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Learning human arm movements by imitation: evaluation of a
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Abstract10

This paper evaluates a model of human imitation of abstract, two-arm movements. The model consists of a hierarchy of
artificial neural networks, which are abstractions of brain regions involved in visuo-motor control. The model is validated in a
biomechanical simulation of a 37 degrees of freedom (DOF) humanoid. Input to the model are data from human arm movements
recorded using video and marker-based tracking systems. Results show a high qualitative and quantitative agreement with
human data. The model’s reproduction is better or comparable to that of human subjects imitating the same movements.
© 2001 Published by Elsevier Science B.V.
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1. Introduction19

A goal of robotics is to have robots become a part20

of human everyday lives. A key challenge to make21

this possible is developing flexible motor skills in or-22

der to give robots the ability to be programmed and23

interacted with more easily and naturally, and to assist24

humans in various tasks. A very exciting area of cur-25

rent research is concerned with developing human-like26

robots (humanoids) for assisting humans in medical27

surgery [34,36] and rehabilitation [6], for providing28

help in everyday tasks to the elderly and the disabled29

[58], and for replacing humans in low-level industrial30

tasks and unsafe areas [25,30] (including space, nu-31

clear, and waste management industries).32

∗ Corresponding author. Present address: 3614 Wyatt Way, Los
Angeles 90089-2520, CA, USA. Tel.:+1-213-740-92-23; fax:
+1-213-740-56-87.
E-mail address: billard@usc.edu (A. Billard).

Providing robots with human-like capabilities, and33

in particular, with sophisticated motor skills for flex-34

ible and precise motions is a very difficult task, re-35

quiring important low-level programming (with high 36

cost) for fine tuning of the motor parameters and37

re-calibration of sensor processing [18,47]. An alter-38

native is to provide the robot withlearning or adaptive 39

capabilities, which can be used for on- and/or off-line40

optimization of predefined motor control parameters41

[13,28,55]. Particularly challenging is the problem of42

how to teach a robot new motor skills through demon-43

stration rather than through reprogramming. In such44

a scenario, the robot learns novel motor sequences by45

replicating those demonstrated by a human instructor46

and by tuning its motor program descriptions so as47

to successfully achieve the task. The method is inter-48

esting because it allows the robot to be programmed49

and interacted with merely by human demonstra-50

tion, a natural and simple means of human–machine51

interface. Furthermore, it makes the robot flexible52

1 0921-8890/01/$ – see front matter © 2001 Published by Elsevier Science B.V.
2 PII: S0921-8890(01)00155-5
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with respect to the tasks it can be taught and, thus,53

