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Abstract

This work focuses on the stochastic properties of boresight datdrom between a strapdown IMU and a frame-
based imaging sensor. The core of the stochastic model is a rigarougpropagation of the estimated input
accuracies and their correlations. This subsequently yields realistic estimates of boresight accuracy for every
image event. The nature of INS/GPS integration makes the resiiemtiation errors be strongly correlated within

a flight line while little horizontal acceleration is sensed.sTihformation is partially carried within the Kalman
filter used for the data integration; however, it is rareddmaccessible to the user. As an alternative, we propose
estimating the temporal correlations by means of alietpfunction that is derived from the flying profile and
the inertial system used. Numerical examples are dematstfat the case of high-resolution digital imagery,
where the application of the proposed method allows reaching subapdgacy in direct georeferencing (e.g.
forward intersection without an adjustment).

1. Introduction

One of the common approaches in determining the boresight aoglgists in comparing the INS(/GPS) attitude
with that obtained by aero-triangulation (AT). This is usuattgoanplished either within the so-called ‘2-step’
procedure, where the boresight estimation is obtained for eweage separately and then averaged [1], [2]
(possibly with weights), or by introducing IMU orientation as additiafeservations in the bundle adjustment and
estimating the boresight as one of its parameters [3], [4], [5], [6]iG]]The latter approach is sometimes referred
to as “1-step” procedure and has become quite popular dé@sgi#adency to provide too optimistic estimates, as
will be discussed further. One can also envisage an approach Wwedyerésight gets estimated as a state-vector
parameter of an inertial navigator using AT-data as additiopdétes of the Kalman Filter. Finally, considering
global adjustment of all data sources as an additional option, we sumthasgeeconcepts in Table 1.

Approach Adjustment | Additional Considering time | Remark
Space Observations | correlations in
IMU data?
“No step” Global IMU, GPS, AT| Yes Not developed, optimal
(GCP) but cumbersome.
“1 step” AT IMU/GPS, No Too optimistic accuracy
(GCP) (—Yes possible) | estimate. Biased mean?
“Reversed 1 | IMU IGPS, Yes Not developed, may lead
step” /Attitude_AT to KF divergence.
“2 steps” Additional IMU/GPS, AT | Yes Developer independent,
/Independent | (Attitude only) presented method.

Table 1. Conceptual approaches to boresight datation with respect to IMU/GPS attitude correlation

The degree of rigor sustained by the above mentioned approaftbesreflects the available tools and the
background of the personnel performing this task rather than tbestizal outcome that would perhaps equalize
all approaches under flawless stochastic assumptions. Leifngisg perhaps decisive aspects aside, there are two
additional factors playing a vital role in the quality of boresigétimate: first, the method’s ability in detecting
blunders, systematic errors and providing overall robust quality cdi®f,obecond, accounting for significant
correlations (spatial or temporal) that appear between thsurements. As very strong temporal correlations are
inherently present in all IMU/GPS systems, failing to acknowletigefact leads to biased mean-values and over-
optimistic estimates of boresight accuracy as will be destnated later on. Currently implemented ‘1-step’
approaches suffer from such negligence, mainly due to the following reasons
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« The IMU/GPS systems output orientation accuracy without indicatingniigaial correlation
e The AT software is not adapted to handle complicated structure of IN®/t&mporal correlation

This contribution aims to remove such setback by proposing a ge@estép” procedure that accounts for the
temporal correlation (IMU/GPS) as well as space cormlat{AT) in the orientation data. First, we present the
functional and the stochastic model of this approach. Then we maahe alternative ways of determining the
proper weights (correlation factors) when the user hastécted or no access to KF variance-covariance matrix.
Finally, we present numerical examples and discuss the practical@@igins.

