

Congrès Annuel ATIP Annecy 27-29 avril 2005

DUAL REPRESENTATION OF MINIMUM ENERGY REQUIREMENTS APPLICATIONS TO P&P PROCESSES

David Brown EP Montréal EFP Lausanne Zoé Périn-Levasseur EP Montréal EFP Lausanne

François Maréchal EFP Lausanne

Jean Paris EP Montréal

Highlights

Minimum energy requirement (MER)

- Integrated process-energy system
- Pinch analysis & MER
- Dual representation

Application to P&P operations

- Heating of a process stream
- Dilution and heating
- Paper machine drying section

Illustration : Integrated TMP-Newsprint Mill

Concluding remarks

Integrated Process-Energy System

Minimum Energy Requirement : Process Side

Process MER and Grand Composite Curve Shifted Temperatures

Process MER and Grand Composite Curve Diagram Construction

Dual Representation: Energy Requirement and its Technical Implementations Cold Stream Definition for One Demand

P&P Application 1 : Dilution and heating

Heating by steam injection : The pinch point pitfall

Quantité de chaleur

Steam should not be used below the pinch point

- This does not result in any net energy savings
- The effect is: the more in, the more out

P&P Application 2 : PM Drying section

ATIP 2005

PM Drying Section : Process and Utility Representations

- (1) HPS superheating
- 2 Production of HPS
- (3) HPS post condensation
- (4) Exchange between HP water preheating and HP condensate

- **(5)** Production of MPS
- 6 Exchange between HP & MP water preheating and HP condensate
- 7 Production of LPS
- (8) MHS and LPS post condensation
- (9) Condensate reheating

Illustration : Integrated TMP-Newsprint Mill

Thermodynamic MER

Technological MER

Integrated Process-Energy System

MER Production by Energy Conversion

Proposed modifications

- Recuperation of heat from secondary refiner exhaust steam (21% reduction of utility steam)
- Heat exchangers for whitewater and wood chip heating & use of a condensing extraction turbine, recycle condensate to boilers (10 % reduction of utility steam)
- Higher outlet pressure of boilers to improve cogeneration of electricity

An overview of process energy enhancement

