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Abstract

The article contributes to the quest to relate global data on brain and behavior (e.g. from PET, Positron Emission Tomography, and fMRI,
functional Magnetic Resonance Imaging) to the underpinning neural networks. Models tied to human brain imaging data often focus on a few
“boxes” based on brain regions associated with exceptionally high blood flow, rather than analyzing the cooperative computation of multiple
brain regions. For analysis directly at the level of such data, a schema-based model may be most appropriate. To further address neuro-
physiological data, the Synthetic PET imaging method uses computational models of biological neural circuitry based on animal data to
predict and analyze the results of human PET studies. This technique makes use of the hypothesis that rCBF (regional cerebral blood flow) is
correlated with the integrated synaptic activity in a localized brain region. We also describe the possible extension of the Synthetic PET
method to fMRI. The second half of the paper then exemplifies this general research program with two case studies, one on visuo-motor
processing for control of grasping (Section 3 in which the focus is on Synthetic PET) and the imitation of motor skills (Sections 4 and 5, with
a focus on Synthetic fMRI). Our discussion of imitation pays particular attention to data on the mirror system in monkey (neural circuitry
which allows the brain to recognize actions as well as execute them). Finally, Section 6 outlines the immense challenges in integrating
models of different portions of the nervous system which address detailed neurophysiological data from studies of primates and other species;
summarizes key issues for developing the methodology of Synthetic Brain Imaging; and shows how comparative neuroscience and evolu-
tionary arguments will allow us to extend Synthetic Brain Imaging even to language and other cognitive functions for which few or no animal
data are available® 2000 Published by Elsevier Science Ltd.

Keywords Affordances; Brain imaging; Computational model; FMRI; Grasping; Imitation; Mirror neurons; Neural networks; Parietal cortex; PET; Premotor
cortex; Schemas; Synthetic PET

1. Global brain function (and which species?) or some other brain? If a human brain,
is it a mature brain, a developing brain, or a diseased brain?
This paper is part of a Special IssueNs#ural Network®n A male brain or a female brain? And what of individual

the subject “The Global Brain: Imaging and Neural Model- differences? What of brain—body interactions? What of
ing”, with an emphasis on relating brain imaging data to “the the effects of nature and nurture and social circumstance?
activities of the underpinning neural networks, considered at We suspect that this very diversity makes “a simple theore-
the most appropriate level”. The Call for Papers states thattical understanding of the action of the brain” impossible.
“The hope of ... deriving a simple theoretical understanding However, we believe that continuing study can develop a
of the action of the brain drives the research at both theoreticallarge store of models and methods which will let us inte-
and experimental levels”. This raises many challenging issues:grate our insights into diverse brain mechanisms and beha-
viors, helping us to see order in complexity even if we
1.1. Which “global brain"? cannot achieve simplicity. In particular, this paper will
introduce our insight that data on the anatomy and physiol-
Which “global brain”? A human brain, a monkey brain ogy of the macaque monkey and the imaging of adult
- humans can contribute together to an integrated view of
* Corresponding‘author. Address: USC Brain Project, University of what might otherwise seem quite disparate behaviors:
;()’(‘.‘Ti[glgf";"‘;%r_g'gé;—os Angeles, CA, USA. Tel:1-213-740-9220;  jigyally guided grasping, imitation, and language (Arbib,
' ’ 2000; lacoboni et al., 1999; Rizzolatti & Arbib, 1998).

E-mail addressesarbib@pollux.usc.edu (M.A. Arbib), billard@pol- . - . .
lux.usc.edu (A. Billard), erhan@java.usc.edu (E. Oztop). Data on the mirror system (neural circuitry which allows
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the brain to recognize actions as well as execute them) in FARS model below) the constraint that the components of the

monkey provide the integrating factor. subnetwork match the anatomical characterization of cell

types in the brain region being modeled and explain the neuro-
1.2. The discrepancy between brain imaging and physiological data gathered from such neurons when the
neurophysiology animal performs the task of interest. Let us reserve the term

“biological neural network” for a neural network designed to
model a specific brain region or set of brain regions, and whose
unit neurons are constrained to match some neurophysiologi-
cal data. More detailed models may attend to the dendritic
structure of individual neurons, or the neurochemistry of,
e.g. cellular activity.

While there are many ways to represent neural networks
for computer simulation, the models described (with more
or less detall) in this paper (Sections 3.1, 5.2, and 6.1) adopt
the very simpleleaky integratormodel of the neuron, in
which the internal state of the neuron is described by a
single variable, thanembrane potential () at the spike
initiation zone. The time evolution ofi(t) is given by:

We note the discrepancy between the methodologies
employed for gaining data on brain imaging and on the
underpinning biological networks:

1. A brain imaging experiment typically operates at the task
level: given a pair of tasks and some level of significance,
find all areas of the brain as indicated by “blobs” which
signal that part of the brain is significantly more active in
task A rather than task B. It is common to interpret such a
“blob” as indicating that a specific brain region X is
crucial to task A but not to task B. A key challenge is
then to go beyond the “blob” that indicates a statistical
confidence measure for differences in rCBF to an under-
standing of actual “information processing” in neural _dm(t)
networks. Brain imaging presents a problem of “too '~ dt
much” and “too little” — “too much” because its global
view of brain activity may draw our attention to many With resting levelh, time constantr, Xi(t) the firing rate at
brain regions whose causal role in the given task is theithinput, andw the corresponding synaptic weight. We
unclear; “too little” because, in emphasizing regions usually define the firing rate as a continuously varying
“especially active” in the given task, it may downplay Measure of the cell's activity. Thring rate is approxi-
the role of regions whose activity, while not yielding a mated by a sigmoid function of the membrane potential,
large rCBF signal, is nonetheless crucial to the neural M(t) = o(m(t)), except in some modules of the imitation
implementation of the task. model (Section 5.2).

2. Neurophysiological data are normally gathered in experi-  Another form of simplification is that, whereas brain
ments on animals rather than humans. They typically imaging implicates a large number of brain regions in
focus on just one, or very few, brain regions considered even apparently simple tasks, most specific models of biolo-
relevant to execution of a given task. They thus lack the gical neural networks usually include models of only a small
“g|oba| assay" of brain imaging, but offer the advantages selection of the brain regions for which neUrOphySiOlOgical
of Combining greater attention to parametric variation of data have been gathered for the task under consideration. In
the task with detailed insights into the variation of activ- View of this, Section 6.1 quickly reviews several studies
|ty in neurons in such away as to constrain hypotheses Onfrom the Arbiblaboratory to indicate the Challenges in inte-
actual circuitry. The disadvantage is that since each grating models of different portions of the nervous system to
neurophysiological experiment is “local” as to task and yield an integrated model that provides insight into all the
circuitry, and since protocols for even apparently similar brain regions implicated by human brain imaging in a given
experiments differ greatly, there may be major interpre- family of tasks.
tive challenges in integrating data from different experi-

—m(t) + Zwixi(t) +h @

A “connectionist” model employing aatrtificial neural
other functional model. Indeed, in some cases such models
Much work in this journal has concernedtificial neural may be positively misleading if they lead to spurious iden-

networks — a parallel, often adaptive, computing structure, tifications of elements of, say, a backpropagation network
usually inspired only loosely by neurobiology, which with specific neurons of the visual system. It is thus impor-
performs satisfactorily some given function. But the word tant to have a language in which to express functional
“underpinning” implies some measure of biological decompositions of the implementation of some behavior
constraint. The loosest constraint is to have a modular neuralin such a way that neuralization of the components is
network in which each subnetwork is taken to represent the open to analysis, rather than being built in. Arbib (1981)
function of a particular brain region, but there is no constraint showed how to analyze perceptual structures and distributed
on the internal workings of the network. Some of the modeling motor control in terms of interacting schemas (functional
described below is of this category, but we often add (as in the units); schema theory has been extended to cognitive
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systems as well (see, e.g. Arbib, Conklin, & Hill, 1987). connectivity from the covariances observed in the brain

Two important tenets of schema theory are: imaging data. However, such “effective connectivity” is a

task-dependent “projection” of actual synaptic connections.

1. Schemas may be defined at different granularities. Forlt is thus a task for future research to understand how
example, the schemas defining some overall task like to relax the CSEM assumptions and synthesize the “true
visual control of hand movements are at a far higher connectivity” of brain regions from the effective connectiv-
level than the motor schemas for specific goal-related ities revealed in a wide range of tasks.
actions such as grasping, tearing, or holding. However,
the high-level schemas contribute to each of the motor 1.6. The shape of the paper
schemas for specific actions. It is thus dangerous to say
that specific neurons “encode” an action when in fact it
may take correlated activity in neurons in a variety of
brain regions to “commit” the brain to the specific action.
(We will need to recall this caveat when we discuss our
preliminary attempts to model the mirror system in
Section 6.1.)

2. Reinforcing this point, a schema defined functionally will
in general require the interaction (“cooperative computa-
tion”) of multiple brain regions for its implementation;
conversely, a given brain region will contribute to multi-
ple schemas. Thus although we will speculate below on
how various schemas may be assigned to specific brain
regions in the macaque (and thus, presumably, to a homo-
logous region in the human), we expect that further
research will lead to more subtle insights into the anato-
mical distribution of each schema.