2. Functional M ode

Considering the law of random error propagation the “2-step” appressentially corresponds to “1-step” method
that is executed in two phases and the outcome of which isaderiis we will try to investigate the effect of
correlation between the IMU/GPS orientation on boresight ithveiJlhowever, much simpler to work initially only
with the orientation data. The advantage of this approach will alsorbktive independence from the existing
implementations in AT or IMU/GPS data adjustment packages. Tatidnal model thus remains simple as it

consists of a comparison between ARS(,) and IMU/GPS ‘corrected’ RS,,) rotational matrices fon image
events (ENU’ = east-north-up):

RS = Ry (R) 1,201 (1)

The need for IMU/GPS attitude correction stems fthenfact that the inertial navigator usually prasdhe body
(b) attitude with respect to the local-level axes, vehogentation in space corresponds to its actual gebgral
position and therefore varies with the movement efsinsor. Considering a conformal tangential prajecised
by AT with ‘ENU coordinate axes orientation of a fixed origin dhd inertial navigator's attitude with respect to
the local-level NED' (north-east-down) axes, the alignment to a commantation reference takes the form:

Rgnq = RZepl q:g) Tgﬁﬂ (2)

It should be noted that teed, to ned rotation is fairly small (<3 over medium-size mapping areas and therefore
can be neglected when studying the covariance pabipaglater on. SimilarlyT is a reflection matrix that swaps
roll with pitch and changes the sign of the headksythe accuracy of roll and pitch tends to be simila, may
also neglect this transformation for the sake of sintplidespite the fact that this matrix will not beeded when
using an inertial navigation witiENU implementation. Again, such simplifications are oplyssible when caring
about boresight accuracy, not its value!

A direct comparison of Euler angles is possible oatysfnall rotation, which means that the boresightikhoot
exceed few degrees per axis when using such apprbaishis, however, the case in practical applicatiortb@s
larger differences in IMU-camera orientation duénitallation (oftent1v2) are known and thus can be accounted
for prior to the processing of the inertial data. eksrthe boresight matrix in equation (1) can takenug skew-
symmetric form:

1 G GC3 1 € ~&| k1 hp I3
Rou=l% % G=|-& 1 el b h L= K Ry (3)
C1 Gz Cg3 g —-¢ 1 b1 Il f33

As suggested in [2] this relation can be used tmfoine equations that link the unknown boresigittorx = [2]
to the observationk that are formed by the differences between theesponding coefficients in the rotation

matrices. With residualswe obtain for each&

[+v=Ax
|j+3(k_1)=Cjk—l’jk j,k=1,2,3 (4)
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Using n images thus producém ‘observations’ that can be adjusted by a leasttggpanciple when forming
three normal equatiorié and estimating the as:

N =g, Aé on Fon onAs
x=N1API

®)

It should be noted, however, that the 9 elemenfalbfotational matrix are correlated among thelmsg and so it
is then our 9-element observation vector. 'Ri)ﬁu matrices are further correlated among themselveteass from

the nature of inertial navigation. Hence, consitigtheP matrix as an identity or a matrix with values only the
main diagonal will certainly violate the assumpsomeeded to obtain an unbiased estimate in thé-dgaare
sense.

An alternative approach is to work directly wittetekew-symetric matrices obtained by relation &) triplet of
which contains only ‘independent’ elements. These e extracted from each observed skew-symettidxnaand
the mean boresight angles estimated from a weightethge):

n

éazgeq qu‘%=2 Ep e ep (6)

i=1

As in the previous case, setting the proper weightsll play a decisive role on the estimate as vagyaccuracies
and correlations need to be accounted for. We ghadktigate this when examining closely the emapagation
in the next section.

3. Stochastic Model with Temporal Correlations

According to (1) each element of the boresightratignt matrix is a function of camera orientatian §, ), and
IMU/GPS attituder p, y), i.e. we can write:

b, by by
Ry = f(wd.krpy)=| by by by (7)
by b, g

3.1. Error propagation (Qu)
To study the complete correlation pattern in theebight estimate we apply the law of random erropagation
and transform the initial variance-covariance infation Q) as

Qxx = I:t(gll F (8)
Considering the dependences (7), maFi§9x6] will contain the partial derivates of the indivia rotational
elements with respect to each angle as:
ob, 0by OJby, Odby dby, dby
0p Ow 0k Or ap oy

Fi- ®

0b33 0[:%3 ab33 0b33 6b33 ab33
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The formation of the partial derivatives will deplean the rotational sequences that parameterizentiieidual
orientation matrices and therefore the analyticainulas may vary from case to case. However, theneo
practical need to carry out such cumbersome cdionk as a numerical derivation will do just asliw&o
compute the attitude error propagationriomages in one step, a ‘glob&" matrix [9n x 6n] is formed:
F:; .0
t . . .
F =l U (10)
t

o - F.

