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Adaptation to their environment is a fundamental capability for living agents, from which au-
tonomous robots could also benefit.  This work proposes a connectionist architecture, DRAMA,
for dynamic control and learning of  autonomous robots.  DRAMA stands for dynamical recur-
rent associative memory architecture.  It is a time-delay recurrent neural network, using Hebbian
update rules.  It allows learning of  spatio-temporal regularities and time series in discrete se-
quences of  inputs, in the face of  an important amount of  noise.  The first part of  this paper gives
the mathematical description of  the architecture and analyses theoretically and through numerical
simulations its performance.  The second part of  this paper reports on the implementation of
DRAMA in simulated and physical robotic experiments.  Training and rehearsal of  the DRAMA
architecture is computationally fast and inexpensive, which makes the model particularly suitable
for controlling �computationally-challenged� robots.  In the experiments, we use a basic hardware
system with very limited computational capability and show that our robot can carry out real time
computation and on-line learning of  relatively complex cognitive tasks.  In these experiments,
two autonomous robots wander randomly in a fixed environment, collecting information about
its elements.  By mutually associating information of  their sensors and actuators, they learn about
physical regularities underlying their experience of  varying stimuli.  The agents learn also from
their mutual interactions.  We use a teacher-learner scenario, based on mutual following of  the
two agents, to enable transmission of  a vocabulary from one robot to the other.

keywords: time-delay recurrent neural network; Hebbian learning; spatio-temporal associations;
unsupervised dynamical learning; autonomous robots.

1  INTRODUCTION

While adaptation is considered a fundamental capabil-
ity for the survival of  living agents, recent robotics re-
search investigates how artificial agents may also ben-
efit from it.  Continuous learning is an important factor
in the adaptation of  an individual agent to its varying
environment.  Adaptation through continuous learning
as opposed to evolutionary adaptation seems particu-
larly interesting for autonomous artificial agents, espe-
cially if  these learning capabilities could be used for
teaching the agents new skills or increasing their a-priori
knowledge.  This work proposes a general framework
of  control architecture for autonomous agents that com-
bines continuous learning with predefined abilities.

Robotics studies often tend, when developing a learn-
ing model, to address a particular problem of  sensor-
actuator coordination, e.g. maze traveling (Owen &
Nehmzow, 1996; Tani et al., 1997), spatial navigation

and exploration (Floreano & Mondada, 1996; Gaussier
et al., 1998; Kuipers, 1987) or object manipulation
(Asada et al., 1997; Pfeifer & Scheier, 1998), where of-
ten only one direction of control (from sensor to actua-
tor) is considered.  In contrast, our approach tries to
develop a single control architecture which enables a
robot to learn and act independently of  a specific task,
environment or robot used for the implementation.  For
this we look at the common constraints and prerequi-
sites for learning in a dynamic, noisy environment and
propose an artificial neural network architecture for
learning spatio-temporal regularities and time series in
discrete sequences of  inputs.  Learning is based on
Hebbian associations across all the robot�s sensor-ac-
tuator modalities.  The model does not differentiate
between actuator and sensor information and treats them
similarly during the associations.  Correlations are thus
performed from sensor to sensor, actuator to sensor,
sensor to actuator and actuator to actuator.  These cor-
relations are then used to determine the robot�s actions
(sensor to actuator), in order to predict the effect of the
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robot�s actions on the environment (actuator to sensor)
and to predict new sensor measurements from the cur-
rent ones (sensor to sensor).  The architecture is a time-
delay recurrent neural network, using Hebbian update
rules and a winner-take-all based neural activation func-
tion.  We call it DRAMA for Dynamical Recurrent As-
sociative Memory Architecture.

Different algorithms have been used to enable learn-
ing in autonomous mobile agents, e.g. Reinforcement
Learning (Asada et al., 1997; Mataric, 1997; Wyatt et al.,
1998; Yanco & Stein, 1993), Genetic Algorithms
(Floreano & Mondada, 1996; Nolfi, 1997; Nordin &
Banzhaf, 1996) and more recently Artificial Neural
Network (ANN) architectures (Kurz, 1996; Owen &
Nehmzow, 1996; Tani et al., 1997; Zimmer, 1996;
Zrehen, 1995).  Neural network architectures are more
interesting to us than RL and GA techniques as they
require little knowledge of  the task by not relying on
the design of  a good evaluation function for the robot�s
performance.  A general problem with most ANN learn-
ing methods developed previously is that they are often
computationally too heavy to enable on-line computa-
tion.  On-line computation is a fundamental require-
ment for creating really autonomous agents (Thrun,
1996).  In our case, this was a requirement quite diffi-
cult to satisfy as we use LEGO robots with poor com-
putational capacities.  Our robots are provided with a
micro-controller with 512k byte EPROM space and
128kS byte Static RAM.  The CPU (Central Processing
Unit) is a Phillips 93C100 series 68000 compatible run-
ning at 30 Mhz.  It has no facilities for floating points
and all calculus has to be done with integers.  Another
disadvantage of  these learning techniques is that they
often require numerous examples, i.e. a long training
phase, before performing well.  Thus, training the robot
and then testing its performances are often two sepa-
rate phases.  This is undesirable considering that con-
tinuous adaptation and life-long learning (Thrun, 1996)
are necessary qualities for autonomous agents which
have to interact with fast changing environments (as it
is the case for environments occupied by humans).  Fi-
nally, another important skill for robots to possess (if
expected to interact with other agents whether human
or robotic) is the ability to communicate symbolically
(Dautenhahn, 1995; Klingspor et al., 1997).  Following
these desiderata, we design a control architecture, based
on the DRAMA architecture, which allows continuous
learning and control of  autonomous robots.

Training and rehearsal of  the DRAMA architecture
require inexpensive and fast computation, which allows
computation to be carried out on-line, i.e. on-board the
robot.  We report here on the model implementation in
two physical robotic experiments, for on-line learning
of  spatial regularities and time series of  a robot�s per-

ceptions.  In these experiments, two robots, a teacher
robot and a learner robot, interact dynamically with their
environment and with each other.  On the one hand the
learner robot learns spatio-temporal regularities in its
perceptions, by recognizing landmarks, i.e. learning the
locations of  objects, and by recording the time delays
between its observation of  each object.  On the other
hand the learner robot is taught by the teacher robot a
vocabulary to label each of  the landmarks.  The learner
robot grounds the teacher�s words onto its own sensor
perceptions.  At the end of  the experiment, the two
agents share a common vocabulary to describe their
environment, whose words are grounded onto each
agent�s distinct set of  perceptions.  Learning and re-
hearsal, i.e. training and retrieval of  the DRAMA net-
work, is performed continuously during the experiments,
in order to record the robot�s observations and to direct
the robot�s actions respectively.

