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ABSTRACT 
 
This paper presents the conceptual and technical aspects 
of a system in development that precisely determines 
athlete’s trajectory through a course. Carrier phase-based 
(CP-DGPS) positioning represents core of the system, 
while tri-axial accelerometer and magnetic sensors act as 
an autonomous aid that offers instantaneous attitude 
determination and can potentially help when navigating 
through GPS signal blackout zones. Trajectory 
representation by a set of continuous functions with 
geometrical constrains supplies an effective tool that 
removes outliers and discontinuities in the positioning and 
offers better base for deriving acceleration profiles. 
Successfully tested in competitive skiing, the concept is 
also applicable in other fields for tracking objects on 
restricted trajectory. 
 
 
INTRODUCTION 
 
In constant search of improvements, competitive skiing 
asks not only for exceptional athletes but also for 
performing positioning [1], [2]. Precision is needed 
because the differences that distinguish the fastest line 
from the others are often minute. Currently used 
performance-evaluating methods rely either on time 
measurements or on video motion analyses. The timing 

data indicates only a summary of good and bad moves 
over a given section, while the information based on 
monoscopic imagery is purely qualitative. In open spaces 
the use of CP-DGPS offers position, velocity and 
acceleration (PVA) analysis of racers’ trajectories with 
accuracies the coaches never dreamed about. The reality 
is, however, often far from such an ideal case as the 
skier’s environment is quickly alternating between open 
spaces and areas that are adverse to the reception of 
satellite signals. Considering the relatively high dynamics 
of a skier and the ergonomic requirements placed on the 
equipment, today’s technological limits in positioning are 
quickly reached if not exceeded. Combining high 
performance GPS receivers with miniature autonomous 
navigation aids and appropriate trajectory modeling 
extends these limits considerably.  
 
The first part of the paper briefly discusses the limits of 
the state-of-the-art carrier phase GPS positioning in 
dynamic environments. Then the focus is on trajectory 
modeling, where positioning improvements are sought by 
imposing constraints of continuity and smoothness when 
restituting trajectory from the sparse sampling. This 
process is governed by smoothing piecewise cubic splines 
and has several advantages over other possible 
interpolants as it provides an effective and realistic 
filtering across all PVA components. The result is 
continuous motion functions that permit direct 
computation of the kinematics acceleration. Further we 
discuss the merge of GPS-obtained acceleration profile 
with the 3D-digital compass data (i.e. the magnetic field 
and the specific force) to derive instantaneous 3D attitude.  
Numerical examples and tests are given in each particular 
section. In most cases the data come from training session 
of the men’s and women’s downhill during the Ski World 
Championship in St. Moritz, 2003. 
 
 
CP-DGPS POSITIONING UNDER LESS 
FAVORABLE SATELLITE SIGNAL RECEPTION 
 
In competitive skiing, the separation between the 
reference and the rover receivers remains below 5 km. 
This puts the ambiguity determination process to the 
category of short-baselines where simple models apply 
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and the algorithm theory expects little problems when 
using given set of dual frequency measurements [3]. The 
quality of phase measurements remains, however, 
hardware-dependent and such reliance becomes more 
profound when the conditions of satellite signal reception 
changes quickly, sometimes abruptly. The factors of most 
importance are: 
 

• Phase-measurement accuracy under low SNR 
and high acceleration. 

• Speed of signal reacquisition after partial and 
complete loss-of-lock. 

• Speed of L2 acquisitions and tracking accuracy. 
 

As the manufacturer specifications are sometimes 
deceptive in these aspects, we conducted a practical 
testing with several high-end dual frequency receivers 
operating under dynamic conditions that generated 
frequent partial or complete loss-of-lock. The RF signal 
was split between the contenders and a precise GPS/INS 
integrated system was used to provide the reference for 
the performance evaluation.  
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Figure 1: Influence of the hardware choice on signal tracking and 
ambiguity resolution: comparison between 2 high-end receivers. 

