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Abstract— An essential problem of imitation is that of
determining ”what to imitate”, i.e. to determine which of
the many features of the demonstration are relevant to the
task and which should be reproduced. The strategy followed
by the imitator can be modeled as a hierarchical optimization
system, which minimizes the discrepancy between two multi-
dimensional datasets. We consider imitation of a manipu-
lation task. To classify across manipulation strategies, we
apply a probabilistic analysis to data in Cartesian and joint
spaces. We determine a general metric that optimizes the
policy of task reproduction, following strategy determination.
The model successfully discovers strategies in six different
manipulation tasks and controls task reproduction by a full
body humanoid robot.

I. I NTRODUCTION

This work aims at developing a general policy to
drive robot learning by imitation and robot programming
through demonstration. It follows a trend of research that
aims at defining a mathematical framework for imitation
learning [11], [13].

Imitation learning needs to address the following three
key questions: “what to imitate”, “how to imitate” and
“when to imitate” [11]. Previous work has essentially
focused on the question of “how to imitate”. The imitation
mechanism was, then, aimed at a precise reproduction
of a pre-specified sub-set of task features, such as hand-
object actions (picking up a block, rotating the block),
[9], [16], [15], [10], state-actions (turn left, move forward)
[6], [7], the path followed by the manipulated object
[2], [12] and the joint trajectories of the demonstrator’s
motion [5], [8], which could be reproduced by pre-defined
motor programs. The present work aims at complementing
previous work and at addressing the question of “what to
imitate”, by defining a general policy for learning which
of the features of the task are relevant to the reproduction.

Recent work by (Alissandrakis et al., 2002)[1] illus-
trated nicely the problem of determining “what to imitate”
in a chess world case-study, in which the imitator agent
can follow either of three strategies,end-point level,
trajectory level, path level, to reproduce either subparts

or the complete path followed by the demonstrator. We
follow a similar taxonomy and apply it to the learning and
reproduction of a manipulation task by a humanoid robot.
We take the perspective that the features of the movements
to imitate are those that appear most frequently, i.e. the
invariants in time.

The model builds upon previous work [3], [4] and is
composed of a hierarchical time delay neural network
that extracts invariant features from a manipulation task
performed by a human demonstrator. The system analyzes
the Carthesian trajectories of the objects and the joint
trajectories of the demonstrator’s arms. By comparing the
probabilities of occurrence of the different events, the
model determines whether the goals1 of the manipulation
task are: a) to move a specific object, b) to move the
objects in a specific direction, c) to move the objects in
a specific sequence, d) to perform a specific gesture. The
observation of the manipulation task is then used to drive
the reproduction of the task by a full body humanoid robot.

II. EXPERIMENTAL SET-UP

A typical imitation experiment consists first of the
demonstrator performing the task with the robot observing
and extracting the relevant steps of the demonstration.
After a signal signifying the end of the demonstration, the
robot reproduces only the part of the demonstration found
significant. In the work presented here, the demonstrator
performs a manipulation of three color boxes (green,
pink and yellow) on a table stand, see Figure 1. The
demonstrator performs five types of manipulation tasks,
in which he either:

1) moves only a specific box, irrespective of the di-
rection of movement or the hand used to move the
box,

2) moves all boxes in a specific direction (along the x,
y or z-axis)

1The goals are not all mutually eclusive and the imitation cantend to
satisfy several goals.
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Fig. 1. Snapshots of a demonstration sequence. The task consists ofmoving 3
boxes with either the left or the right hand with a specific gesture: 1-2) first move
the box along the x-direction (forward) for approximately 20 cm, then move the
box along the z-direction (upward) for approximately 20 cm.

3) moves the boxes in a specific sequence (box1, box2,
box3),

4) moves all boxes using the same hand-box relation-
ship (use the left hand only, or use the hand closest
to the target),

5) moves all boxes following a specific gesture, i.e.
following a specific joint trajectory, irrespective of
the location and orientation in space (e.g. clapping
the hands before moving a box, drawing a circle in
the air before touching the box), see Figure 1.

The demonstrator repeats each manipulation task five
times, in order to make the interesting feature salient. The
robot repeats only the invariant across the different demon-
stration and does not simply copy the whole sequence.

