
   
 

 

Towards A More Rigorous Boresight Calibration1 
 

J. Skaloud, P. Schaer 
 

Swiss Federal Institute of Technology Lausanne (EPFL) 
 
 

 
Keywords: Boresight, Calibration, Exterior orientation, Direct sensor orientation, Methods, Adjustment 
 
Abstract 
 
This work focuses on the stochastic properties of boresight determination between a strapdown IMU and a frame-
based imaging sensor. The core of the stochastic model is a rigorous error propagation of the estimated input 
accuracies and their correlations. This subsequently yields more realistic estimates of boresight accuracy for every 
image event. The nature of INS/GPS integration makes the residual orientation errors be strongly correlated within 
a flight line while little horizontal acceleration is sensed. This information is partially carried within the Kalman 
filter used for the data integration; however, it is rarely made accessible to the user. As an alternative, we propose 
estimating the temporal correlations by means of a simplified function that is derived from the flying profile and 
the inertial system used. Numerical examples are demonstrated for the case of high-resolution digital imagery, 
where the application of the proposed method allows reaching sub-pixel accuracy in direct georeferencing (e.g. 
forward intersection without an adjustment). 
 
1. Introduction  
 
One of the common approaches in determining the boresight angles consists in comparing the INS(/GPS) attitude 
with that obtained by aero-triangulation (AT). This is usually accomplished either within the so-called ‘2-step’ 
procedure, where the boresight estimation is obtained for every image separately and then averaged [1], [2] 
(possibly with weights), or by introducing IMU orientation as additional observations in the bundle adjustment and 
estimating the boresight as one of its parameters [3], [4], [5], [6], [7], [8]. The latter approach is sometimes referred 
to as “1-step” procedure and has become quite popular despite its tendency to provide too optimistic estimates, as 
will be discussed further. One can also envisage an approach where the boresight gets estimated as a state-vector 
parameter of an inertial navigator using AT-data as additional updates of the Kalman Filter. Finally, considering 
global adjustment of all data sources as an additional option, we summarize these concepts in Table 1.  
 

Approach Adjustment 
Space 

Additional 
Observations  

Considering time 
correlations in 
IMU data? 

Remark 

“No step” Global IMU, GPS, AT, 
(GCP) 

Yes  Not developed, optimal 
but cumbersome. 

“ 1 step” AT IMU/GPS, 
(GCP) 

No 
(ջ Yes possible) 

Too optimistic accuracy 
estimate. Biased mean? 

“ Reversed 1 
step” 

IMU /GPS, 
/Attitude_AT 
 

Yes Not developed, may lead 
to KF divergence. 
 

“2 steps” Additional 
/Independent 

IMU/GPS, AT 
(Attitude only)  

Yes  
 

Developer independent, 
presented method. 

Table 1. Conceptual approaches to boresight determination with respect to IMU/GPS attitude correlation. 
 
The degree of rigor sustained by the above mentioned approaches often reflects the available tools and the 
background of the personnel performing this task rather than the theoretical outcome that would perhaps equalize 
all approaches under flawless stochastic assumptions. Leaving these perhaps decisive aspects aside, there are two 
additional factors playing a vital role in the quality of boresight estimate: first, the method’s ability in detecting 
blunders, systematic errors and providing overall robust quality control [9], second, accounting for significant 
correlations (spatial or temporal) that appear between the measurements. As very strong temporal correlations are 
inherently present in all IMU/GPS systems, failing to acknowledge this fact leads to biased mean-values and over-
optimistic estimates of boresight accuracy as will be demonstrated later on. Currently implemented ‘1-step’ 
approaches suffer from such negligence, mainly due to the following reasons:  
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• The IMU/GPS systems output orientation accuracy without indicating its temporal correlation  
• The AT software is not adapted to handle complicated structure of IMU/GPS temporal correlation 

 
This contribution aims to remove such setback by proposing a general “2-step” procedure that accounts for the 
temporal correlation (IMU/GPS) as well as space correlations (AT) in the orientation data. First, we present the 
functional and the stochastic model of this approach. Then we examine the alternative ways of determining the 
proper weights (correlation factors) when the user has a restricted or no access to KF variance-covariance matrix. 
Finally, we present numerical examples and discuss the practical considerations.  
 