 

We do not aim to present here comprehensive studies in 
these aspects but rather demonstrate that the hardware 
differences under such conditions are much more decisive 
for precise positioning than the existing nuances between 
the latest developments in ambiguity resolution 
algorithms. Figure 1 demonstrates this by displaying 
comparison of signal tracking periods (≥4SV) and the 
corresponding ambiguity success rate for two 
simultaneously employed receivers. As can be seen from 
this comparison, considerable differences were revealed in 
terms of the speed of signal acquisition and tracking that 
influence the success rate of ambiguity fixing. 
 
Finding the correct set of ambiguities enables the sub-
decimeter or even cm-level positioning and most of the 
trajectory related information could be derived based upon 
this information. Nevertheless, the quick alternation of 
good and less favorable satellite signal tracking conditions 
due to changing environment (typical for ski-racing as 
well as many other terrestrial-kinematic applications of 
GPS) results in varying positioning accuracies and 
irregular trajectory sampling. Autonomous sensors could 
be theoretically employed to provide the necessary data-
gap bridging and smoothing tool. Before looking at this 
possibility we will, however, investigate to which extend 
such a role could be attributed to the method of trajectory 
interpolation and modeling.  
 
 
TRAJECTORY MODELING AND 
REPRESENTATION 

Curve representation in 3D 

Representing a trajectory by mathematical function rather 
than by a set of discrete points creates a base that is not 
only better suited for subsequent analysis (deriving 
curvilinear distance, curvature, acceleration, etc.) but can 
– to some extend - participate in data filtering. This is 
especially the case when some external assumptions can 
be made about some trajectory parameters. 
 
Following [4], a curve in R3 (3D space) is a differentiable 
function c: I → R3, from an open interval I in the real line 
R, if c is a continuous and differentiable vector-function, 
defined by: 
 
 ( ) ( ( ), ( ), ( ))c t x t y t z t t I= ∀ ∈  (1) 

 
where x(t), y(t), z(t), are its Euclidean coordinate 
functions. One can picture a curve in R3 as a trip taken by 
a moving point c. At each "time" t in some open interval, 
c is located at the point c(t) = ( x(t), y(t), z(t) ) in R3. 

Choice of interpolation function 

In order to obtain continuous mathematical functions in 
R3 we have to model the trajectory by interpolation 
functions, where the discrete positions measured by GPS 
operate as adjustment points. For various reasons stated 
later, the chosen interpolant will be based on cubic 



splines. This represents a piecewise interpolation by cubic 
polynomials between adjustment points. Being a 
piecewise interpolation, cubic splines take in account 
different trajectory behavior at each interval, but they also 
respect continuity conditions with regards to position, 
velocity and acceleration at each adjustment point. It can 
be shown that cubic splines minimize, among all 
interpolation functions, acceleration on the curve, which 
well corresponds to the physics of skier’s motion. Further, 
we will see that some form of filtering can be relatively 
easily achieved when considering smoothing splines. 
When considering these properties we can state that cubic 
splines are well suited for trajectory modeling and 
interpolation in downhill skiing. 

Definition of cubic splines 

The theory of splines is fairly well-known and well 
documented in the literature [5], [6], hence we limit 
ourselves only to a brief description needed in subsequent 
sections.  
 
Let  a = t0 < t1 < … < tn = b  be points dividing the interval  
I = [a, b]  in the union of intervals  Ik = [ tk, tk+1 ]. The 
couples (tk, f(tk)), where k = 0:n, are the n+1 adjustment 
points for interpolation. 
 
A cubic spline, interpolating f, is the interpolation function 
S that satisfies the following conditions: 
 

1. On each interval Ik = [tk, tk+1], with k ∈[0 .. n-1],  
Sk is a cubic polynomial with coefficients cki, i.e.  
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2. S (tk) = f (tk) for k ∈[0 .. n]                                                                                             

 
As there are n + 1 adjustment points, there will be n 
intervals and also n cubic polynomials. These n cubics 
have 4n degrees of freedoms, which are the 4 coefficients 
of each cubic. 
 
