amount of added region is the
same for squares and circles and one curve describes well enough all the data both for squares and
circles. The same test was applied to test whether different positions influenced the perception of
annoyance of added regions. Figure 5.9 (a) shows the three Weibull curves (see Sec. 2.3.2) for p1, p2

and p3 and Fig. 5.9 (b) shows (the same as in Fig. 5.8) the overall fitting curve plotted for different
positions.

In this second case, the hypothesis was that the simple model with two parameters of row 6 of
Tab. 5.5 described the data as well as the model with six parameters (Sp1, Sp2, Sp3, kp1, kp2, kp3)
given in rows 3-5 in Tab. 5.5. Also in this case the value was smaller than the critical F -value and
the model with two parameters (S = 0.0148, k = 0.3042) was chosen to describe the added region
perceptual metric, PSTAr

:

PSTAr = w(STAr, 0.0148, 0.3042) = 1 − e−(STAr ·0.0148)0.3042
(5.25)
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Table 5.6: F values to test if different fitting curves are needed to describe the perceived annoyance
for different shapes and positions of added regions.

Artifact model Fc (critical) F (value) p(F < Fc)

added region shape F(2,68)=3.13 1.43 0.24
added region position F(4,66)=2.51 0.64 0.63
inside hole position F(2,28)=3.34 0.13 0.87
hole distinction F(2,44)=3.21 5.01 0.01
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Figure 5.9: Values of annoyance predicted with artifact metric STAr
vs subjective annoyance for

added regions at different positions from the ground truth: p1, p2 and p3 slightly further. (a) shows
the three fitting curves for the three different positions and (b) the unique fitting for all the data.
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Figure 5.10: Values of annoyance predicted with artifact metric STAb
vs subjective annoyance for

added background: (a) shows the fitting curve and its confidence interval for Experiment I and (b)
shows the correlation of the derived perceptual metric in Experiment II.

We have thus proved by means of subjective experiments that shape and position do not influence
the perception of added region artifact at a given amount. In several state of the art methods [37,
86, 154], the distance of this kind of error from the border of the ground truth is always taken
into account. This experiment showed that added region artifact is perceived independently not
only from the distance from the ground truth but also from the shape. In other state of the art
metrics [23, 97], this added region error (disconnected from the ground truth) is not even considered.

Added background experiment

The first step was to generate video sequences with only one type of artifact at relatively high level of
annoyance: added background, Ab(k). The synthetic added background was created as described in
Sec. 4.5.2. For the video Hall monitor, five new segmented video sequences were created by varying
the number of dilations of correctly segmented video sequences from one dilation to eight dilations.

Subjects in this experiment (Experiment I) were 8 male students from EPFL, aged between 23-28
and were asked to rate the quality of the segmented video under test [38]. The data gathered from
subjects for added background evaluation provided one single value for each test sequence. From
these data the values corresponding to the MAV s for added background were obtained.

The performance of the proposed objective metric for added background was tested by means of
these subjective results. The specific artifact metric for added background is:

STAb
=

1
K

K∑
k=1

STAb
(k) =

1
K

K∑
k=1

(
1 +

∑NAb

j=1 (d
j

Ab + σj
dAb)

)
dmax

· |Aj
b(k)|

|R(k)| + |C(k)| ·
(1 + FAb

(k))
2

(5.26)

Figure 5.10 (a) displays the results of applying this metric on the test sequences for this experi-
ment containing only added background artifacts. The x-axis corresponds to the values of the added
background objective metric STAb

and the y-axis corresponds to the subjective MAV values.
As it can be noticed from this figure, STAb

increases linearly with an increase in the strength of
the artifact increases, as well as the MOS Annoyance. In Fig. 5.10 (a) the MOS Annoyance values
have been fitted with a Weibull function:

PSTAb
= w(STAb

, 0.0262, 0.6533) = 1 − e−(STAb
·0.0262)0.6533

(5.27)
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Figure 5.11: Annoyance curves predicted with artifact metric STH vs. observed subjective annoy-
ance for both kind of holes: inside holes Hi and border holes Hs

.

where the parameters are equal to S = 0.0262, k = 0.6533. This psychometric fitting curve correlates
very well with the subjective data: the correlation coefficients are r = 1.00, Pearson=0.99, and
Spearman=1.00.

The high value of correlation shows that PSTAb
is a good perceptual artifact metric to predict

subjective annoyance values. However, since this experiment contained only 5 test sequences and
8 subjects, we validated this perceptual artifact metric on other test sequences. We applied the
same metric on the test sequences of the combined artifacts experiment that contained only added
background artifacts. In this second experiment (Experiment II), 31 subjects aged between 21-30
years performed the annoyance estimation task. The test video sequences are described in combi-
nations 3-7-11 of Tab. 4.5. As described in Sec. 6, there were three amounts of added background
inserted in four video sequences for a total of 12 test video sequences. Figure 5.10 (b) displays
the correlation of MOS Annoyance values obtained for these test sequences containing only added
background with the perceptual metric of Eq. (5.27) derived from Experiment I. As can be observed
from this curve the metric has a good fit with the MOS Annoyance values and the psychometric
curve of Eq. (5.23) produces a correlation of 90%. This confirms the results of the first experiment
on added background and the reliability of the proposed metric PSTAb

in Eq. (5.23) for added
background. Such perceptual artifact metric has proved to well describe the subjective perception
of added background in both cases (presented in Figs. 5.5 (a) and (b)). That is, when the distance
of the added background from the ideal contour has large value of σd as in Experiment II in Fig. 5.5
case (a) and for lower value of σd as in Experiment I, Fig. 5.5 case (b).

Holes experiment

There were two goals in this experiment. The first goal was to test the two objective metrics, one
proposed for border holes:

STHb
=

1
K

K∑
k=1

STHb
(k) =

1
K

K∑
k=1

(
1+

∑NHb

j=1 (d
j

Hb + σj
dHb)

)
dmax

· |Hj
b(k)|

|R(k)| + |C(k)| ·
(1 + FHb

(k))
2

(5.28)
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and the second for inside holes:

STHi
=

1
K

K∑
k=1

STHi
(k) =

1
K

K∑
k=1

∑NHi

j=1 |Hj
i (k)|

|R(k)| + |C(k)| . (5.29)

The second goal was to determine the psychometric annoyance functions for the two kinds of
synthetic artifacts. Finally, we studied whether the annoyance caused by a boundary hole could be
worse than for an inside hole (for large holes). For this purpose we generated 48 test sequences as
described in Sec. 4.5.2. In this experiment 28 naive subjects were asked to perform the annoyance
task.

Figures 5.11 shows the plots of the MOS Annoyance as a function of the proposed objective
metric ST of hole artifacts for all video sequences. The graph shows two curves, one corresponding
to the boundary holes MOS Annoyance and the other corresponding to the MOS Annoyance inside
holes. The boundary holes curve increases faster than the inside holes curve. For small values
of the size, Hi is more annoying than Hb, as already reported in the literature [86]. But on the
other hand, by increasing the size of the holes, a point of inversion can be noticed concerning the
annoyance of the two kinds of artifacts [37]. After that point of inversion, Hb is more annoying
than Hi, since the shape of the object becomes less recognizable. For all the sequences tested
(‘Highway’, ‘Coastguard’, ‘Hall monitor’ and ‘Group’), independently from the content, the point of
such inversion starts around the same amounts of errors [37]. This subjective experiment indicates
that both the kind and the size of the hole should be jointly taken into account and not only the
distance when an objective metric is proposed. Besides, in the objective metrics proposed in the
literature, holes are only considered in terms of uncorrelated set of pixels and their distances from
the reference boundary of the object [17, 154]. With this experiment we proved that a cluster of
error pixels should be distinguished and their characteristics should be thoroughly studied instead
of considering each error pixel individually. In other words, in the literature, methods reported
in [17, 86, 154] claim that as we move away from the border, holes become more annoying but this
depends on also the kind and the size of the hole, as shown in this experiment.

The psychometric curve that best fits the subjective data is still the Weibull function, for both
kinds of holes. The perceptual artifact metric for inside hole is given by:

PSTHi
= w(STHi, 0.3310, 0.2339) = 1 − e−(STHi

·0.3310)0.2339
(5.30)

and for border hole, the perceptual artifact metric is:

PSTHb
= w(STHb, 0.7716, 0.6416) = 1 − e−(STHb

·0.7716)0.6416
(5.31)

As can be observed from these curves the PSTHb
metric has a good fit with the MOS Annoyance

values and the psychometric curve (Eq. (5.31)) produces a correlation of 94% for r, Pearson = 92%
and Spearman = 94% . The correlation for the perceptual metric PSTHi

is lower: r = 0.68, Pearson
= 0.65 and Spearman = 0.68.

Two positions of inside holes have been tested: one further than the other to the object borders.
Hence, the F-test has been used to investigate whether the perceived annoyance of these two positions
could be described with two different fitting curves. As reported in row 3 of Tab. 5.6 the F value
shows that the same curve can be used to fit both positions of inside holes as plotted in Fig. 5.11.
This validates the simple characterization that made about inside holes without considering the
distance of the inside hole from the border of the ground truth (see Eq. (5.29)).

To further confirm the hypothesis that a distinction between inside holes and border holes has to
be made applied the F -test on these two sets of data to see if a unique fitting curve can interpolate
both kinds of artifacts (see row 4 of Tab. 5.6). The F -value in this case is equal to 5.01 that is above
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Figure 5.12: Correlation of flickering metrics with subjective annoyance: (a) proposed flickering
metric for Added Region Far

, (b) MPEG temporal coherence metric, MPEGTqm.

the threshold of F (2, 44) equal to 3.21. This means that an overall fitting curve is not sufficient to
describe both phenomena.

5.4.2 Perceptual Temporal Errors

We tested two different temporal phenomena on the perception of segmentation quality. Both are
described in Sec. 4.5.2. The first one aims at validating the proposed flickering metric in Eq. (5.19).
The second is pointed to find the temporal weights of Eq. (5.21) related to the expectation effect.

Flickering experiment

By carrying out subjective tests on the segmentation quality, flickering has been observed to be
one of the most annoying artifacts introduced by segmentation algorithms. Different variations of
any spatial error could be implemented to test the flickering perception. We chose to change the
position of added regions along the test sequence. This segmentation error is typically given by
noise introduced by the video camera and changes in illumination. The temporal errors present the
same number of added regions by the same shape but their position change every flickering period
fT (reported in Tab. 4.4). The annoyance task was performed with 8 naive subjects aged between
23-28. Figure 5.12 (a) shows the MOS Annoyance values gathered versus the objective metric for
flickering FAr:

FAr
(k) =

|Ar(k)| − |Ar(k − 1)|
|Ar(k)| + |Ar(k − 1)| (5.32)

The correlation with the MAV , as it can be noticed, is extremely high (r = 100%). This shows
that the metric proposed for flickering is very suitable to describe the perception of this artifact.
In order to compare this metric for capturing the temporal variations present in segmentation we
tested the temporal metric MPEG [180], MPEGTqm in Eq. (5.3). Figure 5.12 (b) shows the result
of this state of the art metric versus the MAV s gathered for this experiment. The correlation is
70%. This shows that the proposed objective flickering metric outperforms the MPEG temporal
coherence measure.
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Expectation experiment

In this experiment, 28 subjects were asked to perform the annoyance task. The same amounts of
added regions were inserted and varied temporally as depicted in Fig. 4.11. We aimed at finding if
there is an expectation effect and how this affects the overall perceived quality. Expectation effect
tested consists in providing a good overall impression on assessing the quality of the sequence under
test if a good segmentation at the beginning is present. We used in this experiment two video
sequences: ‘Coastguard’ and ‘Hall monitor’. Even though the contents of the two test sequences
are very different, the two curves obtained in Fig. 5.13 (a) for the MAVs look quite similar at a
first glance. This is especially true for complex temporal artifacts and when the temporal defects
become similar to a flickering. For both video sequences, the most annoying artifacts are those with
more temporal variation of added regions (condition B9 in Fig. 4.11). A surprising result is that the
initial temporal variation is worse than the final temporal variation for both video sequences [37]
(see conditions B6 and B8 in Fig. 4.11 and MAV values in ig. 5.13 (a)). We explained this effect
like a sort of expectation effect. A good segmentation at the beginning creates a good impression.
A bad segmentation at the beginning puts the overall impression of the segmentation quality in
jeopardy. We wanted to model this temporal effect on the overall impression of segmentation quality.
Therefore, we used these three MAV s value B6, B8 and B9 to mimic this temporal perception of
error and find the temporal weights wt(k) of Eq. (5.21) in solving the following system:⎧⎪⎨⎪⎩

1∑
wt(k)

∑K
k=1 wt(k) · STB6(k) = MAVB6

1∑
wt(k)

∑K
k=1 wt(k) · STB8(k) = MAVB8

1∑
wt(k)

∑K
k=1 wt(k) · STB9(k) = MAVB9 ,

where
∑

k wt(k) = K is the fourth condition, since the overall judgment for the sequence has to be
normalized by the total number of frames (60). After some trials, we chose to parametrize wt(k)
with the following function:

wt(k) = a · e− k
b + c. (5.33)

We use a nonlinear least-square data fitting by the Gauss-Newton method to estimate the parameters
a, b and c. Since we wanted to make it as general as possible and not specific for a kind of artifact,
we fixed STB(k) equal to 1 if the stimulus (the added region) at instant k was present and zero
otherwise (see Fig. 4.11). Figure 5.13 (b) shows the weighting function and the parameters a, b and
c found with the data fitting that will be used in the spatio-temporal metric:

ST =
1
K

·
K∑

k=1

(a · e− k
b + c) · STartifact(k), (5.34)

with a = 2, b = 7.8, and c = 0.78.
It is likely that for longer video sequences the short term memory effect [63] affects the ex-

pectation as depicted in Fig. 5.6. In our case, by applying this weighting function to the objective
metric we observed that the correlation with the MAV values increased with respect to the simple
weighting wt(k) = 1 for all k.

5.4.3 Perception of Combined Artifacts

To investigate the relationship between individual artifact strengths and overall annoyance another
experiment was devised [48, 102]. The subjects in this experiment were divided into two independent
groups. The first group was composed of 31 subjects aged between 21-30 (with 5 females) who
performed the annoyance task. The second experiment group was composed of 27 subjects (with 9
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Figure 5.13: Experiment on Expectation effect: (a) temporal defect B vs. perceived annoyance for
‘Coastguard’ and ‘Hall’ video sequences; (b) temporal weighting function taking into consideration
the Expectation effect.

females) aged between 23-32 who performed the strength task (see Sec. 4.4.2). Both groups watched
and judged the same test sequences which consisted of 45 combinations of added regions, added
background, inside hole and border hole at different amounts as reported in Tab. 5.7.

Four original video sequences were used in this experiment: ‘Coastguard’, ‘Group’, ‘Hall monitor’
and ‘Highway’. During the instruction stage, subjects of both groups were told that the test video
might contain up to four different types of artifacts - added regions, added background, inside hole
and border hole. The training stages were different for each group of subjects. Subjects in the first
group were shown two sets of video sequences: reference segmentation and segmentations with very
annoying impairments. They were asked to assign a value of ‘100’ to the most annoying impairments
in the second set. Subjects in the second group were also shown two sets of segmentations: reference
segmentations and segmentation with example of strong pure artifacts. Before the presentation of
each type of artifact, subjects were told the name of the artifact type and given a brief description
of its appearance. They were asked to assign a value of ‘10’ to the strongest impairments. For both
groups of subjects the same test sequences were used for the practice and experimental stages.

Subjective Data Analysis

The data gathered from subjects in the first group provided one single score value for each test
sequence. This value corresponded to the Mean Annoyance Value (MAV ). The data gathered
from subjects in the second group provided four score values for each test sequence. These values
corresponded to the mean strength values (MSV s) for added regions, added background, inside
hole, border hole respectively. The values for the average MAV and MSV for all video sequences
are shown in columns 2-6 of Tab. 5.7.

Figures 5.14-5.16 (1)-(45) depict the bar plots of the MSV values obtained for added regions,
added background, inside hole and border hole. Each graph shows the MSV s for each of the
combinations. The combination 1 corresponds to the reference segmentation since |Ar| = 0, |Ab| = 0
|Hi| = 0, |Hb|=0. It is interesting to notice that for some reference segmentations the values for the
MSV s and MAV s corresponding to the originals are not zero, indicating that subjects report that
these segmentations contained some type of impairment and annoyance/strength levels different
from zero.
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The test combinations 2-6-10, 3-7-11, 4-8-12 and 5-9-13 (defined in Tab. 4.5) in Fig. 5.14 cor-
respond to segmentations with only added regions, added background, inside hole and border hole
respectively. For these combinations, the highest MSV s were obtained for the corresponding pure
artifacts, while the other three types of artifacts received smaller values. MAV values were high-
est for segmentation that contained large border holes artifacts. The test combinations 16-25 in
Figs 5.14 and 5.15 correspond to segmentations with two types of artifacts. For these combinations,
the inserted artifacts with biggest amount received the highest MSV. Equal amounts received more
or less the same MSVs. The test combinations 26-33 in Fig 5.15- 5.16 correspond to segmentation
with three types of artifacts and the same happens. The test combinations 14-15 in Fig 5.14 and
34-45 in Fig 5.16 correspond to segmentations with the four types of artifacts. Also, for these com-
binations, the artifacts with the greatest amount received higher MSV s. The same effects were
observed for these combinations. The presence of all the artifacts seemed to decrease the perceived
MSV of added regions (combination 36) while it seemed to increase the perceived strength of inside
hole (combination 37). Therefore, there are interactions between the four artifacts in determining
the perceived strengths of the artifacts. Our principal interest in measuring the artifacts’ strength
is to investigate the relationship between the perceptual strengths of each type of artifacts and the
overall annoyance. In other words, we want to predict the MAV from the 4 MSV values (MSVAr

,
MSVAb

, MSVHi
, MSVHb

). As discussed in Chapter 2, if a video is affected by one or more types
of artifacts, the total annoyance can be estimated from the individual artifact perceptual strengths
(MSV s) using the Minkowski metric [48]:

PMAV = (a · MSV p
Ar

+ b · MSV p
Ab

+ c · MSV p
Hi

+ d · MSV p
Hb

)
1
p (5.35)

where PMAV is the predicted value for MAV , p is the Minkowski power, a, b, c, and d are the
weighing coefficients for added regions, added background, inside hole and border holes, respectively.
Columns 2-7 of Tab. 5.8 show the results obtained for the Minkowski metric fitting. The fits were
made both to the data for individual video sequences and to the overall data set. Column 7 of
Tab. 5.8 shows the correlation r of the fit. The P -values corresponding to the correlation values of
the fit were all roughly equal to zero for all cases. The fit to all the data sets is reasonably good
and there is little systematic error in the predictions.

Figures 5.17 (a)-(d) correlate the MAV versus PMAV for the segmented video ‘Coastguard’,
‘Group’, ’Hall monitor’ and ‘Highway’ generated using the Minkowski metric. The correlation
coefficients for these fits are respectively: 96%, 96%, 95% and 94%. In Fig. 5.18 we plotted the
MAV versus PMAV corresponding to the set of all segmentations. The correlation coefficient for
the fit is 94%.

In summary, annoyance increases both with the number of artifacts and their strengths. The
added region weight is almost the half of inside hole and added background weight and one third of
border hole artifact weight (a = 5.50, b = 10.35, c = 10.81, d = 15.30).

Objective data analysis

In the previous section, we presented an analysis of the Minkowski metric using only subjective
data from the experiment of combined artifacts. Now, we want to investigate if the same type
of model can be used to estimate the overall annoyance by using, instead, individual perceptual
artifact metrics. In previous sections of this chapter, we presented several artifact metrics that
measured the annoyance of four of the most common spatial and temporal artifacts found in video
object segmentation. These metrics were tested using synthetic artifacts developed in Sec. 4.5.2.
To evaluate the performance of each artifact metric and to find the psychometric fitting curve that
transforms the metric into a perceptual one, we tested its ability for test segmentations containing
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Figure 5.17: Subjective values for MSV vs. MAV and their correlation through the Minkowski
metric: the fitting parameter and the correlation are reported for each sequence: (a) ‘Coastguard’,
(b), ‘Group’, (c) ‘Hall’, (d) ‘Highway’.
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Figure 5.18: Subjective values for MSV vs. MAV and their correlation through the Minkowski
metric: the fitting parameter and the correlation are reported.
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only the artifact being measured. All these analysis were carried out in Secs. 5.4.1 and 5.4.2,
respectively using subjective data from experiments on added regions, added background, inside
hole, border hole, flickering and expectation effect.

In order to be able to combine the different proposed perceptual artifact metrics to estimate the
overall annoyance, we first need to normalize the metric values to a common range. This is because
each metric has its own range of numerical values, according to the specific method employed. The
output values of the metrics are normalized to be within 1-10, using the coefficients obtained from a
linear fitting of the metric values to the perceptual strength data MSV acquired from the subjective
experiment. Table 5.9 shows the normalization expression of each metric, along with the Spearman’s
rank correlation coefficient for all the fits. The correlation values give a measure of how close the
perceptual artifact metrics are to the subjective data for this experiment.

In summary, all the perceptual metrics show a good correlation with the MSV of the subjective
experiment. Then, on the basis of these results an overall annoyance metric will be proposed in the
next section and the results will be presented and discussed.

5.5 Overall Perceptual Objective Metric

Given the results of the previous sections, we propose a ground truth based perceptual objective
metric that uses the metrics for spatial artifacts: PSTAr

of Eq. (5.25), PSTAb
of Eq. (5.27), PSTHi

of Eq. (5.30), and PSTHb
of Eq. (5.31); for temporal artifacts: the flickering metric in Eq. (5.19)

and the expectation effect of Eq. (5.34). Therefore the predicted annoyance by the proposed metric
is given by the following expression (Minkowski metric):

PST = (a · (PSTAr
)p + b · (PSTAb

)p + c · (PSTHi
)p + d · (PSTHb

)p)
1
p (5.36)

To find the Minkowski coefficients and exponent, we perform a nonlinear least-squares data fitting
using the mean annoyance values (MAV ) obtained from the subjective experiment of combined
artifacts. The correlation coefficient and the Minkowski exponents and coefficients are reported in
Tab. 5.10(a) for all the test sequences.