A. Data Recording

The Cartesian trajectories of the colored boxes are
tracked by a fixed pair of cameras, see Figure 2. The
system tracks at a rate of 60Hz the position and velocity
of the three colored blobs. The trajectories of the blobs are
segmented into 3 types of events:hits, i.e. a displacement
of a box by the demonstrator/imitator,directed hits, i.e.
a displacement of the box in a specific direction,arm-
choice, i.e. the frequency of use of left and right arms,
andclose-far, the frequency of use of the hand closest to
the box for performing a hit (based on a measure of the
distance from the box to the left and right hand-side of
the body). Arm-choice and close-far measurements were
available only in simulation.

Joint displacements, i.e. angular measurements of the
14 degrees of freedom of left and right arms (flexion,
abduction and humeral rotation of the shoulders and
wrist, flexion of the elbows), are recorded by a SenSuit
exoskeleton equiped with an array of Hall-sensors (see
Figure 1). Data are captured at the rate of 100Hz.

Fig. 2. A stereo colour vision system used for tracking motions of colour boxes
during demonstration and imitation.

Fig. 3. Left: The Xanim simulator calculates the dynamics of a 30 degrees of
freedom avatar and of 3 colored boxes [14].Right: The end-effector of the robot is
a solid plate, whose orientation in 3D can be modulated. In simulation and during
control, the position of the end-effector is considered to be at the end of the plate
(sphere in the drawing).

The trajectories of the joints are segmented to detect
the starts and stops of voluntary motion and changes in
direction of movement, following Equation 1. Since differ-
ent degrees of freedom have different dynamic properties,
due to their different lengths and muscular composition,
we applied different segmentation parameters to each. Let
θ̃i �∆t j � be the mean angular displacements of jointi during
the time interval∆t j . θ M

i and θ m
i are the maximal and

minimal values ofθi over the whole trial. A segmentation
point is created at the crossing between the two intervals
∆t1 and∆t2, if:

θ m
j � �θ̃i �∆t1� �θ̃i �∆t2�� �θ M

j (1)

a) Parameterization:
After segmentation, the speed and direction of move-

ment of each joint is coded in the output of a neuron,
see Section III-C.0.b. There are two neurons per degree of
freedom (DOF), coding for positive and negative direction
of movement, respectively. Letyi �t � be the output of
neuron i at time t, and t1�n the series of time steps at

which the segmentation has occurred, and˜̇
iθ �∆t j � the
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mean velocity of the jointi between two segmentation
points, then:

yi �t j � �
˜̇
iθ �∆t j � (2)

B. Robot Control

The work was conducted first in the Xanim simulator
and then implemented on DB, a 30 degrees of free-
dom (Head: 3, Arms 7 *2, Trunk 3, Legs 3*2, Eyes
4 D.O.F.) hydraulic humanoid robot, located at the Ad-
vanced Telecommunication Research institute. The Xanim
simulator is a dynamic simulation of the DB robot (see
Figure 3 right). The external force applied to each joint is
gravity. Balance is handled by supporting the hips; ground
contact is not modeled. There is no collision avoidance
module. The dynamics model is derived from the Newton-
Euler formulation of Rigid Body Dynamics.

The robot/avatar’s movements are force-controlled
based on desired trajectories (Inverse kinematics trans-
forms a kinematic plan from cartesian to joint space). The
trajectory to imitate is specified as a set of target points in
Cartesian space. For instance, the action “pushing a box to
the left” follows a trajectory made of three points, located
10cm to the right of the box, in the middle of the box and
10cm to the left of the box.

In observation of the gestures, the joint trajectories of
the demonstrator are segmented following velocity cross-
ings, as described in Equation 2. During reproduction, the
joint velocities are fitted by a series of Gaussians, see
example in Figure 8. Ifyi �t � is the output of neuroni
associated to jointi, then the reproduced velocityθ

�
i �t �

between the segmentation pointst j and t j�1 is:

θ
�
i �t � �exp���t �yi �t ��2

r2 �, t j �� t �� t j�1 (3)

yi �t � is constant over the time interval and is equal to
yi �t j �, see Equation 2.r is a constant.

III. F ORMALISM

A. Metric of Imitation

The imitation task can be decomposed in anobservation
processand areproduction process. The observation pro-
cess categorizes the dataset followinglevels of imitation
l � 1� ���L and strategies. For each level of imitationl ,
a set of strategiessl � sl1

� ���slS
is associated. We define

the imitation metricM as a weighted sum of level- and
strategy-dependent metricsMsi j

.