4n – 2 degrees of freedom can be defined by the following 
conditions with S-(tk) and S+(tk) denoting the left-hand and 
right-hand limits of S at tk : 
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The relations (3) yield 2(n-1)+2+2(n-1) = 4n-2 conditions. 
Hence, two more conditions are necessary in order to 
specify the problem completely. Common choices for 
these last conditions, called end conditions, are 
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If the first condition is used, then the solution to the 
interpolation problem is referred to as the natural cubic 
spline. Generally, it is recommended to apply the second 
condition [5], where the needed estimate of the slope can 
be calculated from the data. 
 
In the interpolation problem of 3D trajectories, we have to 
determine one cubic spline for each of the 3 coordinates 
(X, Y, Z), in order to obtain the 3 Euclidean coordinate 
functions x(t), y(t), z(t) of (1). Hence, on each coordinate 
axis we have separate cubic polynomials for each interval 
that are delimited by two succeeding adjustment points. 
The variable t of (1)-(4) will thus represent the GPS time. 

Application to downhill skiing 

To demonstrate the suitability of cubic splines for 
trajectory modeling in alpine skiing, we investigate the 
necessary sampling rate that guarantees small 
interpolation error. We chose a GPS trajectory of good 
measurement quality and uninterrupted signal tracking 
acquired during downhill course of the World Ski 
Championships in St. Moritz (Switzerland) in February 
2003. Based on the original trajectory measured at 10 Hz, 
we chose four sets of adjustment points, characterized by 
different time intervals. Cubic splines are computed for 
each set of adjustment points, allowing to determine the 
‘control’ curve points at 10 Hz interval by interpolation. 
In this manner, we can compare the original trajectory 
coordinates at 10 Hz with the interpolated ones. The 
statistics of such comparison are summarized in Table 1. 
 

Table 1: Influence of data sampling on interpolation error. (*For 
characteristic points the results are based on smoothed splines, see the 
text bellow for explanation.) 

Sampling interval  2Hz 1Hz 0.5Hz Char.pts* 
No. of points 200 100 50 90 
Mean horizont. Diff (m) 0.02 0.09 0.73 0.30 
Horizontal 1̌ (m) 0.02 0.09 0.65 0.30 
Mean vert. diff (m) 0.03 0.12 0.42 0.17 
Vertical 1̌ (m) 0.03 0.13 0.38 0.16 

 
We can conclude from this table that the skier’s motion 
can be well approximated by cubic splines (1̌ ≤ 0.1m) if 
the measurement frequency is 1 second or higher. In other 
words, only 10% of the original 10Hz data is needed to 
model the trajectory. Later, we will take an advantage of 
this knowledge when filtering the trajectory for sudden 
jumps due to abrupt change in satellite constellation or 
quick change in the measurement accuracy (changing float 
to fix ambiguities or vice versa).  
 
The last column in Table 1 studies the trajectory 
restitution using characteristic points. In the planar 
component this set comprises inflection points, points of 
maximum curvature and gate intersection points, while in 
the height component we consider only height inflection 
points and points of maximum height curvature.  



The use of characteristics point is motivated by the fact 
that their spatial location in certain areas varies minimally 
between skiers and could be possibly detected in time by 
autonomous sensors (i.e. horizontal inflection points 
correspond to zero radial accelerations or zero rate in 
azimuth). We can see from the table that the number of 
characteristic points used in trajectory reconstruction is 
almost the same as in the case of 1Hz interpolation, 
however, with different spatial distribution. The 
positioning differences with respect to the true trajectory 
are somewhat larger, however part of it comes from the 
fitting that is based on smoothing rather than on ‘normal’ 
splines. Interpolation by smoothing splines does not 
guarantee exact reproduction of adjustment points and 
therefore can introduce additional interpolation errors 
(here in decimeter-range). Therefore, such approach 
should be used cautiously on data of uniform accuracy. Its 
greatest strength, however, lies in combination of data 
points of varying precision, as will be explained in the 
subsequent section.  
 