2. Functional Model  
 
Considering the law of random error propagation the “2-step” approach essentially corresponds to “1-step” method 
that is executed in two phases and the outcome of which is identical. As we will try to investigate the effect of 
correlation between the IMU/GPS orientation on boresight it will be, however, much simpler to work initially only 
with the orientation data. The advantage of this approach will also be a relative independence from the existing 
implementations in AT or IMU/GPS data adjustment packages. The functional model thus remains simple as it 

consists of a comparison between AT (c
enuR ) and IMU/GPS ‘corrected’ ( b

enuR ) rotational matrices for n image 

events (‘ENU’ = east-north-up):  

 ( ) , 1,2, ,
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Tc c b
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The need for IMU/GPS attitude correction stems from the fact that the inertial navigator usually provides the body 
(b) attitude with respect to the local-level axes, whose orientation in space corresponds to its actual geographical 
position and therefore varies with the movement of the sensor.  Considering a conformal tangential projection used 
by AT with ‘ENU’ coordinate axes orientation of a fixed origin and the inertial navigator’s attitude with respect to 
the local-level ‘NED’ (north-east-down) axes, the alignment to a common orientation reference takes the form: 

 
0

i

i i

nedb b ned
enu ned enunedR R R T=  (2) 

 
It should be noted that the ned0 to nedi rotation is fairly small (<3o) over medium-size mapping areas and therefore 
can be neglected when studying the covariance propagation later on. Similarly, T is a reflection matrix that swaps 
roll with pitch and changes the sign of the heading. As the accuracy of roll and pitch tends to be similar, we may 
also neglect this transformation for the sake of simplicity, despite the fact that this matrix will not be needed when 
using an inertial navigation with ‘ENU’ implementation. Again, such simplifications are only possible when caring 
about boresight accuracy, not its value!   

A direct comparison of Euler angles is possible only for small rotation, which means that the boresight should not 
exceed few degrees per axis when using such approach. This is, however, the case in practical applications as the 
larger differences in IMU-camera orientation due to installation (often ±π/2) are known and thus can be accounted 
for prior to the processing of the inertial data. Hence, the boresight matrix in equation (1) can take upon a skew-
symmetric form: 
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As suggested in [2] this relation can be used to form nine equations that link the unknown boresight vector x = [2] 
to the observations l that are formed by the differences between the corresponding coefficients in the rotation 

matrices. With residuals v we obtain for each 
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c
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Using n images thus produces 9n ‘observations’ that can be adjusted by a least-square principle when forming 
three normal equations N and estimating the x as:  

 9 3 9 9 9 3

1

t
n n n n

t

N A P A

x N A Pl−

=

=
 (5) 

 
It should be noted, however, that the 9 elements of full-rotational matrix are correlated among themselves and so it 

is then our 9-element observation vector. The 
i

b
enuR matrices are further correlated among themselves as stems from 

the nature of inertial navigation. Hence, considering the P matrix as an identity or a matrix with values only on the 
main diagonal will certainly violate the assumptions needed to obtain an unbiased estimate in the least-square 
sense.  
 
An alternative approach is to work directly with the skew-symetric matrices obtained by relation (1) the triplet of 
which contains only ‘independent’ elements. These can be extracted from each observed skew-symetric matrix and 
the mean boresight angles estimated from a weighted average (p): 
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As in the previous case, setting the proper weights p will play a decisive role on the estimate as varying accuracies 
and correlations need to be accounted for. We shall investigate this when examining closely the error propagation 
in the next section.  
 