facilitates the end-use of robotic systems.54

1.1. Related work55

The first robotics work to address imitation was56

focused on assembly task-learning from observation.57

Typically, a series of arm trajectories of a human, per-58

forming object moving/stacking tasks, were recorded59

either using a manipulandum, with the advantage of60

measuring directly the joint torques [4,14,27], or using61

video images [23,32,53]. Data were analyzed to re-62

move inconsistencies and extract key features of move-63

ment. An industrial non-human-like robotic arm would64

then be trained to reproduce the trajectory which max-65

imizes the data key features. These efforts constitute66

a significant body of research in robotics, and con-67

tribute to data segmentation and understanding. How-68

ever, they provide highly task-specific solutions, with69

little flexibility for applying the same algorithm to im-70

itation after different types of movements and tasks.71

More recent efforts, including our own [3,8,10,37],72

have been oriented toward analyzing the underlying73

mechanisms of imitation in natural systems and mod-74

eling those on artificial ones. Atkeson and Schaal75

[5,49] developed a control strategy in which the robot76

learns a reward function from the demonstration and77

a task model from repeated attempts to perform the78

task. The algorithm has proven to be robust, fast and79

applicable to different tasks, such as juggling and pole80

balancing. In a more biological approach, Demiris and81

co-workers [15,16] performed experiments in which a82

robotic head equipped with a pair of cameras observes83

and imitates the head movements of a human demon-84

strator. These approaches use visual feature detectors,85

which inform a built-in system that directly mapped86

a set of possible observed head movements to the87

robot’s own head movements. The inspiration for the88

visual feature detectors comes from evidence in mon-89

key of neurons specialized to particular orientation of90

motion [44] and the observed-performed mapping is91

based on Meltzoff’s proposed innate visuo-motor map92

[39]. Following a similar research line, Kuniyoshi93

and co-workers achieved fine oculo-motor control of94

a robot head for on-line tracking [7,32] and reproduc-95

tion [12] of human torso motion by a humanoid robot.96

Schaal and Sternad [50,51] explored the idea of cre-97

ating complex human-like movements from biologi-98

cally motivated movement primitives. Each degree of99

freedom (DOF) of a robot’s limb is assumed to have100

two independent abilities to create movement, one101

through a discrete dynamic system (for point-to-point102

movements), and one through a rhythmic system (type103

of central pattern generator (CPG) [54]). The model 104

was implemented on a humanoid robot for a drum-105

ming task. Jenkins et al. [26] described an imitation106

model based on a set of perceptuo-motor primitives.107

A simple version of the model was validated on a 20108

DOF humanoid simulation with dynamics, using real109

vision data (same as those used in this work) to imi-110

tate a movements from athletics and dance. Fod et al.111

[19] contributed to this model by providing a method112

for automatically extracting a set of primitives from113

human movement data. 114

1.2. Our approach 115

Our work aims to complement the above ap-116

proaches, by investigating a connectionist-based117

model validated on a biomechanical simulation of a118

humanoid. The endeavor is to, on the one hand, build119

biologically plausible models of animal imitative120

abilities, and, on the other hand, to develop architec-121

tures for visuo-motor control and learning in robots122

which would show some of the flexibility of natural123

systems. We follow neuroscience studies of primate124

motion recognition and motor control. Specifically,125

our work is driven by the observation that: (1) visual126

recognition of movements is done in both extrinsic127

and intrinsic frames of reference [42,56]; (2) a neural128

system, possibly themirror neuron system, encapsu- 129

lates a high-level representation of movements, the130

link between visual and motor representation [17,46];131

(3) motor control and learning are hierarchical and132

modulate (evolutionary) primitive motor programs133

(e.g. CPGs, located in primate spinal cord [54]). 134

Our model is composed of a hierarchy of artificial135

neural networks and gives an abstract and high-level136

representation of the neurological structure underly-137

ing primates brain’s visuo-motor pathways. These are138

the spinal cord, the primary and pre-motor cortices139

(M1 and PM), the cerebellum and the temporal cor-140

tex (TC). The model has first been evaluated in a pair141

of demonstrator–imitator humanoid avatars with 65142

DOFs [8] for learning by imitation gestures and com-143

plex movements involving all the avatar’s limbs. In144
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this paper, we evaluate the model’s performance at145

reproducing human arm movements. A biomechani-146

cal simulation is developed which models the muscles147

and the complete dynamics of a 37 DOF humanoid.1148

The aim of these experiments is to evaluate the realism149

of the model and the dynamic simulation at modeling150

human imitation.151

In the experiments presented here, only 11 DOFs152

are actively commanded to match the observed per-153

formance (4 DOFs per arm and 3 for the torso), while154

the rest of the joints are kept immobile. In the experi-155

ments reported in [8,10], we demonstrated the validity156

of the architecture for controlling the 65 DOFs of our157

avatar for imitating complex movements requiring all158

limbs. There, data for the imitation were simulated,159

produced by a demonstrator avatar, and we could gen-160

erate data for the whole body. In this paper, we use161

human data. However, because of the limitation of our162

tracking system, we could not record motion of the163

whole body and were constrained to using movements164

of the upper torso only. In future work, we will use a165

full body tracking system which will allow us to fur-166

ther validate the model for controlling the whole 37167

DOFs on real data (as opposed to simulation data we168

have used previously). Preliminary work in this direc-169

tion is reported in [11].170

The rest of the paper is organized as follows. In Sec-171

tion 2, we describe in detail the model, and, in partic-172

ular, the visual processing of the data and the learning173

algorithm. In Section 3, we evaluate the model’s per-174

formance on a series of experiments for reproducing175

human arm motion, namely reaching movements and176

oscillatory movements of the two arms. We compare177

the model’s performance to that of humans in the same178

imitation task. Section 4 concludes this paper with a179

short summary of the presented work.180

2. The model181

We have developed a highly simplified model of182

primate imitative ability [8] (see Fig. 1). This model is183

biologically inspired in its function, as its composite184

modules have functionalities similar to that of specific185

1 The previous implementation of the model used a partial dy-
namic simulation of a 65 DOF humanoid avatar, where we did
not compute the internal torques of the humanoid.

brain regions, and in its structure, as the modules are186

composed of artificial neural architectures (see Fig. 2).187

It is loosely based on neurological findings in primates188

and incorporates abstract models of some brain areas189

involved in visuo-motor control, namely the TC, the190

spinal cord, the primary motor cortex (M1), the pre-191

motor (PM) area and the cerebellum. 192

2.1. Brief description of the modules 193

Visual information is processed in TC for recogni-194

tion of the direction and orientation of movement of195

the demonstrator’s limbs relative to a frame of ref-196

erence located on the demonstrator’s body, i.e., the197

TC module takes as input the Cartesian coordinates of198

each joint of the demonstrator’s limbs in an excentric199

frame of reference (whose origin is fixed relative to200

the visual tracking system). It then transforms these201

coordinates to a new set of coordinates relative to an202

egocentric frame of reference. Our assumption of the203

existence of orientation-sensitive cells in an egocentric204

frame of reference in TC is supported by neurological205

evidence in monkeys [42,43] and humans [2,31,56].206

The vision system also incorporates a simplified at-207

tentional mechanism which is triggered whenever a208

significant change of position (relative to the position209

at the previous time step) in one of the limbs is ob-210

served. At this stage of the modeling and given the211

simplicity of this module, the attentional module does212

not relate to any specific brain area. The attentional213

mechanism creates an inhibition, preventing informa-214

tion flow from M1 to PM and further to the cerebel-215

lum, therefore, allowing learning of new movements216

only when a change in the limb position is observed.217

In Section 2.2, we describe the motion tracking system218

we used in the experiments and explain in more detail219

the stages of visual processing in the TC module. 220

Motor control in our model is hierarchical with, at221

the lowest level, the spinal cord module, composed of222

primary neural circuits (CPGs [54]), made ofmotor 223

neurons andinterneurons 2 (see Section 2.3). The mo-224

tor neurons in our simulation activate the muscles of225

the humanoid avatar, see Section 2.5. The M1 module226

monitors the activation of the spinal networks. Nodes227

2 Inter- and motor neurons are spinal cord neurons with no direct
and direct input to the muscles, respectively.
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Fig. 1. The architecture consists of seven modules which give an abstract and high-level representation of corresponding brain areas
involved in visuo-motor processing. The seven modules are: the attentional and TC modules, the primary motor cortex and spinal cord
modules, the PM cortex and cerebellum module, and the decision module.