Section 2 introduces the Synthetic PET method and
discusses its extension to fMRI (functional magnetic reso-
nance imaging). Section 3 then exemplifies Synthetic PET
methodology by reviewing our earlier work on a detailed
biological neural network model for visually directed grasp-
ing (the FARS model; Fagg & Arbib, 1998) and reports on
the comparison of Synthetic PET predictions with our PET
studies of human reaching and grasping. As a background
for our second case study, Section 4 introduces data on the
mirror system in monkey (neural circuitry which allows the
brain to recognize actions as well as execute them), a system
which we believe holds the key to the human capacity for
both imitation (discussed at length in Section 5) and
language (discussed briefly in Section 6). With this back-
ground, Section 5 summarizes our recent fMRI study of a
simple form of imitation and relates it to a loosely biological
model (i.e. made of modules in which each is a neural
network identified with a brain region, but in which each
module is implemented as a connectionist, rather than
neurophysiologically constrained, neural network). Finally,
Section 6 looks at the many facets of global modeling, with
a sampler of detailed modeling of the kind needed to ground
future global models (modeling the mirror system, the basal
ganglia and sequential behavior, and the cerebellum and the
coordination of reach and grasp), a brief look at our views
on the relevance of mirror neurons and imitation to
language, and a concluding perspective on homologies,
brain imaging and neural networks.

1.5. Boxology, schemas, and synthetic PET

The danger of models based on human brain imaging,
then, is that they tend to focus on a few “boxes” based on
brain regions associated with “blobs” of exceptionally high
blood flow, rather than analyzing the cooperative computa-
tion of multiple brain regions. For analysis directly at the
level of such data — augmenting the data of brain imaging
with a variety of neurological insights — a schema-based
model may be most appropriate, offering in the end a
causally complete model of how some task may be imple-
mented, achieving success to the extent to which activity of 2. Synthetic brain imaging defined
certain of the high-level schemas in the overall coordinated
control program (Arbib, 1981) can be identified with activ- In order to provide a causal account of brain function
ity observed through brain imaging. However, to relate constrained by data from both primate neurophysiology and
brain imaging data to “the activities of the underpinning human brain imaging, we need a method of “Synthetic Brain
neural networks”, we offer a method — Synthetic PET imaging”. We first recall the definition (Arbib et al., 1995) of
imaging (Arbib, Biscoff, Fagg, & Grafton, 1995) and its Synthetic PET imaging— using neural models based on
generalizations — which uses neural models based on,primate neurophysiology to predict and analyze results from
e.g. primate, neurophysiology to predict and analyze resultsPET (Positron Emission Tomography) brain imaging taken
of brain imaging for a variety of human behaviors. This during a variety of human behaviors. The key hypothesis is
approach is very different from the approach of covariance that PET is correlated with regional cerebral blood flow
structural modeling (CSEM) developed by many authors (fCBF) and that this in turn correlates with the integrated
from Mcintosh and Gonzalez-Lima (1994) to Taylor, synaptic activity in a region, and thus reflects in part neural
Krause, Shah, Horwitz, and Mueller-Gaertner (2000). activity in regionsafferentto the region studied, rather than
CSEM makes no use of animal data to constrain our insightsintrinsic neural activity of the region alone. However, the
into the human brain. Instead, it uses randomness and line-method can potentially accommodate other hypotheses on
arity assumptions to infer task-dependent patterns of single cell correlates of imaged activity, and can thus be
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applied to otherimaging techniques, and so we also discuss thaask 2 for each region A is then given by:
extension of the methodology to Synthetic fMRI. These two

approaches will be exemplified in Section 3 [Grasp Control PET,(1/2) = PETA(D) — PETA(2)

and (Synthetic) PET], and Section 5 [Imitation and (Synthetic) rPETA(2)

fMRl] For other approaches to rEIating neural mOdeIing and where rPE'K(|) is the value of rPEI in condition i, to
functional brain imaging, and cognition, see Horwitz, compare the change in PETrom task 2 to task 1. In the
Tagamets, and Mcintosh (1999), Tagamets and Horwitz present study we use a different measure, defining the

©)

(1998) and Taylor et al. (2000). change inrelative synaptic activitfor region A from task
o ) 1 to task 2 with max(rPEJ(1), rPET:(2)) replacing
2.1. Defining synthetic PET rPETA(2) in the denominator of Eq. (3), which gives a

more robust measure of relative activity. In either case,
the result is a Synthetic PET comparison, which presents
our prediction of human brain activity, as based on neural
network modeling constrained by monkey neurophysiology
and known functional neuroanatomy.

Note that we are comparingynapticactivity for each
region A, not the neural activity of A (though, as we shall
stress at the end of Section 2.2, it is an open research issue
to determine how often the difference between these
measures is significant). Indeed, Taylor et al. (2000) state
that although few experiments have been performed to test
the suggestion (Arbib et al., 1995; Jueptner & Weiller, 1995;
Tagamets & Horwitz, 1998) that inhibition be treated in the
sum with the same (positive) weight as excitation, “the few
good ones have supported this view (see Horwitz & Sporns,
1994; Jueptner & Weiller, 1995, for reviews).” As a compu-
tational plus (going beyond the imaging technology), we
may also collect the contributions of the excitatory and
inter alia, be a test of the hypothesis “h(A) in human is inhib?tory synapses separately, based on evaluating the i_nte-
homologous to A in (a given species of) monkey”, and gral in _(1) over one set of synapses or the other. Using
comparison of synthetic and human studies may suggest aSynthetlc PET, we can break apar'F d|ffe.rejnt factors that
new homology to be tested in further studies. contribute tc_; th_e measure of syngptlc activity so that they

(i) Modeling activationPET typically measures regional ?nigr?neezuil?:/\(/j g]:dtizeggteu r:IIyF');_rII_IS d;?; ﬂ;wa?erzgﬁzgeoée
cerebral blood flow (rCBF). Arbib et al. (1995) hypothesize . . . - ’
that the counts acquired in PET scans are correlated withpo.sSlbly sh.eddmg .“ght on ap.parent contradlctl|o.ns that
local synaptic activity in a particular region (Brownell, arise from interpreting rCBF simp ly as cell activity (an
Budinger, Lauterbur, & McGeeer, 1982; Fox & Raichle example has been demonstrated in Arbib et al., 1995).
1985) and call this measure the “raw PET activity”.
However, PET studies typically do not work directly with

_these yalues, put with the cpmparative values of th.is activity For the present paper, we shall assume that Synthetic PET
e o il b o g a1 Syt WR( (unctors W) s setnad by
’ precisely the same formula except for a possible difference
(@) Compute rPE], the simulated value of raw PET i, temporal and spatial resolution. In this section, we briefly
activity, for each region A of our network while it is used 56,55 some necessary steps for future research directed
to simulate the monkey’s neural activity in some given task: (q\yards more realistic approaches to various modalities of
t Synthetic Brain Imaging (SBI).
PETA = Jt ZWB~A(U dt @ Our current measure of “raw PET activity”, based on a
°B linear function of the total of the absolute value of synaptic
where A is the region of interest, the sum is over all regions activity, already (as we shall demonstrate in Section 3)
B that project to Awg_(t) is the synaptic activity (firing  yields qualitatively useful results in evaluating the sign
ratex |synaptic strengfh summed over all the synapses and small versus large magnitude of activities seen in PET
from region B to region A at timé¢, and the time interval  comparisons. However, we do not claim that this first
from t, to t; corresponds to the duration of the scan. approximation yieldsquantitatively accurate predictions.
(b) Compare the activities computed for two different We note, as a target for further research on Synthetic
tasks. The comparative activity PH1/2) for task 1 over Brain Imaging, the interest of evaluating a variety of more

Mapping the activity simulated in neural network models
of interacting brain regions — based on, say, single-cell
recordings in behaving monkeys — into predictions of
activity values to be recorded from corresponding regions
of the human brain by imaging techniques such as PET
involves two primary problems: localization, and modeling
activation.

(i) Localization:Each array in the neural network model
represents a neural population in a region identified anato-
mically and physiologically in the monkey brain. A
Synthetic PET comparison requires explicit hypotheses stat-
ing that each such region A is homologous to a region h(A)
in the human brain such that — within the tasks under
consideration — A and h(A) perform their tasks in the
same way. In some cases, such homologies are well defined
In other cases, the existence or identity of such a homology
is an open question. Thus, the comparison of a Synthetic
PET study with the results of a human brain scan study will,

2.2. Extending synthetic PET to synthetic fMRI



M.A. Arbib et al. / Neural Networks 13 (2000) 975-997 979

guantitative fits based on (possibly nonlinear) combinations model BOLD fMRI signal, a fair analysis of a wealth of
of cell firing rates, synaptic change, and synaptic activity per empirical evidence (the detailed review of which is beyond
se. We also need to add a stochastic analysis to account fothe scope of the present article) suggests the following

the variation in PET activity seen in the same subject on
different trials.