3.2. Construction of the general stochastic model (Q)
Equation (8) propagates the stochastic informationtained in the original variance-covariance ma@j. The
information needed for its construction is theduling:

Op, O O AT-estimated accuracy of exterior orientation atte only),



P LPrerPes optional correlations betweew)(g, «) from AT (when available),

G, Op, Oy IMU/GPS estimated attitude accuracy
Oips Opys Oy optional correlations between p, y) from IMU/GPS (when available),
Prrs Pom Pryyn - Temporal correlation between IMU angles from KFreowpirically estimated.

The resulting ‘global’Q, matrix for n-images will have a size oBfj x 6n]. Considering a scenario when the
navigation software characterizes its estimatetlidé accuracy only by the square-root of the nui@gonad, the
variance-covariance matrix takes a form:

Image 1 Image 2 Image n
[0, 0,4, O, O . 0ol o0 . . . . 0! Lo . . . . 0]
O 00" O
Gy O, O .0 . Ch . 0 . . Che e el . 0
0 0o g’ . Cb . .o, ; ; a,
prz Uplpz 0 UP]FH 0
B U 3 S U SO
0 0, Ohp Ope - . 0 0 . } . ) 0
e 0,7 O, } }
0 . . . Oprs Oy OF . . . .« .. . . 0
o, o} ‘ ‘ g,
Q= . . . S O, 0 . ) .0 . P . ) . o, O
0 0 ‘ ‘ 0 o,
0 0: 0 0 0,7 Oy Oy 0
O T4’ Opp - - . .
0 0 . Oy Oup - O° . . . (11)
S : - O, ‘ Lo o’
. . . . o, O . . . . o, O . . . .0,
lo . . . 0 g, 0 . .. 0 o, o0 .97

This relation shows how the temporal correlatiotwaen the IMU/GPS attitude populates the variarmexdance
matrix. The question how to find the actual cotielavalues will be addressed in the following 8&ttFor the
moment, we assume that these are known and werhlrabout finding the proper weights for our lesgtiare
estimate of the boresight. When applying Equati@hsind (5), the weight matrig = (Q,)™* with Q, as given in
(11). The estimated accuracy of the boresight vectdll then be
=Ny
(12)
g,=VPV/(n-1) , V= I- Ax

When estimating the boresight angles individualg corresponding cofactors matric@gs, Qu,, Qic Need to be
extracted from the ‘global,, as presented in the Appendix. The weighted avezatimate can also be calculated
by (5) when replacing, P andl with

A=t 1. 1, It:[eal g - %], P= @, (the same fob ¢ (13)

4. Temporal Correlationsin IMU/GPS Attitude

In previous section we described the necessary fioatibns of the ‘2-steps’ boresight estimate t@amt for
correlations in the IMU/GPS attitude. We have st such modification is relatively simple, agiily involves
particular population of th@, matrix (11). So far, nothing was said about thiza@ovalues of these cofactors. To
address this topic we shall ook first on some daments surrounding strapdown inertial sensedsnavigation
that is widely covered in the literature [10], [11]

2 The user has usually an access only to RMS valfiesllppitch and yaw and not to the full KF var@nand covariance
matrix.



Systematic and random types of errors are preseat types of inertial instruments. Their magn&uahd shape
vary with the physical principals of the sensorgldy and make. However, in all cases the inertatigation will
bear a time dependent error structure. We areichriaterested to know to which extend the timeretation is
controlled by the external measurements, i.e. natemn with carrier phase DGPS data. This will mhathepend on
the three aspects:

e IMU error behavior (usually well described by itamufacturer)
« KF setup that models this behavior (i.e. filtetestaand its parameters, processing noise, etc.)
* Trajectory profile and type of aiding (i.e. acceliwn profile, updates: position, velocity, azimusic.)

There is no doubt that the level of dependencie®latively complex and generally varies from casecase.
Therefore, we will try to present only the essdstissing an example of a particular sensor andgodat flying
pattern over a small calibration field used for dsmight determination. We shall consider two unitsimilar
accuracy that are frequently used in direct geoeefing; Litton LN200-Al or Honeywell HG 1700. The
manufacture characteristics of the former are surzedin Table 2.