Fig. 2. A schematic of the interconnections between the modules, and the neural structure within each module.
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Fig. 3. Motion tracking system of human movement (left); the Cosimir simulator (right).

in M1 are distributed following a topographic map of228

the body.229

Learning of movements is done in the PM and230

cerebellum modules. These modules are implemented231

using the Dynamical Recurrent Associative Memory232

Architecture (DRAMA) [9] which allows learning233

of time series and of spatio-temporal invariance in234

multi-modal inputs (see Section 2.4 for details). Fi-235

nally, the decision module controls the transition236

between observing and reproducing the motor se-237

quences, i.e., it inhibits PM neural activity due to TC238

(visual) input to flow downwards to M1 (for motor239

activation). It is implemented as a set of if–then rules240

and has no direct biological inspiration.241

Neurons in the PM module respond to both visual242

information (from the TC) and to corresponding mo-243

tor commands produced by the cerebellum. As such,244

they give an abstract representation ofmirror neurons.245

Mirror neurons refer to neurons located in the rostral246

part of inferior PM area 6 in monkey [17,46], which247

have been shown to fire both when the monkey grasps248

an object and when it observes another monkey or a249

human performing a similar grasp.250

In the next section, we describe in more detail the251

visual, motor, and learning parts of our model.252

2.2. Visual segmentation253

Data for our experiments (see Section 3) are254

recordings of human motion. The first set of data255

was recorded using a vision-based motion-tracking256

system. The system we used is capable of selecting a257

collection of features from the moving image, based258

on a constrained (unoccluded and unambiguous) ini-259

tial position and kinematic model of a generic adult260

human (see [57] for a detailed description). Track-261

ing is done off-line and based on image frequency262

of 15 Hz. The system allows tracking of the upper263

body in the vertical plane, where the body features264

correspond to those of a stick figure (see Fig. 3). It265

calculates the positions (relative to a fixed, excentric266

frame of reference) of nine points on the body: two267

located on the wrists, two on the elbows, two on the268

shoulders, one on the lower torso, one on the neck269

and one on the head. 270

A second set of human arm data, used in the experi-271

ments, was gathered by Matarić and Pomplun in a joint 272

interdisciplinary project conducted at the National In-273

stitutes of Health Resource for the Study of Neural274

Models of Behavior, at the University of Rochester275

[38,45]. Subjects watched and imitated short videos of276

arm movements, while wearing the FastTrak marker277

mechanism for recording the positions of four mark-278

ers on the arm: at the upper arm, near the elbow, the279

wrist, and the hand. 280

In the experiments, these Cartesian coordinates are281

input to the TC module of our model, in which they282

are processed in four stages. Data are first transferred283

into a frame of reference relative to the demonstrator’s284

body, by calculating the joint angles of the elbows and285

shoulders. In a second stage, a low-pass filter is ap-286

plied to the calculation of the angular velocity for each287

of the four joints. This stage corresponds to the atten-288

tional mechanism of Fig. 1. This allows us to elimi-289

nate small arm movements which we consider noise290

for these experiments. These small motions are due to291

two factors: (1) the locations of the nine points of ref-292

erence of the tracking are imprecise; the coordinates293
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Table 1
Thresholds (◦) for visual filteringa

Experiment θ0 T0

LSx PI/16 15
LSy PI/16 15
RSx PI/16 15
RSy PI/16 15
LE PI/8 10
RE PI/8 10

a LSx is the DOFx of the left shoulder. LE is the left elbow.θ0

(in radians) is the minimum displacement for detecting a motion.
T0 (in recording cycles) is the minimum time delay during which
no displacement greater thanθ0 has been observed.