The rest of  the paper is organized as follows.  Sec-
tion 2 gives a mathematical description of  the DRAMA
architecture and Section 3 evaluates theoretically and
through numerical simulations the architecture�s perfor-
mance.  Section 4 describes the experimental set-up of
the experiments carried out to test the model, while Sec-
tion 5 reports on their results.  Section 6 discusses the
performance of  the DRAMA architecture, as demon-
strated by the experiments of  Sections 3 and 5.  Section
7 concludes this paper with a short summary of  the
main results of  this work.

2  LEARNING MODEL

The development of  the DRAMA architecture was first
inspired from the model of  associative memory pro-
posed by Willshaw (1969), which is an abstract model
of  the hippocampus.  Its development was driven by
our wish to build a control architecture to enable real
time control and learning in a physical autonomous
agent.  In particular, the choice of  using a connectionist
model and especially a Hebbian associative memory was
driven by considerations pertaining to its implementa-
tion on a real robot with limited computational power.
We require 1) fast computation for the system to react
in real-time 2) robustness and adaptability in the face of
varying environmental constraints,1 3) as little built-in
knowledge as possible to keep the system unspecific to
a particular type of  implementation (task, agent or en-
vironment).

2.1  The Willshaw net

The original version of  the Willshaw net was devel-
oped as a model of  biological associative memory
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(Willshaw et al. 1969).  It can be thought of  as a fully-
connected network with symmetrical connections, whose
weights are updated following a basic Hebbian rule, i.e.
only the weights of  connections with co-active nodes
are reinforced.  The patterns consist of  pairs of  input-
output bit-strings.  The patterns are presented as arrays
of  binary (0/1) inputs.  The learning stage begins with
all the weights equal to zero.  When an input-output
pair is presented, for a binary-encoded input, the con-
nection weight or intersection node between two acti-
vated units, i.e. one input and one output node which
are both 1, is updated to 1.  Whenever a weight has
been updated to 1, it will never return to zero.  The
recall of  a memorized pattern is done by counting the
positive connection weights leading to each output unit.
An input pattern is presented to the net.  For each out-
put column, the number of  positive connection weights
for each corresponding input line are counted.  The
output nodes which have a number of  positive connec-
tion weights greater than or equal to the number of
active inputs are activated.

The Willshaw net works very badly with noisy data
because the net has no way to distinguish nodes that
have been activated erroneously by noisy data from the
correct ones.  Graham and Willshaw (1995) investigate
different alternatives to the original retrieval function to
improve the model capacity in the face of  noisy data or
sparse connectivity.  They show that knowing the exact
value of  the unit usage, that is the frequency of  activa-
tion of  a connection or unit node during pattern stor-
age, would greatly improve the robustness of  the archi-
tecture.  However, because they model the functioning
of the human neural system, they could not assume that
the biological network would have this information.  In
contrast, our concern is to define an artificial architec-
ture of  associative memory for robotic applications with-
out necessarily a biological plausibility.  Its robustness
is an important criterion and to improve it, we defined
in (Billard, 1996) an update rule for the connection pa-
rameter so that an exact record of the connection us-
age, that is, of  the frequency of  correlated activation of
any two units, is kept.  We call this parameter a confi-
dence factor.  The model was similar to Willshaw�s be-
cause it kept the basic principle of  the training and re-
trieval algorithms of  the original model.  This resulted
in a statistical type of  network whose functioning was a
mixture of  the classical Hebbian network and the
Willshaw network.  Note that the Willshaw network was
originally derived from Hebbian network.  For a full
discussion of its functioning and implementation, the
reader may refer to (Billard, 1996).

The new extension we describe here adds recurrent
connections to each of  the nodes of  the network, in
order to make correlations between delayed and simul-

taneous occurrences of  different input patterns.  The
uniform structure of  the original network is changed
for a fully recurrent, non symmetrical network, whose
connections are associated with two weight parameters,
recording separately the spatial and temporal features
of  the training patterns.  As in the Willshaw model, a
one-time-step training algorithm is used for updating
the parameters, based on Hebbian rules, and a winner-
take-all algorithm is used for retrieval of  the unit activ-
ity.  The resulting model is a simple version of  a recur-
rent neural network (RNN) (as compared with a RNN
using back-propagation and with hidden layers) that
satisfies our basic requirements, namely fast computa-
tion for real time functioning and temporal associative
learning capabilities.  In Section 6, we discuss in more
detail the differences between our present model and
other RNN models.

This section presents the complete extended version
we have developed from the original Willshaw model.
It is organized as follows: we first give a brief  overview
of  the model functioning for controlling learning and
behavior of  robotic agents (in Section 4.3, we give a
detailed description of  the implementation of  the ar-
chitecture for the experiments we report here).  We then
give the mathematics of  the DRAMA architecture.

2.2  Control and learning process

The DRAMA architecture provides a general control
architecture framework for autonomous agents.  Since
the model�s implementation was grounded in robotics
experiments, our description of  it will contain notions
such as actuators or sensor systems.  Actuators are, in
the experiments, the motors and a radio emitter.  Sen-
sors are proprioceptive (an inclination sensor, an en-
ergy level checker and a compass) and exteroceptive (light
and infra-red detectors, whiskers and bumpers).  By ex-
tension, we will use the term sensor system for both
sensor and actuator systems when differentiating be-
tween them is unnecessary, i.e. when processing of  their
information is independent of  the type of  system that
provided it.

Figure 1 shows a schematic representation of  the
model, i.e. how the sensory information is processed
through the DRAMA architecture, either for learning
or for activating the actuators outputs.  The structure
of  the system is composed of  two parts: a preprocess-
ing module of  the data for event recognition and the
DRAMA architecture.  At each processing cycle, the
sensor-actuator vector state is measured and its infor-
mation processed through the event detector modules
associated with each sensory system.  Sensor-actuator
inputs are presented as arrays of  binary data (bit-strings)
of  different length for each system.  Information from
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each sensor system is treated separately by each event
detector module and, thus, an event is determined dif-
ferently for each system.  Each sensor is represented as
a box with n input units, where the number of  units
associated with a sensor can vary from one sensor to
another.  When a variation in one sensor or actuator
input has been measured (event), the novel information
is forwarded to the associative architecture (DRAMA)
to be correlated with all simultaneous and previously
recorded events in other sensor-actuator systems.
DRAMA is a fully recurrent neural network.  Its recur-
rent structure provides a short term memory of  the
measurements.  Long term memory is obtained by up-
dating the internal connections following Hebbian rules.
Sensory systems A, B, and C in Figure 1 could be inter-
preted e.g. as the motor, compass, and radio systems of
the robots.  In the experiments reported in Section 5,
the radio signals are associated with different compass
states, thus providing the agent with a �vocabulary� (with
different �words� defined by different radio encodings)
with which to express its direction of  movement.  The
robot�s actions are determined by retrieving the activity
on the network connections to the actuators given a
particular sensor-actuator state and inverting this into,
e.g. motor speed.

Note that, in a bidirectional associative memory, such
as DRAMA, the notions of  input and output are inter-
changeable.  They refer to the direction of  retrieval of
the associations.  Thus, sensor and actuator informa-
tion can be either input or output depending on whether
the information is the trigger or the result of  the re-
trieval.  For instance, the actuator state is a DRAMA
output when it has been determined by retrieval of  the
sensor to actuator association (control of  the robot�s
actions) and a DRAMA input when its information is

used to calculate the sensor state (prediction of the
robot�s perceptions).