 
TRAJECTORY SMOOTHING  
 
As previously mentioned, smoothing splines can be 
accommodated for non-exact fits between the adjustment 
points and thus offer some form of spatial filtering. This 
property can be used to reduce high frequency noise, 
bridge over data ‘outliers’ or to provide smooth transitions 
when sudden position ‘jumps’ due to change in satellite 
constellation or ambiguity fixing are encountered.  

Smoothing cubic splines 

The derivation of smoothing splines comes from the 
variational approach, where cubic splines are obtained as 
the best interpolant minimizing a quadratic cost function:  
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for the given data (ti, xi) with corresponding weights wi on 
an interval t ∈[a .. b] and specified smoothing factor ̄∈[0 
.. 1]. The first term of (5) represents the error measure due 
to data fitting proximity, while the integral part 
symbolizes the roughness measure (smoothness of the 
trajectory). The art of using the smoothing spline consists 
in choosing ̄ and w so that S contains maximum of the 
information, and minimum of the noise present in the data.  
 
The expectation on certain levels of trajectory 
‘smoothness’ varies with the nature of each application 
and can change between curve sections. When ̄=0, S 
becomes the straight line fit to the data in the least-square 
sense, while at other extreme (̄=1) S takes the form of the 
‘natural’ cubic spline interpolant reproducing the input 
data. In our case of downhill data, satisfactory results were 
obtained already for non-time varying ̄~∈[0.5 .. 0.75]. 
For courses with more varying curve-shapes we suggest to 
adapt ̄ according to the magnitude of error in the second 

derivative, providing this could be obtained by some other 
independent measurements (i.e. from accelerometers). The 
questions of choosing appropriate weights will be 
addressed in the following part. 

Smoothing trajectories of varying data quality 

Sudden drops or re-acquisitions of satellites signals as 
well as ambiguity fixing cause significant discontinuities 
in the trajectory shape that do not correspond to the actual 
movement of a racer. We present here a strategy that tends 
to diminish such effects and result in more realistic route 
shapes of higher accuracy.  
 
As the changes in satellite constellation and the float to 
fixed ambiguity passages are accompanied by the 
drops/gains in the positioning accuracy, it is quite natural 
to allow more relaxed fits for data of higher uncertainty 
while asking for closer approximation when the 
confidence rises. These fitting differences can be realized 
in (5) by varying the weights wi between the adjustment 
points with respect to the estimated position accuracy. We 
suggest considering also the fixed/float ambiguity status 
and determine the ith entry of the weight vector w as 
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where, ̌pos(i) is the position standard deviation in meters 
and wamb.status(i) is a parameter changing in respect to the 
fixed/float ambiguity status as shown in Figure 2. 
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Figure 2: Evolution of the weighting factor wamb.status with respect to the 
fixed/float ambiguity status.  

 
In the case of fixed ambiguities, wamb.status(i) = wfixed the 
value of which is normalized to 1. In the case of float 
ambiguities wamb.status takes different values from the 
interval [wtrans .. wfloat]. A number of transition epochs at 
the beginning and at the end of a float ambiguity period 
are defined by the parameter NoTrans. Epochs of float 
ambiguities neighboring the epochs of fixed ambiguity 
take wamb status(i) = wtrans which is of very low value (~10E-
4). Such strong de-weighting avoids jumps in the modeled 
trajectory due to sudden drops of accuracy while relying 
on the movement prediction due to athlete’s inertia. For 
other transition epochs, wamb.status is linearly increasing in 
time from wtrans to the final value of wfloat, which is the 
value of wamb.status(i) for epochs of float ambiguities 
outside the transition periods. In our experience we set 
this value to a half of the wfixed to scale down the rather 



optimistic positioning accuracy estimates for these 
periods. We also recommend to double or triple the 
weight on the last ‘fixed’ epoch before a ‘float’ period, as 
well as on the first ‘fixed’ epoch after a ‘float’ period. The 
high weight value will force the spline to get even closer 
fit to these adjustment points and reduce the interpolation 
error for the periods of transition. 