are extrapolated across three time steps of recording;294

(2) because of the interaction torques across the body,295

movement of one limb results in small motions of the296

rest of the body. These small movements are noise to297

us, as we wish to recognize only voluntary movements298

(as opposed to movements made to compensate for299

the interaction torques). Since shoulders and elbows300

have different dynamics, due to their different lengths301

and muscular composition, we applied different filter302

parameters to each. The filtering process depends on a303

set of two parameters per DOF. They are: (1) the min-304

imum displacementθ0 (in joint angle) for detecting a305

motion; (2) the minimum time delayT0 during which306

no displacement greater thanθ0 has been observed.307

The latter is then considered as a stop of the motion or308

small, noisy movements. Table 1 shows the values we309

used for the experiments reported in Section 3. Note310

that in the experiments, we used at most 2 (abduc-311

tion and flexion) of the 3 DOFs of the shoulders, as312

the third DOF, humeral rotation, was not recorded by313

either of the two tracking systems. Fig. 6 shows the314

results of the visual segmentation for three oscillatory315

movements of the two arms. Only the large move-316

ments are segmented.317

In the third stage, we calculate the direction of318

movement of each limb relative to the limb to which319

it is attached (elbow relative to shoulder and shoul-320

der relative to the torso). The direction of movement321

is positive or negative depending on whether the limb322

moves upwards or downwards, respectively. In the323

fourth stage, the TC module activates a series of cells324

coding for the possible joint angle distributions. There325

are two cells per DOF per joint, coding for posi-326

tive and negative direction of movement, respectively.327

The output of the cells encodes both the direction328

and speed of the movement. The faster the speed, the329

greater the output excitation of the cell. Only one cell330

of the pair is active at a time. If both cells are inac-331

tive, the limb is not moving. The decomposition of332

the limb motion can easily be mapped to the muscular333

structure of the imitator; each DOF of a limb is di-334

rected by a pair of flexor–extensor muscles. Upward335

and downward directions of movement correspond336

to the activation of the extensor and flexor muscles,337

respectively. 338

In summary, the visual module performs four levels339

of processing on the data: (1) a transformation from340

extrinsic to intrinsic frame of reference; (2) filtering341

of small and noisy motions; (3) a parameterization342

of the movements in terms of speed and direction;343

(4) segmentation of the motion, based on changes in344

velocity and movement direction. 345

2.3. Motor control 346

2.3.1. Spinal cord module 347

In our model, motor control is hierarchical. On the348

lowest level of motor control is thespinal cord mod- 349

ule. It is composed of primary neural circuits made350

of motor neurons (afferent to the muscles and respon-351

sible for the muscle activation or inhibition) andin- 352

terneurons. 353

In our experiments, the spinal circuits are built-in354

and encode extending and retracting arm movements,355

as well as rhythmic movements of legs and arms in-356

volved in locomotion, following a biological model357

of the walking neural circuits in vertebrates [24]. The358

neurons of the spinal cord module are modeled as359

leaky-integrators, which compute the average firing360

frequency [22]. According to this model, the mean361

membrane potentialmi of a neuronNi is governed by 362

the equation 363

τi
dmi
dt

= −mi +
∑
wi,j xj (1) 364

wherexj = (1 + e(mj+bj ))−1 represents the neuron’s365

short-term average firing frequency,bj the neuron’s 366

bias, τ i a time constant associated with the passive367

properties of the neuron’s membrane, andwi,j the 368

synaptic weight of a connection from neuronNj to 369

neuronNi . 370
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2.3.2. Motor cortex module: M1371