2.3  Data encoding

As mentioned previously, a sensor-actuator state is en-
coded as a bit-string that is composed of a set of smaller
bit-strings of  different length, one bit-string for each
sensory system.  As we discuss in Section 3.1, the model
capacity decreases importantly when the pattern
encodings overlap.  Thus, in the experiments, we tried
to encode all sensory information as orthogonal pat-
terns, when this was possible.  For example, informa-
tion provided by the compass was encoded in a bit-
string of  length 8, where each bit would correspond to
one of  the 8 quadrants.  Bit 1 corresponds to angle
between 0 and 45 degrees, bit 2 to angle between 45
and 90, etc.  Thus, each compass measurement would
be represented by a pattern with one single bit activated.
Such a representation of  the data serves as a first classi-
fication of  the sensory information into subclasses.

2.4  Event recognition

There is one event detector module per sensor.  Each mod-
ule receives n input units and outputs to n associated
units in the DRAMA architecture, where n is the num-
ber of  units of  the particular sensor (see Figure 2).  The
neuronal representation of  the internal structure of  the
module is given in Figure 2.  Each input unit is con-
nected to one memory unit, one output unit and to a threshold
unit.  Output )(ty m

i  of  the memory unit i at time t is

simply the value x
i
 of  the input unit i at time t-1,

( )1)( −= txty i
m
i .  Output th

iy of the threshold unit is

the result of the function ( )Hx ,θ  applied onto the dif-

ference between the input units and memory units out-

puts: ( )∑ −= =
n
i

m
ii

th
i Htytxty 1 ,)()()( θ , where the func-

tion ( )Hx ,θ  is a threshold function that outputs 1 when
x >= H.  Finally, the state of  the output unit y

i
(t) is

calculated as follows:

The threshold H fixes the minimal number of  unit in-
versions in the input before activation.  For example, if
H = 1, the threshold unit fires as soon as one input unit
has changed from 0 to 1 and the output unit outputs 1

(DRAMA Architecture)
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Figure 1.  Schema of  the robot�s control system, using
the DRAMA architecture.
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if  it receives an input value x
i
(t) equal to 1, otherwise 0.

The output vector is then equal to the input vector, once
the threshold unit fires.  In short, the output vector of
the event detector is either equal to the input vector, if
this is sufficiently different from the previous input (rela-
tive to the threshold of  minimal variation), or a vector
zero.  So the result of  this is that event units detect only

10 →  changes in the unit activation (and not the re-
verse).  Note that, when using an orthogonal encoding
for the sensor information, the event detector will be
non zero only for H <= 1.

2.5  Associative module (DRAMA)

The DRAMA architecture consists of  a network com-
posed of  ∑ =

n
i im1  units, where n is the number of  sen-

sors of  the system and m is the number of  input units
associated with each sensor, different for each sensor.
It is a fully connected recurrent network with non-sym-
metrical connections, i.e. each unit is connected with all
other units in the network and with itself  (self-recur-
rent connections).  Each unit also receives input from
one output connection of  the event recognition mod-
ule.  There are no hidden units.  Note that, in the ro-
botic experiments, the network is fully connected at the
level of  the sensory systems, that is all units i in sensor
k are connected with all units j in sensor ( )kll ≠ ; how-
ever, units inside the same sensory system are not inter-
connected (see Figure 3).  This was done in order to
save the computation cost when running the system on-
line, by reducing the size of  the weight matrixes and the
number of  operations for training and retrieval of  the
network (connections among units inside the same sen-
sor system would not have improved the learning per-
formance in these experiments, as most patterns inside

the same system were orthogonal and thus inside con-
nections would not be updated).  In the following, we
present the equations of  the network for the general
case, in which all units are interconnected.  In Section 3,
we analyze the network performance through numeri-
cal simulations, using a fully connected network.

Similarly to time-delay neural networks (Day & Dav-
enport, 1993; Lin et al., 1993) each connection in the
DRAMA network has two parameters associated with
it instead of  one: a time parameter (tp) and a confidence
factor (cf) (see Figure 4 left).  Time parameters and con-
fidence factors are positive numbers (real numbers in
the simulation and integers in the physical implementa-
tions).  They record respectively the time delay between
and the frequency of  two units co-activation.

2.5.1  Unit activation function

Output y
i
(t) of unit i at time t is a function of its input

x
i
(t) at time t, its output y

i
(t-1) at time t-1 and the outputs

y
j
(t-1) at time t-1 of all other units j (see Figure 4 right).

It is a real number whose value is comprised between 0
and 1.  The equation is given in 2.  Output of  unit i is
equal to the normalized sum of  its input activation, its
previous output activation decreased by a factor tp

ii 
and

the sum of  activation of  other winning units, that is
units which have passed the conditions encapsulated by
the function G.

where F , the transfer function, is the identity function
for input value less than 1 and saturates to 1 for value
greater than 1, F(x) = x  if  1≤x , otherwise F(x) = 1,

Output to DRAMA Architecture

Sensor binary input

1/0 1/0 1/0

Input units

Memory units

Threshold unit

Output units

Figure 2.  Event detector module.
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Figure 3. The DRAMA architecture.
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and G is the retrieving function whose equation is given
below in Equation 3 and explained in the following para-
graph.  The indices notation used in the equations should
be interpreted as follows: cf

ji
 is the confidence factor of

the connection leading from unit j to unit i.

2.5.2  Retrieval

When one input unit is activated, its activation is
propagated through the internal connections of  the net-
work to all other units of  the network.  Unit i becomes
active, i.e. y

i
= 1 under the effect of  activation of  unit j

if function G applied on the output of unit j in Equa-
tion (2) has value 1 for any unit j.  The retrieving func-
tion G depends on the value of  the connections param-
eters tp

ji 
and cf

ji
 and the output y

j 
of  unit j and is defined

as follows:

where max
k ( )jicf  is the maximal value of  confidence

factor of  all the connections between activated units j
and unit i, which satisfy the temporal condition encoded
in A(tp

ji 
).  The function ( )Hx ,θ  is a threshold function

that outputs 1 when x >= H.  The output of  function
G is equal to 1 when both A and B terms are equal to 1,
otherwise it is zero.  The temporal and spatial condi-
tions represented by the A and B terms can be para-
phrased as follows: 1) A(tp

ji 
) = 1 if  the time delay for

which the activation of  unit j has been memorized be-
fore being correlated to the activation of  unit i (this
time delay is encoded in the value of  y

j
(t), which de-

creases linearly with time when no new activation oc-
curs, see short term memory paragraph) is equal to the time
encoded in the time parameter tp

ji
 within an interval

error e.  2) B(cf
ji 
) = 1 if  the confidence factors cf

ji 
 asso-

ciated with the connection between one activated unit  j
and unit i, which satisfies the condition A(tp

ji 
) = 1, is

greater than or equal to 1/T times the maximum confi-
dence factor of  other activated connections,

( )jiyj cf0max > .  The effect of  the two terms A(tp
ji 
) and

B(cf
ji 
), and in particular of  the threshold T and e, on the

memory capacity will be discussed further in Sections
3.1 and 5.3 and an algorithm for calculating the param-
eters T and e on-line will be presented in Section 3.1.