Example: Data gaps and phase data of poor accuracy 

Two examples are shown to illustrate the benefit of 
smoothing splines with varying error weights. The first 
example (Figure 3) represents a real case of bad GPS data 
period of float ambiguities due to deprived phase data 
producing jerk in the trajectory followed by few epochs of 
no positioning solution (complete loss of lock). The 
smoothing spline with uniform weight distribution (dotted 
line) results in somewhat smoothed but still apparent jump 
at the fixed/float transitions, while the smoothing spline 
with suggested variation of weights (full line) is closer to 
the real trajectory taken by the skier as verified on the 
video-footage during his passage of the gate. 
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Figure 3: Ski trajectory modeled by smoothing spline. Real case of bad 
GPS data period with float ambiguities producing a trajectory 'jump' 
followed by some epochs of complete loss of lock (no data). Skier’s head 
with the GPS antenna attached to his helmet sometimes leaps outside the 
gate in the effort to steer the skis as close as possible to the inside pole. 

Example: Partial satellite blockage 
The second example (Figure 4) considers a situation of a 
sudden partial blockage of satellite signal due to 
environmental obstructions. Only 4 satellites are visible 
during several seconds, which corresponds well to 
circumstances encountered in downhill skiing. This signal 
masking is produced artificially in post-processing by 
omitting from the solution a few satellites that are near to 
horizon. The real trajectory of sub-decimeter accuracy is 
thus available and serves as a reference (dots). It can be 
seen from the figure that the ‘normal’ smoothing spline 
(dashed line) smoothes the jump at the fixed/float 
transitions only partially, while the smoothing spline with 
different error weights (full line) is close to the real 
trajectory points. 

 

1260 1280 1300 1320 1340 1360

680

690

700

710

720

730

740

750

760

g a t e 2 4

g a t e 2 5

accuracy 0.00- 0.15m, fixed integer
accuracy 0.05- 0.40m, converged float/noisy data
accuracy 0.20- 1.00m, converging float
accuracy 0.50- 2.00m, converging float
accuracy 1.00- 5.00m, DGPS
accuracy 2.00-10.00m, DGPS
smoothing spline trajectory
smoothing spline trajectory with weight attribution
real trajectory points with all SV

Easting [m] 

N
or

th
in

g 
[m

] 

SKI TRAJECTORY AND SMOOTHING SPLINE INTERPOLATION 

 
Figure 4: Ski trajectory modeled by smoothing spline: simulated case of 
3-second drop-off of low elevation GPS satellites.  

 
ACCELERATION PROFILE BY CP-DGPS 
 
The acceleration profile is of immense interest to coaches 
as it can serve to identify the committed faults in the 
skier’s technique and to recognize the performance of the 
equipment (e.g. waxing, ski manufacturer, etc.).  
  
Since acceleration is not direct GPS observable, it has to 
be numerically derived from the changes in position or 
velocities. The numerical post-mission differentiation can 
also be applied to carrier phase observation to obtain less 
noisy estimates of its instantaneous derivative. This 
subsequently leads to more accurate velocity estimation. 
A number of basic methods have been suggested for this 
approach spanning from curve fitting, Taylor series 
approximation [7] to the more rigorous approach of 
optimal filter design [8] also used in sports applications 
[2]. Once the trajectory has been modeled as a continuous 
function, the acceleration can be obtained as its time 
derivative. Such method may be associated with the 
category of curve fitting. We will show that in the case of 
smoothing spline this approach is at least as appropriate 
for our application as the optimal filter design.  

Velocity and acceleration from splines 

Let c: (a, b) → R3 be a curve as defined in (1). For each t 

∈ (a, b), the tangent and normal vectors to the curve at t 

are the vectors 
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with the single and double dots denoting the first and 
second time derivatives, respectively. The T(t) is also 
called velocity vector and N(t) the acceleration vector. The 
speed at t is the real number ( ) ( )T t c t= ɺ , while 



acceleration at t is the real number ( ) ( )N t c t= ɺɺ . Apart 

from indicating the instantaneous velocity, the tangent 
vector can serve in deriving the azimuth of the curve.  
 