The primary motor cortex (M1) module contains a372

motor map of the body (similar to the corresponding373

brain area [41]). It is divided into layers of three neuron374

networks, each activating distinct (extensor–flexor)375

muscle pairs (see Fig. 2). The three-neuron network376

allows for independently regulating the amplitude377

(two nodes, one for each muscle) and the frequency378

(one node) of the oscillation of the corresponding379

flexor–extensor pair, similar to [24]. An oscillation380

of a limb segment is generated by activating all three381

neurons, allowing a small time delay between activa-382

tion of the first and second neuron, thus creating an383

asymmetry between the two motor neurons’ activity384

and the corresponding muscle contraction. Motion385

of a single muscle (flexor or extensor) is obtained386

by activating only one of the two amplitude nodes,387

while keeping the frequency node at zero. The speed388

of the movement, i.e., the speed of contraction of the389

muscle, is controlled by increasing the output value390

of the amplitude neuron and consequently that of the391

corresponding motor neuron in the spinal cord. The392

amplitude of the movement (in the case of one-muscle393

activation) is controlled by the duration of the neuron394

activation. The longer the activation of the amplitude395

neuron (and subsequently of the motor neuron), the396

longer the duration of muscle contraction, the larger397

the movement.398

M1 receives sensory feedback, in the form of joint399

angle position, from the spinal cord module. Each mo-400

tor area of M1 receives sensory feedback from its re-401

lated sensory area (arm area receives feedback on joint402

positions of the shoulder joints). This is used to mod-403

ulate the amplitude or speed of the movement, by in-404

creasing or decreasing (for smaller or larger speed) the405

output of the M1 nodes. The sensory feedback pro-406

vides inhibition; the larger the feedback, the slower407

the movement. In the experiments of Section 3.1, this408

is used to modulate reaching movements. When the409

movement starts, the sensory feedback is at its min-410

imum and consequently the tonic input (i.e., the am-411

plitude of the M1 nodes’ output) is at its maximum.412

When the arm has reached half the required distance,413

the sensory feedback is at its maximum and, conse-414

quently, the tonic input is decreased to 10% of its415

maximum. The arm stops shortly afterwards when the416

torque produced by the muscle (proportional to the417

motor neuron’s output, see Section 2.5) equals that of418

gravity. 419

2.3.3. PM cortex module 420

The PM module creates a direct mapping between421

the parameterization of the observed movement in422

TC, following visual segmentation, and that used for423

motor control in M1. In TC, the observed motion is424

segmented in terms of speed, direction and duration425

of movement (the delay between two changes in ve-426

locity and motion direction) of each limb (see Sec-427

tion 2.2). In M1, speed and direction of movement428

of each limb CPG (in the spinal cord) are controlled429

by the amplitude of the nodes which project to the430

relevant interneurons. PM nodes transfer the activ-431

ity of the TC nodes (observation of a specific move-432

ment) into an activity pattern of M1 nodes (motor433

command for the corresponding movement). A large434

output activity in TC cells (comprised between 0 and435

1) will lead to an important output from PC nodes,436

and further from M1 nodes which further the activa-437

tion of the corresponding amplitude node. Duration438

of movement is proportional to the duration of acti-439

vation of the amplitude node. Learning of the move-440

ments consists, then, of storing the sequential activa-441

tion (recording the amplitude and the time delay) of442

each of the TC nodes, and mapping these to the corre-443

sponding M1 nodes. This will be further explained in444

Section 2.4. 445

2.3.4. Decision module 446

Finally, the execution of a movement (as dur-447

ing rehearsal of the motion in the experiments, see448

Section 3) is started by the decision module, by acti-449

vating one of the cerebellum nodes (the node which450

encodes the corresponding sequence of muscle ac-451

tivation, described in Section 2.4). The activity of452

the cerebellum node is passed down to the nodes453

of the PM cortex, which encode co-activation of454

the muscle in a specific step of the sequence (de-455

scribed in Section 2.4), and, further, down to the456

nodes of the second layer of primary motor cortex457

(M1). Finally, the activity of the nodes in the second458

layer of M1 activates the nodes in the spinal cord459

module, which further activates the motor neurons.460

These in turn activate the simulated muscles of the461

avatar. 462
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F8 A. Billard, M.J. Matarić / Robotics and Autonomous Systems 941 (2001) 1–16

Fig. 4. A schematic of the node connection from uniti and unit j. Each connection of the DRAMA network is associated with two
parameters, a weightwij and a time parameter�ij . Weights correspond to the synaptic strength, while the time parameter specifies a
synaptic delay. Each unit has a self connection. Retrieval follows a winner-take-all rule on the weights.

2.4. The learning modules463

Learning of motor sequences is done by updating464

the connectivity between the primary cortex (M1), the465

PM cortex, and the cerebellum modules. PM and cere-466

bellum modules consist of a DRAMA [9], a fully re-467

current neural network without hidden units. Similarly468

to time delay networks [35], each connection is asso-469

ciated with two parameters, a weightwij and a time470

parameterτ ij (see Fig. 4). Weights correspond to the471

synaptic strength, while the time parameter specifies472

a synaptic delay, i.e., a delay on the time required to473

propagate the activity from one neuron to the other.474

Both parameters are modulated by learning in order475

to represent the spatial (w) and temporal (τ ) regular-476

ity of the input to a node. The parameters are updated477

following Hebbian rules, given by Eqs. (2) and (3).478

Learning starts with all weights and time parameters479

set to zero, unless specified differently to represent480

predefined connection (as between PM and M1 mod-481

ules, see Section 2.3).482

δwji(t) = ayi (t)yj (t) (2)483

484

τji(t)=
(
(τji(t − 1))(wji/a)+ (yj (t)/yi(t))

(wji/a)+ 1

)
485

×yi(t)yj (t) (3)486

wherea is a constant factor by which the weights are487

incremented.488

In the present experiment, learning across TC–PM,489

PM–M1 and PM–cerebellum consists of building up490

the connectivity of nodes across these modules so as491

to represent spatio-temporal patterns of activation in492

the TC and PM modules, respectively. The connectiv-493

ity PM–M1 is constructed simultaneously to that of494

TC–PM to represent the isomorphism between visual495

and motor representation. 496

In DRAMA, the neuron activation function follows497

a linear first order differential equation givenas fol-498

lows. 499500

yi(t)= F

xi(t)+ τiiyi(t − 1)

501

+
∑
j �=i
G(τji, wji, yj (t − 1))


 (4)

502

whereF is the identity function for input values less503

than 1 and saturates to 1 for input values greater than504

1 (F(x) = x if x ≤ 1 andF(x) = 1 otherwise) and 505

G the retrieving function is given as follows. 506507

G(τji, wji, yj (t − 1)) = A(τji)B(wji), 508

A(τji) = 1 −Θ(|yj (t − 1)− τji|, ε(τij)), 509

B(wji) = θ(wji, δ(wij)) (5) 510

The functionΘ(x,H) is a threshold function that out-511

puts 1 whenx ≥ H and 0 otherwise. The factorε is 512

an error margin on the time parameter. It is equal to513

0.1τ ij in the simulations, allowing a 10% imprecision514

in the record of the time delay of units co-activation.515

The termδ(wij) is a threshold on the weight. It is equal516

to ((maxyj > 0(wji))/θ(wij))θ(wij) = 2 in the exper- 517

iments. maxyj > 0(wji) is the maximum value of the518

weight of all the connections between activated units519

j and uniti, which satisfy the temporal condition en-520

coded inA(τ ji). 521

Each unit in the network has a self-connection, as-522

sociated with a time parametersτ ii . This provides a 523
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short-term memory of unit activation, whose rate is524

specified by the value ofτii < 1. This decay is rep-525

resented by the term dyi/dt = (τii − 1)yi , obtained526

from Eq. (4), when putting to zero all other terms.527

Eq. (4) can be paraphrased as follows: the outputyi528

of a unit i in the network takes values between 0 and529

1: yi(t) = 1, when (i) an input unitxi (TC nodes input530

to the PM and PM nodes input to the cerebellum) has531

just been activated (new movement) or (ii) when the532

sum of activation provided by the other network units533

is sufficient to pass the two thresholds of time and534

weight, represented by the functionG (see Eq. (5)). A535

value less than 1 represents the memory of a past full536

activation (value 1).537

2.5. 3D biomechanical simulation of a humanoid538

We added dynamics to the 3D Cosimir graphical539

humanoid simulation [48] of a 37 DOF avatar. Shoul-540

ders, hips, wrists, ankles and head have 3 DOFs. El-541

bows and knees have 1. The trunk is made of three542

segments with 2 DOFs each. All limbs are attached by543

hinge joints. The external force applied to each joint544

is gravity. Balance is handled by supporting the hips;545

ground contact is not modeled. There is no collision546

avoidance module.547

The acceleration̈ẌẌXi and angular acceleration̈θ̈θ̈θ i of548

each linki depends onEEEi , the forces exerted by the549

environment, onTTT ji , the torques due to the paired mus-550

cles of joint(s)j, and onCCCji , the inner forces due to551

the constraints of joint(s)j:552

miẌ̈ẌXi = EEEi +
∑
j

CCC
j
i (6)