Figure 5 shows a schematic representation of  the
propagation of  unit activity along the network connec-
tion.  The unit j activity passes the first filter on time,
represented by the factor A in Equation 3, when it has
been activated for a time tp

ji
.  It then activates unit i at

time tp, if  it passes the threshold represented by the
term B (winner-take-all mechanism on the cf connec-
tion parameters).

2.5.3  Short Term memory

The self-connections on the units of  the network pro-
vide a short-term memory of  each unit activation.  If
unit i receives no external activation from its input
(x

i
 = 0) or other units� outputs 0=≠ijy , then its output

activity is equal to )1()()( −⋅= tytpty iiii , that is it de-
creases by a ratio proportional to its temporal param-
eter tp

ii
.  Its value returns to 0 when the maximal deci-

mal capacity of  the system has been reached or, before
that, if  a limit of  number of  processing cycles has been
set for keeping a record of  the unit activity (that is fix-
ing the duration of  short-term memory).  Therefore,
once information from a sensor or actuator has trig-
gered the event detector, it is then further memorized
for a period M (fixed by the decrease of  activation along
the self-connections) during which it can be associated
with any incoming event in any other sensor system.
This results in a system capable of  associating events
delayed in time with a maximal time delay equal to the
length of  the short-term memory (STM), i.e. M.  The
effect of  the value of  M on the success of  the learning
in robotic experiments was discussed earlier in (Billard
& Dautenhahn, 1998).  An algorithm for its update on-
line is evaluated in Section 3.4.

In summary, the output y
i
 of  a unit i in the network

takes values between 0 and 1: y
i
(t) = 1 when (i) an event

has just been detected (x
i
(t) = 1) or (ii) when the sum of

activation provided by the other units is sufficient to
pass the two thresholds of  time and confidence factor,
represented by the G function.  A value inferior to 1
represents the memory of  a past full activation (value
1). For example,

Figure 4.  Left: Bidirectional connectivity of  two network
units.  Right: One unit connectivity.
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 7290.019.0)'()()( 3' =⋅=−⋅= − ttytpty i
tt

iii

means that unit i has been activated since 3 time steps
(when the decrease rate of  the activation along the re-
current connections is equal to 0. 9).  Note that, in the
experiments, all tp

ii
 are set equal to the same value, thus

providing the same memory duration for all units.
Coming back to the complete control architecture,

composed of  the event detector module and the
DRAMA module, which we presented in Section 2.2,
we show in Figure 6 the transcription of  a 4-time steps
sequence of  a 3-bits sensor input into the correspond-
ing event detector output and DRAMA units output.
We choose a ratio of  decrease activation in the DRAMA
unit self  connection equal to 0.5.  The diagrams on the
right show the shape of  unit activity for sensor, event
detector and DRAMA units (straight line is the activity
of  unit 1 and dotted line is the activity of  unit 3).

2.5.4 Training

When two patterns are presented to the associative
memory, the connections between co-active units are
updated; on the one hand, the confidence factors are
incremented to represent the structural correlation be-
tween the input patterns and, on the other hand, the
time parameters are updated to record the temporal de-
lay between the two patterns� occurrences.  The con-
nection parameters are asymmetric and, thus, associa-
tions are directional.  Training is dynamic and occurs
each time the output of  one event detector module is
activated.  Each input pattern is memorized for a period
of M cycles through the self-connections (see explana-
tion in Section 2.5.3) and is correlated with all other
patterns appearing during this period.  Time parameters
and confidence factors are updated following Hebbian
rules: once a unit i is activated, i.e. its output is maxi-
mal: yi

= 1 (recall that the unit�s output takes values be-
tween 0 and 1), afferent connections to this unit from
previously or simultaneously activated units j, i.e. those
for which y

j
 > 0, are updated.  Only the connections

directed to (and not from) the newly activated unit i are
updated.  Connections leading to the most recently acti-
vated unit are updated and this only during the first

cycle in which this unit is fully activated.  The update
rules for each parameter are given in Equations 4 and 5.

The time parameter tp records the time delay between
the activation of  the two units which are linked by the
connections; the short-term memory mechanism causes
all y

j 
values to decrease at each cycle by the same factor,

as explained in short term memory paragraph, thus the ra-
tio between y

i 
and y

j
 gives a notion of  their relative delay

of  activation.  The time parameter value is calculated as
the arithmetic mean value of  time delay over all training
data and its value is between (tp

ii
)M and 1; the closer the

two events, the bigger the time parameter; tpij= 1 when
the two events are simultaneous.

The confidence factor keeps a memory of  the fre-
quency of  a pattern�s occurrence.  Its value is
incremented at each updating step by a fixed quantity
a.2  In the experiment, the increase of the confidence
factor is linear following a fixed slope of  value a.3  At
the beginning of  the experiment, the values of  confi-
dence factors and time parameters are set to �0� for all
connections apart from the self-recurrent ones, which
have predefined values for these parameters determin-
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Figure 5.  Propagation of  the unit activity along the
network connections.
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ing the duration of  short-term memory of  the unit acti-
vation.

In Figure 7 left, we show an example of  association
between unit 0 and 1.  Unit 0 is activated at time 0,
while unit 1 is activated at time 3.  Association is done
at time three.  The parameters of  the connection from
unit 0 (last activated) to unit 1 (most recently activated),
i.e. cf

01
and tp

01
, are updated.  Before association, the value

of  cf
01

and tp
01 

are both zero (no correlation yet).  After
association, cf

01
= a, where a is the increase factor of

Equation 5, and 125.0
1

125.0
01 ==tp , where 0.125 is the

activity level of  unit 0 output after three decrease steps
(the ratio of decrease along the self connection is equal
to 0.5).  On the right hand side of  Figure 7, we show
retrieval of  activity of  unit 1 after activating unit 0 at
time 1.  Following condition of  factor A of  Equation 3,
unit 1 is reactivated at time 3 minus e, which is the error
on time delay between the two unit co-activation.

3  MODEL CAPACITY AND
PERFORMANCES

The DRAMA architecture functions as an associative
memory, which associates pairs of  input-output patterns
with delayed time of  occurrence, leading to learning of
time series.  It has a fully recurrent structure, which
provides a short-term memory of  unit activation.  The
network�s input patterns are thus recorded for a short
delay, during which they are associated with any new
input pattern incoming during this delay.  The time de-
lay between each pattern occurrence and the structure
of  unit activity of  each pattern are learned separately in
the two parameters attached to each network connec-
tion, namely the time parameter and the confidence factor.
Once an input-output pair has been learned, presenta-
tion of  the input to the net retrieves the output after the
recorded time delay.  Retrieval of  the output units� ac-
tivity results from a winner-take-all mechanism applied
to the spatial and temporal structure of  the pattern of
input units� activity.