Figures 5.19 (a), (c), (e), (g) show the graphs of the MAV values versus the perceptual spatio
temporal objective metric (PST ) for the tested video sequences. We have also fitted the results
for the linear model with p=1 in Eq. (5.36) and the results are reported in Figs. 5.20 (b), (d), (f),
(h). The graph of the correlation of MAV s versus PST for all the video sequences is reported in
Fig. 5.19 (i). The correlation coefficients for these fits are reported in Tab. 5.10 (b). The linear
model is simpler and more restrictive and, as it can be seen in the graphs in Fig. 5.19 (l), the
correlation slightly decreases between the linear (l) (r = 86) and the more generic Minkowski model
(i) (r = 0.90, Pearson = 0.95 , Spearman = 0.94). Moreover, there is not a significant difference
between the objective model (r = 0.90) and the subjective model depicted in Fig. 5.18 (r = 0.94).
Also in this case, the added regions weight is almost half of inside hole and added background and
one third of border hole artifact (a = 11.36, b = 19.54, c = 26.58, d = 32.52).

Although in theory different weighting functions could be used for each image size in order to
attain the resolution independence, the anisotropic behaviors of pixel distances in rectangular grids
makes it computationally difficult to realize. Therefore, a standard image resolution has been defined
for comparison of result, namely CIF size (288 lines by 352 columns) and masks of other dimensions
have to be scaled to CIF before the metric computation is performed. The viewing conditions are
defined in the ITU Recommendations [65, 66].

In order to compare the results of the proposed method to the state of the art metrics, we ran the
three metrics described in Sec. 5.2.2 on the 180 test sequences of the combined artifact experiment.
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Figure 5.19: Correlation of the proposed perceptual metric PST with subjective annoyance: first
row ‘Coastguard’, second row ‘Group’, third row ‘Hall monitor’. (a), (c), (e) with the optimal p and
(b), (d), (f) with linear fitting p = 1.
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Figure 5.20: Correlation of the proposed perceptual metric PST with subjective annoyance for
‘Highway’ and all the video sequences: (g) and (i) with the optimal p and (h) and (l) with linear
fitting p = 1.
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Figure 5.21: State of the art objective metrics vs. subjective annoyance: (a) MPEG metric, (b)
Villegas’ metric, (c) Nascimento’s metric.

The state of the art metrics reported in Eq. (5.11) and tested are: the MPEG metric, MPEGqm,
Villegas’ metric, wqm, and Nascimento’s metric, mqm .

Figures 5.21 (a), (b) and (c) show the graphs for respectively, MPEGqm, wqm and mqm
metrics. The correlations coefficients are respectively: r = 0.71, r = 0.56 and r = 0.21. Our
proposed method with a correlation of r = 0.90 outperforms the other state of the art metrics (see
Fig. 5.19 (i)).

MPEG metric is the second best metric in fitting the subjective data. This result is surprising
since no distinction between different kinds of error is applied in the MPEG metric in contrast with
Villegas’ and our metrics. However, it has to be mentioned that all the weights for the Villegas’
metric in Eq. (5.10) are set the same and maybe by applying a tuning of them a better fit could have
been obtained. However, if no specific application is specified, as in these subjective experiments,
using equal weights is a good compromise.

As predicted in Sec. 5.2.2, the Nascimento’s metric does not provide a good fit with the subjective
data. In fact this metric is more suitable to predict object tracking quality than object segmentation
quality. In our subjective experiments, subjects were told to judge in general the quality of segmen-
tation without necessarily taking into special account the quality of object tracking. However it is
interesting to notice in the graph of Fig. 5.19 (d) the different ranges of errors are grouped together
by Nascimento’s metric according to the prevalence of the kind of spatial error inserted in the test
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video sequences.

5.6 Conclusions

The first objective of this chapter is to present the existing methods to objectively evaluate the
segmentation quality both for still images and video sequences. Their advantages and disadvantages
are discussed and it is pointed out that none of them include the characterization of artifact percep-
tion in their models. Video object segmentation evaluation is tackled with particular focus. To this
end, three state of the art metrics whose performance were analyzed are described in details. The
first state of the art metric, MPEGqm is a simple sum of spatial and temporal errors commonly
adopted by the research community. The second metric, wqm is a refinement of the first one where
false positive and false negative errors are distinguished and weighted differently in the final formula.
The third state of the art metric, mqm combines several simple metrics to classify the errors into
split and merge errors, detection failures and false alarms. None of the state of the art objective
methods includes the characterization of artifact perception in their models.

The second objective of the chapter is to propose a new objective metric which includes the
study and characterization of segmentation artifact perception obtained by means of subjective
experiments. Four spatial artifacts are deeply analyzed, namely added regions, added background,
inside holes and border holes. Two temporal effects are studied, namely the temporal flickering
and the expectation effect. Objective measures are proposed to estimate these artifacts. Through
subjective experiments the objective measures are modeled by psychometric curves found to assess
the annoyance of the artifact perception.

The subjective experiment results show that added region annoyance perception is not influenced
by the shape or the position of the artifact but only by its size; the added background measure
matches the human annoyance perception both when the artifact is uniformly distributed along the
object boundaries and when it is concentrated in some parts of the object boundaries; inside hole
for small sizes are more annoying than holes on the border, but on the other hand by increasing
their size border holes become more annoying than inside holes as the shape of the object becomes
less recognizable; the proposed flickering measure is more correlated to the subjective annoyance
perception of such artifacts than the state of the art MPEG temporal metric; expectation effect is
obtained in 5-second long test sequences and it consists in providing a good overall impression on
assessing the quality of the sequence under test if a good segmentation is presented at the beginning
and vice-versa. In the last subjective experiment, the relationship between the individual spatial
artifact weights and the overall annoyance is found. The added region weight is half of the inside hole
and added background weight, and one third of the border hole artifact weight (the most annoying
artifact).

The final objective of this chapter is to propose an overall perceptual objective metric on the
basis of the results above described. The performance of the new metric is analyzed in terms of
correlation with subjective scores and compared to those of the three considered state of the art
metrics. The perceptual objective metric results are comparable to the subjective annoyance model
based on perceptual artifact strength and are definitely better than those of the state of the art
metrics MPEGqm, wqm and mqm.
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Table 5.7: MSV s and MAV s values for all segmented video sequences and all combination used in

combined artifact experiment. the experiment.

Test |Ar| |Ab| |Hi| |Hb| MSVAr MSVAb MSVHi MSVHb MAV

1 0 0 0 0 0.0877 0.0876 0.1021 0.1069 6.1536
2 180 0 0 0 7.0133 0.2924 0.1021 0.1356 22.6652
3 0 180 0 0 0.2645 5.9390 0.1021 0.1563 33.3475
4 0 0 180 0 0.0877 0.0843 6.8909 0.5516 38.7372
5 0 0 0 180 0.0877 0.0892 0.3071 6.6246 483527
6 60 0 0 0 3.8507 0.0922 0.1021 0.1749 16.9553
7 0 60 0 0 0.1372 3.6402 0.1021 0.1105 24.0348
8 0 0 60 0 0.0877 0.0770 3.8014 0.1016 27.4520
9 0 0 0 60 0.0877 0.0841 0.1366 4.1107 34.1164
10 24 0 0 0 1.9842 0.0899 0.1407 0.1857 12.5655
11 0 24 0 0 0.0877 2.0074 0.1021 0.1674 13.2082
12 0 0 24 0 0.0877 0.0761 2.9943 0.1733 24.1132
13 0 0 0 24 0.0877 0.0761 0.1520 2.7757 23.3064
14 60 60 60 60 3.3964 2.4635 3.2683 3.3934 58.4866
15 24 24 24 24 1.8564 1.4877 2.5851 2.2455 41.7692
16 60 60 0 0 3.2743 6.0577 0.1021 0.1737 44.4791
17 0 60 60 0 0.1309 3.3299 3.8570 0.3055 42.4672
18 0 0 60 60 0.0877 0.0761 3.6815 3.5309 44.3497
19 60 0 0 60 3.7006 0.0761 0.1313 3.7160 39.3042
20 60 0 60 0 3.7049 0.0831 3.6841 0.1292 35.6497
21 0 60 0 60 0.0927 3.4445 0.3646 3.6124 46.0307
22 180 0 24 0 7.0127 0.2083 2.8334 0.1115 38.5573
23 0 180 0 24 0.2002 5.9421 0.1780 2.3034 43.4045
24 24 0 180 0 1.8346 0.1310 6.4809 0.5970 47.3065
25 0 24 0 180 0.0985 1.5889 0.4589 6.4816 55.1360
26 180 24 24 0 7.0244 1.7153 2.6863 0.2761 42.6581
27 0 180 24 24 0.1390 5.8701 2.8902 2.0371 54.4130
28 24 0 180 24 1.8309 0.0777 6.3907 2.5492 53.3266
29 24 24 0 180 1.9844 1.1578 0.2771 6.4670 60.3913
30 180 0 60 60 6.2229 0.2530 3.2891 3.5029 53.1470
31 60 180 0 60 3.3900 5.6682 0.2185 3.2926 60.0855
32 60 60 180 0 3.1897 5.6819 6.3051 0.7411 61.4938
33 0 60 60 180 0.0877 2.5356 3.1930 5.9815 69.6631
34 60 60 60 180 3.5758 2.3133 3.0205 6.0809 69.4016
35 180 60 60 60 6.6470 2.5376 3.1695 3.2051 62.6772
36 60 180 60 60 2.9195 5.3585 3.1376 3.0265 66.8558
37 60 60 180 60 2.9301 5.1584 5.6035 3.6762 70.8286
38 24 180 24 24 1.8480 5.6422 2.9430 2.1074 58.5226
39 24 180 24 24 1.7746 5.8348 2.5564 2.0194 58.1906
40 24 180 24 24 1.9364 1.3128 6.3864 2.2994 59.2983
41 24 24 24 180 1.9999 1.0205 2.6602 6.2791 65.9693
42 180 24 180 60 6.3306 1.0030 5.9296 3.2082 65.6139
43 60 180 24 180 3.2002 5.5115 2.6920 5.8289 73.1322
44 180 60 180 24 6.1484 2.2794 6.1829 2.3050 63.5157
45 24 180 60 180 1.6707 5.2750 2.9312 5.9242 74.8563
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Table 5.8: Subjective fitting for combined artifact experiment: Minkowsi fitting parameter and
correlation values for all the video sequences.

Video p a b c d r

Coastguard 1.33 7.35 11.13 10.25 12.46 0.96
Group 1.18 3.49 7.36 6.69 10.86 0.96
Hall monitor 1.37 5.73 13 12.64 16.61 0.95
Highway 1.44 6.94 12.31 19.24 27.52 0.94
All 1.32 5.50 10.35 10.81 15.30 0.94

Table 5.9: F values to test if different fitting curves are needed to describe the perceived annoyance
for different shapes and positions of added regions.

Artifact Normalization r

PSTAr
0.16 · PSTAr

− 0.15 0.95
PSTAb

0.25 · PSTAb
+ 0.15 0.92

PSTHi
0.08 · PSTHi

− 0.33 0.94
PSTHb

0.06 · PSTHb
− 0.28 0.90

Table 5.10: Minkowski parameters and correlation (a) best p fitted, (b) p=1.

Video p a b c d r

Coastguard 1.57 13.23 36.58 22.57 27.26 0.96
Group 1.38 6.81 16.65 12.44 18.43 0.97
Hall monitor 1.56 9.13 20.33 21.06 23.91 0.96
Highway 1.88 18.60 21.39 64.56 79.24 0.90
All 1.60 11.36 19.54 26.58 32.52 0.90

(a)

Video a b c d r

Coastguard 3.36 7.54 4.47 5.27 0.90
Group 2.66 6.02 5.19 5.26 0.95
Hall monitor 2.38 4.87 5.62 3.98 0.91
Highway 2.83 3.05 4.16 7.38 0.84
All 2.86 4.50 4.77 5.82 0.86

(b)
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Performance and

Applications 6
6.1 Introduction

In the previous chapter, we described a set of experiments on segmented video sequences with
embedded synthetic artifacts. In this chapter we want to test our metric on real artifacts generated by
typical segmentation algorithms. We present both objective and subjective studies of the annoyance
generated by the real artifacts introduced by video object segmentation algorithms. The metric
proposed in this thesis and some state of the art metrics are used to assess the objective quality of
these segmentation algorithms. Subjective experiments are performed to validate their correlation
with Mean Opinion Scores (MOS).

To the best of our knowledge, a comparison among different objective metrics for video segmen-
tation quality assessment has received little attention by the image processing community so far, as
well as the study of their performances on real segmentation algorithms. This study considers both a
general and an application dependent segmentation scenarios, while in the literature no application
has been taken into account.

The selected segmentation algorithms are presented in Sec. 6.2 and a general framework is con-
sidered to discuss the correlation between the subjective and objective results. In the second part of
this chapter, some of the most common applications of video object segmentation are illustrated. In
Sec. 6.3, subjective experiments are proposed for different applications. According to the particular
application, subjective results are correlated to objective metric results to test their performances.
Section 6.4 draws the conclusions.

6.2 Segmentation Assessment - General Framework

As underlined in the previous sections, segmentation of objects in image sequences is a crucial
task for a wide variety of multimedia applications. The ideal goal of segmentation is to identify
the semantically meaningful components of an image and to group the pixels belonging to such
components. While it is very hard to segment static objects in images, it is easier to segment
moving objects in video sequences. Once the moving objects are correctly detected and extracted,

93



94 Chapter 6. Objective Metric Performance and Applications

they can serve for a variety of purposes. In this section, we do not focus on any of the specific
purposes of segmentation but provide a general framework. Human viewers are asked to assess the
quality of segmented objects for “general purposes” as we did in the two previous chapters. In order
to assess if a segmentation is good for general purposes, we asked viewers to mentally compare
the results of the segmentation at hand to the ideal (reference) segmentation and formulate their
judgments.

Since studying how subjective scores change in relation to the specific segmentation task at hand
provides a lot of interesting insights in developing evaluation metrics, in the next section, application
dependent segmentation results will be analyzed.

In Sec. 6.2.1, we describe the segmentation algorithms used in testing the performance of the
objective metric. The subjective experiment and the data set are presented in Sec. 6.2.2. Section
6.2.3 reports the experimental results. The objective results versus the subjective ones are analyzed
in terms of correlation coefficients and our metric is compared to the results obtained using state of
the art metrics.

6.2.1 Video Object Segmentation Algorithms

In our experiments we have used seven static background segmentation methods. In the following,
the principles on which each technique is based are reported. For further details the reader is invited
to refer to the corresponding paper [52, 62, 67, 71, 94, 132, 138]. Fine tuning of parameters has
been done on a small data set of each algorithm according to subjective evaluation criteria. Then
parameters are left untouched for the remaining image sequences in the test data.

The approaches of the tested algorithms differ in using various features such as color, luminance,
edge, motion and combinations of them.

For example, a segmentation method that uses only the edge information is the technique pro-
posed by:

Kim et al. [71] extracted the difference edge map between consecutive frames. This approach is
based on gray scale images and it applies the Canny edge operator to the current, background, and
successive frames. The motion information obtained by the difference edge map is used for selecting
the relevant edges from the current frame. The object mask is achieved by filling the boundaries
received by the previous edge results with connecting the first and second occurred edge pixels for
each vertical and horizontal line, respectively.

There are three methods based on the color information analysis:
Horprasert et al. [62] used color and illumination information. This method evaluates for each

pixel the brightness and the chromaticity distortions between the background image and the current
frame. The background image is therefore modeled by four values: the mean and the standard
deviation over several background frames and the variation of the brightness and chromaticity
distortions. The current frame is subtracted from the modeled background image and each pixel is
classified as original background, shadow, highlighted background and foreground.

François and Medioni [52] operated in the Hue-Saturation-Value (HSV) color space and models
the background pixels by using the mean and standard deviation and updating these values at each
frame. The current frame pixels are compared to those of the updated background. The V value is
always used and the color information H and S are used in the regions where they are evaluated to
be reliable.

Shen et al. [138] used two color spaces: Red-Green-Blue (RGB) and Hue-Saturation-Intensity
(HSI). In the first color space the moving objects are detected by using a fuzzy segmentation for
each color channel while in the second, shadows are eliminated by using the difference between
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consecutive frames. This algorithm performs well also under varying illumination conditions since
it considers changes of successive frames and updates the background model.

Two of the considered methods use both color and edge information:
Jabri et al. [67] modeled the background in two parts: the color model and the edge model.

The background model is trained in both mentioned parts by calculating the mean and standard
deviation for each pixel of any color channel. The edge model is built by applying the Sobel edge
operator for both horizontal and vertical case. With subtraction of the incoming current image
on each channel, confidence maps are generated for both information color and edge. After that a
combination of the two maps are utilized by taking its maximum values, a single median filtering
step is applied to the resulting confidence map to fill holes and remove isolated pixels. At least this
output goes through a hysteresis thresholding for binarization.

McKenna et al. [94] proposed a method similar to Jabri, since they use the same information
(color and edge) to build the background but introduce a new color model to eliminate cast shadows.
In fact, with this method each pixel’s chromaticity is modeled using the means and variances of
the normalized RGB color components [47]. Therefore, any significant intensity change without
significant chromaticity change is detected as shadow.

Finally there is one method that does not correspond to any of the previously defined classes:
Image Differencing by Rosin [132] was the first method applied for video segmentation in case

of static or motion compensated camera conditions and is based on basic background subtraction.
Gray scale images are used and the results depends only on the applied thresholding method.
The segmentation results differ very much since the threshold value is sensitive to environmental
conditions, e.g. due to similar colors, illumination changes.

6.2.2 Subjective Experiment Results

The experimental methodology corresponds to the five-step procedure described earlier in Sec. 4.4:
oral instructions, training, practice trials, experimental trials and interview.

The test group was composed of 35 subjects aged between 23 and 41 (with 8 females) who
performed the annoyance task (see Sec. 4.4.2). The textured video objects have been overlapped
on a uniform gray background (Y = 127, U = 127, V = 127). Three original video sequences
used in this experiment were ‘Highway’, ‘Group’ and ‘Hall monitor’ (sample frames are shown in
Figs. 4.10 (a), (b), (c)). The seven segmentation algorithms described in the previous section have
been applied to each original video sequences. A total number of 24 sequences was generated: 21 test
segmented sequences (3 original video sequences × 7 segmentation algorithms) plus the 3 reference
segmentations of ‘Hall monitor’, ‘Highway’ and ‘Group’ shown in Fig. 6.2.

In Tab. 6.1 the gathered Mean Opinion Scores for the Annoyance Values (MAV ) are reported
for all the video sequences and algorithms along with the 95% confidence interval δ.

The results of the subjective experiments averaged for all the three video sequences are depicted
in bar-graph of Fig. 6.1. In this graph the averaged MOS Annoyance values (MAV ) have been
plotted for each real segmentation algorithm and the reference segmentation. The subjective results
show that the algorithms which on average introduce the most annoying artifacts are the Kim (see
Fig. 6.3) and Image Differencing (see Fig. 6.4). The least annoying artifacts are generated by the
Jabri (see Fig. 6.8) and Shen (see Fig. 6.9). .

Table 6.2 reports the subjective ranking of the tested algorithms from the most annoying to the
least annoying and a brief description of the artifacts that are typically introduced. As described in
Tab 6.2, the most annoying artifact is flickering. It is usually due to noise, camera jitter and varying
illumination, and consists in erroneously segmented regions that are different at each frame. A
high value of flickering of added regions is generated by Kim’s algorithm and as it has been already
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Table 6.1: MAV values obtained for each segmentation algorithm and the correspondent confidence
interval δ for all the test video sequences.

’Group’ ’Hall monitor’ ’Highway’
Segmentation MAV δ MAV δ MAV δ

Reference 8.77 2.94 26.74 6.89 15.31 5.22
François 68.57 8.56 61.43 7.52 30.20 6.76
Horprasert 69.94 6.79 57.57 7.18 32.06 6.83
Image Differencing 99.74 4.94 60.00 6.94 67.54 7.29
Jabri 57.46 7.81 40.37 7.11 37.94 7.01
Kim 72.00 7.05 86.89 6.52 71.14 7.43
McKenna 83.36 5.80 56.86 7.47 54.26 8.15
Shen 57.83 7.59 55.26 7.48 54.26 7.16

Table 6.2: Description of artifacts introduced by the real segmentation algorithms and their per-
ceived strengths gathered in the interview stage.

Algorithm Artifacts Strength

added regions high
Kim added background high

flickering high
inside holes high

Image Differencing border holes high
flickering medium
inside holes medium

McKenna border holes medium
flickering medium

François added background high
Horprasert border holes medium

added regions medium
Jabri added background low

added background low
Shen border holes low
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Figure 6.1: MAV values obtained for each segmentation algorithm and averaged on the three tested
video sequences.

(Hall monitor)

(Group)

(Highway)

Figure 6.2: Sample frames for reference segmentation of the tested video sequences: ‘Hall monitor’
(frames #40, #50, #60,#70), ‘Group’ (frames #90, #100, #110, #120), ‘Highway’ (frames #75,
#85, #95, #105).
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(Hall monitor)

(Group)

(Highway)

Figure 6.3: Sample frames for the Kim’s algorithm segmentation results for the tested video
sequences: ‘Hall monitor’ (frames #40, #50, #60,#70), ‘Group’ (frames #90, #100, #110, #120),
‘Highway’ (frames #75, #85, #95, #105).

pointed out (see subjective experiments reported in Sec. 5.4.2), it is the most annoying artifact (see
Fig. 6.3). In fact, no matter what the size of the artifact is, if the segmentation presents temporal
instabilities it will annoy the subject a lot more than any other spatial artifacts.

In Tab. 6.2, the second annoying artifact is that one introduced by Image Differencing (see
Fig. 6.4) due to the large amount of holes and especially border holes. As we commented in the
combined artifact experiment discussed in Sec. 5.4.3, this has the biggest weight in terms of annoy-
ance. It is usually due to the algorithm’s failures in differentiating the foreground regions from the
background since they look very similar in color or texture or other uniformity features that the
algorithm exploits to perform the segmentation.

Then the artifacts introduced by McKenna’s algorithm (see Fig. 6.5) are rated as the third most
annoying. In this case, especially the holes are annoying to human observers, even if they are smaller
than those introduced by the Image Differencing’s method, but still of considerable amount.

Added background is the fourth annoying artifact and is generated by François’s algorithm (see
Fig. 6.6). It is mostly caused by erroneously detecting moving shadows as part of the moving
foreground objects. Since shadows move along with objects from which they are cast, we observed
that this artifact does not annoy too much the human observer and it is subjectively rated better
than flickering or missing parts of objects in this general scenario.

