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10 Abstract

11 This paper evaluates a model of human imitation of abstract, two-arm movements. The model consists of a hierarchy of

12 artificial neural networks, which are abstractions of brain regions involved in visuo-motor control. The model is validated in a

13 biomechanical simulation of a 37 degrees of freedom (DOF) humanoid. Input to the model are data from human arm movements
14 recorded using video and marker-based tracking systems. Results show a high qualitative and quantitative agreement with
15 human data. The model's reproduction is better or comparable to that of human subjects imitating the same movements.
16 © 2001 Published by Elsevier Science B.V.
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19 1. Introduction Providing robots with human-like capabilities, andcs
in particular, with sophisticated motor skills for flex-34

20 A goal of robotics is to have robots become a part ible and precise motions is a very difficult task, ress
21 of human everyday lives. A key challenge to make quiring important low-level programming (with high ss
22 this possible is developing flexible motor skills in or- cost) for fine tuning of the motor parameters andr
23 der to give robots the ability to be programmed and re-calibration of sensor processing [18,47]. An alters
24 interacted with more easily and naturally, and to assist native is to provide the robot witlearning or adaptive 39
25 humans in various tasks. A very exciting area of cur- capabilities, which can be used for on- and/or off-lineo
26 rentresearch is concerned with developing human-like optimization of predefined motor control parameters
27 robots (humanoids) for assisting humans in medical [13,28,55]. Particularly challenging is the problem ofz2
28 surgery [34,36] and rehabilitation [6], for providing how to teach a robot new motor skills through demores
29 help in everyday tasks to the elderly and the disabled stration rather than through reprogramming. In such
30 [58], and for replacing humans in low-level industrial a scenario, the robot learns novel motor sequences 4sy
31 tasks and unsafe areas [25,30] (including space, nu-replicating those demonstrated by a human instructer
32 clear, and waste management industries). and by tuning its motor program descriptions so ag
to successfully achieve the task. The method is intess

_— esting because it allows the robot to be programmed

* Corresponding author. Present address: 3614 Wyatt Way, Los : .

Angeles 90089-2520, CA, USA. Tel+1-213-740-02-23; fax.  and interacted with merely by human demonstrao
+1-213-740-56-87. tion, a natural and simple means of human—machise
E-mail address: billard@usc.edu (A. Billard). interface. Furthermore, it makes the robot flexiblez
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with respect to the tasks it can be taught and, thus, cally motivated movement primitives. Each degree ab

facilitates the end-use of robotic systems. freedom (DOF) of a robot’s limb is assumed to haueo
two independent abilities to create movement, one
1.1. Related work through a discrete dynamic system (for point-to-poirt

movements), and one through a rhythmic system (tyjpe

The first robotics work to address imitation was of central pattern generator (CPG) [54]). The model 104
focused on assembly task-learning from observation. was implemented on a humanoid robot for a drurms
Typically, a series of arm trajectories of a human, per- ming task. Jenkins et al. [26] described an imitatiane
forming object moving/stacking tasks, were recorded model based on a set of perceptuo-motor primitivasz
either using a manipulandum, with the advantage of A simple version of the model was validated on a 26s
measuring directly the joint torques [4,14,27], or using DOF humanoid simulation with dynamics, using reado
video images [23,32,53]. Data were analyzed to re- vision data (same as those used in this work) to imie
move inconsistencies and extract key features of move- tate a movements from athletics and dance. Fod etial.
ment. An industrial non-human-like roboticarmwould [19] contributed to this model by providing a method2
then be trained to reproduce the trajectory which max- for automatically extracting a set of primitives fromzis

imizes the data key features. These efforts constitute human movement data. 114
a significant body of research in robotics, and con-
tribute to data segmentation and understanding. How- 1.2. Our approach 115
ever, they provide highly task-specific solutions, with
little flexibility for applying the same algorithm to im- Our work aims to complement the above apsis

itation after different types of movements and tasks. proaches, by investigating a connectionist-basad