It also worth noting that future developments in SBI
will probably need to be based on neural network models
extended to include thevampire modél of the neuron,

i.e. looking at interactions between neurons, glia, and
blood vessels to model more explicitly the way in which
neurons “suck blood”, embedding the study of their infor-
mation processing in a richer model of the metabolic
underpinnings of these computations. For example, when
the activity of a brain region increases, the, e.g. PET
signal for that region increases not only in intensity but
also in volume. However, this need not imply that more
neurons are being recruited, only that increased blood flow

to the same set of neurons means that an increased rCBF

signal will be detected in nearby blood vessels connecting
to and from the blood vessels of the stated region. For
example, if the probability of a square millimeter of tissue
sharing blood supply with another square millimeter drops
off linearly with the distance between them, then the
diameter of a circle of above threshold rCBF will increase
linearly as the rCBF within a target region increases. Of
course, more detailed studies of activation would have to

be based on sophisticated 3D maps of blood supply to 4.

complement the maps of patterns of neural innervations
used in the Synthetic PET method. Unfortunately, these
maps are not yet available. Moreover, it must be acknowl-
edged that the relation between neuronal firing, synaptic
activity, and metabolic activity is still not entirely under-

stood and that different models have been proposed, based

on both theoretical considerations and empirical findings
(Raichle, 1998). As far as synthetic PET and synthetic
fMRI are concerned, we argue below that we can apply
similar formulas to both approaches on the basis of the
following considerations:

The Blood Oxygenation Level-Dependent (BOLD) fMRI
signal is currently interpreted as mainly driven by a regional
change in the ratio between deoxyhemoglobin and oxyhe-
moglobin, due to the increased influx of oxygenated blood
in a given brain region with increased metabolic demand.
The blood influx is estimated to be larger than is required by

conclusions:

1. The BOLD signal is probably composed of two main
factors, blood flow changes and blood volume changes
(plus some other minor factors probably contributing
very little to the signal, thus negligible here) (Hess, Stil-
ler, Kaulisch, & Scheich, 2000).
In spite of this, the BOLD signal co-localizes fairly well
with the PET signal and with TMS mapping (i.e. using
transcranial magnetic stimulation) of cortical representa-
tion of functions (Paus, 1999; Ro, Cheifet, Ingle, Shoup,
& Rafal, 1999), and, at least in the monkey, with changes
in the local field potential (N. Logothetis, personal
communication) that are considered the expression of
neural activity at population level. Also, quantitative esti-
mates of single-unit activity in macaques and BOLD
fMRI in humans in response to motion coherence in the
MT/V5 complex suggest that BOLD fMRI is propor-
tional to firing rate (Rees, Friston, & Koch, 2000).
Taken together, these data suggest that blood volume
effects do not dramatically alter the relation between
the PET signal and BOLD signal on one side, and
BOLD signal and regional neural activity on the other.
Moreover, quantitative differences between integrated
synaptic activity and neuronal firing are presumably
small and negligible. This may be due to the following
considerations:
(4a) most of the regional metabolic demand due to
neuronal activity is eminently synaptic (Yarowsky,
Kadekaro, & Sokoloff, 1983);
(4b) the relationship between firing rate and metabolic
synaptic activity is approximately linear (Kadekaro et
al., 1987);
(4c) the overwhelming majority of synapses are
local (Douglas, Koch, Mahowald, Martin, & Suarez,
1995);
(4d) a high level of cortical inhibition, resulting in
low firing rate and high metabolic activity, is unli-
kely to be long lasting (van Vreeswijk & Sompo-
linsky, 1998).

2.

3.

the increased metabolic demand. Thus, a relative decrease However, possible discrepancies between measures based
in deoxyhemoglobin (i.e. after oxygen has been removed toon synaptic activity and neuronal firing — and measures
serve metabolism), compared to oxyhemoglobin, would which also explore the metabolic costs of synaptic change
result in signal increase due to the different magnetic prop- — will be a topic for future consideration. In the present
erties of the two molecules. A change in the ratio between paper, we will first report on a Synthetic PET study of grasping
deoxyhemoglobin and oxyhemoglobin, however, could, in behavior in which we use the synaptic activity measure,
principle, result from increased blood volume, determining whereas in the Synthetic fMRI experiments for imitation
an increase in the water fraction around deoxyhemoglobin. described below we calculated the integral over time of the
Thus, a change in blood volume without a change in blood neural activity and not the synaptic one, since in the DRAMA
flow may determine the same signal increase determined bynetwork used in that model the synaptic weight have a different
an increase in blood flow. With regard to our paper, and to meaning than in the classical Perceptron model and would not
the plausibility of adopting the synthetic PET approach to relate directly to the neural activity.
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Fig. 1. According to the FARS model, AIP uses visual input to extract
affordances, which highlight the features of the object that are relevant to
grasping it. F5 then applies various constraints to select a grasp for execu-
tion and to inform AIP of the status of its execution, thus updating AIP’s
active memory. The areas shown are AIP (anterior intraparietal cortex),
area F5 (of the ventral premotor cortex), and regions providing supporting
input to F5, namely F6 (pre-SMA), area 46 (dorsolateral prefrontal cortex),
and F2 (dorsal premotor cortex).

3. Grasp control and (synthetic) PET

The first Synthetic PET study (Arbib et al., 1995) focused
on Synthetic PET predictions based on a model of Dominey
and Arbib (1992); of mechanisms in the monkey brain for
control of saccadic eye movements. Here we summarize a
follow-up study (Arbib, Fagg, & Grafton, 2000), based on
the FARS (Fagg—Arbib—Rizzolatti-Sakata) model of the
grasping process of parietal—-premotor interactions in the
visual control of monkey grasping movements. We first
summarize key properties of the FARS model, then show
how we used it to generate Synthetic PET predictions which
were then compared to a new PET study of human grasping
(Grafton, Fagg, & Arbib, 1998).

3.1. The FARS model

The cells of area F5 of the macaque inferior premotor
cortex are often selective for the type of grasp made by
the monkey (Rizzolatti et al., 1988). Grasps observed during
these experiments include precision pinches (using the tips

M.A. Arbib et al. / Neural Networks 13 (2000) 975-997
pre-SMA (F6), F2 (dorsal premotor cortex), and the basal
ganglia (BG).

3.1.1. A brief model overview
The crucial aspects of the model (see Fig. 1) are the
following:

1. AIP serves the dual role of first computinget of affor-

dancedfor the object being attended (i.e. AIP highlights
properties of the object relevant for physically interacting
with it), and then maintaining aactive memonyof the
selected affordance as the corresponding grasp is
prepared and executed.

F5 integrates a variety of constraints to decide on the
single grasp that is to be executed. These constraints
include visual information (from the affordances
extracted by AIP), task information (from pre-SMA,
F6), instruction stimuli (from dorsal premotor cortex,
F2), and a working memory of recently executed grasps.
When the movement is triggered, F5 is responsible for
the high-level execution and subsequent monitoring of
the planned preshape and grasp.

. Asindicated in Fig. 2, F6 (pre-SMA) represents the high-

level execution of the sequence, while phase transitions
dictated by the sequence are managed by the basal gang-
lia (BG). For a task (“the Sakata protocol”) in which the
monkey was presented with an object, then grasped the
object in response to a go signal, held the object, and
finally released the object after a secondary go signal,
the following phases in F5 activity were influenced by
BG control mechanisms: preparatory (set), finger exten-
sion, finger flexion, holding, and release.

4. Fagg and Arbib (1998) offered both a computational

analysis and an analysis of empirical data in support of
the hypothesis that not only is F5 responsible for unfold-
ing (with BG supervision) the grasp in time during the
execution of the movement, but that F5 also sends recur-
rent connections back to AIP to update AlPRastive
memoryfor the grasp that is about to be executed or
that is being executed by F5.

of the index finger and thumb), lateral pinches (thumb 3.1.2. Control of conditional behavior

against the side of the index finger), and power grasps

The many details of the FARS model (Fagg & Arbib,

(four fingers opposing the palm). In addition, the firing of 1998) are beyond the scope of the present review. Here
these cells typically correlated with a particular phase of the we focus on its performance in aonditional task in

ongoing movement.

which the grasp is not known prior to a given trial, and is

F5 exchanges cortico-cortical connections with the ante- only determined by an arbitraristruction stimulus(IS)

rior intra-parietal area of parietal cortex (AIP), whose cells made available during the course of the trial (e.g. an LED
demonstrate a variety of both visual- and grasp-related whose color indicates one of two grasps). The dorsal premo-
responses (Taira, Mine, Georgopoulos, Murata, & Sakata, tor cortex (F2) is thought to be responsible for the associa-
1990). tion of arbitrary 1S with the preparation of motor programs
The FARS model of the grasping process (Fagg & Arbib, (Mitz, Godshalk, & Wise, 1991; see Fagg & Arbib, 1992 for
1998) focuses on the roles of several areas, especially thea related model). In the FARS model, then, F5 combines the
interactions of F5 and AIP, but also their relationship with view of the object (with its multiple affordances signaled by
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Fig. 2. Another view of FARS model architecture. Arrows indicate excitatory connections between regions; filled circles indicate inhibitotipnennke
precision pinch and power grasp pools in F5 and AIP are connected through recurrent excitatory connections. The precision pinch pool containasnore ne
than other grasps. The dorsal premotor cortex (F2) biases the selection of grasp to execute as a function of the presented instruction stimulus.

AIP) with the instruction stimulus (F2) to specify which which grasp should be used. Here we summarize the
grasp is to be executed. comparison of conditional and non-conditional tasks.