The relation (7) is valid for any continuous function that is 
at least twice differentiable. As this is the case of the cubic 
spline, the derivation of the acceleration profile is rather 
straightforward once the piecewise model gets established. 
Figure 5 compares the spline approach with the ‘optimum 
filter’ method as studied in [2]. It can be seen that the 
acceleration derived from smoothed spline follows closely 
that from an optimal differentiator, although some small 
local differences are apparent. In the absence of an 
independent reference it is difficult to provide further 
conclusions. However, as the spatial filtering precedes the 
differentiation process, we can state that the proposed 
approach is most likely less sensitive to jerk effects due to 
sudden changes in satellite constellation or ambiguity 
fixing because their influence was already mitigated. 
Finally, the third curve in Figure 5 highlights the fact that 
the application of ‘normal’ spline is less appropriate as it 
yields an estimate that is as noisy as differentiators of low-
order Taylor series.  
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Figure 5: Comparison between different methods for deriving kinematic 
acceleration from GPS data. 

 

ATTITUDE AND ACCELERATION PROFILE 
USING MEMS DMC/GPS 
 
We now turn our attention to the sensors from the 
microelectromechanical (MEMS) family to find an 
autonomous alternative in deriving the acceleration and 
investigate the possibility of determining the attitude. For 
that purpose we shall consider a 3-axis Digital Magnetic 
Compass (DMC) comprising triaxial magnetometers and 
accelerometers. For the moment we assume that the 3-axis 
MEMS gyroscopes are not present, although there is an 
increasing number of systems combining all these 
components into augmented inertial measurement units 
(IMU).  

Concept of instantaneous 3D attitude determination 
via DMC/GPS 

This concept of attitude determination exploits the old 
Wahba’s problem [9] where the orientation of a rigid body 
(R) is sought based on weighted (p) measurements of unit 
vectors in two coordinates systems: the body-frame (b) 
and the system of reference (r).  
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When quaternion (q) parametrization of the rotational 
matrix is used, the attitude can be unambiguously found 
when minimizing the relation (8) with a condition qTq = 1. 
An elegant solution for q based on the eigenvalue 
decomposition is referred to as the QUEST algorithm 
[10]. The problem may evoke the analogy with that of 
GPS multi-antenna attitude determination, but here we 
have to deal with incoherent sets of measurements: the 
magnetic field and the specific force. The concerned 
vectors are summarized in Table 2. 
 

Table 2: The necessary vector observations for three-axis attitude 
determination using DMC and GPS.  

 Body Frame 
(3-axis DMC) 

Local-Level Frame 
(External reference) 

Magnetic field 
(b) 

mb / || mb ||  ml  / || ml || - map 

Specific force 
(f) fb  / || fb || fl  / || fl || - see (9) 

 

The first column of Table 2 denotes the normalized output 
of DMC magnetometers (m) and accelerometers (f) whose 
axis represent the body frame. The reference frame is 
chosen to be the local-level (l) geographical frame. The 
reference magnetic values are typically provided in this 
frame and can be usually considered constant over a small 
area (several km2) and time period (months). The 
following relation holds for the second reference:  
 
 (2 )l l l l l l

ie elf r r g= + Ω + Ω −ɺɺ ɺ  (9) 

 
where rɺɺ and rɺ  are the acceleration and velocity vectors 
determined by GPS, respectively, and g is the local gravity 
vector. The �-terms are the skew-symmetric matrices 
representing the earth and local-level frame rotation that 
together with velocities define the Coriolis acceleration. In 
a static case, the equation (9) collapses to the value of 
local gravity reference gl that defines the horizontal plane 
for conventional applications of magnetometry. 
 