More recent efforts, including our own [3,8,10,37], model validated on a biomechanical simulation ofias
have been oriented toward analyzing the underlying humanoid. The endeavor is to, on the one hand, build
mechanisms of imitation in natural systems and mod- biologically plausible models of animal imitativezo
eling those on artificial ones. Atkeson and Schaal abilities, and, on the other hand, to develop architae:
[5,49] developed a control strategy in which the robot tures for visuo-motor control and learning in robotg2
learns a reward function from the demonstration and which would show some of the flexibility of naturai2z
a task model from repeated attempts to perform the systems. We follow neuroscience studies of primata
task. The algorithm has proven to be robust, fast and motion recognition and motor control. Specificallyps
applicable to different tasks, such as juggling and pole our work is driven by the observation that: (1) visuabs
balancing. In a more biological approach, Demiris and recognition of movements is done in both extrinsier
co-workers [15,16] performed experiments in which a and intrinsic frames of reference [42,56]; (2) a neurak
robotic head equipped with a pair of cameras observessystem, possibly thenirror neuron system, encapsu- 129
and imitates the head movements of a human demon-lates a high-level representation of movements, tize
strator. These approaches use visual feature detectorslink between visual and motor representation [17,46%:
which inform a built-in system that directly mapped (3) motor control and learning are hierarchical ane
a set of possible observed head movements to themodulate (evolutionary) primitive motor programsss
robot’s own head movements. The inspiration for the (e.g. CPGs, located in primate spinal cord [54]). 134
visual feature detectors comes from evidence in mon-  Our model is composed of a hierarchy of artificiabs
key of neurons specialized to particular orientation of neural networks and gives an abstract and high-level
motion [44] and the observed-performed mapping is representation of the neurological structure underhgz
based on Meltzoff's proposed innate visuo-motor map ing primates brain’s visuo-motor pathways. These ars
[39]. Following a similar research line, Kuniyoshi the spinal cord, the primary and pre-motor cortices
and co-workers achieved fine oculo-motor control of (M1 and PM), the cerebellum and the temporal caro
a robot head for on-line tracking [7,32] and reproduc- tex (TC). The model has first been evaluated in a pait
tion [12] of human torso motion by a humanoid robot. of demonstrator—imitator humanoid avatars with 6%
Schaal and Sternad [50,51] explored the idea of cre- DOFs [8] for learning by imitation gestures and comass
ating complex human-like movements from biologi- plex movements involving all the avatar's limbs. Imu4
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this paper, we evaluate the model's performance at brain regions, and in its structure, as the modules ase
reproducing human arm movements. A biomechani- composed of artificial neural architectures (see Fig. 2
cal simulation is developed which models the muscles Itis loosely based on neurological findings in primatess
and the complete dynamics of a 37 DOF humanbid. and incorporates abstract models of some brain areas
The aim of these experiments is to evaluate the realisminvolved in visuo-motor control, namely the TC, theo
of the model and the dynamic simulation at modeling spinal cord, the primary motor cortex (M1), the pras:
human imitation. motor (PM) area and the cerebellum. 192

In the experiments presented here, only 11 DOFs
are actively commanded to match the observed per-
formance (4 DOFs per arm and 3 for the torso), while
the rest of the joints are kept immobile. In the experi-
ments reported in [8,10], we demonstrated the validity
of the architecture for controlling the 65 DOFs of our
avatar for imitating complex movements requiring all
limbs. There, data for the imitation were simulated,
produced by a demonstrator avatar, and we could gen-
erate data for the whole body. In this paper, we use
human data. However, because of the limitation of our
tracking system, we could not record motion of the
whole body and were constrained to using movements
of the upper torso only. In future work, we will use a
full body tracking system which will allow us to fur-
ther validate the model for controlling the whole 37
DOFs on real data (as opposed to simulation data we
have used previously). Preliminary work in this direc-
tion is reported in [11].

The rest of the paper is organized as follows. In Sec-
tion 2, we describe in detail the model, and, in partic-
ular, the visual processing of the data and the learning
algorithm. In Section 3, we evaluate the model’s per-
formance on a series of experiments for reproducing
human arm motion, namely reaching movements and
oscillatory movements of the two arms. We compare
the model’'s performance to that of humans in the same
imitation task. Section 4 concludes this paper with a
short summary of the presented work.

2.1. Brief description of the modules 193

Visual information is processed in TC for recognico4
tion of the direction and orientation of movement abs
the demonstrator’'s limbs relative to a frame of refes
erence located on the demonstrator’'s body, i.e., the
TC module takes as input the Cartesian coordinatessaf
each joint of the demonstrator’s limbs in an excentrige
frame of reference (whose origin is fixed relative tmo
the visual tracking system). It then transforms these
coordinates to a new set of coordinates relative to an
egocentric frame of reference. Our assumption of the
existence of orientation-sensitive cells in an egocenttie
frame of reference in TC is supported by neurologicabk
evidence in monkeys [42,43] and humans [2,31,564s
The vision system also incorporates a simplified atv
tentional mechanism which is triggered whenevera
significant change of position (relative to the positicng
at the previous time step) in one of the limbs is obto
served. At this stage of the modeling and given tha
simplicity of this module, the attentional module does2
not relate to any specific brain area. The attentiona
mechanism creates an inhibition, preventing informas«
tion flow from M1 to PM and further to the cerebelz1s
lum, therefore, allowing learning of new movementss
only when a change in the limb position is observedz
In Section 2.2, we describe the motion tracking systems
we used in the experiments and explain in more detai
the stages of visual processing in the TC module. 220

Motor control in our model is hierarchical with, a1
the lowest level, the spinal cord module, composed2of
primary neural circuits (CPGs [54]), made wbtor 223
neurons andinterneurons? (see Section 2.3). The moz24
tor neurons in our simulation activate the muscles @f
the humanoid avatar, see Section 2.5. The M1 modede
monitors the activation of the spinal networks. Nodes

2. The modd

We have developed a highly simplified model of
primate imitative ability [8] (see Fig. 1). This model is
biologically inspired in its function, as its composite
modules have functionalities similar to that of specific

1The previous implementation of the model used a partial dy-

namic simulation of a 65 DOF humanoid avatar, where we did 2 Inter- and motor neurons are spinal cord neurons with no direct
not compute the internal torques of the humanoid. and direct input to the muscles, respectively.
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Learning System