M �
L

∑
i�1

sl

∑
j�1

wi j �Msi j
(4)

The observation process determines the weights of the
metric, according to the probabilityP�sl j � of observing

the imitation levell and the associated strategysl j
. The

weight wl j associated to the strategysl j
is given by

wl j �
P�sl j �

∑L
i�0 ∑S

j�1Psi j

(5)

The reproduction process determines the optimal con-
trol strategy sl that produces a datasetD

�
�

�
X
�
�Θ

��,
such that the metricM �D �D

�
� is minimal. If P�sl j � and

P
�
�sl j � are the probabilities of having observed levell and

the associated strategysl j
in the demonstration and the

reproduction respectively, then the metric

Msi j
� �P�sl j � �P

�
�sl j �� (6)

Then, the reproduction process chooses the goal of the
reproduction with a probabilityP

�
�sl j �, such thatP

�
�sl j ��

P�sl j �.
Probabilities are normalized such that

∑L
i�0 ∑S

j�1P�si j � � 1. The residual is the probability
of seeing a random strategy:

P�s0� �1�
L

∑
i�1

S

∑
j�1

P�si j � (7)

B. Imitation Strategies

In the manipulation task considered here, the dataset
D �

�
X �Θ� is composed of the trajectories of the manip-

ulated objects,X �
�
x�ẋ�ẍ� (3-dim Carthesian position,

speed and acceleration), and of the joint trajectories of
the 14 degrees of freedom of the two arms:Θ �

�
θ �θ̇ �θ̈ �

(angular position, speed and acceleration).

Fig. 4. Imitation of a manipulation task. The demonstrator’s worldis mapped
into the imitator’s world. Demonstrator and imitator’s worlds are modeled as two
datasetD � �X 	Θ
, D� � �X � 	Θ� 
.

We consider four levels of imitationl1 � ���l4, to which
one or two strategies are associated:

l1: reproducing only the goal, reaching for the same
box (s11

) or for the same set of boxes in sequence
(s12

), irrespective of the path followed by the box
and the gesture.

l2: reproducing the path followed by the target, i.e.
moving the box in a specific direction (s21

)
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l3: reproducing the same hand-object relationship,
i.e. using only left or right hand (s31

), or using
the hand closest to the target (s32

).
l4: reproducing the exact gesture, i.e. reproducing

the trajectory of the joints (s31
).

C. Strategy Determination

Let h�i� with i �
�
1�2�3�, d�i� with i �

�
1� ���8�, a�i�

with i �
�
1�2�, andc�i� with i �

�
1�2� be the number of

eventshits, directed hits, arm-choice andclose-far (see
Section II-A for the definitions of the events). Then, we
compute:

P�s11� �maxi��1�2�3��
h�i�

∑3
j�1h�j � �

(8)

P�s21� �maxi��1����8��
d�i�

∑8
j�1d�j � �

(9)

P�s31� �maxi��1�2��
a�i�

∑2
j�1a�j � �

(10)

P�s32� �maxi��1�2��
c�i�

∑2
j�1c�j � �

(11)

b) Sequence Determination:

Fig. 5. Top: Firing of the 3 neurons in response to the motion of the 3 boxes.
Bottom: A 3-node fully recurrent time delay neural network learns the sequence
of node firing. The bold lines represent the connections withmaximal weight.
Reactivation of any of the 3 nodes result in correct rehearsal of the sequence.

In order to determine the probability of being in strategy
s21

, in which the invariant is the sequence of displacement
of the boxes, a time delay neural network is trained on the
time series ofhits. For instance, a sequence of move (box1,
box2, box3) results in the seriesH �

�
h1�h2�h3�. Each hit

is associated to one node. The network is fully recurrent,
see Figure 5. Each network connection is associated a time

delayτ and a weightw. If y j andyp
j

are the observed and
predicted activity of the neuronj, we have:

dyp
j

�
dt � �τ j j �

∑
i

wi j �y j �δ �τi j �y j � �δ �y j �0� (12)

The functionδ �x�H � is a threshold function that outputs
1 whenx �H and 0 otherwise.

During learning, weights and time delay are updated
following pseudo-Hebbian rules following Equations 13
and 14.