3.1 Capacity for storage of  binary patterns
without time

If  the time delay between input and output patterns is
constant, then the term A in Equation 3 is always equal
to 1, and thus the retrieval function G depends only on
the term B, that is, it applies only to the spatial structure
of  input units� activity.  In this case, the model is very
similar to the Willshaw network.  Correlated occurrences
of  two input patterns are distinguished from randomly

generated ones by keeping a record of  the frequency of
correlated activation of  these patterns� units (increment
of the confidence factor (cf) parameter of the connec-
tion).  A pair of  input-output patterns is said to be cor-
related once the two patterns have been associated more
often than a minimal noise threshold, corresponding to
the threshold T of  Equation 3 in our case.  Correct
retrieval of  each pattern of  the pair, given the second
one, depends on the proportion, relative to the above
threshold, of  correct over noisy associations each pat-
tern has with other patterns.

Following Graham & Willshaw (1996), we define the
network capacity as the number of  patterns that can be
stored before there is one bit in error in the recall pat-
tern output.  When data are presented as binary inputs,
as it is the case in our model, the proportion of  active
units overlapping between the training patterns is an
important factor that limits the capacity of  the associa-
tive memory (as discussed by Buckingham & Willshaw,
1992; Graham & Willshaw, 1996) for the Willshaw net-
work).  In Billard (1998), we evaluated the DRAMA
maximal capacity to be equal to the number of  units of
the network, that is of  order one of  the network size.
This result followed from the observation that the net-
work could be trained on any input-output pairs, as long
as no two pairs would overlap on both their input and
output patterns.  In other words, each unit can be acti-
vated only once in all pattern inputs (or outputs).  It
follows that there are at most N possible input-output
pairs of  patterns.
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Figure 7.  Example of  association between unit 0 and
unit 1.
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As pointed out by (Buckingham & Willshaw, 1992;

Graham & Willshaw, 1995), the capacity of  a binary
Hebbian network based on a winner-take-all retrieval
mechanism, such as DRAMA, depends on choosing
correctly the threshold of  activation, which, in our case,
are the thresholds T and e of Equation 3.  T should be
sufficiently high to discard correlations, i.e. connections
update, due to spurious unit activity, while sufficiently
low to allow retrieval of  patterns with different frequency
of  activation, i.e. different values of  confidence factor
for connections between patterns� activated units.  e
should be sufficiently large to include the maximal varia-
tion of  time delay between two units co-activation, while
sufficiently small to allow precise prediction of  time of
unit activation.

Estimating correctly the percentage of  noise (spuri-
ous unit activity) in the system, and thus the correct
values for T and e, before learning is often not possible,
especially in unsupervised learning of  robotic experi-
ments.  In Billard (1998), we presented an algorithm to
calculate the values of  these thresholds simultaneously
to training the network.  The idea was to use the infor-
mation on the ratio of  spurious/relevant units activa-
tion, reflected by the current values of  the network con-
nection parameters.  The calculation was based on the
assumption that incorrectly updated connections should
have the lowest confidence factor values (not frequently
updated) and the most important variation of  time pa-
rameter values (no regularity in the time delay of  units
co-activation).  The thresholds values were calculated
based on a Gaussian estimation of the distribution of
the parameter values of  correct and incorrect connec-
tions, following Equations 6 and 7.

where max{yi>0}
(cf

ij
), mean

{yi>0}
(cf

ij
) and min

{yi>0}
(cf

ij
) are the

maximum, mean, and minimum values of  confidence
factor (or of  time parameter for { }( )ijy cfmean

i 0>  over all

activated units at the time of  retrieval.  e
ij
 in Equation 7

represents the maximal variation of  the factor tp
ij
 for all

activated units i, as recorded during training.
Figure 8 shows the result of  numerical simulations,

which evaluate the network recall performance, i.e. the
overlap between recalled and trained patterns (mean
value over all patterns), for a network of  20 units when
trained at the maximum of  its capacity and when vary-
ing the percentage of  noise, i.e. the frequency of  ran-
dom activation of  any unit during training.  An overlap
of  1 means that all patterns are perfectly retrieved.  We
compare the recall performance using three threshold
strategies: (1) no threshold on time parameter tp (i.e. no
factor A in Equation 3) and a fixed threshold on cf, T =
2; (2) no threshold on time and time variant threshold
on cf, T = T

a
 (Equation 6); (3) time variant thresholds

on cf  and tp, T = T
a 
, e = e(tp) (Equation 7).  Results

show that pattern recall is perfect up to a proportion of
30% of  noise; otherwise the performance decreases up
to a minimal proportion of  90% percent overlap be-
tween retrieved and training data with the third strategy.
The performance is in average better with the time vari-
ant strategies, as it allows better recall with a bigger
proportion of  noise.  It is especially better when intro-
ducing the threshold on time.

Capacity for storage of  binary patterns with time

Note that the introduction of the time parameter im-
proves greatly the capacity of  the network, as compared
with the case when one uses only the confidence factor
parameter (see discussion of  previous paragraph).  In
(Billard, 1998), we determined the network capacity to
be equal to )1( −⋅ NN , where N is the number of  net-
work units.  That is, the maximal capacity of  the net-
work, given the complete retrieval function G, see Equa-
tion 3, is of  order two of  the network size.  The reason-
ing was based on the observation that the supplemen-
tary information given by the time parameter allowed to
distinguish between patterns involving the same unit
pairing.  In other words, each unit of  the network can
now be paired with all other units apart from itself  (while
in the previous case, it could be paired only with one
other unit).

3.2  Space and time efficiency

An important characteristic of  the DRAMA architec-
ture is that it is computationally fast and inexpensive.
We here evaluate more formally what we mean by this.

Training of  the network requires a number of  time
steps of  computation equal to two times the number of
connections to update the connection parameters cf and
tp.  This is then faster than usual backpropagation algo-
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rithm which requires n times the number of  connec-
tions, where n is the number of  steps needed to reduce
the error to a minimum and is often bigger than 2.
Retrieval of  unit activity (Equation 2) is also relatively
fast, as it does not require calculation of  derivatives,
which needs several time steps of  computation.  Re-
trieval requires summing twice over all units in order to
first calculate the mean, maximal and minimal values
of  the cf and tp parameters which determine the values
of  threshold factors and to then sum the vote for acti-
vation of  each unit.

Good time efficiency of  a neural network model is
often counterbalanced by poor space efficiency.  The
decrease of  the model�s capacity in front of  overlap-
ping pattern encoding leads to a poor use of  the space
efficiency (see Section 3.1).  The maximal number of
patterns, onto which a network of  N units can be trained,
is equal to N2.  This number is much inferior to the
maximal number of  combinations which can be formed
with N units, which is equal to N!.  Space efficiency is
also determined by the number of  global variables which
are used by the network.  The DRAMA architecture
requires space for six times the number of  connections
to store the three parameters associated to all connec-
tions of  the network.  This is a higher number of  global
variables than that required by most NN, which use only
one parameter per connection.