The least annoying artifacts are those introduced by the Horprasert’s (see Fig. 6.7), the Jabri’s
(see Fig. 6.8) and the Shen’s algorithms (see Fig. 6.9). In fact, these algorithms introduce smaller
amounts of artifacts compared to others.
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(Hall monitor)

(Group)

(Highway)

Figure 6.4: Sample frames for the Image Differencing algorithm segmentation results for the tested
video sequences: ‘Hall monitor’ (frames #40, #50, #60,#70), ‘Group’ (frames #90, #100, #110,
#120), ‘Highway’ (frames #75, #85, #95, #105).

(Hall monitor)

(Group)

(Highway)

Figure 6.5: Sample frames for the McKenna’s algorithm segmentation results for the tested video
sequences: ‘Hall monitor’ (frames #40, #50, #60,#70), ‘Group’ (frames #90, #100, #110, #120),
‘Highway’ (frames #75, #85, #95, #105).
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(Hall monitor)

(Group)

(Highway)

Figure 6.6: Sample frames for the François’s algorithm segmentation results for the tested video
sequences: ‘Hall monitor’ (frames #40, #50, #60,#70), ‘Group’ (frames #90, #100, #110, #120),
‘Highway’ (frames #75, #85, #95, #105).

(Hall monitor)

(Group)

(Highway)

Figure 6.7: Sample frames for the Horprasert’s algorithm segmentation results for the tested video
sequences: ‘Hall monitor’ (frames #40, #50, #60,#70), ‘Group’ (frames #90, #100, #110, #120),
‘Highway’ (frames #75, #85, #95, #105).
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(Hall monitor)

(Group)

(Highway)

Figure 6.8: Sample frames for the Jabri’s algorithm segmentation results for the tested video
sequences: ‘Hall monitor’ (frames #40, #50, #60,#70), ‘Group’ (frames #90, #100, #110, #120),
‘Highway’ (frames #75, #85, #95, #105).

(Hall monitor)

(Group)

(Highway)

Figure 6.9: Sample frames for the Shen’s algorithm segmentation results for the tested video
sequences: ‘Hall monitor’ (frames #40, #50, #60,#70), ‘Group’ (frames #90, #100, #110, #120),
‘Highway’ (frames #75, #85, #95, #105).



102 Chapter 6. Objective Metric Performance and Applications

6.2.3 Objective Metric Results

We have proposed a perceptual metric PST based on subjective experiments with synthetic segmen-
tation artifacts. In this section, we aim at testing the performance of PST on the real segmentation
artifacts produced by the above mentioned algotihms and compare its performance to those of
the other objective metrics presented in the previous chapter: MPEGqm, wqm and mqm (see
Sec. 5.2.2).

First, we apply the objective metrics to the seven algorithms segmentation results to obtain the
objective evaluations, then we compare these results to those obtained by subjective evaluations and
we look at the correlation between the two kinds of data: subjective and objective.

Our perceptual objective metric, explained in Chapter 5, is given by a linear combination of the
perceptual metrics for four kinds of artifacts: added region Ar, added region Ab, border holes Hb

and inside holes Hi and for sake of convenience is written below:

PST = 2.86·(PSTAr
(STAr

))+4.50·(PSTAb
(STAb

))+4.77·(PSTHi
(STHi

))+5.82·(PSTHb
(STHb

)),
(6.1)

where the perceptual metric PSTAr
is given by Eq. (5.25), PSTAb

by Eq. (5.27), PSTHb
by

Eq. (5.31) and PSTHi
by Eq. (5.30). The objective metrics ST for each artifact are computed

as described in Sec. 5.3. The only difference with the metric proposed in the previous chapter is
with regards with the temporal weights in Eq. (5.21). Dueto the different environment in which
the subjective tests were carried out for this specific experiment, the experimental conditions were
found to be slightly different. In fact, the last frame of the segmented video sequence under test
remained on the display while the human observer was making his/her judgment. This fact slightly
conditioned the human scores and the last frames had more impact on the overall annoyance with
respect to the initial ones. Thus, the temporal weights were modified as follows to model this effect:

ST =
1
K

·
K∑

k=1

(a · e k−30
b + c) · STartifact(k), (6.2)

with a = 0.02, b = 7.8, c = 0.0078, and K = 60 chosen empirically.
For future subjective experiments, it is advisable to make the last frame of the segmented video

sequence disappear after its display to prevent the subject to excessively focus on the last few frames.
The results obtained with the proposed metric, PST, for all the video sequences and algorithms

are depicted in Fig. 6.10 (a). The results for the other three state of the art metrics are shown in
Figs. 6.10 (b), (c) and (d). The correlation coefficients for our metric are larger (Pearson = 0.86,
Spearman = 0.79) compared to those of the others objective metrics: MPEGqm (Pearson = 0.73,
Spearman = 0.67), wqm (Pearson = 0.69, Spearman = 0.71) and mqm (Pearson = 0.53, Spearman
= 0.44). Our metric is consistenly defined on the annoyance scale between 0 and 100.

Since the final goal for an objective metric is to help choosing the best algorithm the best
performing algorithm on a given set of data, we have considered, for each algorithm, the MAV s

and the objective metric values and averaged them on all the three video sequences to obtain a
global subjective and objective judgment on the algorithm under test. From now on, we focus our
discussion on the averaged results. The averaged MAV values are reported in Tab. 6.3. Our purpose
was to identify which are the objective metrics that predict more reliably which algorithms perform
better on subjective scales. Thus, we computed the correlation coefficients of the averaged MAV

versus PST, MPEGqm, wqm and mqm. Table 6.3 provides these correlation coefficients. From
this table, it can be noticed that our metric is able to predict better the averaged performance of
the segmentation algorithms in terms of subjective assessment. In fact, the correlation coefficients
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Table 6.3: Correlation coefficients for the averaged objective metrics for all the sequences vs.
averaged subjective annoyance.

Correlation
Objective Metric Pearson Spearman

PST 0.91 0.81
MPEGqm 0.82 0.66
wqm 0.84 0.71
mqm 0.83 0.76

(Pearson = 0.91, Spearman = 0.81) are larger than those of the other state of the art objective
metrics reported in Tab. 6.3. In this table, we also see that Villegas’ metric wqm seems to perform
better than MPEGqm metric. This shows the utility of introducing different categories of pixel
errors which is not done for MPEGqm.

Our evaluation metric has been proposed for general purpose segmentation. Therefore, during
the subjective experiments, the subject had in mind an ideal segmentation which was displayed
during the training stage.

Segmentation is an ill-posed problem if no application is defined. Therefore, it is important when
evaluating the performance of an algorithm to have a priori knowledge on the specific application
it is addressing. In the next section we explore how segmentation is perceived differently according
to particular applications and how the objective metrics perform in such cases.

6.3 Segmentation Assessment - Application Dependent

The expected segmentation quality for a given application can often be translated into requirements
related to the shape precision and the temporal coherence of the objects to be produced by the
segmentation algorithm. Video sequences segmented with high quality should be composed of objects
with precisely defined contours, having a perfectly consistent partition along time.

A large number of video segmentation applications can be considered and typically they have
different requirements. A full classification of segmentation applications into a set of scenarios,
according to different application constraints and goals can be found in [24]. The setting up of a
subjective experiment differs for each kind of application. Therefore, we have focused our experi-
ments on three kinds of applications that are described in Sec. 6.3.1.

Section 6.3.2 presents how the subjective experiments have been carried out differently for each
specific application. The correlation between the subjective scores and the objective results are
analyzed in Sec. 6.3.3. In that section, an analysis is carried out to determine how to tune the
metric parameters according to the specific application.

6.3.1 Video Object Segmentation Applications

In coding, the development of segmentation techniques for moving objects has mostly been driven
by the so-called second generation coding [140, 141] (see Sec 4.2). The second generation coding
techniques use image representations based on the Human Vision System (HVS) rather than the
conventional canonical form which is based on the concept of pixel or block of pixels as the basic
entities that are coded. As a result of including the human visual system, natural images are
treated as being not a composition of objects defined by a set of pixels regularly spaced in all
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Figure 6.10: Objective metrics vs. Subjective Scores (MAV ) and correlation coefficients.
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(Hall monitor) (Group) (Highway)

Figure 6.11: Sample frames for video coding segmentation applications ‘Hall monitor’, ‘Group’,
and ‘Highway’.

dimensions but by their shape and color. MPEG-4 standard supports the coding of video sequences
that are pre-segmented based on video content to allow a separate and flexible reconstruction and
the manipulation of content at the decoder. Moreover, there are some special scenarios in which
automatic detection of moving video objects is strongly required. For istance, it is fundamental in
object-based video surveillance systems, which need to be implemented with some event detection
schemes. Thus, a prior decomposition of sequences into video objects becomes an important issue in
video analysis, video coding and video manipulation applications. We have chosen one application
for each of these three broad fields.

Video coding

The different segmentations (see Sec. 6.2.1) of the scene into meaningful objects have been tested in
the compression scenario. Segmentation can improve the coding performance over a low-bandwidth
channel. We have used the MPEG-4 codec scheme in the object-based video compression mode to
compress objects separately from the rest of the scene. This application is useful for applications
where the bandwidth is limited. In fact, the compression rate of the foreground objects and back-
ground can be a function of their different importance in the scene and a lowered bit rate at the
same perceived quality can be obtained. The decomposition can be obtained with an object-based
coder (object based mode) as well as with a traditional coder (frame based mode). In order to evalu-
ate different segmentation results in a video coding application, the MPEG-4 encoder (Miscrosoft’s
MPEG VM software encoder & decoder∗) was used in the experiments. According to previous work
on object based coding [153], we compressed a single background image for each test sequence using
MPEG-4 frame based-coding and the sequences of segmented foreground objects for each algorithm
using MPEG-4 object-based coding. All the quantization parameters Q for the background coding
were chosen to be equal to 10 [153]. Since we only want to study the segmentation artifact percep-
tion, the compression artifacts were not included the test sequences. The segmented video objects
were not compressed. In such a way, the compressed background can be transmitted only once and
the video objects corresponding to the foreground (moving objects) can be transmitted and added
on top of it so as to update the scene. Samples of object-based coding test sequences is shown in
Fig.6.11. Eight types of segmentation maps are applied, including the ideal (reference) segmentation
obtained by hand and the results of the seven segmentation algorithms described in the previous
section.

∗Version: FDAMI 2-3-001213, integrator: Simon Winder, Microsoft Corp.
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(Hall monitor) (Group) (Highway)

Figure 6.12: Sample frames for video surveillance segmentation application ‘Group’, ‘Hall monitor’
and ‘Highway’.

Video analysis

Video surveillance is a particular application of video analysis [18]. Until recently, surveillance has
been performed entirely by human operators, who interpreted the visual information presented to
them on one or more monitors. Sometimes, the fatigue due to several work hours compromised
the ability to give the alarm appropriately. Therefore, in the last decade, a considerable effort has
been devoted to developing automatic or semi-automatic video-based surveillance systems able to
alert human operators when something unusual occurs in the environment under surveillance. Such
systems are used to perform different tasks, such as object detection, vehicle tracking on highways for
traffic control purposes, analysis of human behavior, or people counting in public environments. All
the systems must detect unusual situations. The definition of a performance evaluation procedure
can be helpful, in that it would allow one to select the best segmentation parameter values and to
provide useful guidelines for the installation of a particular system. However, performance evaluation
of complex systems remains an open problem.

Video surveillance is a typical case where knowledge of the specific application can be used to
tune the parameters of the evaluation metric: undetected objects or over segmentation will have a
bigger impact on the overall annoyance than changes in the shape of the correctly detected objects.

In order to evaluate different segmentation algorithms in the context of a video surveillance
applications, the segmentation results (see Sec. 6.2.1) and the reference segmentation have been
used to produce test video sequences where the object boundaries detected by the segmentation
algorithm have been underlined on the original video sequence by a colored contour as depicted in
Fig. 6.12.

Video manipulation

The goal of video manipulation is to put together video objects from different sources in order to
create new video content. In particular, in the augmented reality application [100] considered here,
video segmentation serves to extract real objects that are then inserted in a virtual background. One
of the possible application is to create narrative spaces and interactive games and stories [3, 87]. In
order to evaluate different segmentation results in augmented reality scenario, we created a virtual
background for each original sequence: we extracted the contour of the background image to recall
a virtual background in black and white as in comics scenarios. For the test sequence ‘Group’ we
applied a virtual background created in the context of the European Project art.live [3] processed the
same way to extract only the contours. Figure 6.13 shows a sample frame for each video sequence.
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(Hall monitor) (Group) (Highway)

Figure 6.13: Sample frames for video augmented reality segmentation application ‘Group’, ‘Hall
monitor’ and ‘Highway’.

Figure 6.14: Graphical interface example for application dependent segmentation evaluation: tu-
torial stage.

6.3.2 Subjective Experimental Methodology

The experimental methodology is composed of a five-step procedure as described in Sec. 4.4: oral
instructions, training, practice trials, experimental trials and interview. After a general introduction
on segmentation, the typical artifacts are shown and the original video with the correspondent
segmented video are shown as in Fig. 4.5 (a). After this introduction the three different applications
are explained and the corresponding segmentations are shown in the training stage as depicted in
Fig. 6.14.

Each application has specific protocols that are reported in Appendix B. The test group was
composed of 35 subjects aged between 23 and 41 (with 8 females) who performed the annoyance
task. During the experimental trials, subjects were asked to evaluate one application at a time for
the tested segmentation algorithms (see Fig. 6.15 for surveillance application). The total number of
test sequences for this part of the experiment was 82 which included 3 original video sequences (‘Hall
monitor’, ‘Highway’,‘Group’) × 8 segmentation algorithms (the reference and the above described
segmentation algorithms) × 3 applications (compression, augmented reality, video surveillance).

The display layout and viewing distance were in concordance with the subjective viewing for
CIF format [64] images (see Table 6.4).
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Figure 6.15: Graphical interface examples for application dependent segmentation evaluation:
experiment trial.

Table 6.4: Viewing conditions during subjective test.

Variable Values

Monitor type WXGA Color Shine LCD
Monitor resolution 1280 × 800
Viewing distance 60 cm
Monitor size 15.4”
Room illumination dark room
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6.3.3 Application Dependent Objective Metric

In this section we investigated two different issues. First, we find the best parameters for our metric
depending on the segmentation application. To find the a, b, c, d coefficients for the proposed
metric, we performed a nonlinear least-squares data fitting using the mean annoyance values (MAV )
obtained from the subjective experiment. Second, we analyze our metric performance compared to
those of other state of the art metrics according to the tested application.

Figures 6.16 (a), (c), (e) show the results of the proposed PST metric versus the subjective
annoyance values MAV in relation with the application.

The best performance, when comparing the three applications is obtained for the augmented
reality application. This can be explained by the fact that this application is the most similar to
the general purpose segmentation evaluation developed to design the metric. In fact, cutting and
pasting objects into a virtual background is more or less what we have done with a plain uniform
background for the general framework. Therefore, the perception of objects in these two different
scenarios is similar and since our metric has been built on the basis of experiments in the general
case, it seems to work better for the augmented reality applications.

An interesting aspect of this research is that the parameters of our metric can be easily adjusted
according to the different kinds of applications. Thus, on the basis of the subjective data we defined
a posteriori the weights for each artifacts to achieve a better fit with the subjective values. We
obtained good results that are depicted in Fig. 6.16 (b), (d), (f).

In the compression scenario, the weights obtained for added regions and background were really
small compared to those for inside and border holes. In fact, in this application we have preserved
the quality of the objects and compressed the background. Thus, the parts of the object that
have been erroneously segmented as part of the background will be compressed and will annoy the
subjects more than having segmentation artifacts like added region or background that have not be
compressed.

In the surveillance application the biggest weights are given to added regions and inside holes.
This can be explained by the fact that human viewers in the surveillance scenario pay attention
to mis-detected or over-detected objects that could lead to dangerous situations of false alarms (in
case of erroneus detection of background parts as moving objects) and missed alarms (in case of
mis-detection of moving objects).

Finally, in the augmented reality application the most important weights were for added back-
ground, and inside and border holes. In fact, every artifact that changes the shape or allows to see
the virtual background beneath the real objects causes a lot of annoyance in the subjects that are
focusing their attention on the virtual story or the interactive game.

Next, we need to find the correlation with the subjective data for the other state of the art
metrics. We plotted the objective results versus the subjective annoyance values in Figs. 6.17 (a),
(b), (c) for MPEGqm; (d), (f), (g) for wqm; and (h), (i), (l) for mqm in all the three applications.
The correlation coefficients reported in Fig. 6.17 are lower than those of our PST metric of Fig. 6.16.
However, MPEG metric, MPEGqm, outperforms both Villegas’s (wqm) and Nascimento’s (mqm)
metrics in surveillance and augmented scenarios. No state of the art objective metric performs well
in the case of compression, and the surveillance application is the only case where Nascimento’s
metric (mqm) performs reasonably well. The correlation coefficients are given in Tab.6.5.

6.4 Conclusions

In this chapter a study on real artifacts produced by typical video object segmentation algorithms
has been carried out to test the proposed objective metric for segmentation quality assessment.
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Figure 6.16: Objective metric PST vs. Subjective Scores (MAV ) and correlation coefficients
for different segmentation applications: with no optimized (a), (c), (e) and optimized (b), (d), (f)
Minkowski parameters.
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Augmented Surveillance Compression
Objective Metric Pearson Spearman Pearson Spearman Pearson Spearman

PST (general) 0.94 0.91 0.86 0.77 0.78 0.79
PST (app. dep.) 0.95 0.93 0.91 0.85 0.89 0.89
MPEGqm 0.78 0.68 0.83 0.80 0.49 0.41
wqm 0.74 0.65 0.79 0.77 0.37 0.32
mqm 0.67 0.55 0.72 0.65 0.50 0.47

Table 6.5: Correlation coefficients for the objective metrics vs. subjective annoyance.

Seven segmentation algorithms were chosen as typical and tested both objectively and subjectively.
First, a classification of the real artifacts introduced by typical segmentation algorithms has been
provided according to subjective perception. Second, an analysis of the performance of the objective
metrics, including ours, has been performed.

To the best of our knowledge, a comparison among different objective metrics for video segmen-
tation quality assessment has received little attention by the image processing community so far,
as well as the study of their performances on real segmentation algorithms. Moreover, our study
considered both general and application dependent segmentation scenarios, while in the literature,
applications are neglected in the evaluation.

Real artifacts have been subjectively tested in both general and application dependent scenarios.
The segmentation applications have been chosen in the field of video coding, video analysis and
video manipulation. A subjective test has been proposed and designed to test each of them.

In both scenarios, the proposed metric outperformed the state of the art metrics.
In addition, it has been discussed how appropriate parameters can be chosen for our proposed

metric for each of the considered applications. In fact, we found that when developing a segmen-
tation evaluation for a specific application, the characteristics of the application provide valuable
information for the selection of appropriate segmentation artifact weights. For the considered ap-
plications, especially compression, augmented reality and video surveillance, different perceptual
weights have been found on the basis of subjective experiments. In the compression scenario, the
perceptual weights obtained for inside and border holes are larger than those for added regions and
background. This is due to the fact that parts of objects are erroneously considered as belonging to
the background (holes) and thus compressed. In the surveillance application, added region weights
are larger than those of background since thay can be confused as objects and thus causing false-
alarms. Moreover, the weights of inside hole are larger than those of border holes since they could
cause dangerous missed alarm situations. In the augmented reality scenario, shape artifacts (border
holes and added background) have the largest weights since they compromise the overall impression
of interactive story in which the characters are cut and pasted in the virtual background.
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Subjective and Objective

3D Watermarking

Evaluation 7
7.1 Introduction

Nowadays, a new kind of multimedia data has reached the same level of diffusion as audio, still
images and video: geometric data. Architecture, Design, Mechanical Engineering, Entertainment
and Cultural Heritage are some of the main important areas in which three-dimension (3D) models
are widely applied. Often, the creation of a 3D model, in particular in certain fields, like in Cultural
Heritage, requires a lot of resources in terms of time and costs. The Digital Michelangelo Project [126]
of the University of Stanford, for example, has required 30 nights of scanning and 22 people only to
acquire a high-quality 3D model of the David of Michelangelo (Figure 7.1) and about 1 year to create
a complete archive of the principal statues and architectures of the great artist. These two factors
strongly motivate the demand of robust watermarking methods for 3D objects. Relatively recently,
researchers in digital watermarking have moved their attention to this problem, and some algorithms
to embed information within geometric data have been developed. However, no benchmark to test
digital watermarking systems of geometric data has been reported.

In this part of the thesis, we have concentrated our efforts in the study of the visual distortions
introduced by typical watermarking systems for 3D models and the development of objective metrics
apt to perceptually assess the quality of watermarked 3D models. In fact, one of the fundamen-
tal requirements of a watermarking system is the imperceptibility of the inserted watermark (see
Sec. 3.2).

In this chapter, we propose two perceptual metrics for the quality assessment of watermarked
3D objects. The reasons for proposing perceptual metrics are the evaluation and comparison of
perceptual artifacts introduced by 3D watermarking algorithms. The final aim of evaluation is to
minimize extraneous details introduced by watermarking by modulating the watermark insertion in
order to obtain little or no perceptual artifacts. The second is to use such metrics for comparing
the performance of different 3D watermarking algorithms on the basis of the artifacts perceived on
the 3D model.

A possible approach could be to simply apply well-known image-based perceptual metrics to the
final rendered images of the 3D model. The main problem of this approach is that the perceived
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Figure 7.1: Digital Michelangelo Project. (Left) David’s acquisition. (Right) The reconstructed
three-dimensional model.

degradation of still images may not be adequate to evaluate the perceived degradation of the equiv-
alent 3D model. Hence, the approach we chose is to evaluate the human perception of geometric
defects of watermarked models and then to build an ad-hoc perceptual metric that works directly
on the model’s surface. In such a case, subjective experiments dealing directly with the 3D models
are needed. In particular, we propose two subjective experiments with different purposes. The
first experiment (Experiment I), is carried out to investigate the perception of artifacts caused by a
watermarking algorithm on 3D models and to find suitable metrics to measure artifacts’ perceptual
severity. On the basis of the subjective data collected with this experiment two metrics based on
roughness estimation of the model’s surface have been devised to perceptually measure the amount
of visual distortions introduced by the watermarking algorithm over the surface of the model. Then,
a second experiment (Experiment II) is conducted in order to validate the proposed metrics with
other watermarking algorithms.