Fig. 2 presents a schematic view of the model's architec- The most significant predicted change was the level of
ture. Arrows indicate excitatory connections between activity exhibited by area F2 (dorsal premotor cortex). Its
regions; filled circles indicate inhibitory connections. The high level of activity in the conditional task is due to the fact
dorsal premotor cortex (F2) biases the selection of grasp tothat this region is only involved when the model must map
execute as a function of the presented instruction stimulus.an arbitrary stimulus to a motor program. In the non-condi-
The precision pinch and power grasp pools in F5 and AIP tional task, the region does not receive IS inputs, and thus its
are connected through recurrent excitatory connections.synaptic activity is dominated by the general background
Since Rizzolatti noted that more F5 neurons are related toactivity in the region.
the precision pinch than to other grasps, the precision pinch The additional IS inputs in the conditional task have a
pool in the FARS model contains more neurons than other second-order effect on the network, yielding small changes
grasp pools. Arbib et al. (2000) show how this affects the in synaptic activity in F5, BG, and AIP (see Arbib et al.,
Synthetic PET measure in these and downstream regions2000 for details). Increased synaptic activity in F5 is due to
and discuss the implication of these results for reconciling the additional positive inputs from F2. These inputs also
the FARS model with actual PET studies of rCBF in cause an increase in the regiordstivity leve| which is
comparing the precision pinch task against the power passed on through excitatory connections to both AIP and
grasp task. However, in what follows we concentrate on BG (recall Fig. 2).
the comparison of a conditional with a non-conditional task. It is important to recall that synaptic activity does not

have the same meaning agural activity This can be
3.2. Synthetic PET results seen by examining the definition afz_A(t) (see Eq. (2)).
The absolute value of the synaptic strength contributes posi-

Arbib et al. (2000) conducted two different Synthetic PET tively to this measure — so increases in either positve
experiments, providing predictions for what we expect negative signals into a region will be reflected asremease
when the experiments are performed in the human. Inin synaptic activity. Neural activity, on the other hand,
both experiments, the modeled subject is asked to grasp adepends monotonically on the synaptic strength: increases
single object using one of two grasps. In the first experi- in positive signals result in increases in neural activity,
ment, we examined (i) the effects of knowing which grasp to whereas increases in negative signals result in decreases
use prior to the onset of recording (non-conditional task), of activation. An important ability of the Synthetic PET
and (ii) only being told which grasp to use after a delay technique is that the positive and negative contributions to
period (conditional task). In the latter task, an instruction the Synthetic PET measure can be differentiated in the simu-
stimulus in the form of a bi-colored LED informs the subject lation. This information, combined with knowledge of the



982 M.A. Arbib et al. / Neural Networks 13 (2000) 975-997

LED. The subject then held the grasp position until the next
target was given. Targets were presented evety(®l s.

Four different scanning conditions were repeated three
times each. In the first, subjects repeatedly performed a
power grasp to the indicated block. The target block was
identified by the turning on of the associated LED (green in
color). When the subject grasped the block, the color of the
LED changed from green to red. For the second condition, a
precision pinch was used. The target was identified in the
same manner as the first condition. In the third grasping
condition (conditional task), the initial color of the LED
instructed the subject to use either a precision pinch
(green) or a power grasp (red). When contact was estab-
lished, the LED changed to the opposite color. In the fourth
(control) condition, the subjects were instructed to simply
fixate on the currently lit LED, and not make movements of
the arm or hand (prior to the scan, the arm was placed in a
Fig. 3. Left hemisphere localization of task related effects. PET statistical relaxed position). The lit LED changed from one position to
comp_arisons of the pooled dr_:lta across subjects (in I?gd,0.00S) are “another at the same rate and variability as in the grasping
superimposed on a_smg!e subject’s MRI scan centered in the same coordl-tasks. Prior to Scanning subjects were allowed to practice
nate space. The view is left superior oblique, and denotes differences I :
between conditional grasp selection versus fixed grasping. the tasks for several minutes. Grafton et al. (1998) provide

results for Grasp versus Rest, Precision versus Power Grasp,
gross anatomy (especially the sign of connections betweenConditional versus Non-Conditional Grasp. Here we present
regions), can aid in inferring changes in neural activity only the third case:
across tasks. Although the positive contributions to F5 and  Fig. 3 reflects differences of conditional grasp selection
AIP essentially dominate the full PET measure, we also saw (power or precision based on color cues) as compared to an
small increases in the negative inputs into these regions.average of the fixed grasping conditions (power and preci-
These inhibitory signals are due to negative inputs from sion tasks): Cond- (Power+ Precision)/2. The upper
local recurrent connections in the respective areas (in thearrow indicates a large area of significance in the left super-
case of F5, BG also contributes additional negative inputs). ior frontal sulcus corresponding to the dorsal premotor
This serves as additional evidence that both F5 and AIP cortex. As noted earlier, this region in monkey is thought
experience increases in their overall neural activity. to be involved in the arbitrary association of stimuli with the
preparation of motor programs. The lower arrow indicates
increased CBF in the left inferior parietal lobule and intra-
3.3. Human brain imaging parietal sulcus. Because this comparison is counterbalanced
for the amount of movement made during execution of the

To provide human PET data relevant to the above tasks, there is no difference observed in the motor execution
Synthetic PET predictions, Grafton et al. (1998) asked areas.
subjects to repeatedly perform grasping movements over a
90-s scanning period. The targets for grasping were located3 4. comparison of PET and synthetic PET
at three stations mounted on an experimental apparatus,
with each station consisting of both a rectangular block The model predicts that the conditional task should yield
that could be grasped using a power grasp, and a pair ofmuch higher activation in F2 (dorsal premotor cortex), some
plates (mounted in a groove on the side of the block), which activation of F5, and a slight activation of AIP. The human
could be grasped using a precision pinch (thumb and indexexperiment confirmed the F2 result, but failed to confirm the
finger). A force sensitive resistive (FSR) material, mounted predictions for F5. Furthermore, in human we see an activa-
on the front and back of the block, detected when a solid tion of the inferior parietal cortex, along the intra-parietal
power grasp had been established. The pinch plates weresulcus, which is perhaps an AIP homologue.
attached to a pair of mechanical micro-switches which Can we make use of the negative F5 result to further
detected when a successful precision pinch had beenrefine the model? Consider the functional connectivity of
executed. For each station, the block and plates werethese regions in the model (Fig. 4, left). In the model, the
mounted such that the subject could grasp either one withoutstrength of the projection from F2 to F5 is essentially a free
requiring a change in wrist orientation. A bi-colored LED at parameter. In other words, there is a wide range of values
each station was used to instruct the subject as to the nexbver which the model will correctly perform the conditional
target of movement. A successful grasp of this next target and non-conditional tasks. The implication is that, by tuning
was indicated to the subject by a change in the color of the this parameter, we can control this projection’s contribution
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Fig. 4. Previous functional model (left; compare Fig. 2) and updated functional model (right). In the revised model, the information from F2rflawity)pri
into the circuit through a projection into AlP.

to the synaptic activity measure in F5. However, the differ- (as we have shown) to use these negative results to further
ence in AIP synaptic activity from the non-conditional to the refine and constrain the model and, on this basis, design new
conditional task will always be less than the difference experiments for both primate neurophysiology and human
observed in F5. Why is this the case? By increasing the brain imaging (see Arbib et al., 2000 for further details).
projection strength from F2 to F5, we observe an increase
in both F5 synaptiandcell activity. The increase in F5 cell
activity, however, is attenuated by local, recurrent inhibi-
tory connections. Thus the excitation that is then passed on
to AIP via F5 does not reflect the full magnitude of the
signal received from F2.

The conclusion is that, although we can adjust the free
parameter to match one or the other observations in the
human experiment (of either F5 or AIP changes), the
model cannot reflect both at the same time. One possibility
for repairing this problem in the model is to reroute the F2
information so that it enters the grasp decision cwqunry 4.1. The monkey mirror system for grasping
through AIP (or both AIP and F5), rather than exclusively
through F5 (Fig. 4, left). This would yield an increase in In Section 3.1, we saw that cells of area F5 of inferior
activity in AIP due to F2 activation with only an attenuated premotor cortex of the macaque are often selective for the
signal being passed on to F5, resulting in only a small type of grasp made by the monkey (Rizzolatti et al., 1988),
increase in F5 synaptic activity. Note that we do not neces- while the anterior intra-parietal area of parietal cortex (AIP)
sarily assume that there exists a direct cortico-cortical has cells demonstrating a variety of both visual- and grasp-
connection from F2 to AIP or F5, but only that there is a related responses (Taira et al., 1990). Here we extend the F5
functional connection (which potentially involves multiple database by noting the discovery by Gallese, Fadiga,
synapses). Fogassi, and Rizzolatti (1996) and Rizzolatti, Fadiga,

The low-level details of the FARS grasping model (Fagg Gallese, and Fogassi (1996) of a subset of F5 grasp cells
& Arbib, 1998) were derived primarily from neurophysio- which they calledmirror neurons Like other F5 neurons,
logical results obtained in monkey. The synthetic PET mirror neurons are active when the monkey performs a
approach extracts measures of regional synaptic activity asparticular class of actions. However, in addition the mirror
the model performs a variety of tasks. These measures areneurons become active when the monkey observes the
then compared to rCBF (regional cerebral blood flow) experimenter or another monkey performing an action. In
observed during human PET experiments as the subjectamost of the mirror neurons, there is a clear relation between
perform tasks similar to those simulated in the model. In the coded observed and executed action. The actions studied
some cases, the human results provide confirmation of theso far include grasping, manipulating and placing. The
model behavior. In other cases, where there is a mismatchcongruence between the observed and executed action
between model prediction and human results, it is possible varies. For some of the mirror neurons, the congruence is

4. The mirror system and imitation

As a background for our second case study on Synthetic
Brain imaging, on Imitation and (Synthetic) fMRI in
Section 5, we now review data on the mirror neuron system
for grasping in the monkey brain, and then discuss its impli-
cations for the study of imitation in humans. We shall briefly
discuss the relevance of mirror systems and imitation for the
evolution of language in Section 6.3.
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activated sites during grasping observation in humans corre-
Q =, sponds rather well to that of monkey cortical areas contain-
e @H M&_\ ing neurons that selectively discharge during hand action
observation. Finally they conclude that in monkeys and
humans a similar cortical circuit is involved in representing
observed grasping. Unfortunately we cannot be sure that the
activities are due to mirror neuron system since there is no
convincing study showing that the same regions get acti-
vated selectivelyfor self executed grasps (Grafton, Fagg,
Woods, & Arbib, 1996).