Performance Performance
Gyro Accelerometer
Bias Repeatability 1%hr Bias Repeatability 200pg
Bias Variation 0.35° /hr 1o with T=100s | Bias Variation 50 ug 1o with T=60s
Scale Factor Stability 100 ppm & Scale Factor Stability 300 ppm &
Random Walk 0.0£hr PSD level White Noise 50 ug AMHz PSD level

Table 2. Extract from LN-200 Al IMU characteristics

The sensor behaviour is reflected in the KF of mertial navigator. The filter thus includes apawni the
navigation states additional ones that model constad short-term drifts as well as scale facters, An attempt
is then made to estimate these error states byswdaxternal measurements. Here the trajectorfjigoiend type
of updates play an important role as they influetheeresulting accuracy and the remaining levet@felation
among the states (error coupling). The informatidnout the time correlation and remaining dependsnis
contained in the filter dynamic and variance-coamace matrices, respectively. Boresight determinati@ the
‘reversed 1-step’ method (Table 1) would accounsfech coupling quite naturally. As for the othppeoaches, a
special output from the KF ought to be made, wigatarely the case. To circumvent the need of sofwipgrade
for the end-users, we suggest the following appnaxion.

Considering the usual case of single-antenna G&#8gaithe gyro biases and scale-factors first pgapato the
attitude state that will finally influence also thelocity and position states. The link from thetatle error to the
velocity error is coupled with the magnitude of #pecific force and thus also with accelerometesrsr In roll

and pitch channels, this coupling is relativelyosty due to presence of the gravity component, winil¢he

azimuth channels this depends entirely on the exdéthe vehicle manoeuvres [1]. It means thatthienuth error
state becomes well estimated only during signifidasrizontal acceleration that is usually relatedthe large
heading manoeuvres as shown in Figure 1. At tligesthe attitude uncertainty decreases and alswrrééates
from other states. Considering the bias variatibthe LN-200 (correlation time 60-100s), the prasly well-

estimated error states decorrelate from its preslyoastimated value fairly quickly once flying intbe straight
line regardless of the position or velocity updatdaving said this and considering the fact that bloresight
calibration is usually executed in few flight line$ short duration [12], the temporal correlatiohtbe KF

resembles that of the physical model (Table 2pther words, the attitude time dependencies coorespvell to

the short-term gyro correlations. These are usualigelled within the KF by Gauss-Markov processyénwer,

our empirical experience favours Gaussian fundijpe:

-nt?

plt,t+At)=e™ (14)

Where, 4t is the time between 2 images within the same ffligie andT is the bias variation correlation time.
Knowing the accuracy of attitude (output of the igation software) the temporal covariances in (&¢d) be
computed as

Oy yon = Pruad O, »the same forp, (15)
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Figure 1: IMU/GPS heading accuracy with image event Figure 2: Attitude accuracy of IMU/GPS and AT farch image.

5. Numerical Examples

Here we examine practical influences of the prekapproach on boresight determination. A secongrgéon

of a fully digital system originally developed fprecise mapping of natural hazard areas[13] wilkesedhe
purpose: The system integrates a Hasselblad Biogon/Kodakdk Plus 16Mpix digital camera with 400 Hz
outputs of the LN-200 A1 IMU and Legacy GD GPS reers. The system small size and low weight (7kg)
permits a hand-held use practically on any heligoptth minimum installation time.

We will consider two flights, both at a scale obab1:10 000. The first for boresight calibratitime second for its
application in direct georeferencing. The test zomsists of approximately 3x7 image block and 2dck-points
(oBcm). The tight points were measured manually andAfReé5PS aided solution was used as an input to2he
steps’ procedure (with and without time correlatidm parallel ‘1-step’ boresight determination weadculated
using [6]. The obtained boresight angles were thested in the second flight that applied only famva
intersection. Table 3 compares the boresight meah accuracy estimate with the georeferencing ressdu
obtained in the check flight.

Method Calibration Flight 1:10000 Application Flight 1:10000
Boresight Estimation RMS Forward Intersections
24 checkpoints
EstimatedV EAN (deg) Estimated CCURACY (deg) | Image Object Space (m
roll pitch yaw roll pitch yaw ?pa():e X, Y z
pum
1-step -0.003 | -0.311| 0.242 0.003 0.003 0.00B 10 . .
(BINGO-F)
2-steps -0.003 | -0.310| 0.240 0.002 0.001 0.00p 9 0.15 0.17
Without time
correlation
2-steps -0.004 | -0.309| 0.235 0.006 0.003 0.010 7 0.10 0.14
Using time
correlation

Table 3: Comparisons between different approaahbstesight determination with respect to resultimgpping accuracy.