This chapter is organized as follows. Previous works on perceptual image watermark insertion,
mesh simplification and perceptually-guided rendering are reviewed in Section 7.2. In Section 7.3
we describe the artifacts introduced by common 3D watermarking algorithms. Our experimental
methodology to carry out subjective experiments on 3D model quality evaluation is described in
Section 7.4. Subjective data analysis is performed in Section 7.5. Section 7.6 describes the proposed
metric. Finally, results are presented and discussed in Section 7.7.

7.2 Related Work

The knowledge of the human visual system (HV S) has been widely applied in perceptual image
watermarking to obtain high quality watermarked images, i.e. watermarked images indistinguishable
from the original ones. Our investigation concerns the extension of this idea to 3D watermarking.
The goal is to develop a perceptual metric to estimate the perception of visual artifacts introduced by
watermarking. The evaluation of the visual impairment introduced by a watermarking algorithm can
be used to adjust the watermarking parameters in order to obtain a watermarked version that looks
like the original one. Perceptual metrics are not limited to perceptual watermarking, but they have
also been used in two other fields of Computer Graphics: mesh simplification and perceptually-guided
rendering. The three issues related to our investigations, concerning perceptual image watermarking,
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mesh simplification and perceptually-guided rendering, will be discussed in the following.

7.2.1 HVS and Perceptual Image Watermarking

It is widely known among researchers working in Digital Watermarking that HV S characteristics
have to be carefully considered in order to minimize the visual degradation introduced by the
watermarking process while maximizing the robustness [26, 148, 178]. Considering a noisy image,
some aspects of human visual perception are as follows: 1) distortions in the uniform regions of an
image are more visible than those in textured regions, 2) noise is more easily perceived around edges
and 3) the human eye is less sensitive to distortions in very dark and very bright regions. These
basic mechanisms of the human visual perception can be mathematically modeled considering two
main concepts: the Contrast Sensitivity Function (CSF) and the contrast masking model. CSF is a
measure of the responsiveness to contrast for different spatial frequencies. Typically, CSF models the
capability of the human eye to perceive sinusoidal patterns on a uniform background. The contrast
perception varies with the frequency of the sinusoidal pattern, the orientation of the pattern, the
observer’s viewing angle and the luminance of the background where the stimulus is presented.
Many analytical expressions of CFS can be found in literature, one of the most used is the Barten’s
model [6].

The masking effect concerns the visibility reduction of one image component due to the presence
of other components. In other words, while CSF considers the visual perception of a sinusoidal
pattern on a uniform background the visual masking model considers the perception of a sinusoidal
pattern over spatially changing background. The non-uniform background may be modeled with
another sinusoidal pattern with different properties. Some models of visual masking have been
developed by Watson [166, 167] and by Legge and Foley [80].

Many methods have been proposed so far to exploit the models of the HV S to improve the
effectiveness of existing watermarking systems [124, 178]. We can divide the approaches proposed
so far into theoretical [75, 124, 179] and heuristic [7, 133]. Even if theoretically grounded approach
to the problem would be clearly preferable, heuristic algorithms sometimes provide better results
due to some problems with the HV S models currently in use [7, 31].

7.2.2 Mesh Simplification

Mesh simplification is concerned with the reduction of the number of vertices and triangles of a
polygonal mesh while preserving its visual appearance. In general, the simplification process is
driven by a similarity metric that measures the impact of the changes of the model after each
simplification step. So, one of the most important consideration of a simplification method is the
error metric it uses. Two kinds of metrics are considered for simplification: geometric metrics and
(perceptual) image-based metrics.

Geometry-based metrics

Metrics for simplification are commonly used for two distinct purposes; evaluating the quality of the
final model and determining where and how to simplify the model. The most used global geometry-
based metrics for off-line quality evaluation of 3D models are based on the Hausdorff distance.

The Hausdorff distance is one of the most well-known metrics for making geometric comparisons
between two point sets. Assuming that the shortest distance between a point x and a set of points
Y (e.g. the vertices of the 3D model) is the minimum Euclidean distance:

d(x, Y ) = min
y∈Y

d(x, y), (7.1)
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the asymmetric Hausdorff distance between two point sets is defined as:

	d∞(X,Y ) = max
x∈X

min
y∈Y

d(x, y). (7.2)

Since 	d∞(.) is not symmetric , i.e. 	d∞(X,Y ) �= 	d∞(Y,X), this distance is not a metric in mathe-
matical sense. To obtain symmetry it can be redefined as:

d∞(X,Y ) = max
(

	d∞(X,Y ), 	d∞(Y,X)
)

. (7.3)

The quantity d∞(X,Y ) in Eq.(7.3) is usually referred to as the maximum geometric error . This
metric is not able to catch well geometric similarity since a single point of the set X, or Y , can
determine the Hausdorff error. One possible alternative based on the average deviation that best
measures geometric similarity is given by:

	d1(X,Y ) =
1

AX

∫
x∈X

d(x, Y )dX (7.4)

where AX is the area of the surface X. This metric is also asymmetric. The symmetric version of
this metric assumes the following form:

d1(X,Y ) =
AX

AX + AY

	d1(X,Y ) +
AY

AX + AY

	d1(Y,X) (7.5)

and it is usually referred to as the mean geometric error . Two tools for geometric meshes comparison
based on the maximum Eq.(7.3) and on the mean geometric error Eq.(7.5) are the Metro [113] and
the Mesh [4] tool. Several researchers have proposed other geometry-based metrics to evaluate 3D
model quality. Most of them are variations of the d∞(.) and d1(.) metrics. In Section 7.7, we will
analyze the performance of these two geometric metrics in the case of 3D watermarking quality
evaluation.

Image-based metrics

Image metrics are adopted in several graphic applications. In fact, since most computer graphics
algorithms produce images, it makes sense to evaluate their results using image differences instead of
metrics based on geometry. Many simple image metrics such as the Root Mean Square (RMS) and
the Peak Signal Noise Ratio (PSNR) have been widely used in the past, but such metrics are not able
to measure the differences between two images as perceived by a human observer [147]. For example,
Fig. 7.2 shows that the values of RMS do not correlate with the perception of image distortions.
For this reason, nowadays, most applications move to perceptual-based image metrics. Two of the
most perceptually accurate metrics for comparing images are the Visual Difference Predictor by
Daly [29] and the Sarnoff Model developed by Lubin [85]. Both of these metrics include models
of different stages of the human visual system, such as opponent colors, orientation decomposition,
contrast sensitivity and visual masking.

Concerning perceptually-based mesh simplification, Lindstrom and Turk [82] proposed an image-
driven approach for guiding the simplification process: the model to be simplified is rendered by
considering several viewpoints and an image quality metric, based on a simplified version of the
Sarnoff Model [85] is used to evaluate the perceptual impact of the simplification operation. More
recently, Luebke et al. [173] developed a view-dependent simplification algorithm based on a simple
model of CSF that takes into account texture and lighting effects. This method provides also an
accurate modeling of the scale of visual changes by using parametric texture deviation to bound
the size (represented as spatial frequencies) of features altered by the simplification. Other studies
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Distortion (RMS = 9.0)

Maximum Perceptual
Distortion (RMS = 8.5)

Figure 7.2: Image distortions and RMS metric (from Teo and Heeger [147]).

related to perceptual issues in mesh simplification have been conducted by Rogowitz and Rush-
meier [130] and by Yixin Pan et al. [116]. In particular, Rogowitz and Rushmeier analyzed the
quality of simplified models perceived by human observers in different lighting conditions by show-
ing to the observers still images and animations of the simplified objects. From the experiments
they draw several interesting conclusions. The most important one is that the perceived degradation
of the still images is not adequate to evaluate the perceived degradation of the equivalent animated
objects. This result suggests that an experimental methodology to evaluate the perceived alterations
of 3D objects should rely on the interaction with the model.

7.2.3 Perceptually-Guided Rendering

The aim of perceptually-guided rendering is to accelerate photo-realistic rendering algorithms in
order to avoid computations for which the final result will be imperceptible.

One of the first work of this type has been done by Reddy [128], who analyzed the frequency
content of 3D objects in several pre-rendered images and used these results to select the “best”
version of the objects from a pool of models representing the same shape with different levels of
details in order to speed-up the visualization of a virtual environment. If the high-resolution version
of the model differs only at frequencies beyond the modeled visual acuity or the greatest perceptible
spatial frequency, the system selects a low-resolution version of the model.

Other remarkable works in this field include the work of Bolin and Meyer [14] who used a simpli-
fied Sarnoff Visual Discrimination Model [85] to speed-up the rendering techniques based on sampling
(e.g. Monte Carlo Ray Tracing), Myszkowski et al. [103] who incorporated the spatio-temporal sen-
sitivity in a variant of Daly Visual Difference Predictor [29] to create a perceptually based animation
quality metric (AQM) to accelerate the generation of animation sequences and Ramasubramanian et
al. [127] who applied perceptual models to improve global illumination techniques used for realistic
image synthesis.

Another excellent work related to study of human visual perception in rendering is the one by
Ferwerda and Pattanaik [50]. In this work a sophisticated perceptual metric for the evaluation of
how much a visual pattern, i.e. a texture, hides geometry artifacts is proposed. The visual masking
effect caused by texturing is taken into account by analyzing the final rendered images.
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7.2.4 Proposed Approach

Our goal is to develop a perceptual metric that measures the human perception of geometric artifacts
introduced over a 3D surface by watermarking. Two approaches to develop a perceptual metric for
3D watermarking are possible. The first one follows the (perceptual) image-based approach for
simplification seen before [82, 173]. Instead of driving the simplification process, the perceptual
image metric can be used to evaluate the visual effects of the watermark insertion by computing the
perceptual differences between several images rendered from the original and the watermarked model.
This approach presents two advantages. First, since it is rendering-dependent, complex lighting and
texturing effects can be taken into account in a natural way. The second advantage is that all possible
kinds of visual artifacts can be evaluated with the same approach. The main disadvantage is that
the rendering conditions must be known in advance. The other possible approach is to evaluate
then how the human visual system perceives geometric distortions on the model surface and build
an ad-hoc perceptual metric for geometric artifacts. Moreover, this approach is more interesting
from a research viewpoint, since no similar studies have been conducted so far. The potential field
of applications is not limited to 3D watermarking, but other Computer Graphics applications can
also benefit from them. For these reasons we decided to follow the second approach, i.e. to work
directly on the geometry of the 3D model.

7.3 3D Watermarking Algorithms and Artifacts

Digital watermarking algorithms can be classified according to the domain they work: hybrid domain
and transformed domain. Here, for each class of algorithms, we describe the geometric artifacts that
they introduce in the watermarked model.

First, we consider the algorithms working in the asset domain. The algorithms based on topolog-
ical embedding [19, 107] produce small geometric distortions that can be described by the addition
of a small amount of noise to the position of the mesh vertices. When only the connectivity of the
mesh is used to embed the watermark, such as in the TSPS and in the MDP algorithms [107], the
amount of introduced distortions is imperceptible, since topology changes usually do not produce
noticeable visual effects. Concerning geometric features embedding we have to distinguish between
those algorithms that embed the watermark by using vertices position and those algorithms that
are based on shape-related features, such as vertex normals. Changes in the vertices position pro-
duce the same effect of topology-driven embedding, i.e. a “noisy” watermarked surface, but, in this
case the amount of distortion may be considerably high, due to the vertices displacements need-
ed to embed the watermark. For example the Vertex Flood Algorithm (VFA) [8] may introduce
moderate-to-strong distortions depending on the embedding parameters. In the same manner, the
method of Harte and Bors [59] may produce perceptible distortions depending on how many vertices
are watermarked and on the dimension of the bounding volume used. Shape-related algorithms, like
the Normal Bin Encoding (NBE) [9] and the method proposed by Wagner [159], instead, introduce
artifacts that look very different from the noisy effect of the other techniques. This kind of surface
alterations produces soft changes in the shape of the model thus resulting in artifacts difficult to
perceive.

The algorithms that work in the hybrid domain are able to spread the distortions smoothly
over the whole surface of the model by introducing the watermark in the low resolution of the
model. Typically, this permits the reduction of the previously described ”noise” effect. The amount
of distortion produced by the Uccheddu et al. technique [150], that works in the hybrid domain,
heavily depends on the level of resolution used to embed the watermark. In particular, for a fixed
watermark strength, the higher the level of resolution used, the stronger the amount of visual
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impairment of the watermarked model. In the same way the algorithm by Kanai et al. [69], which
is based on wavelet decomposition, may introduce geometric artifacts as several levels of resolution
are used to embed the watermark. The authors propose a geometric tolerance threshold to limit the
introduction of these visual artifacts.

Concerning the transformed domain, mesh spectral methods [20, 108, 109] cause a vertices
perturbation due to the modifications of the mesh spectral coefficients, thus resulting in a moderate
“noisy” watermarked surface. Ohbuchi [109] suggests to reduce this effect by watermarking those
mesh spectral coefficients that are related to the low frequencies content of the model.

Summarizing, we observe that, in general, 3D watermarking algorithms produce“noisy” surfaces.
The characteristics of the noise depend on the specific algorithms; noise can have different granu-
larity and size, and may be uniform or not over the model surface. The watermarking techniques
that do not introduce perceptible artifacts are typically those techniques that have relaxed robust-
ness requirements. In our subjective experiments that will be described in the next Section, we
have implemented four different watermarking algorithms: the Vertex Flood Algorithm (VFA) [8],
the Normal Bin Encoding (NBE) [9], the method by Kanai et al. [69], and Uccheddu et al. al-
gorithm [150]. The algorithm by Kanai et al. and the Uccheddu et al. will be indicated in the
following using the initials of the authors, i.e. KDK and UCB respectively. Figure 7.3 shows the
artifacts introduced by these watermarking algorithms.

7.4 Experimental Method

A set of standards and grading techniques to evaluate the quality of video and multimedia content
have been defined in ITU-R [66] and ITU-T [65]. However, there are no prescribed standards for
the evaluation of 3D objects with impairments. In this chapter, we propose a method for subjective
evaluation of 3D watermarked objects. This experimental methodology attempts to make subjective
evaluations in this field more reliable, comparable and standardized.

The starting point for the design of a subjective experiment for the quality evaluation of 3D
objects is to define how to render the object under examination. By specifying appropriate rendering
conditions, we aim at putting the human observer in favorable conditions to make a fair judgment
on the three-dimensional object. The rendering conditions should not bias the human perception of
the 3D model by choosing, for example, one view of the 3D object rather than another one.

7.4.1 Rendering Conditions

The rendering of a three-dimensional model is accomplished via a combination of techniques such
as associating a material to each surface of the model, applying various kinds of light sources,
choosing a lighting model, adding textures and so on. In our investigations we assumed that the
rendering conditions have to be as simple as possible, because very few works have dealt with
psychophysical tests of 3D object perceived quality as reported in Section 7.2 and no experimental
data are available. Moreover, too many or complicated rendering effects would involve many and
mutually linked aspects of spatial vision that have to be avoided to obtain more reliable results. Such
results can be further extended by taking into account more aspects of visualization techniques, such
as the role of photorealism in the perception of impairments. In fact, by keeping plain but effective
rendering conditions, we do not influence or bias the human perception and, as such, the subjects’
evaluation. The rendering conditions that we have chosen are described below.

• Light sources. Humans can see an object because photons are emitted from the surface of the
object and reach the eyes of the viewer. These photons may come from light sources or from
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Figure 7.3: Geometric defects introduced by 3D watermarking algorithms.
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other objects. The three common types of light sources are the directional, the point, and the
spot light sources. Point and spot light sources are also called positional lights because they
are characterized by a location in space. Spotlights are not suitable for our purposes since
this kind of light source could make some parts of the model better illuminated with respect
to others. Multiple lights can cause effects that may confuse the human observer and provide
contradictory results more complex to evaluate [136]. Additionally, the HV S tends to assume
that the scene is illuminated by a single light source and that light illuminating the scene is
coming from above. For all of these reasons, in our experiments, each model is illuminated
with one white point light source located in the top corner of the Object Bounding Box (OBB)
of the 3D object. Achromatic light is used in order to preserve the colors of the material.

• Lighting and shading. A good choice of the lighting model and of the shading method succeeds
in effectively communicating to a human observer the 3D shape and the fine geometric details
of a 3D object. The influence of the lighting model is very important since it may affect the
perceived quality of the 3D model considerably. Ideal lighting and shading conditions are
very hard to find and some methods have been proposed to optimize rendering conditions in
order to improve the perceptual quality of the rendered model [136]. To narrow the scope,
we use a simple local illumination lighting model where only the diffusive component of the
reflected light is considered. In fact, the diffusive component is well-connected to physical
reality since it is based on Lambert’s Law (Eq. (C.2)) which states that for surfaces that
are ideal diffusive (totally matte, without shininess), the reflected light is determined by the
cosine between the surface normal and the light vector. For this reason, the diffuse component
does not depend on the viewer’s position making this model suitable to unbias the human
perception of the 3D object under examination. The specular component of the reflected light
is not considered even if it would improve the photorealism of the objects. In fact, while the
diffuse component catches the behavior of matte surfaces, the specular component models the
shininess of the surfaces. The highlights created by the specular component help the viewer
to better perceive the surface’s curvature. Moreover, other more complex photorealistic issues
such as self-shadowing are not introduced in our model, as they would unnecessarily complicate
the experimental method and introduce too many variables to evaluate during result analysis.
Thus, the implemented lighting model is:

Ir = IambKa + IiKd min(0 , 	N · 	L) (7.6)

where 	N is the surface normal at the considered point, 	L is the incident light direction vector
and the constant Ka and Kd depend on the material properties. About shading methods
that deal with triangular meshes, we can choose among flat, Gouraud and Phong shadings
(see Sec. C.1). Flat shading is not suitable for our purposes since it produces the well-known
unnatural faceting effect. Since both Gouraud and Phong shadings produce almost the same
visual effects if the model resolution, i.e. the number of triangles of the model, is high, we
decided to use the Gouraud shading that is more common and less computationally expensive
than the Phong method. Finally, we have decided to show the model on a non-uniform
background since a uniform background highlights too much the countour edges of 3D objects.

• Texturing. We want to evaluate the perception of artifacts on the surface of the 3D objects,
hence textures or other effects are avoided as they usually produce a masking effect on the
perceived geometry [50]. In fact, image texture mapping, bump mapping, and other kind
of texturing may hide the watermark artifacts. This is partially due to the visual masking
perceptual effect, in which frequency content in certain channels suppresses the perceptibly of



124 Chapter 7. Subjective and Objective 3D Watermarking Evaluation

other frequencies in that channel [50]. We do not account for visual masking, leaving that as
an important and interesting area for future researches.

• Material properties. The color of a surface is determined by the parameters of the light
source that illuminate the surface, by the lighting model used and by the properties of the
surface’s material. We consider only gray, stone-like objects. This choice is made for different
reasons: first, if all models are seen as“statues”the subjects perceive all the models in the same
manner and naturally enough; and second, in this way we avoid the memory color phenomenon
experimented in psychology studies [54]. This phenomenon regards the fact that an object’s
characteristic color influences the human perception of that object’s color, e.g. shape such as
heart and apple are characteristically red. A particular choice of a specific color for all the
models could mis-lead the perceived quality of the object and introducing too many colors for
different objects would have made the experimental method less general by introducing too
many degrees of freedom.

• Screen and Model Resolution. The monitor resolution used in the experiments was 1280× 600
and each model displayed a window of 600 × 600 pixels. The model occupies around 80% of
the window and the resolution of the models used in the experiments ranged between 50.000
and 100.000 triangles. This screen resolution and the level of details of the models allow a
good visualization of the model details, and hence of the model distortions. In particular the
blurring effect of the Gouraud shading interpolation is negligible. Such blurring effect increases
when the subject observes the model closely. Moreover, the complexity of the models used
allows us to render them quickly (using a powerful graphics accelerator board) making fluid
user-interaction possible. A minimum frame rate of 50 fps for each of the visualized models is
guaranteed.

• Interaction. One essential feature of an interactive application is that objects are observed
in motion. In our experimental method, we decided to allow the subjects to interact with
the model by rotation and zoom operations. The user interacts with the model by using a
mouse. Three-dimensional interaction is achieved by ARCBALL rotation control [139]. The
motion of the 3D object is then interactively driven by the subject and not pre-registered like
in other subjective experiments in the literature [116, 130]. This avoids the detection of less
details in frames that pass quickly. It has to be mentioned that in previous works [130, 170],
2D images of 3D objects have been used for subjective experiments. The problem is that
different static views of 3D objects can have significantly different perceived quality depending
on the direction of illumination. Subjective experiments that were conducted to address this
question suggest that judgments on still images do not provide a good predictor of 3D model
quality [130]. Rogowitz’s work confirmed that the use of still images produce results that are
view-dependent and not well correlated with the real perception of the 3D object.

7.4.2 Experimental Procedure

Our test subjects were drawn from a pool of students from the Ecole Polytechnique Fédérale de
Lausanne (EPFL). They were tested one at a time and not specifically tested for visual acuity or
color blindness. The 3D models were displayed on a 17-inch LCD monitor, with participants sitting
approximately 0.4 meter from the display. The experiment followed a five-stage procedure [102].
The stages were: (1) oral instructions, (2) training, (3) practice trials, (4) experimental trials, (5)
interview.
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Oral Instructions

Test subjects are told how to perform the experiment. Prior to each experiment, the instructions,
also known as experiment scripts, are elaborated to help the experimenter defining the task. The
script contains details of what the experimenter should do at each step of the experiment. More im-
portantly, it contains oral instructions that are given to the subject to make sure he/she understands
the task to be performed. An introductory explanation about what 3D models are and what water-
marking is, is given. Different sections of the instructions actually apply to all the various stages
of the experiment. However, the most important part of the instructions comes before the training
stage. After the subject is properly seated and made comfortable, the main task is explained. The
instructions for both experiments can be found in Appendix A.

Training

In each experiment the subject is asked to perform a task which consists of entering a judgment
about an impairment detected in the 3D object. In order to complete this task, subjects need to have
an idea of how the original 3D objects with no impairments look like. Therefore, a training session
is included in the procedure which consists of displaying the four original models used to embed
the watermark. In this phase, only the experimenter interacts with the graphical user interface, the
subject is asked to look carefully to the models displayed on the screen. In the next phase, a set of
3D models with the typical distortions introduced by watermarking is shown.