4.2. Imitation in humans

Imitation is a complex behavior requiring the integration
of a multitude of sensory stimuli and of a variety of move-
Fig. 5. Activity of a cell during action observation (left) and action execu- ments. This integration process is affected by attentional,
tion (right). There is no activity during either initial presentation of the emotionaL SociaL and environmental factors. All these
object or as the tray is brought towards the monkey (from Gallese et al., factors modulate learning by imitation. Still, some funda-
1996). mental principles of learning by imitation can be extrapo-

lated by the investigation of its neural mechanisms. These
quite loose; for others, not only must the general action (e.g. principles can be used to define the mental representations
grasping) match but also the way the action is executed (e.g.underlying learning by imitation in neural, computational,
power grasp) must match as well. To be triggered the mirror psychological, and social terms.
neurons require an interaction between the experimenter In spite of the complexity of imitative behavior, there are
and the object. The sight of the experimenter or the object data (still somewhat controversial) supporting the claim that
alone does not trigger mirror activity. even soon after birth human infants can imitate facial and

Fig. 5 demonstrates the dual response property of mirror some manual gestures (Meltzoff & Moore, 1977). However,
neurons. The recorded neuron in the figure is silent during it is important to stress that there may be different mirror
the presentation of the object, but starts firing when the mechanisms for different acts, and that imitation for grasp-
experimenter picks up the object. The neuron interestingly ing requires months to develop. Smiling is probably an
does not fire during the time the tray is moved towards the innate releasing mechanism for smiling (whether the infant
monkey (the monkey knows that he is going to pick up the smiles at the parent or the parent smiles at the infant)
object) and finally it starts firing again when the monkey, depending, like laughing and weeping, on “built-in” circui-
himself, picks up the object. A range of congruence (the try. We distinguish this from building a novel repertoire and
degree of strictness of the match between the actionthen building further to assemblages of variations.
observed and the executed action) is found in mirror Our hypothesis is that an appropriate mirror system
neurons. The most congruent responses require the observefbbservation/execution matching system) orchestrates the
action and the executed action to use the same grasp typevarious components involved in the sensorimotor transfor-

Fogassi, Gallese, Fadiga, and Rizzolatti (1998) find that F5 mations required by imitation of behaviors more complex
is not the only area that has mirror neurons. The rostral part ofthan smiling, laughing and weeping. More complex beha-
the inferior parietal lobule of the macaque monkey (area 7b or viors are not simply learned and replicated as unified non-
PF) also has neurons with similar mirror properties. decomposed patterns. In terms of neural control, the brain

Recent human PET studies indicate that a similar mirror generates internal models (neural mechanisms that can
neuron system exists in the human brain. Grafton, Arbib, mimic the input—output characteristics of the learning
Fadiga, and Rizzolatti (1996a) scanned subjects under threesystem: Jordan & Rumelhart, 1992; Wolpert, Ghahramani,
conditions: object viewing (the control condition), obser- & Jordan, 1995). To learn, a system must be able to general-
ving a precision grasping of common objects, and imagining ize beyond the set of sensory stimuli and movements that
themselves doing the same grasp. The imagined minushas been experienced in the past. This is possible only
control and observation minus control results were through the internal representation of sensory consequences
compared. Differences were seen in both lateral activationsof motor commands (the forward model) or, inversely,
and medial/dorsal activations. In the observation minus through the extrapolation of motor commands from the
control condition, activity locations were left STS (the observation of motor behavior (the inverse model).
cortex of superior temporal sulcus), left inferior frontal The representation of action supported by mirror neurons
area 45, and the left parietal area 40. Also there was someseems to be more a representation of action goals than of
activation found in the rostral part of the left intraparietal motor outputs (Arbib & Rizzolatti, 1997). We must thus
sulcus. Grafton et al. pointed out that the location of the seek to establish how these goals may be combined to form

P—
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a repertoire of purposeful and adaptive behavior. Moreover, present fMRI data on human imitation of simple finger
action goals are hierarchically organized in human imitative movements, while Section 5.2 will offer a preliminary
behavior. Studies on imitation in children show that pre- global model of imitation based on the joint-by-joint repro-
schoolers represent the most salient goal of the action to beduction of an observed movement which Section 5.3 will
imitated, but often ignore lower goals (Bekkering, Wohlschal- build upon to provide a Synthetic fMRI study of grasping
ger, & Gattis, 2000) (incidentally, this is the same behavior of and finger tapping.

patients with aphasia, Head, 1920; supporting the possible

links between imitation and language to be taken up briefly

in Section 6.3). Goals are easily embodied by objects (Mary 5. |mitation and (synthetic) fMRI

grasps a cup). Thus, the role of objects in action observation

and learning by imitation seems to be a crucial one and needss.1. An fMRI study of “simple” imitation

to be clarified.

In Section 5.1, we present the results of an fMRI study of  In a recent study of “simple” imitation in humans (laco-
an imitation task that involves a subject observing a very boni et al., 1999), we compared fMRI activity during imita-
simple finger movement and responding with a movement tion with fMRI activity during two control tasks in which
which in its entirety is already in the subject’'s own reper- subjects were required to perform the same finger move-
toire. Skill acquisition more generally (consider, for exam- ments as in the imitation task, but in response to symbolic
ple, learning a new dance), however, rests on a far moreor spatial cues. We reasoned that if some human brain areas
complex form of imitation that involves “parsing” a had mirror properties during imitation, then these areas
complex movement into more or less familiar pieces, and should become active during action execution regardless
then performing the corresponding composite of (variations of how the action was elicited, and should also become
on) familiar actions. Note the insistence on “more or less more active during imitation. This is because the action to
familiar pieces” and “variations”. Elsewhere, we (Arbib, be performed was also observed and so a brain area with
1981) have introduced the notion of a coordinated control mirror properties would be simultaneously activated by the
program, to show how a new behavior could be composed motor command to be executed and by the visual input
from an available repertoire of perceptual and motor sche- representing the observed action. Moreover, these areas
mas (the execution of a successful action will in general should become active during action observation compared
require perceptual constraints on the relevant movements).to rest.

However, skill acquisition not only involves the formation Fig. 6 shows a comprehensive view of activated areas
of new schemas as composites of old ones, it also involvesduring imitation versus rest in this experiment. Among
the tuning of these schemas to match a new set of condi-these activated areas, we found two areas with mirror prop-
tions, to the point that the unity of the new schema may erties, i.e. they were simultaneously activated by the motor
over-ride the original identity of the components. For exam- command to be executed and by the visual input represent-
ple, if one is acquiring a tennis stroke and a badminton ing the observed action. One was located in the inferior
stroke through imitation, the initial coordinated control frontal cortex of the left hemisphere and corresponded to
program may be identical, yet in the end the very different Brodmann area 44 (Broca’s area). The other was located in
dynamics of the tennis ball and shuttlecock lead to divergent the rostral part of the posterior parietal cortex in the right
schemas. Conversely, a skill may require attention to detailshemisphere (area PE/PC). We proposed that the left inferior
not handled by the constituent schemas of the preliminary frontal cortex (area 44) describes the observed action in
coordinated control program. Fractionation may be terms of its motor goal, whereas the right posterior parietal
required, as when the infant progresses from “swiping area (PE/PC) codes the precise kinesthetic aspect of the
grasps” at objects to the differentiation of separate schemasmovement (lacoboni et al., 1999). Note, however, that the
for the control of arm and hand movements. Later, the hand lateralization of the activations is rather relative. In fact,
movement repertoire becomes expanded as one acquirewhen statistical thresholds are lowered, bilateral activations
such novel skills as typing or piano playing, with this exten- are observed in both inferior frontal and posterior parietal
sion matched by increased subtlety of eye—arm—hand coor-cortices.

dination. Thus we have three mechanisms (at least) to learn The demonstration of mirror properties in Broca's area
completely new actions: forming new constructs (coordi- during imitation is in support of the hypothesis that
nated control programs) based on familiar actions; tuning language evolved from a basic mechanism not originally
of these constructs to yield new encapsulated actions, andrelated to communication: the mirror system with its ability
fractionation of existing actions to yield more adaptive to generate and recognize actions (Rizzolatti & Arbib, 1998;
actions as tuned, coordinated control programs of novel see also Section 6.3).

schemas. We also observed mirror properties in the activity of an

However, the study of imitation mechanisms based on the area located in STS. The activity in this region did not reach
building up and/or the fractionation of coordinated control full significance after correction for multiple comparisons
programs is a task for the future. Instead, Section 5.1 will and was not reported in the original paper. However, there
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Fig. 6. Cortical and subcortical activations during imitation versus rest. Within these areas, some (inferior frontal cortex, anterior padtefitreparietal
cortex, and STS) had activity that is characteristic of areas with mirror properties.

are two reasons to believe that this area is likely to belong to Rizzolatti et al., 1996) subjects observed the experimenter
the human mirror system. First of all, we have subsequently grasping a three-dimensional object. Grasp observation
observed similar mirror properties in a follow-up experi- significantly activated the STS. Neurons that become selec-
ment in the same region. Fig. 7 shows the activity of this tively active in the STS during the sight of moving hands
region in both experiments, for identical tasks. Second, in and faces but not of moving objects were also described in
two PET experiments (Grafton, Arbib et al.,, 1996; single unit studies.
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Fig. 7. Activity in STS showing mirror properties. This activity was observed in two separate experiments comprising 12 subjects in the firsheaperide
different subjects in the second experiment. |: imitation; MC: motor control; AO: action observation; OC: observation control.