3. Stochastic Model with Temporal Correlations 
 
According to (1) each element of the boresight alignment matrix is a function of camera orientation (ω, ϕ, κ), and 
IMU/GPS attitude (r, p, y), i.e. we can write: 
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3.1. Error propagation (Qxx) 
To study the complete correlation pattern in the boresight estimate we apply the law of random error propagation 
and transform the initial variance-covariance information (Qll) as  

 t
xx llQ F Q F=  (8) 

Considering the dependences (7), matrix Ft [9x6] will contain the partial derivates of the individual rotational 
elements with respect to each angle as:  
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The formation of the partial derivatives will depend on the rotational sequences that parameterize the individual 
orientation matrices and therefore the analytical formulas may vary from case to case. However, there is no 
practical need to carry out such cumbersome calculations, as a numerical derivation will do just as well. To 
compute the attitude error propagation for n images in one step, a ‘global’ Ft matrix [9n x 6n] is formed: 
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3.2. Construction of the general stochastic model (Qll) 
Equation (8) propagates the stochastic information contained in the original variance-covariance matrix Qll. The 
information needed for its construction is the following: 
 

σϕ , σω, σκ:  AT-estimated accuracy of exterior orientation (attitude only), 



   
 

 

ρϕκ,ρκω,ρϕω:  optional correlations between (ω, ϕ, κ) from AT (when available), 
σr, σp, σy:  IMU/GPS estimated attitude accuracy 
σrp, σpy, σyr:  optional correlations between (r, p, y) from IMU/GPS (when available), 

, , :
t t t t t t t t tr r p p y yρ ρ ρ

+∆ +∆ +∆
 Temporal correlation between IMU angles from KF or empirically estimated. 

 
The resulting ‘global’ Qll matrix for n-images will have a size of [6n x 6n]. Considering a scenario when the 
navigation software characterizes its estimated attitude accuracy only by the square-root of the main diagonal2, the 
variance-covariance matrix takes a form:  
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This relation shows how the temporal correlation between the IMU/GPS attitude populates the variance-covariance 
matrix. The question how to find the actual correlation values will be addressed in the following section. For the 
moment, we assume that these are known and we care only about finding the proper weights for our least-square 
estimate of the boresight. When applying Equations (4) and (5), the weight matrix P = (Qll)

-1 with Qll as given in 
(11). The estimated accuracy of the boresight vector x will then be 
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When estimating the boresight angles individually, the corresponding cofactors matrices Qlla, Qllb, Qllc need to be 
extracted from the ‘global’ Qxx as presented in the Appendix. The weighted average estimate can also be calculated 
by (5) when replacing A, P and l with 

 [ ]
1 2

11 1 1 , , , (the same for , ).
n a

t t
a a a lln

A l e e e P Q b c−⌈ ⌉= = =⌊ ⌋⋯ ⋯  (13) 

  
 
4. Temporal Correlations in IMU/GPS Attitude 
 
In previous section we described the necessary modifications of the ‘2-steps’ boresight estimate to account for 
correlations in the IMU/GPS attitude. We have seen that such modification is relatively simple, as it only involves 
particular population of the Qll matrix (11). So far, nothing was said about the actual values of these cofactors. To 
address this topic we shall look first on some basic elements surrounding strapdown inertial sensors and navigation 
that is widely covered in the literature [10], [11]. 
 

                                                                 
2 The user has usually an access only to RMS values of roll, pitch and yaw and not to the full KF variance and covariance 
matrix. 



   
 

 

Systematic and random types of errors are present in all types of inertial instruments. Their magnitude and shape 
vary with the physical principals of the sensors, quality and make. However, in all cases the inertial navigation will 
bear a time dependent error structure. We are certainly interested to know to which extend the time correlation is 
controlled by the external measurements, i.e. integration with carrier phase DGPS data. This will mainly depend on 
the three aspects: 
 

• IMU error behavior (usually well described by its manufacturer)   
• KF setup that models this behavior (i.e. filter states and its parameters, processing noise, etc.) 
• Trajectory profile and type of aiding (i.e. acceleration profile, updates: position, velocity, azimuth, etc.)  

 
There is no doubt that the level of dependencies is relatively complex and generally varies from case to case. 
Therefore, we will try to present only the essentials using an example of a particular sensor and particular flying 
pattern over a small calibration field used for boresight determination. We shall consider two units of similar 
accuracy that are frequently used in direct georeferencing; Litton LN200-A1 or Honeywell HG 1700. The 
manufacture characteristics of the former are summarized in Table 2.  
 