3.3  Sequence learning

In the previous section, we discussed the model perfor-
mance at associating pairs of  input-output patterns.  We
consider here the model performance at learning se-
quences of  more than two patterns.  For this discus-

sion, we consider a variation of  the DRAMA retrieval
algorithm described in Section 2.5.2.  In addition to the
two conditions on the confidence factor and time pa-
rameters encapsulated in the function G in Equation 3,
we add a third condition which requires that all units
activated at the time of  retrieval agree on the activation
of  the output unit for the latter to be activated.  This
condition is similar to that of  the winner-take-all algo-
rithm used in the original version of  the Willshaw net-
work (see Section 2.1).

The present version allows us to point out the two
following facts:  1) the duration of  the sequence that
can be learned by the network is not restricted to that
of  the short-term memory M, as by transitivity of  the
associations a sequence of  n steps can be derived from
the association of  shorter consecutive sequences; 2) the
sequence is not restricted to include only strictly differ-
ent patterns, but can be composed of  several occur-
rences of  the same pattern(s) (e.g. the sequence
ABCDEFCDG with repetition of  the subpattern CD).
This second result is due to the third condition, which
requires the agreement of  all voting units for the activa-
tion of  the output pattern.  Let us consider the sequence
example ABCDEFCDG, with the following timing

)8()7()6()5(

)4()3()2()1()(

+→+→+→+
→+→+→+→+→

tGtDtCtF

tEtDtCtBtA

and a short-term memory duration equal to 3 steps, such
that the following associations are being made among
others: GFEB →→ , .  Activation of  patterns E and
G after activation of  the subgroup CD is determined by
the vote of  patterns B and F respectively, in addition to
the votes of  C and D.

Correct retrieval of  sequences which loop on one of
the patterns or on a subgroup of  patterns creates spe-
cific conditions for the patterns� structure and timing
of  the sequence.  Let the training sequence be of  the
form ABCDEFCDG, then learning is successful if:

1.  The memory duration M is long enough to allow
association between the patterns preceding and fol-
lowing the subsequence on which the sequence
loop (i.e. B, E and F , G in the example).

2.  If  the number of  occurrences of  the same
subpattern in the sequence is inferior to the
thresholdon confidence factors T so that it be-
comes activated: i.e. in the example if  N

CD
=2 < T,

so that  T
cf

cfcfcf

CD

DECEBE =>
==

.

3.  If  the pattern or subgroup of  patterns on which
the sequence loops does not occur at the begin-
ning of  the sequence, as a pattern previous to the
loop is necessary to determine the activation of
the correct subsequent pattern.
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Figure 8.  Recall performances of  a 10x10 units network
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strategies.
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Note that learning a sequence with an internal loop

is equivalent to learning two sequences with a common
subpattern (e.g. ABCDF and FCDG).  Previous results
imply then that the number of  sequences that can be
learned is not restricted, as long as the structure and
temporal pattern of  occurrence satisfy the previously
mentioned conditions on M, e and T .

3.4  Learning algorithm for the short-term
memory parameter

The previous sections pointed out the importance of
correctly choosing the values for the three learning pa-
rameters of  our system, namely T , M and e and deter-
mined bounds for these values relative to the structure
of  the training patterns and the percentage of  noise in
the system.  However, as mentioned earlier, it is seldom
the case that we can access this information before learn-
ing.  Therefore it is desirable to define a learning algo-
rithm for tuning these parameters on-line, that is to-
gether with the associative learning process.  In Section
3.1, we gave a possible example of  how to calculate on-
line the values of  the thresholds T and e.  M can also be
updated on-line according to the following algorithm,

where p
i
 is the predicted activation of  unit i.  M is up-

dated only once the error on time e has settled to a small
value.  M is either increased or decreased depending on
whether there has been more unpredicted unit activa-
tions (a zero activity prediction while measuring a unit
activation) than incorrectly predicted unit activations (a
non zero activity prediction while measuring no unit
activation).

Performance of  the learning algorithm was evalu-
ated through simulation for learning two types of  se-
quences, namely ABCDE and ABCDEFCDG, for dif-
ferent noise proportions (the variation of  the time delay
of  activation of  each pattern) and with different start-
ing value for the memory duration (10 times lower or
bigger than the correct one).  Results showed that the
algorithm had converged after less than 50 trials up to
40% and 20% (by respect to each sequence) of  noise.
Statistical fluctuations around the correct value of  M
were observed when learning the sequence
ABCDEFCDG with more than 20% of  noise.  The top
of  Figure 9 shows the variation of  the parameters e and
M and the error (number of  incorrect predictions) while
learning the sequence ABCDEFCDG with 20% of  noise
(variation in the timing of  pattern occurrence) in the

input.  Convergence of  the parameter values is achieved
after 36 presentations of  the sequence, that is the error
is equal to zero.  The time threshold has settled at a
minimal value of  2, which is equal to the maximal varia-
tion in the timing of  pattern occurrence (noise), and the
value of  the short-term memory has settled to a value
comprised between the minimal and maximal value re-
quired by the conditions of  Section 3.3.  Figure 9 bot-
tom shows superposed plots of  the retrieved (straight
line) and training (dotted line) pattern activation when
learning the sequence ABCDEFCDG under 20% of
noise.  The figure shows snapshots of  (left) the three
first cycles of  the training, i.e. before convergence, and
(right) the 37th training cycle, i.e. after convergence.  The
retrieved pattern activity begins only at the second cycle
for pattern C and is incorrect in the third cycle as pat-
terns E and G are activated twice instead of  once.  Re-
trieved and training pattern activity match for all pat-
terns, apart from A, in the 37th cycle.  Pattern A is the
activation pattern for retrieval of  the series; pattern A is
not retrieved as it has not been correlated to any other
pattern (the time lag between the end of  one series, G
pattern, and beginning of  a new one, A pattern, is too
long for A and G to be associated).  The retrieved acti-
vations of  patterns B, D, E, F and G occur slightly ear-
lier than the training ones, in the margin of  the 20% of
noise (the variation of  the time delay of  activation of
each pattern).