δwji �t � �a �yi �t � �y j �t � (13)

τ ji �t � � �
τ ji �t �1� � w ji

a � yj �t�
yi �t�

w ji
a �1

� �yi �t � �y j �t � (14)

where a is a constant factor by which the weights are
incremented.

The errorE � � �y�t � �yp�t ��dt on the neural network
prediction is a measure of the probability of observing
the sequence.P�s21� � δ �ε �E� 	

�
0;1�, where ε is the

minimal error for succesful learning.
c) Gesture Recognition:

Fig. 6. Principle of functioning of the tree-based time delay neural network, used
to learn sequential activation of joint motion. New nodes are created in response
to new node correlations.

To determine whether we are in strategys31
, i.e. a

situation in which the gesture is an invariant, a tree-based
time delay neural network is trained on the time series of
joint segments, see Figure 7.

The angular trajectory of a joint is segmented and
mapped to the activity of two nodes, that fire for positive
and negative velocity, see equation 2 and Figure 8. Patterns
of joint motion (time series of segmentation points) are
stored in the network, following Equations 13 and 14, see
Figure 6.
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Fig. 7. Growth of the tree-network during learning of the motion, presented in
Figure 1.
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Fig. 8. Angular trajectory of the elbow joint during the motion shown in Figure
1. Vertical lines show the segmentation along the angular trajectory. The dashed
line is the reproduced motion after network rehearsal and using a Gaussian-based
fit.

IV. EXPERIMENTS AND RESULTS

The model was first tested in simulation, with the avatar
playing in turn the role of demonstrator and imitator.
The model could correctly disambiguate between all five
first strategies of imitation, see the example of Figure
9. The same was confirmed using video data of human
demonstration and implementing the reproduction on the
ATR DB robot2, see Figure 10 and video.

Imitation of the 3rd level of imitation (5th/6th strate-
gies), that is recognition and reproduction of a gesture,
was conducted separately on human data recorded with
the SenSuit recording system. The system correctly disam-
biguated between random gestures and highly correlated
ones, such as oscillatory motions, see Figure 8. It was,
however, poorer on low correlated data (clapping hands

2Note that reproduction of strategiess21�2 could not be tested, as only
the left arm of the DB robot was functional during our visit atATR

Fig. 9. Top Left: Incrementation of the counters recording the number of times
each box is touched. In this example, box1 is moved frequently, while box2 is
touched only once and very briefly, and box 3 is not touched at all. The pie chart
represents the distribution of probability of each of the 3 possible strategies that
could have accounted for that particular example.

Fig. 10. Top: Observation Phase - The demonstrator moves each box from left
to right. Bottom: ATR DB robot imitates the invariant of the demonstration, a
motion of any block along the x-axis.

and reaching for target anywhere in space).

V. CONCLUSION

We addressed the problem of determining which fea-
tures of a manipulation task are relevant and should be im-
itated. We proposed a metric of the imitation performance
that determines the optimal imitation strategy, based on a
measure of probability of observing a particular manipu-
lation strategy. The metric uses a linear combination of
probabilities to compare the results of separate algorithms
for feature extraction, applied to different datasets. The
model was successfully applied to the reproduction of
six manipulation tasks in a dynamic simulator and on a
humanoid robot, using kinematic data of human motion.

d) Discussion and Future Work:
Each of the methods used for discovering regularities

in the data is not novel nor optimal. The novelty of this
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work lies in the combination of these methods to extract
a higher-level form of redundancy in the datasets, that no
single method could extract alone, in order to determine
a general imitation metric.

The work remained simple in the manipulation tasks
it addressed. We considered only planar motions of the
objects, manipulation sequence of no more than three time
steps, and simple gestures for manipulating objects. This
simplicity was necessary in order to validate the approach.
Future work will consider more complex set of data.
Presently, we are conducting a systematic evaluation of
the method for extracting strategy in joint space, over a
larger dataset of gestures, and will implement it, in the
next months, on the ATR robot.

Although we attempted to give to the imitation metric
a general definition, a number of assumptions on its
form remained task-specific and should be revisited in
future work. The linear combination of sub-metrics might
not be valid in tasks where sub-metrics are correlated.
Sub-metrics should be less dataset-specific and should
specify classification algorithms that extract the nature
(probabilistic, sequential) of correlation across any dataset.
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