The mirror area in STS is more posterior than the STS study, the experimenter initiated hand movements to one of
region found active in previous studies of action observation two dots on a table and asked children to imitate his actions.
in humans and in macaques. (See Section 6.1 for furtherin another condition the same movements were performed
discussion of data on STS.) It is possible that the STS and were imitated, except that this time the movements were
region, a region critical for the understanding of social directed to the same places on the table but no dots were
signals, is constituted of a rostral sector with sensory proper-visible. In the latter condition children imitated well the
ties only and a caudal sector with mirror properties. It has movements of the experimenter, including their laterality,
been proposed that the anterior STS neurons that are actiwhereas when dots were visible children would often reach
vated by the sight of moving hands and faces analyze thefor the correct dot with the incorrect hand (Bekkering et al.,
actions of others. This anterior ‘sensory-only’ STS region 2000). This is because when observing object-oriented
may feed into the more posterior “mirror” STS region actions, the object activates a ‘direct’ motor program; i.e.
during imitation. The anterior STS region would provide a a motor program that leads most directly to the effect the
visual analysis of the actions of others, whereas the moreaction has on the object, like grasping, pointing, covering,
posterior STS regions would provide a first level of match- etc. Without objects, the relative positions of the fingers
ing between observation and execution. The other two become the goal of the action. These goals also call the
mirror areas described in our paper would describe the ‘direct’ motor program, but now the ‘direct’ motor program
observed action in terms of its motor goal (Brodmann is matching the observed non-object oriented action. This
Area 44), and would code the precise kinesthetic aspect ofpredicts that goal-oriented areas, such as Broca’s area,
the movement (PE/PC). It is possible that each of these othershould be more active during the imitation of object-
mirror areas has a dedicated cortical area for preprocessingriented actionsthan during the imitation of non-object-
of the action to be imitated during action observation. In oriented movements. The reasoning is that if Broca's area
fact, in our fMRI experiment on imitation we did observe is the homologue of the monkeys mirror neuron system
greater activation for action observation than for observa- (tuned for object-oriented actions), then Broca'’s area should
tion of the symbolic or spatial cues in two areas, one in the also be better tuned for object-oriented actions. For the
dorsolateral prefrontal cortex (that would feed into Brod- parietal area PE/PC we might expect that the visible
mann Area 44) and one in the caudalmost part of the intra- presence of goals would not modulate its activity and thus
parietal sulcus (that would feed into PE/PC). goal-oriented actions and intransitive actions to be imitated

We saw (Section 4.1) that mirror neurons are found in the will activate this region similarly. Preliminary data from
macaque brain for object-oriented grasping actions andongoing fMRI experiments performed in the lacoboni
show a narrow tuning with respect to the type of object laboratory seem consistent with these predictions.
and the way it is treated but quite a broad tuning for the  Taken together, these data suggest a first draft of an infor-
trajectory of the movement or the motor effector involved mation processing model of human imitation according to
(Gallese et al., 1996). In our fMRI study we used an intran- which the early “description” of the action is performed in
sitive action, and no objects were involved. The presence of STS. From this region, inputs would be transferred to the
real objects, however, alters the motor component of the posterior parietal cortex for precise coding of the kines-
task and makes it more difficult to interpret imaging data. thetics of the action. This region would in turn send infor-
However, dots or marks on a table can be used as end-pointsnation to Broca’s area for defining the goal of the action.
of imitated actions. These dots or marks are known to alter Information would be recursively shuffled among these
the imitative behavior of preschoolers and adults. In arecentareas for a tight coupling of these three ‘levels’ of



Cerebellum - 240 nodes
DRAMA Networks

PM - 240 nodes

Attentional Mechanism

Elbow Shoulder

Leg

STS -130 nodest T T T

Frame of Reference Transformation

Pttt

Video input

W

Somatotopic Body Map
| \ [
Flexor
Extenggr

Hh

M1

- 69 nodes

Spinal Cord
120 nodes

Mechanical Simulation 65 DOF 2 muscles ext-flexor per DOF

886

166—G26 (0002) €T SHI0MBN [eINaN / '8 18 qIdIV "V'IN

Fig. 8. The global imitation model consists of three parts for visual recognition, motor control and learning and is composed of biologicallyriodpies, namely the superior temporal sulcus (STS), the
spinal cord, the primary motor cortex (M1), the dorsal premotor area (PMd) and the cerebellum.
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information processing, i.e. motion recognition, kines- Motor control in our model is hierarchical with, at the
thetics, and goal-orientation. In Section 6.1 we outline the lowest level, the spinal cord module, composed of primary
structure of a model which develops some of these ideas onneural circuits (central pattern generators (CPGs); Stein,
the basis of neurophysiological data. However, the presentGrillner, Selverston, & Stuart, 1997), made afotor
article emphasizes a “global” model (Section 5.2) based on neuronsand interneurons The structure of the CPGs is

a high-level view of a few large brain regions, each modeled strongly inspired by ljspeert’'s model of vertebrate spinal
connectionistically without attempting to address details of circuits (ljspeert, Hallam, & Willshaw, 1999), and encode
neurophysiology. We then offer (Section 5.3) a Synthetic simple rhythmic movements of arm and legs for open-loop
fMRI analysis of the model. The integration of these two walking, as well as primary motor behaviors, such as
complementary models, and the development there from forretracting and stretch arm movements of the humanoid
a model of complex imitation based on coordinated control avatar. The motor neurons in our simulation activate the

programs, is a goal for future research. avatar's muscles. We model two muscles per degree of free-
dom per joint. Each muscle is represented as a spring and a
5.2. Imitation: a global model damper (Lacquaniti & Soechting, 1986).

The M1 module monitors the activation of the spinal

Our Global Imitation Model (Fig. 8) is a preliminary networks. Nodes in M1 are distributed following a topo-
model of primate imitative ability (Billard, 2000). Our graphic map of the body. Learning of movements is done
aim was to build a comprehensive, but simplified model in the PMd and cerebellum modules. These modules are
of the visuo-motor pathway behind learning by imitation, implemented using the Dynamical Recurrent Associative
from processing real video data to directing a complete Memory Architecture (DRAMA) (Billard & Hayes, 1999)
dynamic simulation of a humanoid. which allows learning of times series and of spatio-temporal

This model is biologically inspired in its function, as its invariants in multi-modal inputs. Finally, the decision
composite modules have functionalities similar to that of module controls the passage between observing and repro-
specific brain regions, but the modules are composed ofducing the motor sequences, i.e. it inhibits PMd neural
artificial neural networks whose neurons are little activity due to STS (visual) input to flow downwards to
constrained by biological data. It is loosely based on neuro- M1 (for motor activation). It is implemented as a set of
logical findings in primates and incorporates abstract if—then rules and has no direct biological inspiration.
models of some brain areas involved in visuo-motor control,  Neurons in the PMd module respond to both visual infor-
namely STS, the spinal cord, the primary motor cortex mation (from STS) and to corresponding motor commands
(M1), the dorsal premotor area (PMd) and the cerebellum. produced by the cerebellum. The STS—PMd-M1 intercon-
The model is implemented in a dynamic simulation of a 65 nection is a simplified version of the mirror neuron model
degrees of freedom avatar which allows us to approximate described in Section 6.1.
the motions of a humanoid. Each submodule of the model is implemented at a

The STS module takes as input the Cartesian coordinatesconnectionist level. In the spinal cord module, we use
of each joint of the demonstrator’s limbs in an exocentric Eq. (1) to model each neuron unit as a leaky integrator,
frame of reference. It then transforms these coordinates to awhereas in the M1, PMd and cerebellum modules, we
new set of coordinates relative to an egocentric frame of follow the DRAMA neural architecture (see Billard &
reference. Our assumption of the existence of orientation- Hayes, 1999 for a complete description). This differs from
sensitive cells in an egocentric frame of reference in STS is the Hopfield network in several ways, especially in its
sustained by neurological evidence in monkeys (Perrett, different topology, training and retrieval rules. Each connec-
Harries, Mistlin, & Chitty, 1989; Perrett, Harries, Bevan tion of the network is associated not only with a weight (as
et al., 1989) and humans (Andersen, Lawrence, Bradley,usual) but also time parameter. Both are updated during
& Xing, 1997; Kertzman, Schwarz, Zeffiro, & Hallett, learning. The time parameters represent the decay of neural
1997; Vallar et al., 1999). The vision system also incorpo- activity along the synapses, while the weights keep a
rates a simplified attentional mechanism which triggers memory of the frequency of neural activation (weights are
whenever a significant change of position (relative to the increased following classical Hebbian rules, i.e. whenever
position at the previous time step) in one of the limbs is two neurons are simultaneously co-activated). The DRAMA
observed. Note that, at this stage of the modeling and givennetwork provides a general ability for learning complex
the simplicity of this module, the attentional module does time series by recording explicitly the temporal and spatial
not relate to any specific brain area. The attentional mechan-aspect of the patterns in its two different sets of connection
ism creates an inhibition, preventing information flow from parameters.
M1 to PMd and further to the cerebellum, thereby allowing
learning of new movements only when a change in the limb 5 3. synthetic fMRI for grasping and finger tapping
position is observed. In previous experiments, we used
video recording of human motion to drive the imitation We present here two synthetic fMRI experiments on
experiments, see Billard (2000). imitation of grasping and finger tapping movements. The
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Fig. 9. Neural activity in cerebellum and PMd modules during observation and imitation.

