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In this work, we aim at exploring the mech-
anisms underlying simple forms of imitation
such as mimicry. Specifically, we focus on the
problem of how to map an allocentric repre-
sentation of motions performed by others onto
an egocentric representation of self-generated
motions, as illustrated in Figure 1.

While considering the neural correlates re-
lated to imitative behaviors, the discovery in
the monkey brain of the mirror neurons sys-
tem (MNS) has suggested the existence of
a direct-mapping mechanism between visual
and motor systems [4]. This link between ac-
tion observation with self motor execution un- Fig. 1. Illustration of the frames of reference
derlies a strong need for a common visuomo-  transformations problem.
tor representation, a common frame of refer-
ence (FR). Thus, this naturally raised the question of what might be the neural processes
that allow the brain to express visually perceived human motions into an egocentric frame
of reference. From neurophysiology, we know, that along the ventral visual pathway, the
information flows from the primary visual cortex to the superior temporal sulcus (STS).
This region contains populations of neurons that separately exhibit sensitivity to a variety
of body parts, and also to their locations, sizes and orientations relative to a viewer, object
or goal-centered FR [3]. Therefore, being indirectly connected to the MNS, STS appears
clearly to be a candidate where this viewer to body-centered transformation occurs. Our
model, that will be described in the next paragraphs, proposes a biologically plausible
mechanism of how such transformation might be performed in this brain region.
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The Model

The model exploits the population vector coding paradigm to represent the vectorial basis of
the referentials involved in the transformation. We consider a population as an ensemble of
neurons whose distributed firing activities are correlated to a single macroscopic quantity
that is a vector ¥ in a given frame of reference. In order to build a neural model of a
body-centered frame of reference, we propose the hypothesis that orientation sensitive
cells in the visual area STS are grouped into populations that encode the principal axes of
observed bodies, as it remains the most natural representation for three dimensional frames
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Fig. 2. On the left, architecture of the model that performs arbitrary 3D frames of reference trans-
formations, given three principal axis. On the right, the dynamics of the network are illustrated
in a two dimensional case (for clarity reasons).

of reference [2]. Therefore, we consider three distinct populations of neurons for coding
separately the three principal axes of an observed body. As such, these groups of neurons
can form a basis, in the vectorial sense, of a body-centered frame of reference. Despite there
is as yet no clear evidence to support our model’s hypothesis, this principle is consistent
with current neurophysiological data. Indeed, to our knowledge, no systematic experiment
have shown a complete description of single cell sensitivity to all possible orientations.

Formally, we consider a continuous population of neurons where each unit is character-
ized by its preferred direction 7 that are assumed to be uniformly distributed along a three
dimensional subspace I' = {7 € R? | ||7|| = 1}, that corresponds to the surface of a unitary
sphere. The dynamic of the population follows a classical attractor network form [5], that
is governed by
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where ~ is a system parameter, w7 the lateral weights, ur the neuron’s membrane
potential with preferred direction 7, and f(uz) its firing activity. In addition, ¥ is a vectorial
input, and h an homogeneous input applied to the whole population. Such network has
been shown to exhibit several properties such as gain modulation [5]. We extended this
network [6] to encode independently two separate quantities, namely the direction of ¢
and the amplitude h, regardless of the intensity of the directional input. In other words,
given a vector ¢ and a scalar h, the output population vector will tend toward h”%”. Thus,
following classical linear algebra, several instances of this network could form a vectorial
basis. Moreover, assemblies composed of these building blocks result in gain fields, that have
been shown to be a neural substrate where multiple sources of information can combine
and produce various kind of non-linear transformations [1]. Finally, in order to perform the
required transformation, we built a network that is illustrated in Figure 2. It implements



the following frames of reference transformation formula
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where, as shown on Figure 1, ¥ and ¥, are the observed hand and the demonstrator
location, é}ge{l.‘S} the principal axes, and ¥’ the final hand location in body-centered FR.
The architecture mainly consists in three parallel gain fields that produce, as concurrent
projecting outputs, the dot product between the input vector and the principal axes. As a

result, the network output converges toward ¢/, that is the transformed hand location.

Robotic Implementation

We implemented this network in a humanoid robot. The visual in-
puts are given by a color-based stereo vision system that allows the
simultaneous 3D tracking of a human demonstrator’s hand, body
and principal axes. These information are fed into the neural net-
work that compute the target location in the demonstrator’s body
centered reference frame. It is then directly mapped to the robot
egocentric frame of reference, so that it can immediately imitate
the human’s hand trajectory using a classical inverse kinematic al-
gorithm. As illustrated here on the right, the robot is able to mimic
a gesture shown by a human demonstrator that is not perfectly
facing the cameras.

Conclusion

The model described here, provides an example of a plausible neural mechanism for the
representation of others in an egocentric frame of reference. Its present implementation
has focused on a body-centered frame of reference transformation, as could be found in
STS. It is, however, quite general, and could also be applied to object or goal-centered
representations. Indeed, these representations are crucial for generalization abilities, as for
instance in goal-directed actions, and therefore in goal-directed imitation.
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