Cerebellum module -

Learning of sequences
of movement

Decision module

PM module Starts learning and rehearsal
Links visual and motor Inhibits mvmt during observation
representation of actions without imitation

Learn new actions /

Y
Visual System Ator Control

M1 module
Attentional module
Ly - Motor map
Inhibits learning until a change
in one limb position is observed
Spinal Cord

Central Pattern Generators

- open-loop walking

- reflexes: stretch and retraction
Motor neurons command muscles
Sensory feedback: joint angle

TC Module

Input: visual data (pixels)

Frame of ref transformation

Extrinsic -> intrinsic

Fig. 1. The architecture consists of seven modules which give an abstract and high-level representation of corresponding brain areas
involved in visuo-motor processing. The seven modules are: the attentional and TC modules, the primary motor cortex and spinal cord

modules, the PM cortex and cerebellum module, and the decision module.

Cerebellum
C
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C / x ) |
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Fig. 2. A schematic of the interconnections between the modules, and the neural structure within each module
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Fig. 3. Motion tracking system of human movement (left); the Cosimir simulator (right).

in M1 are distributed following a topographic map of tial position and kinematic model of a generic aduléo
the body. human (see [57] for a detailed description). Tracks:

Learning of movements is done in the PM and ing is done off-line and based on image frequengs
cerebellum modules. These modules are implementedof 15Hz. The system allows tracking of the uppess
using the Dynamical Recurrent Associative Memory body in the vertical plane, where the body features
Architecture (DRAMA) [9] which allows learning  correspond to those of a stick figure (see Fig. 3).2t6
of time series and of spatio-temporal invariance in calculates the positions (relative to a fixed, excentris
multi-modal inputs (see Section 2.4 for details). Fi- frame of reference) of nine points on the body: twe7
nally, the decision module controls the transition located on the wrists, two on the elbows, two on thes
between observing and reproducing the motor se- shoulders, one on the lower torso, one on the nesk
guences, i.e., it inhibits PM neural activity due to TC and one on the head. 270
(visual) input to flow downwards to M1 (for motor A second set of human arm data, used in the experi-
activation). It is implemented as a set of if—then rules ments, was gathered by Mataand Pomplun in a joint 272
and has no direct biological inspiration. interdisciplinary project conducted at the National In73

Neurons in the PM module respond to both visual stitutes of Health Resource for the Study of Neurah
information (from the TC) and to corresponding mo- Models of Behavior, at the University of Rochesters
tor commands produced by the cerebellum. As such, [38,45]. Subjects watched and imitated short videosaé
they give an abstract representatiomdfror neurons. arm movements, while wearing the FastTrak marker
Mirror neurons refer to neurons located in the rostral mechanism for recording the positions of four markzs
part of inferior PM area 6 in monkey [17,46], which ers on the arm: at the upper arm, near the elbow, the

have been shown to fire both when the monkey graspswrist, and the hand. 280
an object and when it observes another monkey or a In the experiments, these Cartesian coordinates ate
human performing a similar grasp. input to the TC module of our model, in which theys2
In the next section, we describe in more detail the are processed in four stages. Data are first transferred
visual, motor, and learning parts of our model. into a frame of reference relative to the demonstratoria
body, by calculating the joint angles of the elbows angb
2.2. Misual segmentation shoulders. In a second stage, a low-pass filter is ag-

plied to the calculation of the angular velocity for eacls?

Data for our experiments (see Section 3) are of the four joints. This stage corresponds to the attens
recordings of human motion. The first set of data tional mechanism of Fig. 1. This allows us to elimiss
was recorded using a vision-based motion-tracking nate small arm movements which we consider noize
system. The system we used is capable of selecting afor these experiments. These small motions are duedo
collection of features from the moving image, based two factors: (1) the locations of the nine points of refs2
on a constrained (unoccluded and unambiguous) ini- erence of the tracking are imprecise; the coordinates
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Table 1
Thresholds ) for visual filtering®

The output of the cells encodes both the directiors
and speed of the movement. The faster the speed,sthe

Experiment 0o To greater the output excitation of the cell. Only one celo
LS. P16 15 of the pair is active at a time. If both cells are inags1
LS, PI/16 15 tive, the limb is not moving. The decomposition of32
RS, PI/16 15 the limb motion can easily be mapped to the muscutas
RS, PI/16 15 structure of the imitator; each DOF of a limb is dis34
Ei FI;II//88 11% rected by a pair of flexor—extensor muscles. Upwarg

a1S, is the DOFR of the left shoulder. LE is the left elbowg
(in radians) is the minimum displacement for detecting a motion.
To (in recording cycles) is the minimum time delay during which
no displacement greater th&g has been observed.

and downward directions of movement correspong
to the activation of the extensor and flexor musclesy
respectively. 338

In summary, the visual module performs four levetse
of processing on the data: (1) a transformation frasw
extrinsic to intrinsic frame of reference; (2) filterings1

are extrapolated across three time steps of recording;of small and noisy motions; (3) a parameterizatiemw
(2) because of the interaction torques across the body,of the movements in terms of speed and directicuas
movement of one limb results in small motions of the (4) segmentation of the motion, based on changesan

rest of the body. These small movements are noise to velocity and movement direction.

us, as we wish to recognize only voluntary movements

(as opposed to movements made to compensate fory 3 Motor control
the interaction torques). Since shoulders and elbows

have different dynamics, due to their different lengths
and muscular composition, we applied different filter
parameters to each. The filtering process depends on
set of two parameters per DOF. They are: (1) the min-
imum displacemeniy (in joint angle) for detecting a
motion; (2) the minimum time delaYp during which

no displacement greater th&g has been observed.