second experiment was meant to reproduce the fMRI Computing synthetic fMRI as with our equation for
experiment described in Section 5.1 on human imitation Synthetic PET (Egs. (2) and (3)) we calculated the raw
of an index finger tapping task. We use a pair of demonstra- fMRI activity (fMRI ) of the cerebellum, PMd, M1 and
tor and imitator avatars. In the grasping experiment, the STS modules during observation and imitation tasks.
demonstrator avatar moves its right arm from rest position Table 1 shows the raw values for cerebellum and PMd for
(alongside its body) to reaching a horizontal and frontal the two experiments. Data on synthetic grasping are predic-
position with all fingers closed in a strong grasp. The finger tive, and could be compared to future fMRI experiments. In
tapping experiments consists of having the demonstratorthe following, we compare synthetic data on finger tapping
lifting upwards four times its index finger. This experiments to the fMRI experiment described in the previous section.
starts with the avatar’s right arm lifted in the horizontal, Fig. 10 shows the ratio of activity of the four regions for
frontal position, all fingers relaxed. real and synthetic fMRI data during the finger tapping task.
During each demonstration, the imitator avatar processes,The error bars on the real fMRI data are the standard devia-
in the STS module, the simulated Cartesian coordinates oftion calculated across the 12 subjects and the four trials (per
the demonstrator's limbs and learns the demonstratedsubject). In both our model and the real data, M1 has the
motion by processing the information upwards to the PMd biggest activity. The ratio of activity across the four regions
and cerebellum modules. Once the demonstration isin our model is comprised within the error margin (or close
finished, the imitator avatar is allowed to reproduce the toit, as it is the case for STS). This qualitative similarity of
sequence of movements by reactivating the node in thethe model to the data is obtained by adjusting the number of
cerebellum which had first been activated during the demon- connections across modules and the encoding (the number
stration. This automatically leads to sequential reactivation of nodes active) in each module.
of the other relevant nodes in the Cerebellum and PMd Fig. 10 shows the comparative fMRI activity of the cere-
modules. The PMd activity projects downwards to M1 bellum and PMd modules (those are the only modules acti-
and spinal cord to activate the imitator's muscles. Fig. 9 vated during both tasks) for imitation against observation
shows the activity in cerebellum and PMd modules during tasks in the finger tapping experiment. This is compared to
observation and imitation. the real fMRI activity of the same regions as measured by
lacoboni et al. (1999). The reason why the ratio in simula-
tion is not equal to one, even though the same nodes in
cerebellum and PMd are activated in both tasks, is due to
Grasp Finger tapping the fact that each node stays at the maximum of activity
slightly longer in the retrieving/imitation task than during
the observation. This is an artifact due to the neural activa-
tion function in the DRAMA architecture which allows for

Table 1
Raw data of synthetic fMRI for imitation of grasping and finger tapping

Cerebellum 0.75 0.64
PMd 0.77 0.75
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Fig. 10. Ratio of synthetic and real fMRI activity in cerebellum, PMd, and STS against that of M1.

an imprecision in the timing of the retrieval of the neural during learning. In short, our model assumes an equal (plus
activation (Billard & Hayes, 1999). This effect can be a random error) activity between observation and imitation
observed in Fig. 11, where one sees that the neural activityin cerebellum and PMd modules.

in cerebellum and PMd during imitation follows a small The synthetic activity returned consistently lower ratios
plateau at the maximum of activity before decaying, than the fMRI data. This may be due to two factors. First, as
which it does not do during observation. This artifact is we noted in Section 2.2, BOLD fMRI is probably affected
meant to compensate for random noise in the visual input by both blood flow and blood volume changes (Hess et al.,

Cerab. nodes: observafion Cereb nodes: imitation

[ I U

f~ PEE . PN

/ e NS

N I
PMd nodes: observation PMd nodes: imitation

- e o Sy

r P o

! R
B o T
e ——
STS nodes M1 nodes

55 __ f / 1

Fig. 11. Ratio of synthetic and real fMRI activity in cerebellum and PMd, observation against imitation task.
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Fig. 12. Schemas of the mirror neuron model with brain regions assigned. The three regions with shared background at right are incorporatedR®m the FA
model (Oztop et al., 2000).

2000). The model does not explicitly account for blood make the same point) to indicate the immense challenges in
volume effects, given that these effects are not closely integrating models of different portions of the nervous
linked to neural activity. Second, empirical data on MT system which address detailed neurophysiological data
neurons have suggested that the neuronal population activifrom studies of primates and other species. Such studies
ity may be mainly driven by low firing rate neurons the are necessary to complement the high-level views of
activity of which is unaffected by the task or the stimulus human regional brain activity provided by PET and fMRI
(Scannell & Young, 1999). Thus, task-related changes in studies. We focus on modeling of the Mirror System, then
neural activity may result in small changes in the overall note {erybriefly) the challenges of modeling other systems
neuronal population activity, determining smaller changes relevant to brain activity during imitation, such as the role of
in BOLD signal, compared to expected values based on basal ganglia in sequential behavior, and the role of cere-
theoretical considerations or single-unit data. Both factors bellum in the coordination of reach and grasp.
may conjointly contribute to higher ratios for fMRI data To complement the model of Section 5.2, we offer a high-
than for synthetic data. The point is not to claim that we level view of a model (Oztop, Rizzolatti, & Arbib, 2000) of
have achieved the final model of imitation, but rather to the function and development of the mirror system in terms
highlight the importance of being able to use multiple of interacting schemas which should be equally applicable
sources of data in validating a model, and the utility of to studies of human and monkey. The schemas to the left of
Synthetic fMRI in bringing human brain imaging to bear Fig. 12 implement the visual system of the model. Haad
in developing a model of “the supporting neural networks”. shape recognitiorschema recognizes the hand shape (e.g.
Section 6 discusses further issues in developing the researclprecision grasp) whereas thiand motion detectioachema
program exemplified in the present article. locates the hand moving in space and sends related informa-
tion to the Hand—Object spatial relation analysschema
which also receives object-related signals from @tgect

6. The many facets of global modeling featuresschema. Thédand—Object spatial relation analy-
sis schema is needed because, in order to elicit mirror
6.1. Modeling the mirror system neuron activity in the monkey, seeing the agent and object

is necessary but not sufficient — a hand mimicking a match-
As is clear from Fig. 6, brain imaging implicates a large ing grasp would fail to elicit mirror neuron activity unless
number of brain regions in even apparently simple tasks, the hand’s trajectory were taking it toward an object with a
and we have discussed only a few of the regions in Fig. 6 grasp that matches one of the affordances of the object. The
explicitly in this article. In view of this, we quickly review  output of this visual analysis is relayed to t@ject affor-
several studies from the Arbiblaboratory (of course the work dance—hand state associatischema. This, together with
of many other laboratories could have been marshaled tothe Action recognition(mirror neurond schema forms the
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core mirror (learning) circuit, marked by the gray slanted STS area cells show responses to goal directed hand motion
rectangle in Fig. 12, which mediates the development of in a translation/scale/rotation invariant way. Andersen,
mirror neurons. Note that thassociationschema is also  Asanuma, Essick, and Siegel (1990) show that motion
the target of theHand shape recognitioschema as well  processing input originating from middle temporal area
as theobject affordanceignals supplied by the AIP module (MT) is channeled via medial superior temporal area
of the FARS model. In this way, the association schema (MST) or LIP. MT projects to MST and to other areas in
has access to complete (visually observédnd state the parietal cortex concerned with visuospatial function.
information. Visual input from V1 is further elaborated in MT, where
Details of the implementation of these schemas are the firing pattern of neurons reflects the speed and direction
beyond the scope of this article. Instead, we offer some of motion of visual targets. Barnes and Pandya (1992) report
preliminary suggestions (also shown in Fig. 12) on the that area 7a (PG-Opt) is reciprocally connected to STS and

neural localization of the various schemas. suggests that the visuospatial analysis that is associated with
Object Recognitioschema: We follow the usual assump- posterior intraparietal lobule (which includes 7a) could be
tion that this is localized in inferotemporal cortex (IT). amplified in the multimodal regions of STS (TPO and Pga).

Object features schema: Sakata, Taira, Kusunoki, Therefore, the neurons of multimodal areas of the STS could
Murata, and Tanaka (1997) and Sakata, Taira, Muratabe envisioned as being concerned with analyzing the posi-
et al. (1997) discovered binocular visual neurons in the tion of the organism in relation to the environment (Barnes
lateral bank of the caudal intraparietal sulcus (cIPS), and & Pandya, 1992).
the neighboring area V3a. These neurons respond preferen- Object affordance—hand state associatischema: We
tially to a bar, plate or solid object in a particular orientation localize this in area 7b because recent findings on the exis-
in space. They also found neurons selective for a particulartence of mirror and mirror-like neurons in area 7b and
axis of the objects (AOS neurons) and for particular orienta- connection of this area with the mirror neuron region of
tion of the surfaces (SOS, surface orientation selective area F5 (Fogassi et al., 1998) indicates an intimate relation
neurons). Such 3D features of the objects are certainly between 7b and F5 mirror neurons. Anecdotal notes
relevant to a grasp affordance (e.g. axis of object determines(Fogassi, personal communication, 1999) indicate that
the wrist angle of the hand). We thus localize @bject there exist 7b mirror-like neurons, which fire for simple

featuresschema in clIPS. arm/hand actions. We propose that PF mirror-like neurons
Object affordance extractiorschema: Following the  form the building blocks of F5 mirror neurons. The similar-
FARS assumption, we localize this in AIP. ity of STS and 7b responses to active hands, combined with

Motor program and Action recognitioschemas: The F5  the connectivity pattern of STS and area 7 makes the STS-
neurons of the FAR®/otor program(Grasp schema are  7b circuit suggested in Fig. 12 a plausible approximation to
the “canonical” (non-mirror) neurons; while the néwtion the primate hand shape-motion recognition circuit.
recognitionschema includes the F5 mirror neurons. F4 is  Hand—Obiject spatial relation analyssehema: The kind
implicated as coding the target position in the FARS model of computation we are pursuing may be implemented by
and we relate this to th®otor program(Reach schema, multiple regions but, as a speculation, one can propose 7a
though we do not yet include this schema in our simulations. as a possible area involved in this computation. Area 7a is
For completeness reasons we included not only area F4, butertainly involved in some sort of spatial coding. Stein
clPS and IT as well (cIPS replaces PIP in the FARS model, (1991) suggests that 7a represent extra-personal space.
where it was hypothesized that PIP codes object featuresSiegel and Read (1997) show 7a neuron involvement in
upon which AIP can extract affordances, whereas IT the analysis of motion evoked during locomotion or by
codes the identity of the object being recognized). themanipulation of objects by the handsdersen, Shenoy,

Object Locationschema: We distribute this between Snyder, Bradley, and Crowell (1999) suggests that 7a repre-
areas MIP, LIP and VIP. These areas (see Colby & Gold- sent targets in avorld-centeredcoordinate frame. Finally
berg, 1999 for a review) triple encode the space around theMaunsell (1995) suggests an object location coding in 7a,
animal. Although it is hard to assign a single type of encod- which is capable of coding the location of objects even
ing to each of these regions a rough separation is possiblewithout visual stimuli ever falling into the receptive fields
VIP is more concentrated on encoding the ultra-near spaceof some 7a neurons.