Performance 
Gyro 

Performance 
Accelerometer 

Bias Repeatability 
Bias Variation 
Scale Factor Stability 
Random Walk 

1O/hr 
0.35O /hr 1σ with T=100s 
100 ppm 1σ 
0.04O/√hr PSD level  

Bias Repeatability 
Bias Variation 
Scale Factor Stability 
White Noise 

200 µg 
50 µg 1σ with T=60s 
300 ppm 1σ 
50 µg /√Hz PSD level 

Table 2. Extract from LN-200 A1 IMU characteristics. 
 
The sensor behaviour is reflected in the KF of an inertial navigator. The filter thus includes apart from the 
navigation states additional ones that model constant and short-term drifts as well as scale factors, etc. An attempt 
is then made to estimate these error states by means of external measurements. Here the trajectory profile and type 
of updates play an important role as they influence the resulting accuracy and the remaining level of correlation 
among the states (error coupling). The information about the time correlation and remaining dependencies is 
contained in the filter dynamic and variance-covariance matrices, respectively. Boresight determination via the 
‘reversed 1-step’ method (Table 1) would account for such coupling quite naturally. As for the other approaches, a 
special output from the KF ought to be made, which is rarely the case. To circumvent the need of software upgrade 
for the end-users, we suggest the following approximation.   
 
Considering the usual case of single-antenna GPS aiding, the gyro biases and scale-factors first propagate to the 
attitude state that will finally influence also the velocity and position states. The link from the attitude error to the 
velocity error is coupled with the magnitude of the specific force and thus also with accelerometer errors. In roll 
and pitch channels, this coupling is relatively strong due to presence of the gravity component, while in the 
azimuth channels this depends entirely on the extend of the vehicle manoeuvres [1]. It means that the azimuth error 
state becomes well estimated only during significant horizontal acceleration that is usually related to the large 
heading manoeuvres as shown in Figure 1. At this stage the attitude uncertainty decreases and also decorrelates 
from other states. Considering the bias variation of the LN-200 (correlation time 60-100s), the previously well-
estimated error states decorrelate from its previously estimated value fairly quickly once flying into the straight 
line regardless of the position or velocity updates. Having said this and considering the fact that the boresight 
calibration is usually executed in few flight lines of short duration [12], the temporal correlation of the KF 
resembles that of the physical model (Table 2). In other words, the attitude time dependencies correspond well to 
the short-term gyro correlations. These are usually modelled within the KF by Gauss-Markov process; however, 
our empirical experience favours Gaussian function type:  

 

2

2
( , )

t

Tt t t eρ
−∆

+ ∆ =  (14) 
 
Where, ∆t is the time between 2 images within the same flight line and T is the bias variation correlation time. 
Knowing the accuracy of attitude (output of the navigation software) the temporal covariances in (11) can be 
computed as 
 , , , the same for , .

t t t t t ty y t t t y y r pσ ρ σ σ
+∆ +∆+∆=  (15) 
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Figure 1: IMU/GPS heading accuracy with image events. 
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Figure 2: Attitude accuracy of IMU/GPS and AT for each image. 
 
 
5. Numerical Examples 
 
Here we examine practical influences of the presented approach on boresight determination. A second generation 
of a fully digital system originally developed for precise mapping of natural hazard areas[13] will serve the 
purpose.3 The system integrates a Hasselblad Biogon/Kodak Proback Plus 16Mpix digital camera with 400 Hz 
outputs of the LN-200 A1 IMU and Legacy GD GPS receivers. The system small size and low weight (7kg) 
permits a hand-held use practically on any helicopter with minimum installation time.  
 
We will consider two flights, both at a scale of about 1:10 000. The first for boresight calibration, the second for its 
application in direct georeferencing. The test zone consists of approximately 3x7 image block and 24 check-points 
(σ≅3cm). The tight points were measured manually and the AT-GPS aided solution was used as an input to the ‘2-
steps’ procedure (with and without time correlation). In parallel ‘1-step’ boresight determination was calculated 
using [6]. The obtained boresight angles were then tested in the second flight that applied only forward 
intersection. Table 3 compares the boresight mean and accuracy estimate with the georeferencing residuals 
obtained in the check flight.  
 