As can be seen from this table, the 1-step andfisseéstimates have similar mean values when nootaip
correlations are considered. Both approaches are tab confident in the resulting accuracy, althougt as
extreme as reported in [8]. The size of residualglifect georeferencing is also comparable. Oneeattitude
temporal correlations are considered @ematrix becomes populated outside the main diagasashown in
Figure 3. As a result, the almost uniform IMU/GRS8tade accuracies for the image events (Figurevil)not

3 Intended comparison within the framework of OEER&ing [4] was unfortunately not possible, asnkeded information
about the IMU/GPS data and the trajectory accuhasynot been made available.



longer appear flat in the cofactors, where the lasselated estimates receive higher weights (gl As
explained in the previous section, the impact & grocess is naturally most pronounced in the attirwhere a
substantial change of the mean value is obseri@d.cbrrelation process also raises the estimatesrtainty that
becomes more realistic for the given type of IMUthAugh having lower accuracy, the resulting meamost
likely less biased, which demonstrates itself by iticrease of the mapping accuracy that reachepigablevel
(Table 3).
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Figure 4: Impact of temporal correlation on theuatthent

Fi : ix with IMU/GPS t | lations.
igure 3:Qu matrix wit UIGPS temporal correlations cofactors (weights) for IMU/GPS attitude.

6. Concluding Notes

This contribution aimed to highlight the significanof temporal correlation in the IMU/GPS data witspect to
the boresight determination. Our investigationseareotivated by the following reasons:

e The inertial navigator KF/smoother provides an moptin trajectory estimate that is subject to thereste
measurements and the trajectory dynamic encountered

* The observability of some of the KF/smoother stasebmited when needed the most (i.e. during the
flight lines). Considering this fact together wih instrument error model, assuming ‘randomnestien
attitude estimate few seconds apart (a usual iaté@tween successive photographs) is certainly not
correct.

e Currently proposed methods of boresight determanaseem to be ignoring this fact, the result ofclhi
can lead to optimistic accuracies and biased mahres.

In Sections 2 and 3 we adapted the conventionstéps’ boresight estimate method to reflect the thorrelation
in IMU/GPS data by introducing particular populatiof the globalQ, matrix. Similar adaptation could be also
envisaged in the AT software. However, with thest8ps’ method the user could keep certain indeperdef the
needed revisions. The correct population of @yeremains a subject of research, although the fatigucan
already be concluded:

* The information about the temporal correlationghie IMU/GPS orientation is relatively complex ahe t
best information source is the Kalman Filter ofrzgrtial navigator.

* When the above information is not available touker, considering the physical model for a givetJIM
can make a good approximation given the small infdgek used for boresight calibration.

Finally, empirical testing has been made that sttpddhe theoretical expectations:
» Considering the temporal correlation leads to irtgogrchanges in the boresight mean value.

* The resulting accuracy estimate of boresight aniglesore realistic.
« Application of such estimated boresight increakesnmapping accuracy.
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Appendix - Qu

In general case, the structure @fy resulting from (8) is relatively complicated. Netresless, considering the
special case of small rotation (i.e. approximabgrskew-symmetric matrix is valid), following sinifi¢ations can
be made:
« The elements on the diagonb] b,,, bs3) are constants, therefore their variance-covaeas .
e The parametera(b,s, bsy), b (b1, bz1) andc (by2, by;) and their corresponding variance-covariance &alue
occur twice for one image

Hence,
Qux [9nx 9n| =
blll b121 bl.’)‘1 b211 b221 b231 b311 b321 b331 blln blZn b13n b21n b22n b23n b31n b32n b33n
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Taan 0 Oue, Tap Tag 0074 Tap —1 0
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2

0 0. Oan Tq 0 -1 o0, 0 O
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(16)

As only the variance-covariance factors for the¢hparameterg(b, c) of the skew-symmetric matrix are used to
compute the weighted solution, t@g, can be split into 3 separate matric®g,( Qu, Qic,) needed in (13). This is

achieved by extracting the corresponding linesa@tdmns as indicated by the boxes in (14):
- 4

0.} 0,. - : O..
Opo, Ta° : :
Qa.=| . . : . 17)
aan-12 Ts, 14,
_Janal Jan-1aan aanz _

The same procedure appliesQg andQj.