(less than 5 cm from the face); neurons in MIP are specia- For details the core circuit and details of the learning
lized for responding to stimuli within reaching distance; and mechanisms, and especially on the role of the hand state
LIP represents the further space that we explore best within linking observation of own-hand to other’'s hand, see
our eyes rather than our hands. Oztop et al. (2000). Our point here is to emphasize how

The Hand shape recognitioandHand motion detection  many brain regions must be considered, and to sample the
schemas: We propose that STS implements both schemaswealth of data which must be taken into account to ground
Perrett, Harries, Benson, Chitty, and Mistlin (1990) and the neural networks which ground a model of the global
Perrett, Mistlin, Harries, and Chitty (1990) report neurons brain function involved in mirror activity and imitation,
in STS responsive to goal directed hand motion. Some of thecomplementing the high-level model of Section 5.2.
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However, even a model including all the brain regions as circumstances, but also to coordinate multiple MPGs (such
shown in Fig. 12 will be inadequate for at least two reasons: as those for reaching and grasping) so that a complex move-
ment may be achieved in a smooth and integrated way. In
1. As noted in Section 1.4, high-level schemas may contri- short, we danot hypothesize that the cerebellar microcom-
bute to the motor schemas for many specific actions. It is plex learns taeplacethe MPG. Rather, we view the cere-
thus dangerous to say that specific neurons “encode” anbellum as applying its compensations by modulating MPGs,
action when in fact it may take correlated activity in whether cortical or subcortical, and this compensation
neurons in a variety of brain regions to “commit” the occurs on multiple time scales. Further, the compensation
brain to the specific action. Similarly, Fig. 12 is too patterns can be stored and recalled based on higher level
rigid in assigning schemas to specific regions. However, task information.
modeling must start somewhere, and Fig. 12 provides a A cerebellar model must be tested and developed in
good starting point for the development of more distrib- conjunction not only with an MPG model but also with a
uted models. “plant model” which contains sufficient complexity to
2. Brain imaging shows activation of areas not included in “challenge” the cerebellum model. Schweighofer, Spoel-
Fig. 12, such as the basal ganglia (which were included in stra, Arbib, and Kawato (1998) and Spoelstra, Arbib, and
the FARS model) and cerebellum (which was not). We Schweighofer (2000) showed how the cerebellum may
thus close this section by briefly citing our modeling compensate for Coriolis forces and other joint interactions
efforts on basal ganglia and cerebellum. in allowing coordinated control of multiple joints in reach-
ing. In the context of the models of reaching and grasping,
We have argued that the basal ganglia may be involved inand of mirror neurons and imitation described above, the
assisting cortical planning centers in some fashion as well asproblem is to understand how to extend cerebellar modeling
providing sequencing information, and have thus developed for reaching — and we have shown none of the details here
(Bischoff-Grethe, Crowley, & Arbib, 2000) a model which — to encompass not only the coordination of reach and
includes the control of arm movements as well as saccadesgrasp in well-learned movements but also to understand
with a recent focus on control of sequences of skeletomotor how the cerebellum serves to ensure the graceful coordina-
actions (Bischoff, 1998; Bischoff-Grethe & Arbib, 2000). tion of arm and hand and body “on the fly” when we carry
We postulate that the basal ganglia’s direct and indirect out a novel behavior, whether in imitation of an observed
pathways perform two different roles: the indirect pathway behavior or in reacting appropriately to novel circum-
inhibits upcoming motor commands from being performed stances.
while the current movement is in progress, while the direct ~ This quick tour indicates the immense challenges we will
pathway projects the next sensory state back to cortex. Thishave to face in integrating diverse models of different
informs supplementary motor area region SMA-proper and portions of the nervous system if Synthetic Brain Imaging
motor cortex of the expected next state and allows theseis to reach its full potential in linking models based on
regions to switch to the next movement of the sequence. detailed neurophysiology to the high-level views of human
Our models of cerebellar involvement in motor control regional brain activity provided by PET and fMRI studies.
hypothesize that where basal ganglia is involved in the phas-
ing in and out of various actions, cerebellum is concerned g 2. Homologies, brain imaging and neural networks
with the tuning and coordination of movements. In our
view, the cerebellum does not act directly on the muscles, The fundamental benefit of Synthetic Brain Imaging is
but rather acts through Motor Pattern Generators (MPGs)that it allows for specific predictions of PET or fMRI activ-
— circuits which combine, e.g. trajectory or rhythmic ity in human brain imaging studies, based on neural network
control with local feedback circuitry. We view the cerebel- models of behavior constrained by animal neurophysiology
lum as divided intanicrocomplexesEach microcomplexis  and arguments from homology. Since the models them-
a general computational module which combines a patch of selves are a product of functional anatomy, measured
cerebellar cortex (Purkinje cells and Golgi cell) with the single-unit recordings, and behavioral measurements,
underlying set of cells in the cerebellar nucleus to which Synthetic Brain Imaging provides a powerful bridge
the Purkinje cells project, and the inferior olive cells whose between all of these approaches. An additional strength of
climbing fibers provide error signals for motor learning. The the Synthetic PET implementation is that the contribution of
“contextual input” is provided by the parallel fibers, the excitatory and inhibitory influences can be teased apart.
granule cell axons which provide a nonlinear combination Becausesynaptic activityis not the same aseural activity
of mossy fiber inputs. The job of the Purkinje cellsis to learn being able to distinguish excitatory from inhibitory influ-
to pair the parallel fiber output with a pattern of inhibition of ences can be an aid to inferring neural activity from the
the nuclear cells so as to ensure that these cells better tuneCBF measure, possibly clarifying apparent contradictions
the MPGs. The parallel fibers are long enough that — in rCBF data.
through their shared contextual input — Purkinje cells In Section 2.2 we suggested that quantitative differences
may learn not only to tune individual MPGs to changing between integrated synaptic activity and neuronal firing are
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often negligible. However, there are as yet no models which that what marks humans as distinct from their common
adequately link neural activity to the BOLD signal, and so ancestors with chimpanzees is that whereas the chimpanzee
the differences between fMRI and PET methods, which we can imitate short novel sequences through repeated expo-
have minimized in the present study, deserve much future sure, humans can acquire (longer) novel sequences in a
study. In particular, we need to develop the “vampire single trial if the sequences are not too long and the compo-
model” of the neuron to relate synaptic and neuronal activity nents are relatively familiar. The very structure of these
and the metabolic costs of synaptic change to rCBF. sequences can serve as the basis for immediate imitation
Synthetic Brain Imaging is sufficiently flexible that it will or for the immediate construction of an appropriate
be possible to have network implementations spanning response, as well as contributing to the longer-term enrich-
multiple species. Homologies and differences between ment of behavior. Of course, as sequences get longer, or the
species (cf. Bota & Arbib, 2000) can then be tested more components become less familiar, more and more practice is
rigorously using predictions generated by the Synthetic required to fully comprehend or imitate the behavior. Arbib
Brain Imaging, while the human data provide another (2000) then analyzes seven hypothesized stages of evolu-
form of validation of neural network models derived from tion: grasping; a mirror system for grasping; a simple imita-
monkey data. It is certainly satisfying when the human tion system for grasping; a complex imitation system for
results provide confirmation of the behavior of a model of grasping; a manual-based communication system; proto-
diverse interacting biological neural networks, but far more speech, characterized as being the open-ended production
is learned when there is a mismatch between model predic-and perception of sequences of vocal gestures, without
tion and human results. The challenge is then to use thesamplying that these sequences constitute a language; and,
negative results to further refine and constrain the model finally, with cultural evolution predominating over biologi-
and, on this basis, design new experiments for both primatecal evolution, speech and languages as we currently know
neurophysiology and human brain imaging. The resulting them. At each stage, the earlier capabilities are preserved.
data can then catalyze the development of new global Moreover, the addition of a new stage may involve enhance-
models which synthesize our evolving understanding of ment of the repertoire for the primordial behaviors on which
the human brain in relation to the details we glean from the it is based.
anatomy and neurophysiology of the brains of other species. Development of the full argument would take us beyond
the scope of this paper. The point to be emphasized here is
6.3. Language and “higher cognitive functions” that our future work on applying Synthetic Brain Imaging to
global brain function can even address areas of cognitive
In “Language Within Our Grasp”, Rizzolatti and Arbib  science for which no animal data are available if we employ
(1998) showed that the mirror system in monkey is the comparative neuroscience and evolutionary arguments to
homologue of Broca’s area, a crucial speech area in humansyelate brain regions for “higher cognitive functions” to
and argued that this observation provides a neurobiological homologous brain regions in other species.
“missing link” for the long-argued hypothesis that primitive
forms of communication based on manual gesture preceded
speech in the evolution of language. Their “Mirror System Acknowledgements
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