The resulting attitude does not depend on the past 
measurements, as it is determined independently for each 
pair of vectors. Hence, neither the continuity of GPS 
measurements nor the initialization is the prerequisite. A 
singularity of this method could theoretically occur during 
a free fall along the local vertical (f l=[0,0,0]). This is, 
however, less likely to happen in the application 
considered. 



 
Figure 6: The DMC (inset) and the GPS antenna are both mounted on 
skier’s helmet. The azimuth derived by the former is related to direction 
of movement while the one of DMC/GPS is associated with the 
orientation of skier’s body. 

Preliminary testing 
For the empirical tests we employed the DMC furnished 
by Vectronix [11] (inset of Figure 6). This sensor is 
designed to deliver azimuth and tilt information of 0.1 and 
1-degree accuracies respectively in situations lacking local 
magnetic perturbation and kinematic accelerations. As the 
latter condition is violated in downhill skiing, the 
orientation calculated by the instrument cannot be directly 
used. Instead DMC’s raw measurements (6-channels at 
30Hz) are first low-passed filtered and then combined 
with GPS data as described in the previous section. The 
DMC and the L1/L2 GPS antenna were installed on the 
skier’s helmet, while the GPS receiver and small data 
logger were kept in a waistband. The total weight of all 
instruments was about 0.5 kg.  
 
Azimuth 
The first tests lacked an independent source of attitude 
reference and therefore the obtained results can only be 
controlled indirectly.  
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Figure 7: Comparison between azimuth and lateral accelerations 
obtained from GPS and DMC/GPS data. 

 

Figure 7 shows two types of such assessment. First, the 
DMC azimuth is compared to the one obtained from the 
trajectory. Although the detected signals may differ due to 
the nature of skier’s movement (see Figure 6 for 
explanation), both azimuths tend to align during straight-
aways. While there are not many in modern downhill race, 
similar effect is achieved in zones with a gradual change 
of trajectory orientation, as it is the case between gates 19-
24. As can be seen from Figure 7 there are some outliers 
in the DMC/GPS orientation. These are most likely caused 
by fast movements of the skier’s head in the vertical 
direction over terrain jumps that may influence the 
geometric averaging of the magnetic field during the 
sensor’s integration time. In this respect, gyro-stabilized 
magnetometers may be a better choice.  
 
The second indirect comparison uses the derived 3D 
attitude matrix R to transform the measured specific force 
vector f b from the body frame to the local-level frame f l. 
Then, equation (9) is applied to estimate the kinematic 
accelerations and compare them to those derived by GPS. 
Again, the discrepancies in Figure 7 may indicate that the 
achieved orientation accuracy may be several degrees 
lower than what is expected in low dynamic. 
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DETAIL:  ACCELERATION PROFILE 

 
Figure 8: Coaches consider acceleration profile worth of analysis. This 
important trajectory parameter can be established by means of 
autonomous measurements. 

Acceleration 

As it has already been mentioned, coaches consider the 
acceleration profile a valuable indicator of racer’s 
performance (Figure 8). To assess the DMC sensor quality 
in this respect without an influence of the attitude, the 
magnitude of the specific force vector was compared to 
that estimated by equation (9) using GPS data.  The 
differences are at the order of 0.3 m/s2 (1̌), which is few 
times higher than what is expected from the system 
specification. The sensitiveness of the accelerometer 
biases to the low temperatures is believed to be the cause. 
With the signal oscillating between 10-20 m/s2, this 
accounts for sensor error of about 1.5-3%.  
 
To supply a fully autonomous system (i.e. independent of 
GPS) that determines kinematic acceleration rather than 
the specific force (accelerometer output), an autonomous 
source of attitude needs to be put in place. As the accuracy 



of currently available MEMS gyros is most likely 
insufficient for such a purpose, their synergy with 
magnetometers may offer an interesting alternative. In 
such a system the triaxial gyro output stabilizes the 
magnetometer reading and also provide the attitude 
autonomy over the periods when GPS signal is obstructed. 
On the other hand, DMC/GPS orientation gives the initial 
alignment that can be periodically repeated. 
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Figure 9: Performance comparison between two skiers at each gate. The 
first two columns from the left represent the accumulated time and gate-
to-gate time differences, respectively. The third column shows the 
integrated distance along the fitted path, while the far-right column 
depitcs the differences in instantenaous speeed. 