Another set of 3D objects is required to set a value on the scale of judgements. The end of
the scale is set by 3D objects with the strongest defect (in this case the perceptually strongest
watermarking). A total of 12 and 16 models were shown as worst examples for the Experiments
I and II, respectively. Therefore, the test subjects are instructed to pick the strongest stimulus
in the training set and assign to that stimulus a number from the upper end of the scale. In our
experiments, the subject is asked to assign 10 to the worst example (on a discrete scale ranging
from 0, implying no distortions are perceived, to 10). However, due to visual masking and to the
variety of the originals, it is not possible to anticipate which defects the subjects will consider worst
or strongest. As a result, the subjects are asked to record values greater than the nominal upper
value if 3D objects are observed to exceed the expectations established in the training phase. For
example, if a test subject perceives a defect twice as bad as the worst in the training set, he/she is
asked to give it a value of 20. Finally, in the last phase of the training stage, subjects are told how
to use the graphical user interface to interact with the 3D models.

Practice Trials

In the practice trial stage, subjects are asked to make judgments for the first time. Because of the
initial erratic responses of the subjects, ITU Recommendation [65] suggests to throw away the first
five to ten trials of an experiment. In our case, instead of discarding the responses of the first trials,
we included the practice trial phase. This also gives other benefits. It exposes the test subject to
3D models throughout the impairment stage. It gives the test subject a chance to try the data entry
and above all the chance to get familiar with the graphical interface for the virtual interaction with
the 3D object (rotation and zooming). The number of practice trials is six. The subject has to
perform three tasks at most. The first one is to detect the distortion and he/she has to answer to
the question did you notice any distortion?. In case of positive answer, the subject has to give a
score to indicate how much the distortions are evident. The subject has 30 seconds at disposal to
interact with the model and to make his/her judgement. Then, the subject has to input the score in
a dialog box. Figure 7.4 shows the interface for the subjective tests. On the left a time bar advices
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Figure 7.4: The subject during the interaction with the model.

the user of the remaining interaction time. The box indicates the progression of the test by showing
the number of the model under examination. The model is displayed in the center of the screen.
Finally, the third question is where he/she noticed the distortion on the 3D model. To answer this
question he/she has to indicate, by selection, the part of the model where the distortions are the
most evident (Fig. 7.5).

Figure 7.5: The subject during the selection of the part where the distortions are more evident.

Experimental Trials

The subjective data is gathered during the experimental trials. In this stage, a complete set of 3D
objects is presented in random order. To be more specific, for each experiment, several random-
ordered lists of watermarked 3D test objects are shown. In this way the results of the test are made
independent of the order in which the models are presented. All the test subjects see all the 3D
objects. The number of test 3D objects is limited so that the whole experiment lasts no more than
one hour. This limit translates to 40 models in Experiment I and 48 in Experiment II.
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Table 7.1: Viewing conditions during subjective tests.

Variable Values

Peak luminance ≤ 0.04
Maximum observation angle 10 degrees
Monitor resolution 1280 × 600
Interaction window resolution 600 × 600
Viewing Distance 35 − 45 cm
Monitor Size 17”

Interview

After the trials are completed, the test subjects are asked a few questions before they leave. The kinds
of question depend on the experiment, mainly test subjects are asked for qualitative descriptions of
the impairment. The questions asked in our case are:

1. Did you experience any problem correlated to a specific model in identifying the distortion?

2. How would you describe the distortions that you saw?

3. Have you general comments or remarks about the test?

These questions gather interesting answers. They are for example useful for categorizing the distor-
tion features seen in each experiment and for helping in the design of next experiments.

7.4.3 Experiment I

The goal of the first experiment was to make an initial study about the perception of artifacts
caused by watermarking on 3D models and to find suitable metrics to measure the perceptual
severity of such artifacts. The output of the experiment was a collection of subjective evaluations of
a set of watermarked 3D objects. The watermarking artifacts, varying in strength and resolution,
were generated using Uccheddu et al.’s watermarking algorithm [150]. This subjective data set
allowed us to confirm some basic findings like that commonly used geometric-based metrics (already
mentioned in Section 7.2) are not good measures for subjective quality evaluation of watermarked 3D
objects. Additionally, we were interested in how the test subjects would describe the watermarking
defects produced for this experiment. In particular, the appearance-related questions included in
the interview provided us some directions to design a perceptually driven objective metric. The
experiment have been performed by 11 subjects. The methodology for the experiment has been
described in Section 7.4.2.

7.4.4 Generation of Stimuli

The test models for this experiment were generated by applying the previously described UCB algo-
rithm to the“Bunny”,“Feline”,“Horse”and“Venus”models. Figure 7.6 shows these models rendered
with the rendering conditions used in the experiments. These models are suitable for perceptual
studies due to the wide range of characteristics presented by their surfaces. For example, the Bunny
model surface is full of bumps, most parts of the Horse model are smooth, Feline model presents a
wide range of characteristics such as parts with high curvature, or low curvature, moderate bumps,



128 Chapter 7. Subjective and Objective 3D Watermarking Evaluation

Bunny Feline

Horse Venus

Figure 7.6: Rendering Conditions.
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smoothed parts and several protrusions, and the Venus model has the same range of characteristics
as the Feline but without consistent protrusions.

The watermark was uniformly distributed over all the surface of the 3D objects. The amount of
distortions introduced by the watermarking varied according to two parameters: i) the resolution
level l that hosts the watermark and ii) the coefficient γ determining the strength of the watermark.
Table 7.2 shows the values of the watermarking parameters used for the experiment. Three amounts
of watermarking strength (low, medium and high) and three levels of resolution (low, medium and
high) were applied to each model. In addition to the watermarked models, the 4 original models
were included in the complete model set. In fact, the original may present impairments unrelated
to the watermarking ones deliberately inserted into the test models. To separate the effects of the
deliberate and the pre-existing defects, the originals had to be inserted. A total of 40 (4 originals ×
3 watermarking strength × 3 resolution level + 4 originals) test models were used in the experiment.

Table 7.2: Experiment I: Watermarking parameters values used for each model.
Level of Corresponding

Resolution (l) Value

Low 4
Medium 3

High 2

Watermarking Corresponding

Power (γ) Value

Low 0.0003
Medium 0.0015

High 0.003

7.4.5 Experiment II

In Experiment I, test subjects evaluated differently watermarked models ranging from severe down
to weak visual impairments. Those different distortions’ strengths were generated using a specific
watermarking algorithm, i.e. the UCB algorithm. With this experiment we wanted to test by
means of subjective validation the perceptually-based objective metrics for the quality assessment
of 3D watermarking we obtained from the subjective data of the Experiment I. Therefore, we chose
three different watermarking algorithms: NBE, VFA and KDK. Technically, the defects inserted are
slightly different from the ones studied in the Experiment I (see Fig. 7.3). In fact, while the UCB
algorithm produces a uniform kind of noise that can be described as an increase of the roughness of
the watermarked surface, VFA produces a kind of noise that looks like marble streak, depending on
the viewpoint. The artifacts of the KDK algorithm are the same of the UCB algorithm but due to
the geometric tolerance introduced by Kanai to limit the visual impact of the watermark, the final
visual effects of such distortions are not uniformly distributed over the model’s surface. Concerning
NBE, the visual aspect of its artifacts is very different from those of UCB, VFA and KDK and more
difficult to perceive. The methodology for this experiment is practically the same as Experiment I.
The only difference is that no location information was gathered since the metric developed on the
basis of the data collected in Experiment I does not take into account the location information.

7.4.6 Generation of Stimuli

The test models for this experiment were generated using the same four original models of Experi-
ment I. As just stated, the three watermarking algorithms used to generate the watermarked models
are the VFA, the NBE and the KDK algorithms. Each watermarking algorithm is characterized
by its own embedding parameters that are qualitatively and quantitatively different. For an exact
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description of each parameter we refer to the literature. The watermarking parameters of the VFA
are the number of clusters used to embed the bits (one bit for each cluster) and the maximum al-
lowable distance (DMAX) from the starting application points. NBE is characterized by the feature
type used, the number of bins (NB), the search range (∆R) and the number of iterations (nI) of
the optimization process. KDK parameters are the selection threshold (δ1), the geometric tolerance
threshold (δ2) and the least significant decimal digits used to embed the watermark (dw); if dw = 2
then the second least significant decimal digit of the wavelet coefficients is modified to embed the
watermark, dw = 3 indicates the third least significant decimal digit, and so on. The watermarking
parameters for the three algorithms are reported in Tab. 7.3. In our test set, we tried to range
from severely to weakly watermarked model as in Experiment I. The 11 level of impairment are also
reported in Tab. 7.3. A total of 48 test models (4 models × 11 watermarking settings + 4 originals)
were used in this experiment.

Table 7.3: Experiment II: Watermarking parameters values.
Algorithm Watermarking Parameters Impairment

KDK1 δ1 = 0.001, δ2 = 0.005, dw = 2 medium-strong

KDK2 δ1 = 0.001, δ2 = 0.008, dw = 3 medium

KDK3 δ1 = 0.001, δ2 = 0.02, dw = 3 medium-strong

NBE1a Feature Type I, NB = 80, ∆R = 0.0015, nI = 3 medium

NBE1b Feature Type I, NB = 80, ∆R = 0.0008, nI = 3 weak-medium

NBE2a Feature Type II, NB = 80, ∆R = 0.0001, nI = 1 weak

NBE2b Feature Type II, NB = 20, ∆R = 0.0004, nI = 1 medium

VFA1 600 clusters, DMAX = 1.8 strong

VFA2 960 clusters, DMAX = 1.8 medium

VFA3 1320 clusters, DMAX = 1.8 weak

VFA4 200 clusters, DMAX = 0.6 medium

7.5 Data Analysis

During the experiments, if a subject notices surface defects, he/she is supposed to enter a value
proportional to the amount of distortions perceived on the model surface. In the following we
refer to these values as subjective scores. The subjective scores have to be condensed by statistical
techniques used in standard methods [66, 102] to yield results which summarize the performance
of the system under test. The averaged score values, Mean Opinion Score (MOS ), are considered
as the amount of distortions that anyone can perceive on a particular watermarked 3D object.
However, impairment is measured according to a certain scale, and such scale may vary from person
to person. In this section, we report the methods used for matching the scales of our test subjects.
Then, we describe the methods used to combine the subjective data and evaluate the precision of
the estimates. The subjects are screened and outliers are discarded. Finally, the results are checked
for error due to the methodology of the experiment.

7.5.1 Normalization

As a measurement device, a test subject may be susceptible to both systematic and random errors.
The purpose of the normalizing procedure is to compensate for any systematic error. This proce-
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dure [102] is applied to the measurement gathered from each test subject prior to the combination
of measurements across all subjects. The unscaled annoyance value, mij , obtained from subject i
after viewing the test object j, can be represented by the following model:

mij = giaj + bi + nij (7.7)

where let aj be the true annoyance value for the test object j in the absence of any error, gj is a
gain factor, bi is an offset, and nij is generally assumed to be a sample from a zero-mean, white
Gaussian noise.

In this model, the gain and offset could vary from subject to subject. If the variations are large
across the subjects or the number of subjects is small, normalization procedure can be used to reduce
the gain and the offset variations among test subjects. In order to check if the offset and gain factors
vary significantly from subject to subject, a two-way analysis of variance (ANOVA) approach was
used [142]. A two-way ANOVA divides the total variations of a table of data into two parts: the
variation that is attributed to the columns of the data table, and the variation that is attributed
to the rows of the data table. Specifically, the F-test can be used to determine the likelihood that
the means of the columns, or the means of the rows, are different. The experimental data, mij is
arranged so that each row represents data for one test object and each column represents all the
data for one test subject. The analysis assumes that the data can be modeled as [142]:

mij = µ + αi + βj + εij (7.8)

where µ is the overall mean, αi stands for the subject effect, βj stands for the model effect, and
εij are the experiment errors. In Tabs.7.4 and 7.5 the ANOVA results are indicated for objects
and subjects from Experiment I and Experiment II respectively. The F-values for both subjects
(F = 12.22 and F = 18.3 for Experiment I and Experiment II respectively) and objects (F = 23.01
and F = 21.16) were large. The right-most column of the table contains the probabilities that the
subject effect and the object effect are constant, i.e. that there are no differences among the subjects
or among the test objects. It is important to underline that the object effect is not expected to be
constant since it depends on the particular 3D object and the 3D objects were deliberately varied.

Table 7.4: Experiment I: ANOVA analysis results.
Source SoS df MS F p

Subjects 372.22 10 37.24 12.22 0
Models 2735.54 39 70.14 23.01 0
Error 1188.83 390 3.04
Total 4296.82 439

Table 7.5: Experiment II: ANOVA analysis results.
Source SoS df MS F p

Subjects 382.84 10 38.28 18.3 0
Models 2080.63 47 44.26 21.16 0
Error 983.34 470 2.09
Total 3446.82 527
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Table 7.6: Experiment I: ANOVA analysis results for ln(mij + 1).
Source SoS df MS F p

Subjects 21.79 10 2.18 8.92 0
Sequences 151.454 39 3.88 15.89 0
Error 95.33 390 0.24
Total 268.58 439

Table 7.7: Experiment II: ANOVA analysis results for ln(mij + 1).
Source SoS df MS F p

Subjects 21.18 10 2.11 14.54 0
Sequences 132.57 47 2.82 19.35 0
Error 68.50 470 0.14
Total 222.26 527

For the F-values in Tabs. 7.4 and 7.5, the probabilities were zero. This means that there is a
significant variation in the subjective value means from subject to subject. To check if the variation
is caused by variations in the gain factor gi, an ANOVA is also informed for the natural logarithm
of mij . In fact, by taking the logarithm of the Eq. (7.7) we obtain:

ln(mij) = ln(giaj + bi + nij) ≈ ln(gi) + ln(aj) + bi/giaj + nij/giaj (7.9)

In this equation αi = ln(gi), µ + βj = ln(aj) and εij ≈ bi/giaj + nij/giaj (see Eq. (7.8)). εij

is no longer independent from the other factors. However, if bi and nij are small, this will not
matter much in the analysis. Tables 7.6-7.7 contain the ANOVA results for ln(mij + 1). Here, we
decided to use the ln(mij + 1) instead of the ln(mij) to avoid numerical problems to the presence
of zero scores. The F-values are large and the probabilities near zero. This means that there were
significant subject-to-subject variations in the gain factors and then some form of subject-to-subject
correction was required. Several methods for estimating the offsets and the gains are possible. The
probability of the null hypothesis (no variation in the subject means) for each correction method
and the ANOVA results are summarized in Tab. 7.8. The measurements are adjusted prior to
combination in the following way:

m̂ij =
1
ĝi

(mij − b̂i) (7.10)

where ĝi is the corrected gain, b̂i is the corrected offset and m̂ij is the normalized score.
In the first correction method the offsets are estimated using the mean of all measurements made

by each subject:

b̂i =
1
J

J∑
j=1

mij − µ (7.11)

Since the mean is not a robust estimator of the center of a distribution the median is also tried as
an estimate of the offset.

b̂i = median {mij , ∀j ∈ J} − µ (7.12)

where J is the set of test models. The results are shown in Tab. 7.8. The mean estimate removes
the subject to subject variations for both Experiments.
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To adjust the gain as well, two gain estimation methods have been considered. The first gain
estimation evaluates the measurements in terms of the experiment instructions and corrects the gain
if the instructions were not followed exactly. In fact, the test subjects are told to assign a value
of 10 to the worst of the test models seen during the training session. The corrected gain is set to
make this true:

ĝi =
1
K

max
j∈J

(mij) (7.13)

where K is equal to the upper end of the scale (10) in our testing procedure. The second method
for correcting the gain variation relies on a statistical estimate of each test subject’s range. The
standard deviation of the values is used to estimate the range. In this case, the gain factor becomes:

ĝi =
4δi

K
(7.14)

where δi is the standard deviation of all the values recorded by the i-th subject. The results are
summarized in Tab. 7.8. The gain correction (Eq. (7.14)) combined to the mean offset correction
provides the best results in term of F -test [34]. Hence, after the normalization the collected data
depend on the model but do not depend on the subject. This fact indicates that the experiment is
well-designed, i.e. the experimental methodology is not affected by any systematic error.

Table 7.8: ANOVA analysis results after normalization (F -test values for subject Offset and Gain
dependency). Probabilities near one means that there is no difference across subjects.

Experiment I Experiment II
Correction Offset Gain Offset Gain
None 0 0 0 0
Mean 1 0.5557 1 0.6903
Median 0.0006 0.0001 0.0006 0
Mean + max 0.998 0.7962 1 0.8286
Mean + std 1 0.9996 1 0.999

7.5.2 Data Evaluation

After the normalization process, the subjective score values are screened and combined into a single
overall score for each test model using the sample mean described in Sec. 2.3.1. After the normal-
ization and screening, for Experiment I the data of one subject was discarded, and for Experiment
II the data of three subjects were rejected. Then, the subjective data were used to test the proposed
objective metric of the watermarked 3D object defects. In this section we check the validity of the
obtained data and evaluate whether the methodology can be improved. Figures 7.7 and 7.8 show the
overall data spread for Experiment I and II. Note that the data spread was good for all experiments.
For Experiment I the MOS values ranged from 0.36 to 10.0 before the normalization and screening
and ranged from 0.45 to 8.76 after (Fig. 7.7 (a)). For Experiment II the ranges before and after are
(0.45 , 9.17) and (0.64 , 9.44) respectively (Fig. 7.8 (a)). The large number of data points (test 3D
models) compensated for the lack of precision of individual points.

In summary, the experiments provided good data for most of the test models. The confidence
intervals were reduced after the normalization and screening procedure (Figs. 7.7 (b) and 7.8 (b)).
The confidence intervals were large for the test models that were hard to examine. This situation
could be improved in future experiments by ensuring that the weakly watermarked models are closer
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(a) (b)

Figure 7.7: Subject data correction results for Experiment I: (a) the mean scores values and (b)
the confidence intervals

(a) (b)

Figure 7.8: Subject data correction results for Experiment II: (a) the mean scores values and (b)
the confidence intervals
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to perceptual threshold or using many more test subjects. In conclusion, the data were good for the
overall fits.

7.6 Proposed Perceptual Metric

Perceptual metrics that compute predictions of human visual task performance from input images
are usually based on a vision model. For any application in which a vision model produces reliable
performance predictions, its use is almost always preferable to psychophysical data collection. One
reason for this preference is that running a model generally costs much less than running a psy-
chophysical experiment to generate the same system performance information, especially when the
system evaluation in question is still in the design phase as in our case. There are two approaches [84]
to model psychophysical quantities: performance modeling and mechanistic modeling. Although the
distinction is more a continuum than a strict dichotomy, the performance models tend to treat the
entire visual system as a “black box” for which input/output functions need to be specified. For the
mechanistic model, physiological and psychophysical data are used to open the black box. As a
result, input/output functions are needed not only for the system as a whole but for a number of
component mechanisms within. These components of the model have the same functional response
as physiological mechanisms of different stages of the HV S. It is important to underline that, at
this time, it does not appear feasible to build a sophisticated model of visual perception of geometric
artifacts since such models could become too complex to be handled in practice. In fact, one essen-
tial feature of any interactive applications is that 3D objects are observed in motion, so the classical
visual models used for still images should be integrated with other perceptual models that take into
account the behavior of the human perceptions in a dynamic scene. Additionally, this model should
take into account a lot of parameters that depend on the rendering, such as the lighting model, the
texturing, and so on. For all of these reasons we opt for the “black box” approach. In particular,
we use an objective metric based on surface roughness estimation combined with a standard psy-
chometric function to model the black box. The purpose of a psychometric curve is to associate the
values given by the objective metric to the subjective score values provided by the subjects. In this
way a match between the human perception of geometric defects and the values provided by the
objective metric is established obtaining a perceptual metric. Three kinds of psychometric functions
are commonly used [42]: the cumulative Gaussian distribution, the logistic psychometric function,
and the Weibull psychometric function. In particular, we use the Gaussian psychometric function
defined in Sec. 2.3.2:

g(a, b, x) =
1
2π

∫ ∞

a+bx

e−
t2
2 dt (7.15)

where a and b are the parameters to be estimated by fitting the objective metrics values as a function
of the subjective data and x is the objective metric used to measure the visual distortion. To estimate
such parameters we use a nonlinear least-squares data fitting by the Gauss-Newton method. We
chose this psychometric function since it provided the best fit between our objective metrics and the
subjective data.

The intuition and the interviews in Experiment I and II confirm that the watermarking artifacts
that produce different kinds of noise on the surfaces can be described essentially with roughness.
Hence, the objective metric which we chose to measure the strength of the defects is based on an
estimation of the surface roughness.
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7.6.1 Roughness Estimation

With the help of previous studies on 3D watermarking [151], we have realized that a good measure
of the visual artifacts produced by watermarking should be based on the amount of roughness
introduced on the surface. Moreover, as just said, the interview phase of the two experiments
confirmed that “roughness” is a good term to describe, in a general way, the defects introduced over
the surface of the model. Hence, two objective metrics based on roughness estimation of the surface
have been developed. In the following we give a detailed description of these metrics.

Multi-scale Roughness Estimation

The first roughness measure we propose is a variant of the method of Wu et al. [181]. This metric
measures the per-face roughness by making statistical considerations about the dihedral angles
associated to each face. Wu et al. developed this measure in order to preserve significative shape
features in mesh simplification algorithm.

The dihedral angle is the angle between two planes. For a polygonal mesh, the dihedral angle is
the angle between the normals of two adjacent faces (Fig. 7.9). The basic idea of this method is that
the dihedral angle is related to the surface roughness. In fact, the face normals of a smoothed surface
vary slowly over the surface, consequently the dihedral angles between adjacent faces are close to
zero. To be more specific, Wu et al. associated to each dihedral angle an amount of roughness given
by the quantity 1 − ( 	N1 · 	N2), where 	Ni) is the normal to the surface. Given a triangle T with
vertices v1, v2 and v3, its roughness is computed as:

R1(T ) =
G(v1)V (v1) + G(v2)V (v2) + G(v3)V (v3)

V (v1) + V (v2) + V (v3)
(7.16)

Referring to Fig. 7.10, G(v1) is the average of the roughness associated to the dihedral angles T −T1,
T1 − T2, T2 − T3, T3 − T4, T4 − T5 and T5 − T . In the same way G(v2) and G(v3) are the mean
roughness associated to the dihedral angles of the faces adjacent to the vertices v2 and v3. Instead,
V (v1), V (v2) and V (v3) are the variance of the roughness associated to the dihedral angles of the
faces adjacent to the vertex v1, v2 and v3.