The latter is then considered as a stop of the motion or
small, noisy movements. Table 1 shows the values we

used for the experiments reported in Section 3. Note
that in the experiments, we used at most 2 (abduc-
tion and flexion) of the 3 DOFs of the shoulders, as
the third DOF, humeral rotation, was not recorded by
either of the two tracking systems. Fig. 6 shows the
results of the visual segmentation for three oscillatory
movements of the two arms. Only the large move-
ments are segmented.

In the third stage, we calculate the direction of
movement of each limb relative to the limb to which
it is attached (elbow relative to shoulder and shoul-
der relative to the torso). The direction of movement
is positive or negative depending on whether the limb

345

346

2.3.1. Spinal cord module 347
In our model, motor control is hierarchical. On the:s

Jowest level of motor control is thepinal cord mod- 349

ule. It is composed of primary neural circuits madso
of motor neurons (afferent to the muscles and respons:
sible for the muscle activation or inhibition) amg- 352
terneurons. 353

In our experiments, the spinal circuits are built-igs4
and encode extending and retracting arm movements,
as well as rhythmic movements of legs and arms iss
volved in locomotion, following a biological modeks?
of the walking neural circuits in vertebrates [24]. Thes
neurons of the spinal cord module are modeled &s
leaky-integrators, which compute the average firingp
frequency [22]. According to this model, the meads:
membrane potentiah; of a neuron\; is governed by 3s2
the equation 363

dm,-
T = M D Wi

wherex; = (1+ e™i*t1))~1 represents the neuron’sss

(1) 364

moves upwards or downwards, respectively. In the short-term average firing frequendy; the neuron’s ses
fourth stage, the TC module activates a series of cells bias, r; a time constant associated with the passixe
coding for the possible joint angle distributions. There properties of the neuron’s membrane, and; the ses
are two cells per DOF per joint, coding for posi- Synaptic weight of a connection from neurdl) to see
tive and negative direction of movement, respectively. neuronN;. 370



374

384

394

401

404
405
406
407
408
409
410
411
412
413
414
415
416
417

ARTICLE IN PRESS

A. Billard, M.J. Matari¢/Robotics and Autonomous Systems 941 (2001) 1-16 7
2.3.2. Motor cortex module: M1 motor neuron’s output, see Section 2.5) equals thatof
The primary motor cortex (M1) module contains a gravity. 419
motor map of the body (similar to the corresponding
brain area [41]). Itis divided into layers of three neuron 2.3.3. PM cortex module 420

networks, each activating distinct (extensor—flexor) = The PM module creates a direct mapping between
muscle pairs (see Fig. 2). The three-neuron network the parameterization of the observed movementain
allows for independently regulating the amplitude TC, following visual segmentation, and that used fars
(two nodes, one for each muscle) and the frequency motor control in M1. In TC, the observed motion ig4
(one node) of the oscillation of the corresponding segmented in terms of speed, direction and duration
flexor—extensor pair, similar to [24]. An oscillation of movement (the delay between two changes in ves
of a limb segment is generated by activating all three locity and motion direction) of each limb (see Seaz7
neurons, allowing a small time delay between activa- tion 2.2). In M1, speed and direction of movements
tion of the first and second neuron, thus creating an of each limb CPG (in the spinal cord) are controlleds
asymmetry between the two motor neurons’ activity by the amplitude of the nodes which project to theo
and the corresponding muscle contraction. Motion relevant interneurons. PM nodes transfer the actig:
of a single muscle (flexor or extensor) is obtained ity of the TC nodes (observation of a specific moves2
by activating only one of the two amplitude nodes, ment) into an activity pattern of M1 nodes (motors
while keeping the frequency node at zero. The speed command for the corresponding movement). A large:
of the movement, i.e., the speed of contraction of the output activity in TC cells (comprised between 0 ands
muscle, is controlled by increasing the output value 1) will lead to an important output from PC nodeggs
of the amplitude neuron and consequently that of the and further from M1 nodes which further the activasz
corresponding motor neuron in the spinal cord. The tion of the corresponding amplitude node. Duratiogs
amplitude of the movement (in the case of one-muscle of movement is proportional to the duration of actiss
activation) is controlled by the duration of the neuron vation of the amplitude node. Learning of the moveso
activation. The longer the activation of the amplitude ments consists, then, of storing the sequential activa-
neuron (and subsequently of the motor neuron), the tion (recording the amplitude and the time delay) ef>
longer the duration of muscle contraction, the larger each of the TC nodes, and mapping these to the conre-

the movement. sponding M1 nodes. This will be further explained 4
M1 receives sensory feedback, in the form of joint Section 2.4. 445