3.5  Summary

The principal properties of  the DRAMA architecture
can be summarized as follows:

Model structure and functioning

1) It consists of  a fully connected network with self-
connections on each unit and no hidden units.  2) Each
connection in the network is associated with two pa-
rameters: a time parameter and a confidence factor.  3)
The structure of  the network is dynamically updated
each time a unit is activated by an external input (see
Table 1 for a complete description of  the learning algo-
rithm).  4) Time parameters and confidence factors are
updated following Hebbian rules, providing an associa-
tive type of  learning; the time parameters record the
time delay between units� activation while the confidence
factors keep a memory of  the frequency of  units� co-
activation.  5) The self-connections on the units pro-
vide a short-term memory of  the activation of  the unit;
the duration of  the memory is fixed by the ratio of  de-
crease of  the activation along the recurrent connection.
6) The short-term memory of  unit activation enables
associations between patterns of  unit activation that have

(8)      )(then1.0 ∑ −+=⋅≤
i

ii ypMMMeIf



46 BILLARD & HAYES

been delayed in time, which leads, by transitivity of  the
associations, to learning sequences of  patterns of  unit
activation.  7) Data retrieval depends on the value of
the time parameters and confidence factors associated
with the connections, which act as separate filters on
the spatial and temporal features of the input; output

units are activated when the two following conditions
are satisfied: (i) the time delay since the input�s time of
occurrence is equal to the memorized temporal correla-
tion and (ii) the confidence factor values of  all active
input units are greater than a fixed percentage of  the
maximal value of  confidence factor of  all active units
in the network at the time of  retrieval.

Model performances

1) The capacity of  the network decreases importantly
with overlapping encoding of  the data; an orthogonal
encoding is then preferable when possible.  This leads,
however, to a poor space efficiency.  The maximal ca-
pacity of  the network of  order 1 of  its size for storing
pairs of  input-output patterns with fixed delay and of
order 2 of  its size for storing pairs with variable time
delay.  2) Using the full capacity of  the network, re-
trieval performance is perfect up to a proportion of  30%
of  noisy data; otherwise the performance decreases up
to a minimal proportion of  90% overlap between re-
trieved and training data.  3) The model can learn se-
quences of  pattern activation of  the following types: (i)
ABCDEF , i.e. a n steps sequence whose duration can
be longer than the short-term memory, as it can be de-
rived, by transitivity of  the associations, from the asso-
ciation of  shorter consecutive sequences (ii) a sequence
composed of  several occurrences of  the same pattern(s)
(e.g. ABCDEFCDG with repetition of  the subpattern
CD or ABBBCD with three occurrences of  the pattern
B).  4) Retrieval depends on correctly choosing the val-
ues of  the three learning parameters, namely short-term
memory duration, threshold on time parameter and
threshold on confidence factor parameter; these values
depends on the proportion of  noise (imprecise sequence
timing and spurious unit activation) and on the sequence
type; theoretical boundaries are determined for these
parameters.  5) An algorithm for tuning the learning
parameters simultaneously to updating the network con-
nection parameters is defined and validated through nu-
merical simulations.  6) Finally, because training uses a
one time-step algorithm, the model is computationally

150 200 250 300 350 400 450
A

B

C

D

E

F

G

Training cycles 2 and 3

Nm of processing cycles

pa
tte

rn
s

5400 5420 5440 5460 5480 5500
A

B

C

D

E

F

G

Training cycle 37

Nm of processing cycles

pa
tte

rn
s

Figure 9.  Top: Variation of  short-term memory, error
and time threshold during the training of  the sequence
ABCDEFCDG.  Bottom: Superposed plots of  the
retrieved (straight line) and training (dotted line) pattern
activation along the training; the figure shows snapshots
of  (left) the three first cycles of  the training and (right)
the 37th training cycle, that is after convergence.

0 10 20 30 40 50 60
0

2

4

6

Pr
ed

ic
tio

n 
er

ro
r

0 10 20 30 40 50 60
0

50

100

Min

Max

M
em

or
y 

va
ria

tio
n

0 10 20 30 40 50 60
0

20

40

60

Ti
m

e 
th

re
sh

ol
d

% Noise

Teaching Number

Table 1.  Training algorithm

petS noitcurtsnI
:1 tupninatneserP I gniwollofrotcetedtnevegnidnopserrocehtfotuptuoehtetupmoC.metsysehtot

.1noitauqE

:2 tuptuoetupmoC y
i

stinullafo I .2noitauqEotgnidrocca,krowtenAMARDehtfo

:3 fI:krowtenAMARDehtfosretemarapnoitcennocehtetadpU ∃ i dna j y.t.s,)krowtenAMARDehtfostinu(
i

ydna1=
j

fcsretemarapehtetadpu,0>
ij

ptdna
ij

tinumorfnoitcennocehtfo j ot i 5snoitauqEotgnidrocca
.4dna

:4 sretemarapgninraelehtetadpU T, e dna M .8dna,7,6snoitauqEotgnidrocca



DRAMA 47
fast and inexpensive, which allows its implementation
for real time computation and on-line learning in a ba-
sic hardware system.  We describe such an implementa-
tion in the following two sections.

4  MODEL APPLICATION TO ROBOTICS
EXPERIMENTS

The DRAMA architecture provides a general framework
of  control architecture for an autonomous robot.  It
allows on-line learning of  spatio-temporal regularities
across the multiple sensor-actuator modalities of  the
robot, that is learning of  time series of  sensor-actuator,
actuator-sensor, sensorsensor and actuator-actuator in-
puts.  It provides dynamic control of  the robot�s behav-
ior through retrieval of  learned or predefined sensor-
actuator sequences.  Basic behaviors can be determined
by fixing the connections of  the DRAMA network be-
tween specific sensor and actuator systems of  the ro-
bot.  The DRAMA architecture is general in the sense
that its structure and functioning make no prerequisites
on the type of  robots, i.e. the robot�s sensors, actuators
and body structure, which should be used.

We report here on two sets of  experiments, in which
we study each aspect of  the architecture, namely its
capacity for spatial association across multiple sensor
modalities (first experiment), and its capacity for learn-
ing time series of  sensor stimuli (second experiment).
Experiments are carried out with two autonomous mo-
bile robots, a teacher robot and a learner robot, in both
simulated and physical environments.  Both robots are
controlled by the DRAMA architecture.  Simulation stud-
ies are first carried out in order to determine the feasi-
bility of  the experiments by studying their successes and
failures in a more reliable environment.  Results of  physi-
cal experiments are then compared to that of  simula-
tions.

4.1  The experimental procedure

In the following, we describe the experimental proce-
dures of  each experiment separately.

4.1.1  Labeling landmarks

In the first experiment, the learner robot learns to dis-
tinguish between different objects by attaching to them
different labels, i.e. names.  The robot is taught by a
teacher robot.  Teaching occurs as part of  a teacher-
learner scenario based on an imitative strategy, namely
mutual following of  the two agents4.  While the two
agents wander randomly in the environment, following

each other, the teacher sends signals, i.e. �words�, to de-
scribe its novel perceptions, i.e. recognition of  objects.
The learner attaches a meaning to the teacher�s signals
in terms of  its own perception of  the object�s features.
Teaching is provided by a robot in the simulations and
by a human instructor, who holds a lamp which the
robot follows, in the physical experiment.  Top of  Fig-
ure 10 show a graphical representation of  the simulated
environment and a picture of  the physical one for this
experiment.