 

Calibration Flight 1:10000 
Boresight Estimation 

Application Flight 1:10000 
RMS Forward Intersections 

24 checkpoints 
Estimated MEAN (deg) Estimated ACCURACY (deg) Object Space (m) 

Method 

roll pitch yaw roll pitch yaw 

Image 
Space 
(µm) 

X, Y Z 

1-step 
(BINGO-F) 

-0.003 -0.311 0.242 0.003 0.003 0.003 10 • • 

2-steps 
Without time 

correlation 

-0.003 -0.310 0.240 0.002 0.001 0.002 9 0.15 0.17 

2-steps 
Using time 
correlation 

-0.004 -0.309 0.235 0.006 0.003 0.010 7 0.10 0.14 
 

 
Table 3: Comparisons between different approaches to boresight determination with respect to resulting mapping accuracy. 

 
As can be seen from this table, the 1-step and 2-steps estimates have similar mean values when no temporal 
correlations are considered. Both approaches are also too confident in the resulting accuracy, although not as 
extreme as reported in [8]. The size of residuals in direct georeferencing is also comparable. Once the attitude 
temporal correlations are considered the Qll matrix becomes populated outside the main diagonal as shown in 
Figure 3. As a result, the almost uniform IMU/GPS attitude accuracies for the image events (Figure 2) will not 

                                                                 
3 Intended comparison within the framework of OEEPE testing [4] was unfortunately not possible, as the needed information 
about the IMU/GPS data and the trajectory accuracy has not been made available. 



   
 

 

longer appear flat in the cofactors, where the less correlated estimates receive higher weights (Figure 4). As 
explained in the previous section, the impact of this process is naturally most pronounced in the azimuth where a 
substantial change of the mean value is observed. This correlation process also raises the estimates uncertainty that 
becomes more realistic for the given type of IMU. Although having lower accuracy, the resulting mean is most 
likely less biased, which demonstrates itself by the increase of the mapping accuracy that reaches sub-pixel level 
(Table 3).  
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Figure 3: Qll matrix with IMU/GPS temporal correlations. 
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Figure 4: Impact of temporal correlation on the adjustment 

cofactors (weights) for IMU/GPS attitude. 
 
 
6. Concluding Notes 
 
This contribution aimed to highlight the significance of temporal correlation in the IMU/GPS data with respect to 
the boresight determination. Our investigations were motivated by the following reasons: 
 

• The inertial navigator KF/smoother provides an optimum trajectory estimate that is subject to the external 
measurements and the trajectory dynamic encountered.  

• The observability of some of the KF/smoother states is limited when needed the most (i.e. during the 
flight lines). Considering this fact together with an instrument error model, assuming ‘randomness’ in the 
attitude estimate few seconds apart (a usual interval between successive photographs) is certainly not 
correct. 

• Currently proposed methods of boresight determination seem to be ignoring this fact, the result of which 
can lead to optimistic accuracies and biased mean values.  

 
In Sections 2 and 3 we adapted the conventional ‘2-steps’ boresight estimate method to reflect the time correlation 
in IMU/GPS data by introducing particular population of the global Qll matrix. Similar adaptation could be also 
envisaged in the AT software. However, with the ‘2-steps’ method the user could keep certain independence of the 
needed revisions. The correct population of the Qll remains a subject of research, although the following can 
already be concluded: 
  

• The information about the temporal correlations in the IMU/GPS orientation is relatively complex and the 
best information source is the Kalman Filter of an inertial navigator.  

• When the above information is not available to the user, considering the physical model for a given IMU 
can make a good approximation given the small image block used for boresight calibration. 

 
Finally, empirical testing has been made that supported the theoretical expectations: 
 

• Considering the temporal correlation leads to important changes in the boresight mean value.  
• The resulting accuracy estimate of boresight angles is more realistic.  
• Application of such estimated boresight increases the mapping accuracy. 