angle position, from the spinal cord module. Each mo-

tor area of M1 receives sensory feedback from its re- 2.3.4. Decision module 446

lated sensory area (arm area receives feedback on joint Finally, the execution of a movement (as dus47
positions of the shoulder joints). This is used to mod- ing rehearsal of the motion in the experiments, see
ulate the amplitude or speed of the movement, by in- Section 3) is started by the decision module, by actis
creasing or decreasing (for smaller or larger speed) thevating one of the cerebellum nodes (the node whicl
output of the M1 nodes. The sensory feedback pro- encodes the corresponding sequence of muscle sac-
vides inhibition; the larger the feedback, the slower tivation, described in Section 2.4). The activity o2
the movement. In the experiments of Section 3.1, this the cerebellum node is passed down to the nodes
is used to modulate reaching movements. When the of the PM cortex, which encode co-activation af4
movement starts, the sensory feedback is at its min- the muscle in a specific step of the sequence (de-
imum and consequently the tonic input (i.e., the am- scribed in Section 2.4), and, further, down to thes
plitude of the M1 nodes’ output) is at its maximum. nodes of the second layer of primary motor cortex
When the arm has reached half the required distance,(M1). Finally, the activity of the nodes in the secongs
the sensory feedback is at its maximum and, conse- layer of M1 activates the nodes in the spinal coneb
quently, the tonic input is decreased to 10% of its module, which further activates the motor neuronso
maximum. The arm stops shortly afterwards when the These in turn activate the simulated muscles of the
torque produced by the muscle (proportional to the avatar. 462
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Winner-take-all *r <
y;(®) @ il
& Tiil Wi i /p D
Time delay Weight X; %
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Fig. 4. A schematic of the node connection from unind unitj. Each connection of the DRAMA network is associated with two
parameters, a weighbj; and a time parameter;;. \Weights correspond to the synaptic strength, while the time parameter specifies a
synaptic delay. Each unit has a self connection. Retrieval follows a winner-take-all rule on the weights.

463 2.4. The learning modules ity PM—M1 is constructed simultaneously to that ab4
TC-PM to represent the isomorphism between visued
464 Learning of motor sequences is done by updating and motor representation. 496

465 the connectivity between the primary cortex (M1), the  In DRAMA, the neuron activation function followsasz
466 PM cortex, and the cerebellum modules. PM and cere- a linear first order differential equation givenas fokes
467 bellum modules consist of a DRAMA [9], a fully re-  lows. 800
468 current neural network without hidden units. Similarly

469 tq time d.elay networks [35], each F:onnection i§ asso- .1y = F | x;(t) + iiyi ( — 1)

470 ciated with two parameters, a weight; and a time

471 parameter;; (see Fig. 4). Weights correspond to the

472 synaptic strength, while the time parameter specifies

473 a synaptic delay, i.e., a delay on the time required to +ZG(TJ'“ wji» (= 1)) (4)
474 propagate the activity from one neuron to the other. J#i

475 Both parameters are modulated by learning in order whereF is the identity function for input values lessos
476 to represent the spatiabj and temporalf) regular-  than 1 and saturates to 1 for input values greater than
477 ity of the input to a node. The parameters are updated 1 (F(x) = x if x < 1 andF(x) = 1 otherwise) and sos
478 following Hebbian rules, given by Egs. (2) and (3). G the retrieving function is given as follows. 5g6
479 Learning starts with all weights and time parameters

480 set to zero, unless specified differently to represent G (gji, wji, y; (t — 1)) = A(gji) B(wji), 508
481 predefined connection (as between PM and M1 mod- A(Ti) = 1— O(ly;(t — 1) — 5il, e(xij)), 509

482 ules, see Section 2.3). Bwji) = 6(wji, 5 (wi)) () s10

483 dwji(t) = ayi(1)y; () (@) The function®(x,H) is a threshold function that outs11
84 puts 1 whenx > H and O otherwise. The facteris 512
(7ji(t — D) (wji/a) + (v (@) /yi (@) an error margin on the time parameter. It is equal 4

i (1) = ( (wji/a) + 1 ) 0.1z;; in the simulations, allowing a 10% imprecisiosi4
186 v (0)y; (1) @) in the record qf the time delay of units co—agtivatiomls
The terms (wjj) is a threshold on the weight. It is equalie

47 wherea is a constant factor by which the weights are to ((max,; > O(wji))/6 (wij))0 (wij) = 2 in the exper- 517
488 incremented. iments. may; > O(wj;) is the maximum value of thess
489 In the present experiment, learning across TC-PM, weight of all the connections between activated units
490 PM-M1 and PM-cerebellum consists of building up j and uniti, which satisfy the temporal condition ens2o
491 the connectivity of nodes across these modules so ascoded inA(z ;). 521
492 to represent spatio-temporal patterns of activation in  Each unit in the network has a self-connection, asz
493 the TC and PM modules, respectively. The connectiv- sociated with a time parameters. This provides a s23