553

[I]iθ̈̈θ̈θ i =
∑
j

TTT
j
i +

∑
j

CCC
j
i × rrrji (7)

554

wheremi and [I]i are the mass and the moment of555

inertia of link i. rrrji is the position vector of jointj556

compared to the center of mass of linki.557

These dynamic equations are solved using558

MathEngine’s Fastdynamics3 which computes the559

internal forces keeping the links connected, as well as560

the forces due to contacts, while the external forces561

3 See www.mathengine.com.

such as the torques of the muscles, the forces due to562

gravity and to the air damping are given by the user.563

2.5.1. Muscle torques 564

A muscle is simulated as a combination of a spring565

and a damper [33]. The torque exerted on each joint566

is determined by a pair of opposed flexor and exten-567

sor muscles. These muscles can be contracted by in-568

put signals from motor neurons, which increase their569

spring constant, and, therefore, reduce their resting570

length. The torque acting at a particular joint is there-571

fore determined by the motoneuron activities (Mf and 572

Me) of the opposed flexor and extensor muscles: 573574

T = α(Mf −Me)+ β(Mf +Me + γ )#ϕ + δ#ϕ̇ 575

(8) 576

where#ϕ is the difference between the actual angle577

of the joint and the default angle. The different coeffi-578

cientsα, β, γ , andδ determine, respectively, the gain,579

the stiffness gain, the tonic stiffness, and the damping580

coefficient of the muscles. 581

3. Experiments 582

We present a series of experiments in which we583

measured the performance of the model at reproduc-584

ing well-known features of human arm movement dur-585

ing reaching and the precision with which the model586

reproduced sequences of oscillatory arm movements.587

We also compared the performance of the model to588

human subjects imitating the same arm movements.589

The model was implemented on eight sets of human590

arm motions. The first three sets were recorded using591

the video tracking system described in [57], and con-592

sisted of 2D oscillatory movements of the two arms in593

the vertical plane (lifting the shoulders up and down594

and bending the elbows). The other five sets were595

recorded using a FastTrak marker-based system (see596

[45] for a complete report) and consisted of 3D oscil-597

latory movements of the left arm. 598

3.1. Reaching movements 599

We evaluated the model’s performance in reproduc-600

ing reaching movement of the left arm based on the601

data recorded using the FastTrak system (see Section602
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2.2). In this experiment, the model was given the target603

of the trajectory (i.e., the desired angle for each DOF604

of the shoulder and elbow) as input for the reproduc-605

tion. These values were used by the spinal cord mod-606

ule of the model to modulate the sensory feedback.607

There is no learning in this example. The model’s pre-608

defined connectivity for reaching (in the PC module)609

is exploited to generate the motions. We tested the610

correctness of the model in reproducing two main fea-611

tures associated with human arm movements, namely612

the bell-shaped velocity profiles and the quasi-straight613

hand trajectory in space [1,40,52].614

Rows 4–6 of Fig. 5 show the trajectory (row 4), ve-615
locity profile (row 5), and the projected path (row 6) of616

Fig. 5. Rows 1–3 from the top: human data, rows 4–6: simulation data. Trajectory (rows 1 and 4), velocity profile (rows 2 and 5) and
path (rows 3 and 6) of the hand inx-, y-, z-directions during a reaching movement directed towards a point at 25◦ in the x-direction and
30◦ in the z-direction.

the avatar’s hand during a reaching movement directed617
towards a point at 25◦ in thex-direction and 30◦ in the 618
z-direction. Rows 1–3 of Fig. 5 show the same quan-619
tity for the human hand in a similar reach (aimed at the620
same target). In both avatar and human movements,621
the velocity profiles for the largest directions of move-622
ments (x andz) follow a bell-shape curve. In the direc-623
tion of small movements (y-axis), which result from 624

internal torques caused by movement in the two other625
DOFs, the velocity profile is made of small oscillatory626
movements in both the avatar and the human. Simi-627

larly to the human data, the avatar’s hand trajectory628
is smooth, reaching its sharpest slope at middle dis-629
tance (a fact reflected by the bell-shape velocity pro-630
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file). In our model, the slow increase of velocity for the631