 



   
 

 

 
Acknowledgement 
 
Julien Vallet and Jean-François Rolle are acknowledged in providing their expertise in photogrammetry, image 
measurement and flight execution. Babi Dana is thanked for revising the manuscript. 
 
Bibliography 
 
1. Skaloud, J., Optimizing Georeferencing of Airborne Survey Systems by INS/DGPS, in Geomatics 

Engineering. 1999, University of Calgary: Alberta, Canada. 
2. Bäumker, M. and F.J. Heimes. New Calibration and Computing Method for Direct Georeferencing of 

Image and Scanner Data Using the Position and Angular Data of an Hybrid Inertial Navigation System. 
in Integrated Sensor Orientation, Proc. of the OEEPE Workshop. 2001. Hanover: CD-ROM. 

3. Mostafa, M. Camera/IMU Boresight Calibration: New Advances and Performance Analysis. in ASPRS 
Annual Meeting. 2002. Washington, DC, USA. 

4. Heipke, C., K. Jacobsen, and H. Wegmann, Integrated Sensor Orientation. OEEPE Official Publication. 
Vol. 43. 2002, Frankfurt am Main: Verlag Bundesamt für Kartographie und Geoäsie. 

5. Pinto, L. and G. Forlani. A Single Step Calibration Procedure for IMU/GPS In Aerial Photogrammetry. in 
Photogrammetric Computer Vision, ISPRS Commission III Symposium. 2002. Graz, Austria. 

6. Kruck, E. Combined IMU and sensor calibration with BINGO-F. in Integrated Sensor Orientation, Proc. 
of the OEEPE Workshop ". 2001. Hannover: CD-ROM. 

7. Cramer, M. and D. Stallmann. System Calibration For Direct Georeferencing. in Photogrammetric 
Computer Vision, ISPRS Commission III Symposium. 2002. Graz, Austria. 

8. Wegmann, H. Image Orientation by Combined (A)AT with GPS and IMU. in ISPRS Comission I Mid-
Term Symposium in conjunction with Pecora 15/Land Satellite Information IV Conference. 2002. Denver, 
Co, USA. 

9. Mostafa, M. Quality Control of Direct Georeferencing Data. in ISPRS Comission I Mid-Term Symposium 
in conjunction with Pecora 15/Land Satellite Information IV Conference. 2002. Denver, CO USA. 

10. Titterton, D.H. and J.L. Weston, Strapdown inertial navigation technology. Part of IEE radar, sonar, 
navigation and avionics series. 1997: Stevenage, U.K. 455. 

11. Grewal, M.S., L.R. Weill, and A.P. Andrews, Global Positioning Systems, Inertial Navigation, and 
Integration. 2001: John Wiley & Sons, Inc. 392. 

12. Colomina, I., GPS, INS And Aerial Triangulation: What Is The Best Way for The Operational 
Determination of Photogrammetric Image Orientation, in Proc. ISPRS Comm. III. 1999: Munchen. p. 
212-130. 

13. Skaloud, J. and J. Vallet. High Accuracy Handheld Mapping System for Fast Helicopter Deployment. in 
Joint International Symposium on Geospatial Theory, Processing and Applications, ISPRS Comm. IV. 
2002. Ottawa, Canada. 

 



   
 

 

Appendix - Qxx 
 
In general case, the structure of Qxx resulting from (8) is relatively complicated. Nevertheless, considering the 
special case of small rotation (i.e. approximation by skew-symmetric matrix is valid), following simplifications can 
be made: 

• The elements on the diagonal (b11, b22, b33) are constants, therefore their variance-covariance is 0. 
• The parameters a(b23, b32), b (b13, b31) and c (b12, b21) and their corresponding variance-covariance values 

occur twice for one image 
Hence, 
Qxx [9n x 9n] ≈ 
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 (16) 
 
As only the variance-covariance factors for the three parameters (a, b, c) of the skew-symmetric matrix are used to 
compute the weighted solution, the Qxx can be split into 3 separate matrices (Qlla, Qllb, Qllc,) needed in (13). This is 
achieved by extracting the corresponding lines and columns as indicated by the boxes in (14):  
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.  (17) 

 
The same procedure applies to Qllb and Qllc. 