A rough surface can be considered as a surface with a high concentrations of bumps of different
sizes over it. This metric is able to measure ’bumpiness’ of the surfaces at face level, but, if the
granularity of the surface roughness, i.e. the size of the bumps, is higher than the medium dimension
of one face, this metric fails to measure them correctly. In other words this measure does not take
into account the scale of the roughness. Our idea is to modify Eq. (7.16) in order to account for
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different bump scales. The first step to achieve this goal is to transform this per-face roughness
estimation in a per-vertex roughness estimation in the following way:

RN
1 (v) =

1
|SN

T |
∑

i∈SN
T

R1(Ti)ATi
(7.17)

where SN
T is the set of the faces of the N-ring∗ of the vertex v, |.| is the usual cardinality operator

and ATi
is the area of the face Ti. The reason to consider the N-ring in the roughness evaluation

1D-case

Bump A Bump B

v
v

Figure 7.11: Bumps with different scale.

accounts for different scales of bumpiness. Referring to Fig. 7.11; the bump of size equivalent to
the 1-ring (A) is well measured by R1

1(v), a correct value of roughness for the vertex v in the case
(B) is provided by R2

1(v). Approximatively, we can state that the roughness of a vertex v centered
on a bump of area close to the area of the faces that form the N-ring is well measured by RN

1 (v).
This approximation could not be valid in certain cases, for example for high values of N , or when
a surface presents high curvature. Hence, a real multi-scale measure of bumpiness would require
further developments but we assume that this approximation is sufficient. In order to obtain a single
value of roughness for each vertex that accounts for the roughness evaluated at several scales we
take the maximum value produced by N-ring of different sizes. In particular, in our objective metric
we have chosen 3 scales of roughness:

R1(v) = max{R1
1(v),R2

1(v),R4
1(v)} (7.18)

The total roughness of the 3D object is the sum of the roughnesses of all vertices:

R1(M) =
Nv∑
i=1

R1(vi) (7.19)

where Nv is the total number of mesh vertices. In the following we will see how to transform this
multi-scale roughness estimation in an objective metric that correlates well to the human perception
of geometric defects.

Smoothing-based Roughness Estimation

The second method we developed to measure surface roughness is based on considerations arising
during the subjective tests. Since most of the subjects have said during the interview that the

∗The N-ring neighborhood vertices of a vertex v is an extension of the 1-ring neighborhood. A 2-ring neighborhood

is created from the 1-ring by adding all of the vertices of any face containing at least one vertex of the 1-ring. Additional

rings can be added in the same way to form the 3-ring, the 4-ring and so on.
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Figure 7.12: Smoothing-based Roughness Estimation.

defects are perceived better on smooth surfaces, we decided to develop a smoothing-based roughness
estimation. The basic idea of this approach is to apply to the model a smoothing algorithm and
then to measure the roughness of the surface as the variance of the differences between the smoothed
version of the model and the original one. A sketch of the smoothing-based roughness is depicted
in Fig. 7.12.

The first step of this approach is to build a smoothed version of the model (MS) by applying
a smoothing algorithm to the input model (M). Several possibilities for smoothing exist [33, 68,
73, 146]. Here, we decided to use the Taubin filter [146] for its simplicity of implementation. The
parameters of the Taubin filter used are the usual λ = 0.6307, µ = −0.6352. This filter is iterated 5
times. When the smoothed model is obtained, the distance between each vertex v of M and vS of
MS is computed in the following way:

dOS(v, vS) = proj�nS
v
(v − vS) (7.20)

where proj(.) indicates the projection of the vector (v− vS) on the vertex normals of the smoothed
surface (	nS

v ). At this point the per-vertex roughness is computed by evaluating the local variance of
the distances dOS(.) around each vertex. To be more specific, for each vertex v, the set of distances
associated to its 2-ring (S2

d(v)) is built and the variance of this set evaluated. Then, the per-vertex
smoothing-based roughness is computed by:

R2(v) =
V (S2

d(v))
AS2

(7.21)

where AS2 is the area of the faces that form the 2-ring of v. This area is used as the denominator
since surfaces with the same local variance of the distances but smaller area are assumed to be
rougher. The roughness of the input model is the sum of the roughnesses of all vertices of the
model:

R2(M) =
Nv∑
i=1

R2(vi) (7.22)

where Nv is the number of vertices of the model.

Objective Metrics

Now, we describe how to use the roughness estimation to predict the visual distortions produced by
a certain 3D watermarking algorithm. On the basis of several evaluations we decided to define our
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objective metric as the increment of roughness between the original and the watermarked model.
This increment, R(M,Mw ), is normalized with respect to the roughness of the original model. In
formula:

R(M,Mw ) = log
(R(M) −R(Mw )

R(M)
+ k

)
− log (k) (7.23)

where R(M) is the total roughness of the original model and R(Mw ) is the total roughness of the
watermarked model. Both R1(.) and R2(.) can be used to obtain two different objective metrics
for 3D watermarking quality evaluation. The logarithm is employed to better discriminate low
values of relative roughness increments. The constant k is used to avoid the numerical instability
of (Eq. (7.23)) since the logarithm tends to −∞ for Mw very close to M . In particular the value
of k has been set to normalize the values provided by the metric between 0 and 10, that is the
same range of values used by the subjects during the experiments. In the following, we indicate
with R1(M,Mw ) the objective metric based on the multi-scale roughness and with R2(M,Mw ) the
objective metric based on the smoothing-based roughness estimation.

7.7 Experimental Results

In this section we analyze the performances of the two proposed objective metrics and we compared
them with geometric metrics usually adopted in literature for model quality evaluation. First, the
correlation between the subjective Mean Opinion Score (MOS) collected in Experiment I and the
distances given by two geometric metrics based on the Hausdorff distance for model similarity is
evaluated. In this way we obtain a term of comparison for the evaluation of our metrics. Then,
the objective metrics are fitted with the Gaussian psychometric curve of Eq. (7.15) to match the
subjective data collected in the first experiment. The performances of the perceptual metrics so
obtained are evaluated using the subjective MOS provided by the Experiment II. In other words
the subjective data of the Experiment II are used to validate the developed perceptual metrics. The
results obtained will be discussed at the end of this section.

7.7.1 Hausdorff distances

As previously stated (Section 7.2) two of the most common geometric metrics used to measure the
similarity between two 3D objects are the Maximum (Eq. (7.3)) and the Mean Geometric Error
(Eq. (7.5)). These two metrics are based on the Hausdorff distance between models’ surfaces. Here,
we want to evaluate if the distance between the original and the watermarked model could be
a reliable metric for perceptual watermarking impairments prediction. To do this, the Hausdorff
distances of each watermarked models from the original are plotted versus the MOS provided by
Experiment I. At this point, the linear correlation coefficient of Pearson (rP ) [172] and the non-linear
(rank) correlation coefficient of Spearman (rS) [81] are calculated in order to evaluate the global
performances of the metric obtained by fitting these geometric data with a cumulative gaussian
(Eq (7.15)). The Spearman rank correlation coefficient is a measure of the strength of monotone
association between two variables. Even if a psychometric curve is used to fit the geometric measures,
the results do not correlate well with subjective MOS. This underlines the fact that d∞(.) and d1(.)
are not designed on the basis of how humans perceive geometric defects. The results are summarized
in Fig.7.13. Such results will be used as a reference to compare the performances of the perceptual
metrics based on roughness estimation.
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Figure 7.13: Geometric Hausdorff distance vs Subjective MOS.

7.7.2 Roughness-based Metrics Results for Experiment I

As stated in Sec. 7.5, the goal of the first experiment was to make an initial study on the perception
of the geometric defects caused by watermarking algorithms. The experimental data confirm that
the subjective perception of the impairments is well-described by a measure of roughness. The
subjective data of this experiment are used to obtain two perceptual metrics, named R∗

1(M,Mw ) and
R∗

2(M,Mw ), from the corresponding two proposed objective metrics R1(M,Mw ) and R2(M,Mw ).
Those perceptual metrics are obtained by fitting these subjective data with a gaussian psychometric
curve (Eq. (7.15)). In this way two kinds of perceptual metrics are obtained, one based on multi-
scale roughness measure and another one based on smoothing-based roughness estimation. The
parameters of the Gaussian psychometric curve after the fitting are a = 1.9428, b = −0.2571 for
R1(M,Mw ) and a = 2.0636, b = −0.2981 for R2(M,Mw ). The smoothing-based one provides a
better fit (rP = 0.8286, rS = 0.8919) than the multi-scale one (rP = 0.6730, rS = 0.8680) as
depicted in Fig. 7.14. The 95% confidence intervals of the subjective MOS versus the roughness
metric are depicted in Fig. 7.14 (Top). Few confidence intervals are large, approximatively 20% of
the maximum range scale. Note that the width of the intervals would have been reduced if the
experiment had been carried out with more subjects. On the right top of the graphs it is possible to
notice some points outside the fitting curve. Most of these outliers correspond to the Venus model.
This is due to the fact that the Venus model represents a human face. Human face images are
well-known in subjective experiments as a high level factor attracting human attention, i.e. people
are more able to deal with human faces, so the distortions on the Venus head are perceived as more
visible and annoying with respect to the other models.

7.7.3 Objective Metrics Performances

As discussed in the previous section, the two proposed objective metrics have been transformed
into two corresponding perceptual metrics using the data from Experiment I. In order to evaluate
such metrics, Experiment II was carried out with three other watermarking algorithms: KDK, NBE
and VFA (described in Sec. 7.3). The validation is very simple: the perceptual metrics obtained in
Experiment I are used to predict the MOS obtained in the second experiment and their correlation
coefficients are computed. The correlation coefficients rP and rS are reported in Tab. 7.9. The
rows indicate the watermarking algorithm groups. The first two columns of this table report the
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Figure 7.14: Experiment I: Subjective MOS versus objective metrics curves fits.

Spearman correlation coefficient of the Maximum and Mean Geometric Error for comparison. The
third and the fourth column shown the values of rP and rS for R∗

1(M,Mw ), while the last two
columns are the rP and rS values for R∗

2(M,Mw ). Referring to this table we can make the following
important considerations:

• Overall, both geometric metrics based on the Hausdorff distance do not correlate well with
the subjective data. On the other hand the developed metrics exhibit strong correlation with
the subjective data, in particular concerning the Spearman’s coefficient.

• The Spearman’s coefficients for the NBE and VFA algorithms (third and fourth rows respec-
tively) demonstrate that both metrics are able to predict impairment introduced by these two
algorithms.

• The worst performances of the proposed metrics are obtained for the KDK algorithm. This
can be explained by considering that the distortion produced by the KDK algorithm on the
surface are non-uniform.

• The results of Experiment II are reported in the 5th row of the table. The values of correlation
coefficients (rS = 0.7062 for the first metric, rS = 0.6929 for the second metric) outperform
the results provided by the state of the art metric (rS = 0.3759 for the Maximum Hausdorff
metric, rS = 0.4853 for the Mean Hausdorff metric).
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• The overall performances of the perceptual metrics for the watermarking algorithms that
introduce uniform distortions on the surface shown are reported in the 6th row of the table.
The values of the correlation coefficients (rP = 0.6455 and rS = 0.8416 for the first metric,
rP = 0.7383 and rS = 0.8954 for the second metric) are very high. Hence, the developed
metrics provide a very good prediction of the impairment caused by 3D watermarking.

• The overall performances of the perceptual metrics considering all the uniform and non-
uniform watermarking algorithms tested are reported in the last row of the table. Despite the
presence of the KDK algorithm, for which the performance are not high, the global prediction
of the metrics still remains good. In particular, such performances are excellent comparing
with the ones of the two geometry-based metrics.

Table 7.9: Perceptual metrics performances.
Hausdorff Distance R∗

1(M, Mw) R∗
2(M, Mw)

Algorithms Max (rS) Mean (rS) rP rS rP rS

UCB 0.6672 0.6595 0.6730 0.8680 0.8296 0.8919

KDK 0.6904 0.3230 0.6154 0.7171 0.5514 0.7111

NBE 0.7087 0.7026 0.5597 0.7917 0.6240 0.8146

VFA 0.4951 0.8815 0.7472 0.9389 0.7763 0.9147

KDK, NBE, VFA 0.3759 0.4853 0.4877 0.7062 0.4982 0.6929

UCB, NBE, VFA 0.5219 0.6183 0.6455 0.8416 0.7383 0.8954

ALL 0.4993 0.5352 0.6098 0.8122 0.6487 0.8380

In order to visualize the results of Tab. 7.9, the graphs of Fig. 7.15 show the values of the
objective metrics plotted versus the subjective MOS for several watermarking algorithm groups.
The curve drawn on this figure does not represent the result of a fit; the same gaussian curve
obtained with the data of Experiment I are drawn for all the pictures. In other words, these graphs
visualize the behavior of KDK, NBE and VFA algorithms with respect to the perceptual metrics
developed after Experiment I, that is represented by the red curve (the dashed line is the confidence
interval for that curve).

Since the non-linear correlation coefficient of Spearman is based on the rank of the data instead
of the data values themselves like the Pearson’s coefficients, it is interesting to compare the wa-
termarked models ranking by the impairments perceived by the subjects and by the impairments
predicted by the metrics. An example of this comparison is reported in Fig. 7.16 where the Bunny
and the Feline models are considered. It is possible to see that the smoothing-based perceptual
metric, that has values of rS slightly higher with respect to the multi-scale metric, is able to rank
the watermarked models in a way very close to the subjective rank.

7.8 Conclusions

In this work, our investigations about the extension of the ideas of perceptual image watermarking to
3D watermarking have been presented. In particular, a new experimental methodology for subjective
quality assessment of watermarked 3D objects has been proposed. The analysis of the data collected
by two subjective experiments that use this methodology demonstrates that such methodology is
well-designed and provides reliable subjective data about quality evaluation of watermarked 3D
objects. Moreover, two perceptual metrics for 3D watermarking impairment prediction have been
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Figure 7.15: Experiment II: Subjective MOS vs objective metric curves. The parameters of the
fitting curve are the same of the Experiment I.
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Watermarked Models sort by Perceptual Metric (R )2

Watermarked Models Sort by Perceptual Metric (R )2

Figure 7.16: Experiment II: Comparison between models’ impairment ranking. On the left the
models are ranking by subjective MOS. On the right the models are ranking by smoothing-based
roughness.
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developed by combining roughness estimation with subjective data. The performances of these
metrics have been deeply analyzed. The results of this analysis demonstrate the effectiveness of the
proposed perceptual metrics with respect to the state-of-the-art geometric metrics commonly used
for models comparison. More important, the experimental results show that the proposed metrics
provide a good prediction of the human perception of the distortions introduced by 3D watermarking
over the model’s surface. Hence, these metrics could be used in a feedback mechanism to tune the
watermarking parameters of 3D watermarking algorithms optimizing the watermark insertion. For
example, referring to UCB watermarking algorithm, for each level of resolution the maximum
amount of watermark strength before reaching watermark perceptibility can be easily computed
using these metrics, thus improving the robustness of the algorithm while ensuring imperceptibility.

Concluding we can state that, despite the fact that the perceptual evaluations of geometric
defects is a very difficult task due to the enormous number of influencing factors, these first results
are very encouraging. Further researches can regard the evaluation of the performances of the
proposed metrics under different rendering conditions and the extension of the proposed metrics by
taking into account the influence of the local properties of the surface (e.g. curvature, protrusions)
on the perception of the geometric artifacts.
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Conclusions 8
8.1 Summary and Contributions

Quality assessment is a central issue in the design, implementation, and performance testing of
all systems. This thesis has discussed how to automatically estimate the visual quality in several
visual information processing systems similarly to the way humans perceive it. For the evaluation of
the different processing systems, full reference quality assessment methods in which the processed
(distorted) signal is compared to the reference signal have been adopted. Performance modeling
has been used to build the quality assessment methods that try indirectly to simulate the Human
Visual System. This model treats the entire visual system as a “black box” for which input/output
need to be specified. The inputs are the objective measurements of distortions introduced with
respect to the reference signal. The outputs are the human responses to such distortions in terms of
perceived quality. By finding the output functions that model how human perceive different kinds of
distortions through psychophysical experiments, the objective measurements have been transformed
into perceptual metrics.

In this work, new objective quality metrics have been proposed for three different visual infor-
mation processing systems: video watermarking, video object segmentation and 3D model water-
marking. The combination of objective measures with perceptual factors represents an element of
originality and improvement with respect to the state of the art metrics proposed in these three
domains.

In Part I standard methods for carrying out the subjective experiments, statistical methods for
data analysis and objective models, and metrics proposed in image and video compression quali-
ty assessment have been presented. These tools have been used to propose subjective experiment
methodologies and objective metrics for the different visual information processing systems consid-
ered in this thesis.

Two new objective metrics have been proposed for video watermarking quality assessment. Dif-
ferent watermarking algorithms and video sequences have been judged by means of subjective ex-
periments. Watermarked video sequences were found to suffer mostly from added high-frequency
noise and/or flicker in performed subjective tests. These two metrics have been proposed to analyze
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the video by specifically looking for watermarking impairments, namely the noise metric and the
flicker metric, which measure the perceptual impact of these specific distortions. The Spearman
and Pearson correlation coefficients are applied to test the performance of the proposed objective
quality assessment methods versus the subjective opinion score. Through subjective experiments
it has been demonstrated that the proposed metrics are reliable predictors of perceived noise and
perceived flicker and clearly outperform PSNR measures in terms of prediction accuracy.

In Part II, the importance of efficient image/video segmentation has been discussed, and in
particular, video object segmentation. This thesis has provided an original and complete picture
of the existing solutions concerning subjective and objective segmentation quality assessment. In
addition, the advantages and disadvantages of each approach have been analyzed in depth. On
the basis of the discussed approaches, a methodology for subjective evaluation of video object
segmentation has been proposed. In the field of segmentation quality evaluation, no formal subjective
test procedures have been defined until now, and thus no mean opinion scores are readily available
for setting precise targets for the objective metrics to meet. The proposed methodology can be
used to subjectively rank different segmentation results and thus serve as reference target for the
objective evaluation procedures to be developed. According to the proposed methodology, synthetic
test sequences were generated with four types of spatial artifact commonly found in video object
segmentation, (added regions, added background, border holes, inside holes) and a temporal artifact
(flickering). Moreover, combinations of all artifacts were simulated to study how they interact in the
temporal dimension and in the overall annoyance. To obtain a perceptual objective metric, several
subjective experiments were performed to characterize the different individual segmentation artifacts
and their combination. A set of new perceptual objective metrics for estimating the annoyance of
the typical segmentation artifacts was derived. The final metric has been proposed by combining the
individual artifact metrics using the Minkowski metric and a linear model. Both models presented
a very good correlation with the subjective data with no statistical difference in performance. The
insertion of the perceptual aspect in such a metric represents an element of originality in video
object segmentation evaluation criteria.

An in-depth evaluation of the performance of the proposed method was carried out. The per-
ceptual metric was tested on different video object segmentation techniques for general frameworks
as well as specific applications, ranging from object-based coding to video surveillance. To the best
of our knowledge, a comparison among different objective metrics for video segmentation quality as-
sessment has received little attention by the image processing community so far, as well as the study
of their performances on different segmentation techniques. Moreover, in the literature, segmen-
tation applications are often neglected in the performance analysis of objective quality assessment
methods. In all these contexts, the proposed perceptual metric has proved its reliability and good
performance.

In addition, the choice of appropriate metric parameters according to the specific application
is an element of originality in the proposed approach, too. In fact, when developing segmentation
evaluation criteria for specific applications, the characteristics of the application itself have pro-
vided valuable information for the selection of appropriate segmentation artifact weights. For the
considered applications, especially compression, augmented reality and video surveillance, different
perceptual weights have been found on the basis of subjective experiments. In the compression
scenario, the perceptual weights obtained for missing part of the objects are larger than those for
added ones. This is due to the fact that parts of objects are erroneously considered as belonging
to the background and thus compressed. In the surveillance application, added object weights are
large since they can be confused as objects and thus causing false-alarms. Furthermore, missing
objects weights are also large since they could cause dangerous missed alarm situations. In the
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augmented reality scenario, shape artifacts have the largest weights since they compromise the over-
all impression of the interactive story in which the characters are cut and pasted on the virtual
background.

In Part III, the subjective and objective quality assessment of watermarked 3D models has
been investigated. In particular, a new experimental methodology for subjective quality assessment
of watermarked 3D objects has been proposed. The analysis of the data collected by two subjective
experiments that use this methodology demonstrates that such methodology is well-designed and
provides reliable subjective data about quality evaluation of watermarked 3D objects. Moreover, two
perceptual metrics for 3D watermarking impairment prediction have been developed by combining
roughness estimation with subjective perception of distortions. The results of performance analysis
demonstrate the effectiveness of the proposed perceptual metrics with respect to the state-of-the-art
geometric metrics commonly used.

Concluding, we can state that, despite the fact that perceptual evaluations of visual quality is a
very difficult task due to the enormous number of influencing factors, the achieved results in these
relatively unexplored fields are very encouraging. The performances of the proposed metrics in all
the addressed fields have been deeply analyzed. The integration of perceptual factors has allowed
the methods introduced in this thesis to achieve an improvement with respect to the state of the
art methods, as demonstrated by the comparisons with different existing metrics. The new metrics
have been tested on several processing techniques allowing the characterization of a broad range of
artifacts. The experimental results showed that the proposed metrics provide a good prediction of
the human perception of the introduced distortions. Hence, these metrics have been used to bench-
mark different processing techniques respectively for video watermarking, video object segmentation
and 3D watermarking algorithms. In conclusion, instead of time-consuming and expensive subjec-
tive evaluation, these perceptually driven objective evaluations can be used to provide guidelines
for optimizing visual information processing systems, their parameter settings, and to benchmark
systems and algorithms.

8.2 Perspectives

Although the subjective testing has confirmed the performance of the objective metrics presented
in this thesis, there are many areas which still require further research. This section discusses some
of the improvements and extensions which may be made to each of the objective metrics presented
in this thesis.

Objective metrics

• The introduced metrics presented good correlation with the perceptual amount of distortion.
However, no human vision model was directly included in the proposed metrics. Including
simple models like contrast sensitivity, temporal and spatial masking could improve the metric
performance in watermarking system quality evaluation.

• The presented quality evaluation methods were all based on full reference methods. The
development of no reference methods considering the distortion perception still remains an in-
teresting and unexplored topic in the evaluation of the considered visual information processing
systems.

• Conclusions drawn using a testbed on specific image, video sequences or 3D models do not
a priori generalize to other types of content. Additional tests could give better indications
of how well they generalize to different contents. Nevertheless, the analysis of the results
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from any testbed may suggest avenues of exploration in the research of both image/video/3D
processing techniques and of their evaluation methodologies.