501

502

485
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short-term memory of unit activation, whose rate is such as the torques of the muscles, the forces dussto
specified by the value ofj < 1. This decay is rep-  gravity and to the air damping are given by the usesss
resented by the termyg/dr = (zji — 1)y;, obtained
from Eq. (4), when putting to zero all other terms. 2.5.1. Muscle torques 564
Eq. (4) can be paraphrased as follows: the ougput A muscle is simulated as a combination of a sprimgs
of a uniti in the network takes values between 0 and and a damper [33]. The torque exerted on each joisd
1:y;(t) = 1, when (i) an input unix; (TC nodes input is determined by a pair of opposed flexor and extenz
to the PM and PM nodes input to the cerebellum) has sor muscles. These muscles can be contracted bysén-
just been activated (new movement) or (ii) when the put signals from motor neurons, which increase theip
sum of activation provided by the other network units spring constant, and, therefore, reduce their resting
is sufficient to pass the two thresholds of time and length. The torque acting at a particular joint is thergx
weight, represented by the functi@(see Eg. (5)). A fore determined by the motoneuron activitid4 @and s72
value less than 1 represents the memory of a past full M) of the opposed flexor and extensor muscles: &73
activation (value 1).
T =a(Ms — M)+ B(Ms + M+ y)Ap + 5A¢ 575

2.5. 3D biomechanical simulation of a humanoid (8) s76

where Ag is the difference between the actual angiers
of the joint and the default angle. The different coeffizs
cientsa, 8, y, ands determine, respectively, the gairgre
the stiffness gain, the tonic stiffness, and the dampiszg

We added dynamics to the 3D Cosimir graphical
humanoid simulation [48] of a 37 DOF avatar. Shoul-
ders, hips, wrists, ankles and head have 3 DOFs. El-
bows and knees have 1. The trunk is made of three

: X coefficient of the muscles. 581
segments with 2 DOFs each. All limbs are attached by
hinge joints. The external force applied to each joint
is gravity. Balance is handled by supporting the hips; 3. Experiments 582

ground contact is not modeled. There is no collision
avoidance module.

e - We present a series of experiments in which wss
The acceleratioX; and angular accelerati@gh of P b

o measured the performance of the model at reprodske-
each linki depenjds OfE;, the forces exerteq by the ing well-known features of human arm movement duiss
environment, off';, the torques due to the paired mus-  jng reaching and the precision with which the modeds
cles of joint(s)j, and onC/, the inner forces due to  reproduced sequences of oscillatory arm movements.

the constraints of joint(s) We also compared the performance of the modelste
. , human subjects imitating the same arm movementsss
Y. — E. J . .
mX; =E; + ZCi (6) The model was implemented on eight sets of humai
J arm motions. The first three sets were recorded uskag
. ) ) ) the video tracking system described in [57], and cosy:
[16:=> T/ +> ¢/ xr! (7)  sisted of 2D oscillatory movements of the two arms ées
J J the vertical plane (lifting the shoulders up and dowsas

and bending the elbows). The other five sets wexs
recorded using a FastTrak marker-based system (®ee
[45] for a complete report) and consisted of 3D oscis7
latory movements of the left arm. 598

wherem; and []; are the mass and the moment of
inertia of link i. r{ is the position vector of joing
compared to the center of mass of link

These dynamic equations are solved using
MathEngine’s Fastdynamiés which computes the
internal forces keeping the links connected, as well as
the forces due to contacts, while the external forces

3.1. Reaching movements 599

We evaluated the model’s performance in reproduos
ing reaching movement of the left arm based on the
3 See www.mathengine.com. data recorded using the FastTrak system (see Sectian
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2.2). Inthis experiment, the model was given the target the avatar’'s hand during a reaching movement directgg
of the trajectory (i.e., the desired angle for each DOF towards a point at 25in thex-direction and 30in the 44
of the shoulder and elbow) as input for the reproduc- zdirection. Rows 1-3 of Fig. 5 show the same quagiy
tion. These values were used by the spinal cord mod- tity for the human hand in a similar reach (aimed at thg,
ule of the model to modulate the sensory feedback. same target). In both avatar and human movemegjs,
There is no learning in this example. The model’s pre- the velocity profiles for the largest directions of moves,
defined connectivity for reaching (in the PC module) ments kandz) follow a bell-shape curve. In the direcg,;
is exploited to generate the motions. We tested the tion of small movementsyfaxis), which result from g,
correctness of the model in reproducing two main fea- internal torques caused by movement in the two othgy
tures associated with human arm movements, namely DOFs, the velocity profile is made of small oscillatoryg
the bell-shaped velocity profiles and the quasi-straight movements in both the avatar and the human. Simyz
hand trajectory in space [1,40,52]. larly to the human data, the avatar's hand trajectqpy

Rows 4-6 of Fig. 5 show the trajectory (row 4), ve- is smooth, reaching its sharpest slope at middle diss
locity profile (row 5), and the projected path (row 6) of tance (a fact reflected by the bell-shape velocity prap

Hand—x Hand-y Hand—z
—as 14 30
_so 13.5 20
13 10
it 12.5 o
—60 12 -10
o 10 20 30 o 30 o 10 20 30
Hand—dx Hand dy Hand—dz
1 0.5 a

/\,\f i

1400 3000 3000

!
- o]
o]

30

1350 2000

1300 1000

1250

- N
o 0
c 0
0O © ©
]
o]
-
o]
X
N
N
N
o]