 
 
CONCLUSIONS  
 
When answering a question like: “What was the exact 
trajectory of the downhill race winner and over which 
sections he gained/lost the precious few hundredths of a 
second?” we are facing an uneasy task of a surveyor that 
needs to deliver centimeter level precision at speeds of 
120 km/h, 2g acceleration and quickly changing 
environmental conditions. We proposed a tactic to 
facilitate this assignment by a spatial filtering and 
investigated the use of MEMS sensors in deriving 
additional trajectory parameters. From these investigations 
the following conclusions can be drawn:  
 

• The trajectory modeling by means of smoothing 
splines offers an elegant and practical tool to 
replace the discrete sampling with a set of 
continuous functions. The technique is 
appropriate to our application as the obtained 
model is continuous in second derivative and 
minimizes the acceleration profile. These aspects 
fit well the nature of athletes’ movement.  

 
• The proposed method of filtering data with 

varying positioning accuracy proved to be 
effective with respect to the application. 

 

• The technique seems to be also appropriate for 
precise acceleration determination. 

 
• A concept of attitude determination via the 

synergy of DMC/GPS was presented, although 
the questions related to the system accuracy 
could not be completely addressed. Further 
investigations are needed in this domain and the 
attention should be paid should be given to 
systems using gyro-stabilized magnetometer 
output. 

 
The described methodology was applied during the Ski 
World Championship at St. Moritz in February 2003 
where it held to the expectations. Precise trajectory 
analyses, like that presented in Figure 9 were furnished for 
men’s and women’s downhill. The obtained trajectories 
were also linked to the 3D terrain model and virtual-
reality race was created for the broadcasters. 
 
 
ACKNOWLEDGEMENT 
 
This research was supported via a CTI grant attributed to 
the laboratories LCAV and TOPO at EPFL with the 
industrial support of Dartfish Corporation and Swiss TV. 
The support of DMC by Vectronix is greatly appreciated. 
 
 
REFERENCES 
 
1. Skaloud, J., et al., Athletic Analysis with Racing Hart. 

GPS World, 2001: p. 14-18. 
2. Skaloud, J. and B. Merminod. DGPS-Calibrated 

Accelerometric System for Dynamic Sports Events. in 
ION GPS. 2000. Salt Lake City, Utah, USA. 

3. Kleusberg, A. and P.J.G. Teunissen, GPS for Geodesy. 
2nd ed. 1998: Springer. 

4. O'Neill, B., Elementary differential geometry. 2 ed. 
1997: Academic Press, cop. 

5. de Boor, C., A practical guide to splines. Rev. ed. ed. 
Applied mathematical sciences. Vol. 27. 2001, New 
York: Springer-Verlag. 

6. Dierckx, P., Curve and Surface Fitting with Splines. 
1993, New York: Oxford University Press Inc. 

7. Cannon, M.E., et al., DGPS Kinematic Carrier Phase 
Signal Simulation Analysis for Precise Velocity and 
Position Determination. NAVIGATION: Journal of 
The Institute of Navigation, 1997. 44(2): p. 231-245. 

8. Bruton, A.M., C.L. Glennie, and K.P. Schwarz, 
Differentiation for High Precision GPS Velocity and 
Acceleration Determination. GPS Solutions, 1999. 
2(4): p. 7-22. 

9. Wahba, G., A Least Squares Estimate of Spacecraft 
Attitude. SIAM Review, 1965. 7(3): p. 409. 

10. Schuster, M.D. and S.D. Oh, Three-Axis Attitude 
Determination from Vector Observations. Guidance 
and Control, 1981. 4(1): p. 70-77. 

11. Vectronix, DMC-SX. 2000, Heerbrougg, Switzerland. 
 