• The proposed metrics could be used in a feedback loop to tune the visual information processing
system parameters in order to optimize the output visual quality.

Video watermarking quality evaluation

Future extension of the work developed in video watermarking quality assessment are listed below.

• A number of watermarking schemes for still images was adopted and they were applied to each
frame of the video sequences. More genuine video watermarking schemes should be used to
evaluate the metrics in realistic conditions;

• The adopted watermarking schemes used only the luminance channel, so the evaluation was
carried out on monochrome video sequences. An extension of the metrics to color is necessary
for a reliable evaluation of watermarking algorithms that use all three color channels.

Video object segmentation quality evaluation

The development of objective metrics for video object segmentation evaluation is a relatively new
area of research. Several areas still remain for further work, and some of them are discussed below.

• Video object segmentation ground truth was manually obtained for each test sequence. Gen-
eration of various segmentations for each test sequence could be carried out using multiple
expert observers. The final ground truth could be statistically obtained on the agreement of
the different segmentations in the context of the addressed application.

• The investigation on the perceptions of artifacts in the temporal dimension requires further
experiments. The perception of artifacts changing in time was characterized for only one kind
of artifact and then extended to the other artifacts. More subjective experiments including the
temporal variation of the other artifacts should be carried out. Furthermore, how to model the
relation between instantaneous and overall quality needs further investigations. In subjective
experiments regarding video sequence quality assessment, the characteristics of human memory
in relation to the length of the representation have to be studied more deeply.

• Weights for the quality metric of each object part could be provided by using application
dependent criteria of region importance in the scene. Such as a good segmentation of heads and
faces could be the most important criteria to judge a good segmentation in video surveillance
applications.

3D watermarking quality evaluation

Further researches on 3D watermarking quality assessment can regard:

• in order to avoid complicated rendering effects, plain but effective rendering conditions were
kept in the subjective experiments. Such results can be further extended by taking into account
more aspects of visualization techniques, such as the role of photorealism in the perception of
impairments (see Appendix C);

• extension of the proposed metrics by taking into account the influence of the local properties
of the surface (e.g. curvature, protrusions) on the perception of the geometric artifacts.
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Video Object

Segmentation Artifacts A

(size 2 × 2, square shape) (size 5 × 5, square shape)

(size 10 × 10, circle shape) (size 20 × 20, circle shape)

Figure A.1: Sample frames for different amounts and shapes of the added region artifact for the
video sequence “Group”.
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(dilation c) (dilation 3c)

(dilation 4c) (dilation 8c)

Figure A.2: Sample frames for different amount of the added background artifact (c is equal to
number of pixels on the contour object) for the video sequence “Hall monitor”.
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(size 3 × 3) (size 5 × 5)

(size 9 × 9) (size 13 × 13)

Figure A.3: Sample frames for different amount of the border hole artifact for the video sequence
“Group”.
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(size 3 × 3) (size 5 × 5)

(size 9 × 9) (size 13 × 13)

Figure A.4: Sample frames for different amount of the inside hole artifact for the video sequence
“Group”.
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(frame #31) (frame #34)

(frame #36) (frame #37)

Figure A.5: Sample frames for flickering artifact with period 3 for the video sequence “Hall”.
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(frame #1) (frame #15)

(frame #30) (frame #60)

Figure A.6: Sample frames for expectation effect with condition B6 for the video sequence
“Coastguard”.
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(Combination 4) (Combination 17)

(Combination 26) (Combination 44)

Figure A.7: Sample frames for combined artifacts. Examples of one, two, three, four different
artifacts (corresponding to combinations 4, 17, 26 and 44) for the video sequence “Highway”.
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Experiment Scripts B
B.1 Sample Instructions for Segmented Object Annoyance

Task

“Before the subject arrives:

1. Set the lighting in the room to the standard illumination.

2. Log in to the server.

3. Double-click on the Segmentation Experiment icon.

4. Click on start.

After the subject arrives, read the following instructions:

• Sit the subject in the chair, centered in front of the video monitor. The subject should be
adjusted backward or forward to get a distance of 45 cm from the video monitor screen. The
most comfortable position for the subject tends to be leaning forward slightly with forearms
or elbows on the table.

• ”Enter your name and hit <NEXT>. This study is concerned with defects or impairments
in segmented video images and their effect on human viewers. We are not concerned with the
content of the videos. We are interested in knowing how you judge any defects or impairments
in the videos and, how annoying they are. These are videos of natural scenes in which some-
thing moves. The moving object is cut out or segmented from the background and most of
the background is uniform green. Let me show an example of the type of video that will be
shown. “

• [The experimenter click on <Play>].

• ”In these segmented videos only moving objects are extracted and the background is left out.
The green color for the background has been chosen only for a better visualization of the
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segmented objects. These segmented videos that are displayed, are segmented by hand, but
typically automatic methods of segmentation do not work so well. Automatic segmentation
often leaves defects outside, inside or on the border of segmented objects. Now, let me show
you the typical errors introduced by an automatic method of segmentation.”

• [The experimenter click on <NEXT>].

• ”Do you have any questions? Do you want to see it again? .Now I will explain you how
to perform the task. . Prior to each trial, you will look at the center of the screen of the
computer monitor. You may move your eyes during the presentation of the clip. You will be
presented with one video clip on each trial: the segmented video under test. Each trial will last
5 seconds. The distance from the monitor to your eyes is important during the presentation.
Try not to lean forward or backward. The indicator to your right shows the distance at which
we would like you to have your eyes. At the end of the presentation, a question will appear on
the computer monitor The same question will be asked after every trial. Do not spend a lot
of time thinking about your responses. We want to know your initial impressions. You will be
asked to indicate how annoying the defect was by entering a number that is proportional to
its annoyance value. You are to indicate only the degree of annoyance produced by the defect;
you will not be judging the entire clip. Here is how you will determine the annoyance value. I
am about to show you a set of sample clips. This will give you an idea of the range of image
quality that you will be seeing. Some of the video clips will have one defect at a time, some of
them will have two defects at the same time. Moreover, one defect could appear and disappear
along the video sequence. You are to assign an annoyance value of 100 to the most annoying
defect seen among the sample clips. If the annoyance value of a defect in the experiment is
half of the worst sample clip, give it a 50; if it is 1/10th as bad, give it a 10; if it is 1.5 times
as bad, give it a 150. If the defect did not annoy you at all, call it 0 (zero). I will show you
the sample clips now.”

• [Click on <START> to proceed with the rest of the example clips.]

• “Did you see any defects? Remember that the most annoying defect that you have seen is to
have a value of 100. Use the numeric keypad to enter the annoyance value. After you finish
entering the annoyance value, click on <OK> or hit <ENTER> on the numeric keypad. The
computer will start showing the next video clip as soon as you click on <NEXT>. Before
we start the experiment, you will have nine practice trials to be sure that you understand the
task. You will respond in these trials just like you will in the main experiment. Remember
that you have one question to answer. How annoying was the defect relative to the worst
example? Remember to press <OK> or <ENTER> after entering the annoyance value and
to press <NEXT> when you are ready for the next video. We will not use the data from the
practice trials, so don’t be concerned if you make a mistake here.”

• [Start the practice trials by hitting the Mock Test button.]

• ”Do you have any questions?

• You can take a break at any time by entering your answers for the most recent video, but
waiting to hit <NEXT> until you are ready to go on. You should stop if you are confused
about what to do, if you realize you have entered data incorrectly, or if you need a break. You
cannot stop the video from playing or go back and fix the data from a previous clip after you
hit <NEXT>. So if something goes wrong, watch the video and then tell the experimenter.
We will go back and fix it later. The question will come up on the computer screen after the
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video is displayed. The question will not change. There are 196 clips in the experiment and it
takes approximately 35 minutes to complete, if you do not take any breaks.

• Do you have any questions?

• At the end of the experiment I will ask a few questions. Start the experiment by hitting the
<Proceed to Real Test> button. Finally, when you are ready to start the experiment, let me
know so that I can upload the test.”

• [Start the experiment.]

• At the end of the experiment, ask the following questions and write down the answers: “How
would you describe the defects that you saw? What made a defect the most annoying for
you?”
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B.2 Sample Instructions for Segmented Object Strength Task

Sit the subject in the chair, centered in front of the video monitor. The subject should be adjusted
backward or forward to get a distance of 45 cm from the video monitor screen. The most comfortable
position for the subject tends to be leaning forward slightly with forearms or elbows on the table.

• Enter your name and hit <NEXT>.

• “This study is concerned with defects or impairments in segmented video images and their effect
on human viewers. We are not concerned with the content of the videos. We are interested in
wheter or not you see a defect in the segmentation that we will show, and if so, how strong
each type of artifact is. These are videos of natural scenes in which something moves. The
moving object is cut out or segmented from the background and most of the background is
uniform green. Let me show an example of the type of video that will be shown.”

• [The experimenter click on <Play> ]

• “In these segmented videos only moving objects are extracted and the background is left out.
The green color for the background has been chosen only for a better visualization of the
segmented objects. These segmented videos that are displayed, are segmented by hand, but
typically automatic methods of segmentation do not work so well. Automatic segmentation
often leaves defects outside, inside or on the border of segmented objects. Now, let me show
you the typical errors introduced by an automatic method of segmentation:

– The next video segmentation contains a strong added background defect.[ Wait until clip
finishes]

– The next two segmented video sequences also contain added background defects. How-
ever, in each clip the defect gets weaker and weaker.[Watch the next two clips]

– The next video segmentation contains a strong added region defect. [ Wait until clip
finishes]

– The next two segmented video sequences also contain added region defects. However, in
each clip the defect gets weaker and weaker.[Watch the next two clips]

– The next video segmentation contains a strong holes inside the objects defect. [ Wait
until clip finishes]

– The next two segmented video sequences also contain holes inside the objects defects.
However, in each clip the defect gets weaker and weaker.[Watch the next two clips]

– The next video segmentation contains a strong holes on the border of the objects defect.
[ Wait until clip finishes]

– The next two segmented video sequences also contain holes on the border of the objects
defects. However, in each clip the defect gets weaker and weaker.[Watch the next two
clips]

• [The experimenter click on <Next>].

• Do you have any questions? Do you want to see it again?

• Now I will explain you how to perform the task. . Prior to each trial, you will look at the
center of the screen of the computer monitor. You may move your eyes during the presentation
of the clip. You will be presented with one video clip on each trial: the segmented video under
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test. Each trial will last 5 seconds. The distance from the monitor to your eyes is important
during the presentation. Try not to lean forward or backward. The indicator to your right
shows the distance at which we would like you to have your eyes.

• At the end of the presentation, a question will appear on the computer monitor The same
question will be asked after every trial. Do not spend a lot of time thinking about your
responses. We want to know your initial impressions.

• You will be asked to estimate the strength of each type (added region, added background,
holes inside and holes on the border) of each kind of artifact . The defect can be found in any
region of the image and in any time during the clip. If you do not see any defect, call it 0
(zero) for all the defects and do not enter any number. Just press NEXT and then look back
at the video screen.

• You will be asked to rate the strength of each kind of artifact by clicking in a number of the
correspondent scale. You are to indicate only the strength of the specified type of defect; you
will not be judging other types of defects that may be present in the video. If you see a defect
which does not fit the categories given, please ignore it. You will be asked to rate the strength
of each kind of impairments using four scale bars. Each bar will be labeled with an eleven
points scale (0-10). However, each bar contains far more than eleven points and intermediate
values are allowed. You will enter the scores by using the mouse to click on each scale. The
scale bars will be updated to show on the top the entered strength. Until you click on Next
video, the entered values can be adjusted by re-clicking on the scale bars.

• Here is how you will determine the annoyance value. I am about to show you a set of sample
clips. This will give you an idea of the range of image quality that you will be seeing. The
sample clips include five sets of videos. The first set has five high quality segmentations. The
second set has three videos with strong added regions defect. You are to assign a strenght
value of 10 to the most annoying defect seen among the segmented video clips. If the strength
of a defect in the main experiment is half of the worst sample clip, give it a 5; if it is 1/10th as
bad, give it a 1. If the defect did not appear, call it 0 (zero). I will show you the sample clips
now.The third set has three segmented videos with strong added background defect. You are
to assign a strenght value of 10 to the most annoying defect seen among the segmented video
clips. If the strength of a defect in the main experiment is half of the worst sample clip, give it
a 5; if it is 1/10th as bad, give it a 1. If the defect did not appear, call it 0 (zero). I will show
you the sample clips now. The fourth set has three segmented videos with strong hole inside
defect. You are to assign a strenght value of 10 to the most annoying defect seen among the
segmented video clips. If the strength of a defect in the main experiment is half of the worst
sample clip, give it a 5; if it is 1/10th as bad, give it a 1. If the defect did not appear, call it
0 (zero). I will show you the sample clips now. The fifth set has three segmented videos with
strong hole border defect. You are to assign a strenght value of 10 to the most annoying defect
seen among the segmented video clips. If the strength of a defect in the main experiment is
half of the worst sample clip, give it a 5; if it is 1/10th as bad, give it a 1. If the defect did
not appear, call it 0 (zero). I will show you the sample clips now.”

• [Click on <START> to proceed with the rest of the example clips.]

• Did you see any defects? Remember that the most annoying defect that you have seen is to
have a value of 10.
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• Use the numeric keypad to enter the annoyance value. After you finish watching the segmen-
tation click on <OK > or hit <ENTER> to enter the strength values with the mouse. on
the numeric keypad. The computer will start showing the next video clip as soon as you click
on <NEXT>. If you took more than 6-8 seconds to answer the questions, the next clips will
start showing immediately.

• Before we start the experiment, you will have twelve practice trials to be sure that you un-
derstand the task. You will respond in these trials just like you will in the main experiment.
Remember that you have one question to answer. How strong was the defect relative to the
worst example? Remember to press <OK> or <ENTER> after entering the annoyance value
and to press <NEXT> when you are ready for the next video. We will not use the data from
the practice trials, so don’t be concerned if you make a mistake here.

• [Start the practice trials by hitting the Mock Test button.]

• Do you have any questions?

• You can take a break at any time by entering your answers for the most recent video, but
waiting to hit <NEXT> until you are ready to go on. You should stop if you are confused
about what to do, if you realize you have entered data incorrectly, or if you need a break. You
cannot stop the video from playing or go back and fix the data from a previous clip after you
hit <NEXT>. So if something goes wrong, watch the video and then tell the experimenter.
We will go back and fix it later.

• The question will come up on the computer screen after the video is displayed. The question
will not change.

• There are 180 clips in the experiment and it takes approximately 35 minutes to complete, if
you do not take any breaks.

• Do you have any questions?

• At the end of the experiment I will ask a few questions. Start the experiment by hitting the
<Proceed to Real Test> button. Finally, when you are ready to start the experiment, let me
know so that I can upload the test.

• [Start the experiment.]

• [At the end of the experiment, ask the following questions and write down the answers:]

• “How would you describe the defects that you saw?

• What made a defect the most annoying for you?”
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B.3 Sample Instructions for Compression Application An-

noyance Task

• This part of the trial is concerned with the quality of the segmentation in connection with
the application of video compression. You will see the sequences obtained using different
segmentation algorithms and you should judge them giving a valuation that considers all the
defects and the impairments noticed. Remember that we are not concerned with the content
of the videos: we want to know how you judge any imperfections in the segmentations and how
annoying they are. The videos that you will examine contain one or more objects extracted
from the original by the segmentation algorithms and put over a compressed version of the
background. Let me show an example of the type of video that will be shown.

• [Click on <Play>].

• This kind of application is related to the preceding one of video-surveillance, whose systems
often include blocks for the shots recording or transmission (to a security office) that are
activated in the presence of anomalous situations. Introducing compression is useful to ensure
a real time transmission or to occupy less storage capacity, but it is also important that the
people, the things, the shapes and the parts of the objects are recognizable: a solution is
encoding the segmented objects with the best possible quality and the background with a
lower quality (introducing compression). To judge the segmentations for this application you
should look at the defects and the imperfections also considering these requirements about
the identification and the recognizability of the objects. Keep in mind that what you have to
evaluate is the quality of the segmentation, not how the video are compressed.

• Now I will explain you how to perform the task. Prior to each trial, you will look at the center
of the screen of the computer monitor. You may move your eyes during the presentation of the
clip. You will be presented with one video clip on each trial: the segmented video under test.
Each trial will last 5 seconds. It is important that the distance from the monitor to your eyes
is preserved during the presentation, so try not to lean forward or backward. The indicator to
your right shows the distance at which we would like you to have your eyes.

• At the end of the presentation, a question will appear on the computer monitor. The same
question will be asked after every trial. Do not spend a lot of time thinking about your
responses: we want to know your initial impressions. You will be asked to give a global
judgment about the observed video by entering a number that is proportional to the annoyance
degree perceived as a result of the imperfections in the segmentation.

• Here is how you will determine the annoyance value. I am about to show you a set of sample
clips. This will give you an idea of the range of image quality that you will be seeing. Among
these videos you should identify the worst segmentation and mentally assign an annoyance
value of 100 to it. Then, in the experiment, you will use that video as a term of comparison
to judge the other ones: for instance if the annoyance value of a defect in the segmentation is
half of the worst sample clip, give it a 50; if it is 1/10th as bad, give it a 10; if it is 1.5 times
as bad, give it a 150. If the defect did not annoy you at all, call it 0 (zero). I will show you
the sample clips now.

• [Click on <START>]

• Did you see any defects? Do you want to see the segmentations again? Remember that the
most annoying defect that you have seen is to have a value of 100.
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• Before we start the experiment, you will have nine practice trials to be sure that you understand
the task. You will respond in these trials just like you will in the main experiment. Remember
that you have one question to answer: how annoying was the defects in the segmentations
relative to the worst example? Use the numeric keypad to enter the annoyance value, after
you finish entering the annoyance value, click on <OK > or hit <ENTER> on the numeric
keypad and press <NEXT> when you are ready for the next video. We will not use the data
from the practice trials, so don’t be concerned if you make a mistake here.

• [Start the practice trials]

• Do you have any questions?

• You can take a break at any time by entering your answers for the most recent video, but
waiting to hit <NEXT> until you are ready to go on. You should stop if you are confused
about what to do, if you realize you have entered data incorrectly, or if you need a break. You
cannot stop the video from playing or go back and fix the data from a previous clip after you
hit <NEXT>. So if something goes wrong, for example if you enter 600 instead of 60 and
hit <NEXT>, watch the video and then tell me what happened specifying the number of the
video (it appears up in the window where you put your answer), I will go back and fix it later.

• This part of the experiment includes 30 videos and it takes approximately 5 minutes to com-
plete: the same question will come up on the computer screen after the video is displayed.
Remember that we want to know your initial impressions so you should answer soon enter a
judgment about the entire clip, and not only about the last frames.

• Do you have any questions?

• [Start the experiment.]
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B.4 Sample Instructions for Augmented Reality Application

Annoyance Task

• This part of the trial is concerned with a completely different field of application of the seg-
mentation: you will judge the quality of the segmentation in connection with the application
of augmented reality. Augmented reality is a technology by which one can insert objects from
the real world in a virtual environment. You will see the sequences obtained using different
segmentation algorithms and you should judge them giving a valuation that considers all the
defects and the impairments noticed. Remember that we are not concerned with the content
of the videos: we want to know how you judge any imperfections in the segmentations and how
annoying they are. The videos that you will examine contain one or more objects extracted
from the original by the segmentation algorithms and put over a virtual background in black
and white. Let me show an example of the type of video that will be shown.

• [Click on <Play>].

• This application allows the integration between the real world and the virtual world. In partic-
ular the segmentation can be used to extract the objects from the real world and then put them
over virtual background. The final purpose is entertainment: it could be to create an interac-
tive comic where the people get themselves together with the other things (placed in front of
the camera and subsequently segmented) immersed in a virtual environment. Now, you should
judge the segmentation considering the observed defects and imperfections and evaluating the
suitability of the segmentation algorithms in connection with this type of application.

• Now I will explain you how to perform the task. Prior to each trial, you will look at the center
of the screen of the computer monitor. You may move your eyes during the presentation of the
clip. You will be presented with one video clip on each trial: the segmented video under test.
Each trial will last 5 seconds. It is important that the distance from the monitor to your eyes
is preserved during the presentation, so try not to lean forward or backward. The indicator to
your right shows the distance at which we would like you to have your eyes.

• At the end of the presentation, a question will appear on the computer monitor. The same
question will be asked after every trial. Do not spend a lot of time thinking about your
responses: we want to know your initial impressions. You will be asked to give a global
judgment about the observed video by entering a number that is proportional to the annoyance
degree perceived as a result of the imperfections in the segmentation.

• Here is how you will determine the annoyance value. I am about to show you a set of sample
clips. This will give you an idea of the range of image quality that you will be seeing. Among
these videos you should identify the worst segmentation and mentally assign an annoyance
value of 100 to it. Then, in the experiment, you will use that video as a term of comparison
to judge the other ones: for instance if the annoyance value of a defect in the segmentation is
half of the worst sample clip, give it a 50; if it is 1/10th as bad, give it a 10; if it is 1.5 times
as bad, give it a 150. If the defect did not annoy you at all, call it 0 (zero). I will show you
the sample clips now.

• [Click on <START>]

• Did you see any defects? Do you want to see the segmentations again? Remember that the
most annoying defect that you have seen is to have a value of 100.
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• Before we start the experiment, you will have nine practice trials to be sure that you understand
the task. You will respond in these trials just like you will in the main experiment. Remember
that you have one question to answer: how annoying was the defects in the segmentations
relative to the worst example? Use the numeric keypad to enter the annoyance value, after
you finish entering the annoyance value, click on <OK > or hit <ENTER> on the numeric
keypad and press <NEXT> when you are ready for the next video. We will not use the data
from the practice trials, so don’t be concerned if you make a mistake here.

• [Start the practice trials]

• Do you have any questions?

• You can take a break at any time by entering your answers for the most recent video, but
waiting to hit <NEXT> until you are ready to go on. You should stop if you are confused
about what to do, if you realize you have entered data incorrectly, or if you need a break. You
cannot stop the video from playing or go back and fix the data from a previous clip after you
hit <NEXT>. So if something goes wrong, for example if you enter 600 instead of 60 and
hit <NEXT>, watch the video and then tell me what happened specifying the number of the
video (it appears up in the window where you put your answer), I will go back and fix it later.