1200 —1000 —1000
—6000 —5500 —5000 —a4500 —6000 —5500 —5000 —4500 1200 1300 1400
Hand—x Hand-—y Hand—-z
o —-0.5731 6.3
—0.56732
6.2
—-0.5 —0.5733
6.1
-0.5734 /
-1 o 50 100 1500'5735 100 150 60 50 100 150
x 102 Hand—-dx Hend dy x 10 * Hand—-dz
5 3 2
2
1
o 1
o
o]
-5 -5 -1
o 50 100 150 o 50 100 150
y/z
—57.31 620 620
-57.32 615 615
—-57.33 610 610
—57.34 605 605
—57.35 600 600,
—-100 -50 o -100 —57.4 —57.35 -57.3

Fig. 5. Rows 1-3 from the top: human data, rows 4-6: simulation data. Trajectory (rows 1 and 4), velocity profile (rows 2 and 5) and

path (rows 3 and 6) of the hand in, y-, z-directions during a reaching movement directed towards a point°ain2the x-direction and
30° in the z-direction.
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file). In our model, the slow increase of velocity for the the movement is transmitted by the amplitude of tle
first half of the distance is due to the smooth increase output of the TC cells (see Section 2.2), which is thers
of neural activation of the motor neuron (the motor recorded in the PM weights and further transmitted do
neuron’s output is directly proportional to the elastic- motor neurons (in the spinal cord) as the amplitude eab
ity constraint of the modeled muscles, see Eqg. (8)), PM and M1 nodes’ output. In the above example, wa
which follows a sigmoid (see Eqg. (1)). The plateau and chose a 1% precision in the speed recording. 682
decrease of the velocity starting at mid-distance is due
to two factors. The first is the damping of the muscle
model (see Eq. (8)). The second is a mechanism in
the controller which decreases the tonic input (from

PM and M1 nodes) sent to the motor neurons, when . ) o
receiving feedback (from the spinal cord module) in-  USing the data gathered in [45] on human imitatiaas

dicating that the joints are at about half the desired ©f &M movements, we evaluated the precision withi
angle. which the subjects reproduce arm movements. Figes7

shows the trajectories of the left hand of each of foeus
human imitators, that of the human demonstrator aszd
that of the avatar’s reproduction of the same trajectosyo

This section describes results using the three motion . 1he imitation by the human subjects is qualitasy
sets recorded with the video tracking system, which tVely similar to the demonstration, as they correctégz
consisted of lifting up and lowering left and right upper eProduced the two oscillations in tredirection. ess
arms (vertical rotation around the shoulders), while HOWever, some subjects produced movements in the
bending and extending the lower arms (rotation around X° @ndy-directions as well. The amplitude and timingps

the elbows), respectively. For each set, the motion was ©f the movement is not reproduced very well. In these
repeated twice. two respects, the avatar’s reproduction is as goodeses

For these experiments, the reproduction of the that of the human. Note that the imprecisg reprodues
movement was not driven by a joint angle target as tion of the avatar results from the imprecise sensawy
in the previous section. Here, observed motions of information which is given to the simulation. Theoo
each limb were fed continuously to the TC module. 2vatar is given the position of each of the subjecta
Each change of movement triggered the TC cells. joints, as well as that of its own joints, within 2@f 702

Their activity, which encoded the new orientation and Precision. It is also given the speed of the subjects
speed of the movement, was passed further to the movement with 20% error. These values were fixeoh

PC and cerebellum module to learn the sequence of © réproduce somewnhat similar imprecision as thas
movement. At the end of the observation, the cerebel- diSPlayed by the proprioceptive and visual sensing

lum and PC were activated by the decision module to " humans. Had perfect sensory information bees
trigger rehearsal of the learned sequence. given to the avatar, the reproduction would haves

Fig. 6 shows superimposed trajectories of the left PEeN perfect. However, the aim here was to make the

and right shoulders and elbows of the avatar and the INPUt of the system sufficiently imprecise so as tao
human for the three sets of motions. The black ver- 96t @n output which will show patterns of imprecir..
tical lines show the instants during the movement at si_on similar to that of humans in their first imitationi2
which the visual segmentation triggered (detecting a 2 n o s
start or end of the motion based on velocity and di- V& measure the precision of the imitation based
rection changes). The avatar's reproduction shows a " two criteria: we measure; and g; t.he ratio of s
qualitative and quantitative agreement with the human @MPlitude and speed of the hand trajectory relatiue
movement. It reproduces all the large movements of to axisi of demonstra_ltor and |m|tator._L_éll-(t)_ and 717
the shoulders and elbows, with a similar amplitude. A /() be the angular displacements of joinat timet 718
good reproduction of the amplitude of the movement ©f demonstrator and imitator, respectively? , and 719
is obtained in the model by keeping a good measure Tl', , are the time steps (for each oscillation) at whicho

.....

of the speed of the observed movement. The speed ofD; (t) andl; (t) are maximal and’?, Tl' are the maxima 721