first half of the distance is due to the smooth increase632

of neural activation of the motor neuron (the motor633

neuron’s output is directly proportional to the elastic-634

ity constraint of the modeled muscles, see Eq. (8)),635

which follows a sigmoid (see Eq. (1)). The plateau and636

decrease of the velocity starting at mid-distance is due637

to two factors. The first is the damping of the muscle638

model (see Eq. (8)). The second is a mechanism in639

the controller which decreases the tonic input (from640

PM and M1 nodes) sent to the motor neurons, when641

receiving feedback (from the spinal cord module) in-642

dicating that the joints are at about half the desired643

angle.644

3.2. Oscillatory arm movements645

This section describes results using the three motion646

sets recorded with the video tracking system, which647

consisted of lifting up and lowering left and right upper648

arms (vertical rotation around the shoulders), while649

bending and extending the lower arms (rotation around650

the elbows), respectively. For each set, the motion was651

repeated twice.652

For these experiments, the reproduction of the653

movement was not driven by a joint angle target as654

in the previous section. Here, observed motions of655

each limb were fed continuously to the TC module.656

Each change of movement triggered the TC cells.657

Their activity, which encoded the new orientation and658

speed of the movement, was passed further to the659

PC and cerebellum module to learn the sequence of660

movement. At the end of the observation, the cerebel-661

lum and PC were activated by the decision module to662

trigger rehearsal of the learned sequence.663

Fig. 6 shows superimposed trajectories of the left664

and right shoulders and elbows of the avatar and the665

human for the three sets of motions. The black ver-666

tical lines show the instants during the movement at667

which the visual segmentation triggered (detecting a668

start or end of the motion based on velocity and di-669

rection changes). The avatar’s reproduction shows a670

qualitative and quantitative agreement with the human671

movement. It reproduces all the large movements of672

the shoulders and elbows, with a similar amplitude. A673

good reproduction of the amplitude of the movement674

is obtained in the model by keeping a good measure675

of the speed of the observed movement. The speed of676

the movement is transmitted by the amplitude of the677

output of the TC cells (see Section 2.2), which is then678

recorded in the PM weights and further transmitted to679

motor neurons (in the spinal cord) as the amplitude of680

PM and M1 nodes’ output. In the above example, we681

chose a 1% precision in the speed recording. 682

3.3. Comparison with human imitative 683

performance 684

Using the data gathered in [45] on human imitation685

of arm movements, we evaluated the precision within686

which the subjects reproduce arm movements. Fig. 7687

shows the trajectories of the left hand of each of four688

human imitators, that of the human demonstrator and689

that of the avatar’s reproduction of the same trajectory.690

The imitation by the human subjects is qualita-691

tively similar to the demonstration, as they correctly692

reproduced the two oscillations in thez-direction. 693

However, some subjects produced movements in the694

x- andy-directions as well. The amplitude and timing695

of the movement is not reproduced very well. In these696

two respects, the avatar’s reproduction is as good as697

that of the human. Note that the imprecise reproduc-698

tion of the avatar results from the imprecise sensory699

information which is given to the simulation. The700

avatar is given the position of each of the subject’s701

joints, as well as that of its own joints, within 20◦ of 702

precision. It is also given the speed of the subject’s703

movement with 20% error. These values were fixed704

to reproduce somewhat similar imprecision as that705

displayed by the proprioceptive and visual sensing706

in humans. Had perfect sensory information been707

given to the avatar, the reproduction would have708

been perfect. However, the aim here was to make the709

input of the system sufficiently imprecise so as to710

get an output which will show patterns of impreci-711

sion similar to that of humans in their first imitation712

trial. 713

We measure the precision of the imitation based714

on two criteria: we measureαi and βi the ratio of 715

amplitude and speed of the hand trajectory relative716

to axis i of demonstrator and imitator. LetDi(t) and 717

Ii(t) be the angular displacements of jointi at time t 718

of demonstrator and imitator, respectively.T D
1,... ,n and 719

T I
1,...,n are the time steps (for each oscillation) at which720

Di(t) andIi(t) are maximal andT D
1 , T I

1 are the maxima 721
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Fig. 6. Superimposed trajectories of left/right shoulder/elbow of the avatar and the human during the three movement sequences (from top
to bottom).
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Fig. 7. Trajectories of hand motion of four human subjects and the avatar imitating an oscillatory movement of the left arm, demonstrated
by another human subject. Top row: human demonstration; rows 2–5: imitation by four human subjects; sixth row: imitation by the
humanoid avatar.

of each series. Then722

α = Di(T
D
1 )

Ii(T
I
1)723

β = 1

n


 n∑
j=2

∥∥∥∥∥
(Di(T

D
j )−Di(T D

j−1))/(T
D
i − T D

j )

(Ii(T
I
j )− Ii(T I

j−1))/(T
I
i − T I

j )

∥∥∥∥∥



724

This is a straightforward measure of the observable725

dissimilarities between the two trajectories.α is a di-726

rect measure of the amplitude difference between the727

movements, whileβ is an indirect measure of the728

speed difference. In [45], other measures of similarity729

between the trajectories for the same reaching tasks730

are presented and evaluated.731

Table 2 shows the mean values of these measures732

across imitation of the eight data sets for human im-733

itation and avatar replication. Avatar and human per-734

formance following these measures are quantitatively735

similar. Both show an imprecision of over 20% on av-736

erage for reproducing the amplitude and the speed of737

the movement.738

This similarity between human and avatar data is739

encouraging, as the long-term goal of this study is to740

Table 2
Qualitative comparisons of human and avatar imitative
performancea

Avatar Human

α 0.22± 13 0.27± 16
β 0.23± 0.21 0.25± 0.19

aα is the ratio of maxima of amplitude andβ is the ratio
of speed for each oscillation (mean value along the whole trial)
for human and avatar hand trajectories. Data are mean values and
standard deviation across imitation of eight data sets.