• This part of the experiment includes 30 videos and it takes approximately 5 minutes to com-
plete: the same question will come up on the computer screen after the video is displayed.
Remember that we want to know your initial impressions so you should answer soon enter a
judgment about the entire clip, and not only about the last frames.

• Do you have any questions?

• [Start the experiment.]
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B.5 Sample Instructions for Video Surveillance Application

Annoyance Task

• This part of the trial is concerned with the quality of the segmentation in connection with the
application of video-surveillance. You will see the sequences obtained using different segmen-
tation algorithms and you should judge them giving a valuation that considers all the defects
and the impairments noticed. Remember that we are not concerned with the content of the
videos: we want to know how you judge any imperfections in the segmentations and how
annoying they are. The videos that you will examine contain one or more objects highlighted
by white or green boundaries using the segmentation algorithms. Let me show an example of
the type of video that will be shown.

• [Click on <Play>].

• The video-surveillance systems are used in different fields: monitoring the traffic to detect
incidents or jams, analysis of the human behavior to identify thefts, brawls or other dangerous
situations, security of reserved zones to control the access of a non-authorized person or of
abandoned objects. The segmentation can be employed by these systems to identify all the
objects in the scene and then detect anomalous situations, for instance one could introduce a
post-processing block for the face detection and recognition that activates an alarm if the seg-
mented person is not authorized. Also in less sophisticated systems, where the shots are shown
on the monitor and directly controlled by a human operator, the segmentation information can
be useful to help him in his task through a scene representation as the one I showed to you,
with the highlighted objects. Since these systems work in real time, an essential requirement
for the algorithms is a low computational cost while a high precision of the segmented object
contours is not necessary: what is important is that all the objects are identified and entirely
cut out because an only partially detected object could generate an error in the successive
phases.

• Now I will explain you how to perform the task. Prior to each trial, you will look at the center
of the screen of the computer monitor. You may move your eyes during the presentation of the
clip. You will be presented with one video clip on each trial: the segmented video under test.
Each trial will last 5 seconds. It is important that the distance from the monitor to your eyes
is preserved during the presentation, so try not to lean forward or backward. The indicator to
your right shows the distance at which we would like you to have your eyes.

• At the end of the presentation, a question will appear on the computer monitor. The same
question will be asked after every trial. Do not spend a lot of time thinking about your
responses: we want to know your initial impressions. You will be asked to give a global
judgment about the observed video by entering a number that is proportional to the annoyance
degree perceived as a result of the imperfections in the segmentation.

• Here is how you will determine the annoyance value. I am about to show you a set of sample
clips. This will give you an idea of the range of image quality that you will be seeing. Among
these videos you should identify the worst segmentation and mentally assign an annoyance
value of 100 to it. Then, in the experiment, you will use that video as a term of comparison
to judge the other ones: for instance if the annoyance value of a defect in the segmentation is
half of the worst sample clip, give it a 50; if it is 1/10th as bad, give it a 10; if it is 1.5 times
as bad, give it a 150. If the defect did not annoy you at all, call it 0 (zero). I will show you
the sample clips now.
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• [Click on <START>]

• Did you see any defects? Do you want to see the segmentations again? Remember that the
most annoying defect that you have seen is to have a value of 100.

• Before we start the experiment, you will have nine practice trials to be sure that you understand
the task. You will respond in these trials just like you will in the main experiment. Remember
that you have one question to answer: how annoying was the defects in the segmentations
relative to the worst example? Use the numeric keypad to enter the annoyance value, after
you finish entering the annoyance value, click on <OK > or hit <ENTER> on the numeric
keypad and press <NEXT> when you are ready for the next video. We will not use the data
from the practice trials, so don’t be concerned if you make a mistake here.

• [Start the practice trials]

• Do you have any questions?

• You can take a break at any time by entering your answers for the most recent video, but
waiting to hit <NEXT> until you are ready to go on. You should stop if you are confused
about what to do, if you realize you have entered data incorrectly, or if you need a break. You
cannot stop the video from playing or go back and fix the data from a previous clip after you
hit <NEXT>. So if something goes wrong, for example if you enter 600 instead of 60 and
hit <NEXT>, watch the video and then tell me what happened specifying the number of the
video (it appears up in the window where you put your answer), I will go back and fix it later.

• This part of the experiment includes 30 videos and it takes approximately 5 minutes to com-
plete: the same question will come up on the computer screen after the video is displayed.
Remember that we want to know your initial impressions so you should answer soon enter a
judgment about the entire clip, and not only about the last frames.

• Do you have any questions?

• [Start the experiment.]
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B.6 Sample Instructions for Watermarked 3D Model Distor-

tion Task

After getting the subject into position, centered in front of the screen and at the correct distance
(about 0.4 cm), the following instructions are read:

• “This test concerns the evaluation of the distortions or impariments introduced by watermark-
ing algorithms on the surfaces of 3D models.

What is a 3D model? A 3D model is a collection of data that represent a 3D shape. 3D models
are used in particular in entertainment industries, for examples movies and video games use a
lot of 3D models.

What is watermarking? Digital watermarking is a technology used to embed information inside
a digital media. Imagine you want to associate some information with a digital media, i.e.
the name of the owner of an image to the image itself. A watermarking algorithm, specific for
images, can process the image and embed this information inside the image data itself. So, this
information can be eliminated only modifying the watermarked image. In order to embed the
data watermarking algorithms modify some properties of the digital media producing always
some distortions in the watermarked media. The purpose of the test is the evaluation of the
distortions introduced by watermarking algorithms on 3D models. Usually these distortions
are visible on the model surfaces. So, the test is very simple: you interact with some models
and you have to indicate if you see or not a certain kind of distortions. Obviously, I will show
to you these distortions so you can understand what you have to evaluate.

• During the test you interact with the models and you have to evaluate these impairments. In
particular you will indicate whether you detect any distortion or impariment.

• For those 3D models you detect a distortion you will indicate how much you perceive such
distortion by entering a number that is proportional to its distortion value.

• Additionally you will have to indicate the part of the models where the distortions are more
evident (this task is present only for Experiment I).

• Here I will show you the models without any distortion. The test includes four models. You
have to imagine these models like statues. In particular I will show to you a model called
”Venus” that represent the head of a statue of Venus, a mythological feline with wings called
”Feline”, a ”Horse” and, finally a ”Bunny” .

• [Show originals]

• Are you able to remember these models? Do you want to see it again?

• Before we start the experiment, you will see how the typical distortions introduced by water-
marking process look like. In few words the roughness of the surface of the model is increased
in some way. We have to recognize this roughness, so it is important that you remember, for
each model, the roughness of its parts. Another important aspect that you have to consider
during your evaluation is that the distortions introduced by the algorithm is uniform on the
surface.

• [Show the watermarked models]

• Have you understood how these distortions look like? Do you have any questions?
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• In this phase, you will learn how to interact with the 3D model. You interact with the models
by using the mouse. To rotate the model push the left button and moves the mouse. When
you want to stop to rotate the model release the left button. To zoom the model push the
right button and move the mouse ahead or back to zoom in or to zoom out. When you want
to stop to zoom the model release the mouse button.

• [Interaction trial - Try to rotate the model. Try to zoom it. You can move the model
left/right/up and down with the arrow keys. Try.].

• (Only for Experiment I) Remember that you have to decide even where the distortions are
more evident. This is very important, so take in account, while you are interacting with the
model, that you have to decide how much you perceive the distortion and where these are
more evident. To indicate the part of the model that presents the most evident distortions we
have to use this viewfinder, this sight [activate selection mode]. You can move the models as
usual. The rectangle can be resized by using the keys ’A’, ’D’, ’X’ and ’W’. Pay attention.
You have to move the model to select the part, not the selection rectangle. Press <ENTER>,
on the keyboard, to confirm your selection. Now, try to indicate some parts on this model.
[Interaction trial - selection]

• Have you understood? Do you have any questions?

• Now I will show to you some cases that help you to evaluate numerically how much you
perceive the distortions. You have to choose the worst case and mentally assign a value of 10
to it. This will give you an idea of the distortions that you will be seeing. The distortions
could be present or not on the model. So, you are assigning a score of 10 to the most evident
distortions. If the perception of the distortions during the test is half of the worst examples
you chose, give it 5; if it is 1/10th as bad give it 1, if it is 1.5 times as bad, give it 15. This is
important, you can give score higher than 10. Remember that the question is how much you
perceive, how much you notice such kind of distortions. I will show these examples now.

• [Show worst cases]

• Before we start the experiment you will have six practice trials to be sure that you understand
the task. You will respond in these trials just like you will in the main experiment. The
questions appear on the screen. So, you have to provide three answers (two for the Experiment
II) after the interaction with the model. The first question is: did you notice any distortion?
You can answer <YES> or <NO> at this question. Then, in case of positive answer you
have to give a score to indicate how much the distortion is evident. You use the numeric
keypad to enter the perception value. And finally, the third question, (only for Experiment I)
where you noticed the distortions. To answer to this question you have to select the part of
the model with the most evident distortions.

• Do you have any question? Do you want to repeat it?

• [Practice Trials]

• 40 models will be shown to you during the test (48 in Experiment II). This takes about 20
minutes (24 minutes for Experiment II) plus the time you need to indicate where the distortions
are more evident (only for Experiment I). So, the test will takes about 30 minutes.

• Before to start the test I would like to give you the following practical recommendations:
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1. In case of input error, please tell me what you want to do and I correct your answer at
the end of the test.

2. You can take a break at any time by entering your answers (score and part) for the most
recent models, but waiting to hit <ENTER> until you are ready to go on.

3. Finally, at the end of the test I will ask to you few questions.

• Do you have any question before to start?

• [Start the experiment]

• [Interview]

1. What is your feeling with the models? I mean, have you experienced any problem to
identify the distortions on a specific model and why?

2. How would you describe the distortions that you saw?

3. Have you comments or remarks about the tests?
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3D Model Rendering C
The term rendering indicates the set of methods and algorithms used to generate a two-dimensional
image starting from a scene described by geometric primitives. The result of the rendering process,
i.e. the final rendered image, depends on the rendering techniques used and on the visual properties
of the rendered scene. Nowadays, several rendering techniques exist. One first important distinction
subdivides these techniques into two categories: the real-time rendering (RTR) methods and the off-
line rendering ones. For real-time rendering we intend all of those techniques capable of generating
the images quickly enough to allow interaction. The sense of interactivity with the 3D scene is
constrained to the rate at which the images are displayed, measured in frames per seconds (fps).
The typical frame rate of video games is around 50 fps.

In contrast to real-time rendering, off-line rendering techniques process the 3D scene without
the aim of interaction. In this case, the accent is posed on the creation of realistic images. Some
popular off-line rendering methods include Ray Tracing.

Ray Tracing is one of the most used rendering methods to produce photo-realistic images. In
ray tracing, a ray of light is traced in a backward direction, i.e. the ray starts from the eye of the
observer and is traced through a pixel in the image plane into the scene determining what it hits.
The pixel is then set to the color values returned by the ray. This basic idea is repeated as much as
necessary to sample the entire image plain and to produce the final image (see Figure C.1).

In its basic form, ray tracing can be described by the following algorithm:

• For each pixel of the images:

1. Construct a ray from the viewpoint

2. For each objects in the scene

2.1. Find intersection with the ray

2.2. Keep the closest intersection point

3. Shade the point the ray hits

Ray tracing could be computationally very expensive. This basic ray tracing scheme could be
modified to take into account sophisticated photorealistic visual effects, such as soft shadows or
caustics. Such extensions will be discussed in Section C.5.

177
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Figure C.1: Ray Tracing schematization.

C.1 Illumination Models

A lighting model uses a mathematical description of the interaction between the light incident on a
3D object and its surface. Such models range from simple to very complex ones. The complexity
of the model varies depending on the desired level of simulation of physical interactions. Typically,
real-time rendering systems require to find the right trade-off between level of realism, that requires a
high computational effort, and an acceptable frame rate. On the contrary, off-line rendering systems
may use sophisticated lighting models.

Before describing some classical lighting models we introduce some basic notions about light-
material interaction. Figure C.2 summarizes what happens when photons hit a generic surface. Part
of the incident light is reflected, part is absorbed and part is transmitted:

Ii = Ir + It + Is + Ia (C.1)

where Ii is the incident light, Ir is the light reflected by the material, It is the light transmitted, Is is
the light scattered and Ia is the light absorbed by the material. The reflected light can be described
by considering two different effects, the diffusion reflection and the specular reflection. The diffusion
reflection is responsible of the color of the objects. A yellow object, for example, when illuminated
with a white light, reflects the yellow component of the light. The colored reflected light is due to
the diffuse reflection. A perfect diffusive surface scatters light uniformly in all directions, hence the
diffuse light does not depend on the observer’s position.

In the Lambertian lighting model, the intensity of the diffuse light can be computed by Lam-
bert’s Law [171]:

Id = IiKd cos(θ) (C.2)

where Kd is the diffusion constant of the object, θ is the angle between the surface normals at the
considered point and a line connecting such point with the light sources. In the following we indicate
the direction of such line with the versor 	L. The maximum light received by the surface is when the
surface normal is parallel to the direction of the incident light, i.e. the surface is perpendicular to
the incident light.

The specular reflection depends on the degree of glossiness of a surface. A matte surface has no
specular effect but high diffusive behavior, a perfect glossy surface is a mirror. The light reflected
from a mirror leaves the surface with the same angle of incidence, computed with respect to the
surface normals. Hence, the amount of specular light seen by the viewer depends on the viewer’s
position. Simplifying the real phenomenon, we can say with a good degree of approximation that
the color of the specular light is similar to the incident light, i.e. the highlight∗ color of an object
illuminated with a white light is white.

∗Highlight is the name of the area over which the specular reflection is seen.
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Figure C.2: Light-material interaction.

Microfacets model.

L H

V

Masking effect of the

microfacets.

V H

L

Shadowing effects of the

microfacets.

Figure C.3: Microfacets model of a reflecting surface.

The Phong lighting model [122] is the“standard”model used in Computer Graphics. This simple
model has been developed by Bui-Tuong Phong in 1975 on the basis of empirical observations. This
model provides a good trade-off between accuracy and complexity. Phong described the reflected
light using three terms:

IPhong = IambKa + IiKd( 	N · 	L) + IiKs(	R · 	V )n (C.3)

where Ka is the ambient constant and Ks the specular constant; 	N is the surface normal, 	L is the
vector that represents the direction of the incident light, 	L is the vector that represents the direction
of the reflected light, 	V is the vector that describes the direction of the line connecting the viewer
with the considered point (see Figure C.4). The first term of the Eq.(C.3) is the ambient term;
this term models the light which the object receives from the surrounding environment. The second
term models the diffusion component of the reflected light. This term follows the Lambertian law
(Eq. (C.2)). In fact it is proportional to the dot product between the (normalized) vectors 	N and
	L. If 	N · 	L < 0 the point receives no light. The third term models the specular light, in fact it is
proportional to the light reflected in the direction of the viewer. The coefficient n depends on the
surface’s material.

The Cook and Torrance [21] lighting model includes energy conservation within the incident,
the reflected light and the color change by the specular highlight. The first reflection model based
on physical considerations to model the specular light was proposed by James Blinn [12]. Instead of
providing an empirical formulation like Phong’s model, Blinn’s model was based on a surface model
introduced by Torrance and Sparrow (1967) [149]. Such surface model assumes that a surface is
composed of a collection of microfacets, each of them behaving like a mirror, as in Fig. C.3. The



180 Chapter C. 3D Model Rendering

L R

N

V
θθ

Figure C.4: Phong model schematization.
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Figure C.5: Lighting models (from [83]).

distribution of the directions of the microfacets determines the specular component of the light.
Cook and Torrance enhanced Blinn’s model by introducing two new physical aspects in it: energy
conservation between the incident and the reflected light and the change of the color within the
specular highlight. A geometric attenuation factor in Cook and Torrace lighting model takes into
account the masking and shadowing effect of the microfacets (Figure C.3).

Figure C.5 shows an example of application of the Lambertian, the Phong and the Cook and
Torrance models. The Lambertian model is based on Lambert’s Law ((C.2)) and takes into account
only the diffuse component of the reflected light.

C.2 Light Sources

The first step to simulate lighting is to model the light sources. Typically, simple lighting models
approximate the light sources as a point source since volumetric lights are complex to simulate. The
three kinds of light sources commonly used are the directional light, the point light and the spot
light. Figure C.6 summarizes these three kinds of light sources.

The point light models a light source as a point that emanates photons uniformly in all directions.
This kind of light source is characterized completely by its position and by the color of the emitted
light.

The directional light can be seen as a point light source moved at infinity. This light is completely
defined by the light direction. Hence, the direction of the light received by the model is constant
over all its surface. This kind of light can be used, for example, to model the light emitted from the
sun in outdoor scenes.

The spot light simulates a cone of light. This kind of light requires several parameters to be
defined: the position, a vector indicating the direction of the light and a cut-off angle, which is the
half of the angle of the spotlight cone. Finally, to control the attenuation of the light within the
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(Point light) (Directional light)

(Spot light)

Figure C.6: Different kind of light sources.

cone, another parameter called spot exponent might be used. The spot exponent modulates the
concentration of the light distribution in the central part of the cone.

Usually the color of the light emitted by the light source is defined by a set of three values
representing the RGB components of the color. Another important property of the light emitted
by a light source is its intensity. The intensity of the light decreases with the square of the distance
from the light source. Often, in real-time rendering systems this physical property is not taken into
account, and the intensity of the light received by the objects is assumed independent from the
distance to the source.

C.3 Basic Shading Techniques

The term shading is the process of performing lighting computations, on the basis of the chosen
lighting models, and determining the colors of the pixels. The three basic shading techniques are the
flat, the Gouraud and the Phong∗ shading [171]. Referring to polygonal meshes, these techniques
correspond to computing the light per-face, per-vertex and per-pixel, respectively.

In flat shading, the light is computed for each triangle using the face normal. Hence, the effect
of shading is highly dependent on the level of detail, i.e. the number of faces and of the objects that
are rendered. It may be useful when the visualization purpose is to well-distinguish the faces that
compose the model.

In the Gouraud shading the light is computed for each vertex using the vertex normals. The
values of light over each face are interpolated. This method provides better visualization of the
curved surface than the flat shading, i.e. the curve looks smoother and realistic. Some problems of
the Gouraud shading include missing highlights and failure to capture spot light effects [53, 57].

In the Phong shading, the per-pixel lighting is computed by interpolating the vertex normals
instead of the color of the vertices as in the Gouraud shading. The Phong shading is rarely used
since it is computationally expensive and the Gouraud shading can provide the same visual results
if the triangles of the model are smaller than a pixel.

∗The Phong shading must not be confused with the Phong lighting model. The latter is a reflection model while

the former one is a way to interpolate the values of light obtained from a generic lighting model.
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Figure C.7: Basic shading techniques for polygonal meshes.
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Figure C.8: Different texture projections.

C.4 Texturing

Texturing is a process of locally modifying the appearance of a surface by using images or repeating
motifs. In other words, the surface properties are modulated by particular images called textures.
For example, if we want to render a brick wall, the image of a brick wall can be spread over planar
polygons giving the impression of the geometric details of the wall, even if they are not present in
the geometric data of the wall. This kind of texturing is called image texture mapping. Another
example could be the modulation of the surface transparency to simulate particular objects, such
as clouds. Alternatively, the modulation of the surface’s properties can be achieved by using bi- or
three-dimensional functions instead of using textures. In the following we give a brief description of
some texturing methods such as image texture mapping, bump mapping and gloss mapping.

Projector functions are used to convert a three-dimensional point in space into texture coor-
dinates. The most commonly used projector functions include spherical, cylindrical and planar
projections [10, 70]. In Figure C.8 several projection functions are shown.

In image texturing, one or more images are applied on the model’s surface. The main problem
is the association between the texture coordinates and the surface, in other words, to parameterize
the surface [60, 78].

Bump mapping techniques use texture information to modulate the surface normals. The actual
shape of the surface remains the same, but thanks to bump mapping the surface is rendered as if it
were a different shape with more details [1, 13]. One way to represent bumps is to use a heightfield to
modify the surface normal’s direction (see Figure C.9). Each monochrome texture value represents
a height.

Gloss mapping of texture is used to simulate non-uniformity in shiny surfaces. More specifically,
a gloss map is a texture that modulates the contribution of the specular component over the surface.
The idea at the base of gloss mapping is that the material properties can be encoded with textures,
instead of using per-vertex values. Figure C.10 shows an example of gloss mapping.
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Textured Cylinder Elevation Map Bump-Mapped Cylinder

Figure C.9: An example of Bump Mapping.

Figure C.10: Gloss mapping. The shininess of the shield on the right is modulated in order to
appear more realistic.
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Ray Tracing Photon Mapping

Figure C.11: Global Illumination Effects. (Left) Ray Tracing can be used to reproduce “hard”
shadows and reflections. (Right) Photon Mapping can simulate any kind of visual effects produced
by illumination in real scenes.

C.5 Global Illumination

The concept of global illumination is at the base of the generation of synthetic images with an
outstanding level of realism. The illumination models presented so far are not able to capture a lot
of sophisticated visual effects that are present in real scenes. In fact, those models are local, i.e. they
do not take into account the contributions of the indirect light, i.e. the light coming from the other
objects in the scene. In this sense, Ray Tracing is a first step in the direction of global evaluation
of the illumination. The basic Ray Tracing algorithm proposed above can be easily modified to
properly render shadows and reflections. More complex algorithms such as Path Tracing or Photon
Mapping are necessary to take into account many of the global illumination visual effects present in
the real scene. These effects (see Figure C.11) are:

• Indirect light. The light received by an object is not only the light emitted from the light
sources but also the light reflected (or diffuse) by other objects. In Figure C.11 we notice that
the light reaches the roof of the box thanks to the contributions of the indirect light.

• Soft shadows. The contour of the shadows in real images is smooth due to the fact that real
light sources are volumetric.

• Color bleeding. This particular effect of the indirect light regards the fact that the color of an
object is influenced by the color of the near objects. Such visual effect depends on the light
diffused by the near objects. In Figure C.11 it is possible to see that the the roof is red near
the red wall.

• Caustics. The caustics are regions of the scene where the reflected light is concentrated. An
example is the light concentrated around the base of a glass. Such effect requires global
illumination techniques to be properly simulated.

In simple words, the goal of global illumination rendering techniques is to trace all photons
through a scene in order to simulate all the global illumination visual effects that characterize a real
scene.

The rendering conditions presented in this Appendix are schematized in Fig. C.12.
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Figure C.12: Rendering conditions schematization.
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