3.3. Comparison with human imitative 683
performance 684

3.2. Oscillatory arm movements
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Fig. 7. Trajectories of hand motion of four human subjects and the avatar imitating an oscillatory movement of the left arm, demonstrated
by another human subject. Top row: human demonstration; rows 2-5: imitation by four human subjects; sixth row: imitation by the

humanoid avatar.

of each series. Then Table 2
Qualitative comparisons of human and avatar imitative
D;(TP)
_ i\ performanc@
I(T)) Avatar Human
" D D D D @ 0.22+13 027+ 16
b 1 3 (Di(T7) = DT ) /(17 = T}7) B 0.23+0.21 0254019
n =2 (Ii(T]!) - Ii(rl!_l))/(nl - T]!) aq is the ratio of maxima of amplitude and is the ratio

of speed for each oscillation (mean value along the whole trial)
This is a straightforward measure of the observable for human and avatar hand trajectories. Data are mean values and

dissimilarities between the two trajectoriesis a di- standard deviation across imitation of eight data sets.
rect measure of the amplitude difference between the
movements, whileg is an indirect measure of the

speed difference. In [45], other measures of similarity design a model of human ability to learn movementa

between the trajectories for the same reaching tasksby |m|tat|on. Further wo_rk wil fO.CU.S on developing2
precise measures of trajectory similarities and on des

are presented and evaluated. inina the infl feach f1h del
Table 2 shows the mean values of these measurestermlnlngt € influence of each parameter of the mo

across imitation of the eight data sets for human im- and of the biomechanical simulation on the modebs

746
itation and avatar replication. Avatar and human per- performance.
formance following these measures are quantitatively

similar. Both show an imprecision of over 20% on av- 4. Conclusion 747
erage for reproducing the amplitude and the speed of
the movement. This paper presented a series of experiments to evad-

This similarity between human and avatar data is uate the performance of a connectionist model for im9
encouraging, as the long-term goal of this study is to itating human arm movements. The model is conse
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posed of a hierarchy of artificial neural network mod- [2] R.A. Andersen, H.S. Lawrence, D.C. Bradley, J. Xings3
els, each of which gives an abstract representation of Multimodal representation of space in the posterior parietzd4

the functionality of some brain area involved in motor cortex and its use in planning movements, Annual Review 145
. . Neuroscience 20 (1997) 303-330. 786

control. These are the splnal cord, the primary and PM [3] M. Arbib, A. Billard, M. lacobonni, E. Oztop, Mirror neurons, 787
cortices (M1 and PM), the cerebellum, and the TC. imitation and (synthetic) brain imaging, Neural Networkgss
The model was implemented in a biomechanical (2000), in press. 789

simulation of a humanoid avatar with 37 DOFs. Data  [4] H. Asada, H. lzumi, Automatic program generation fromoo

Lo . _ teaching data for the hybrid control of robots, IEEE91
for the imitation were recordmgs of human arm mo Transactions on Robotics and Automation 5 (2) (1989) 16692

tions for reaching and oscillatory movements. To val- 173. 703
idate the model using real data, as opposed to simula- [5] C.G. Atkeson, S. Schaal, Learning tasks from a singtes
tion, and using a complete biomechanical simulation demonstration, in: Proceedings of IEEE Internationabs
was very important to us, as our goal is to implement Conferen(_:e on Robotics and Automation, Vol. 2, 1997. 79
th t | robotic platf [6] AK. Bejczy, Towards development of robotic aid797

€ system on a real robotic plattorm. . for rehabilitation of locomotion-impaired subjects, in798

Results showed that the model could reliably re- Proceedings of the First Workshop on Robot Motion ari$9
produce all motions, in spite of the highly noisy in- Control, 1999, pp. 9-16. 800

put data. We measured a good quantitative agreement [7] L. Berthouze, P. Bakker, Y. Kuniyoshi, Leaming o801
between simulated and real data. based on an error oculo-motor control: a prelude to robotic imitation, in8o2

. ! Proceedings of the 1996 IEEE/RSJ International Conferersns
measure of the ampIIIUde and speed of the movement. on Intelligent Robots and Systems’96, 1996, pp. 376—381804
Moreover, the measured error in the model's repro- [8] A. Billard, Learning motor skills by imitation: a biologically 805
duction was comprised within the range of error made inspired robotic model, Special Issue on Imitation in Animakoé

by humans engaged in the same imitation task. These and Artifacts, Cybernetics and Systems Journal 32 (1-&y

- (2001) 155-193. 808
results _SqueSt that th,e ConneCtlonISt model, CO“P|ed [9] A. Billard, G. Hayes, Drama, a connectionist architecture f@o9
to the b'om?Chamcal S|mlf|a_t'0r.'v could be a good f_|r5t control and learning in autonomous robots, Adaptive Behavigiro
approximation of human imitation. Future work will 7 (1) (1999) 35-64. 811

aim at eva'uating further the model’s performance on [10] A. B_illard_, M.J.-Mat‘ar(':, Learnjng motor ?ki”S by imit_ation: 812
more data and at comparing its performance in tasks a biologically |nsp!red robotic model, in: Proceedings af13

the Fourth International Conference on Autonomous Agergss
covered by other models of human motor control, such (Agents 2000), Barcelona, Catalonia, Spain, June 315
as [20,21,29,51]. 2000. 816
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