design a model of human ability to learn movements741

by imitation. Further work will focus on developing742

precise measures of trajectory similarities and on de-743

termining the influence of each parameter of the model744

and of the biomechanical simulation on the model’s745

performance. 746

4. Conclusion 747

This paper presented a series of experiments to eval-748

uate the performance of a connectionist model for im-749

itating human arm movements. The model is com-750



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O
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posed of a hierarchy of artificial neural network mod-751

els, each of which gives an abstract representation of752

the functionality of some brain area involved in motor753

control. These are the spinal cord, the primary and PM754

cortices (M1 and PM), the cerebellum, and the TC.755

The model was implemented in a biomechanical756

simulation of a humanoid avatar with 37 DOFs. Data757

for the imitation were recordings of human arm mo-758

tions for reaching and oscillatory movements. To val-759

idate the model using real data, as opposed to simula-760

tion, and using a complete biomechanical simulation761

was very important to us, as our goal is to implement762

the system on a real robotic platform.763

Results showed that the model could reliably re-764

produce all motions, in spite of the highly noisy in-765

put data. We measured a good quantitative agreement766

between simulated and real data, based on an error767

measure of the amplitude and speed of the movement.768

Moreover, the measured error in the model’s repro-769

duction was comprised within the range of error made770

by humans engaged in the same imitation task. These771

results suggest that the connectionist model, coupled772

to the biomechanical simulation, could be a good first773

approximation of human imitation. Future work will774

aim at evaluating further the model’s performance on775

more data and at comparing its performance in tasks776

covered by other models of human motor control, such777

as [20,21,29,51].778

Acknowledgements779

Thanks to Stefan Weber for providing the data
and the vision-based motion tracking software. Many
thanks to the Robotics Institute at the University of
Dortmund for providing the Cosimir simulator. This
work was supported in part by the National Science
Foundation, CAREER Award IRI-9624237 to M.J.
Mataríc and in part by the Office of Naval Research.
A. Billard was also supported in part (1999) by a
fellowship from the Medicus Foundation, New York,
and by a fellowship from the Swiss National Science
Foundation (2000).

References780

[1] W. Abend, E. Bizzi, P. Morasso, Human arm trajectory781

formation, Brain 105 (1981) 331–348.782

[2] R.A. Andersen, H.S. Lawrence, D.C. Bradley, J. Xing,783

Multimodal representation of space in the posterior parietal784

cortex and its use in planning movements, Annual Review of785

Neuroscience 20 (1997) 303–330. 786
[3] M. Arbib, A. Billard, M. Iacobonni, E. Oztop, Mirror neurons,787

imitation and (synthetic) brain imaging, Neural Networks788

(2000), in press. 789
[4] H. Asada, H. Izumi, Automatic program generation from790

teaching data for the hybrid control of robots, IEEE791

Transactions on Robotics and Automation 5 (2) (1989) 166–792

173. 793
[5] C.G. Atkeson, S. Schaal, Learning tasks from a single794

demonstration, in: Proceedings of IEEE International795

Conference on Robotics and Automation, Vol. 2, 1997. 796
[6] A.K. Bejczy, Towards development of robotic aid797

for rehabilitation of locomotion-impaired subjects, in:798

Proceedings of the First Workshop on Robot Motion and799

Control, 1999, pp. 9–16. 800
[7] L. Berthouze, P. Bakker, Y. Kuniyoshi, Learning of801

oculo-motor control: a prelude to robotic imitation, in:802

Proceedings of the 1996 IEEE/RSJ International Conference803

on Intelligent Robots and Systems’96, 1996, pp. 376–381.804
[8] A. Billard, Learning motor skills by imitation: a biologically 805

inspired robotic model, Special Issue on Imitation in Animals806

and Artifacts, Cybernetics and Systems Journal 32 (1–2)807

(2001) 155–193. 808
[9] A. Billard, G. Hayes, Drama, a connectionist architecture for809

control and learning in autonomous robots, Adaptive Behavior810

7 (1) (1999) 35–64. 811
[10] A. Billard, M.J. Mataríc, Learning motor skills by imitation: 812

a biologically inspired robotic model, in: Proceedings of813

the Fourth International Conference on Autonomous Agents814

(Agents 2000), Barcelona, Catalonia, Spain, June 3–7,815

2000. 816
[11] A. Billard, S. Schaal, A connectionist model for on-line817

learning by imitation, in: Proceedings of the International818

Conference on Intelligent Robots and Systems, IROS’01,819

Hawaii, USA, November 2001. 820
[12] G. Cheng, Y. Kuniyoshi, Complex continuous meaningful821

humanoid interaction: a multi sensory-cue based approach, in:822

Proceedings of IEEE International Conference on Robotics823

and Automation (ICRA 2000), 2000, pp. 2235–2242. 824
[13] V.R. de Angulo, C. Torras, Self-calibration of a space825

robot, IEEE Transactions on Neural Networks 8 (4) (1997)826

951–963. 827
[14] N. Delson, H. West, Robot programming by human828

demonstration: adaptation and inconsistency in constrained829

motion, in: Proceedings of IEEE International Conference on830

Robotics and Automation, Vol. 1, 1996, pp. 30–36. 831
[15] J. Demiris, Movement imitation mechanisms in robots and832

humans, Ph.D. Thesis, Department of Artificial Intelligence,833

University of Edinburgh, May 1999. 834
[16] J. Demiris, S. Rougeaux, G.M. Hayes, L. Berthouze, Y.835

Kuniyoshi, Deferred imitation of human head movements836

by an active stereo vision head, in: Proceedings of the837

Sixth IEEE International Workshop on Robot Human838

Communication, IEEE Press, Sendai, Japan, September 1997,839

pp. 88–93. 840



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O
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