The experimental procedure for this experiment con-
sists of  letting the robots wander in the environment
for a given time period.  During its exploration the learner
robot learns to map the environment as a set of  land-
marks, by associating the set of  features representing
each object with a particular location.  The simulated
environment is composed of  three hills and two boxes.
Each object is defined by a unique set of  features: two
of  the hills have the same inclination but different col-
ors, while the third hill has a different inclination but
the same color as the second one.  The two boxes have
different colors but the same shape.  The simulated ro-
bots can perceive the objects� features using light detec-
tors (for the colors), infra-red detectors (for the shape)
and inclination sensors.  Boxes are distinguished from
the walls encircling the arena by their shape, i.e. upper
infra-red detector response signals the box, while the
walls produce a response in only the lower one.  The
robots can also locate the objects in the environment
relative to polar coordinates.  At each processing cycle,
they calculate their position relative to the middle of
the arena in terms of  distance, given by the measure of
an internal energy sensor, and angle, given by the mea-
sure of  a compass.

The physical environment is composed of  two boxes,
which the robots can perceive through the flickering of
side whiskers, and of  one aluminum foil lying on the
ground, which the robots can perceive using light de-
tectors fixed under the chassis.

4.1.2  Learning time series of  perceptions

In the second experiment, the learner robot learns time
series of  sensor measurements, while traveling in a highly
regular environment.  The environment consists of  a
series of  three inter-connected corridors at right angles
from each others (corridors are delimited by walls on
each side).  In the middle of  the second corridor lies an
aluminum plate, which the robot can detect with light
detectors.  Bottom of  Figure 10 show a graphical repre-
sentation of  the simulated environment and a picture
of  the physical one for this experiment.

The experiment consists of  letting the two robots
travel several times across the three corridors.  The two
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robots follow closely each other, the teacher in front.
During a run, the robots travel ten times the series of
corridors.  While traveling along the corridors, the ro-
bots perceive different light and compass measurements;
when crossing over the aluminum plate, the robots per-
ceive an increase of  light intensity measurement in the
light detectors, which they carry underneath its body.
Because the corridors are placed at right angles to each
other, traveling in each corridor corresponds to mea-
suring a compass value, which refers to a different quad-
rant (which we call �South�, �West� and �North�5).

In addition, the learner robot perceives three differ-
ent radio signals, while traveling in each of  the three
corridors.  These signals are sent by the teacher robot;
they represent labels for the two compass measurements
made in first and third corridors (signals �South� and
�North�) and for the increase of  light, measured in the
second corridor when crossing over the aluminum plate

(signal (�Object�).  Assuming that the robots travel in
the corridors with the same average speed from one
circling to the other, we expect the learner robot to per-
ceive the following series of  sensor stimuli when travel-
ing across the three corridors: Radio signal �South� - com-
pass measurement �South� - radio signal �Object� - compass mea-
surement �West� - measurement of  light increase - radio signal
�North� - compass measurement �North�.

4.1.3  Unsupervised learning strategy

In both experiments, only the learner robot is actually
learning.  The teacher robot�s role consists of  1) direct-
ing the learner robot, by the learner following it and 2)
of  teaching the learner robot a vocabulary to label the
objects, by the teacher sending radio signals each time it
encounters an object and by the learner robot attaching
the teacher�s signals to its own perception of  the ob-
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jects.

The teacher robot�s knowledge of  the vocabulary is
predefined, that is correlations between radio signals
and the corresponding objects� features are set-up from
the start in the teacher�s DRAMA network (see explana-
tions of  Section 4.3).  The two robots� following is
mutual and results from phototaxis behavior, as each
robot carries a bright light and light detectors.  When
the robots are sufficiently close to detect each other,
they stop their random wandering and align one behind
the other one (teacher in front).  Then, following one
another, they go on wandering in the environment.  The
following stops only when one robot is distracted, e.g.
when avoiding a complicated set of  obstacles or when
attracted by another bright point in the environment (e.g.
windows).  Each time the teacher robot perceives one
of  the objects (hill, box or aluminum plate), it emits the
corresponding radio signal.  The learner robot then
grounds, i.e. gives meaning to, the teacher�s signals by
associating them with its own observations, that is, its
own sensor measurements.  In the first experiment, the
teacher robot teaches a vocabulary of  five and two words
in the simulation and physical experiment respectively,
one word for each object in the environment.  Each
word is a different radio signal which has to be associ-
ated with the particular sensor combination that de-
scribes the features of  the corresponding objects
(box=color+shape, hill=inclination+color).  In the sec-
ond experiment, the learner robot learns a three words
vocabulary, two words for two different compass mea-
surements (North and South) and one word to label the
aluminum plate of  the second corridor.

While bounded by the following process, learner and
teacher agents are set in a position from which they share
a common set of  perceptions.  They share a similar view
of  the environment (face the same direction) and thus a
similar but not identical (due to different sensor sensi-
tivity) set of  external perceptions.  They also share similar
internal perceptions, as they travel the same path (simi-
lar energy consumption and inclination).  This implicit
similarity in the two agents� perceptions is what enables
the learner to make sense of  the teacher�s words (the
teacher talks only of  what it senses, not aware of  the
learner�s perceptions).  It is thus an unsupervised teach-
ing strategy.  However, because of  the spatial displace-
ment between the two agents due to the following,
teacher and learner�s observations of  the landmarks are
delayed relative to one another.  The follower percep-
tions become similar to the leader�s when the follower
has traveled the distance of  about a body length, that is
when it reaches what was previously the leader�s posi-
tion.  Learning is then successful because the DRAMA
architecture associates not only simultaneous but also
delayed (successive) sensory stimuli.  Observations of

the landmark features are extracted from the continu-
ous flow of  sensor measurements by the event detector
modules (see Section 2.4), as they produce a change in
the robot�s measurements of  inclination, light, infra-red,
compass and energy level sensors.  Each new incoming
sensor information is then memorized for a fixed pe-
riod of  time, which corresponds to traveling about twice
the robot�s body length in the first experiment and one
and a half  corridors� length in the second, during which
it is associated with all events measured in any other
sensor system.  In the experiments, the learner agent
memorizes the teacher�s radio signals (perceived as novel
radio stimulus) which it receives earlier than the corre-
sponding sensor observation and then associates them
with all sensor and actuator events it measures during a
period of  time following the signals� occurrence equal
to the memory duration.

4.2  The set-up

Two autonomous LEGO robots (teacher and learner)
are used for the real experiments.  Each robot is equipped
with one frontal infra-red sensor and bumper to avoid
the obstacles (see pictures in Figure 10 right).  They
also have two sets of  light detectors, one set in the front
(learner) or in the back (teacher) to follow each other
and one set underneath their chassis to detect an alumi-
num-covered region of  the arena.  In addition, they carry
a compass which measures bearings of  45 degrees.  The
range and sensitivity of  the sensors are given in Table 2.
They have a radio transceiver, which is the means of
transmission of  the communication signals.  Each sig-
nal is encoded in one byte with only 1-bit activated (e.g.
�North� = (01000000), �South� = (00100000)).

The arena consists of  a rectangular cage of  2.5m by
2m by 0.5m, in which the robots are continuously re-
charged.  This is analogous to the system used in the
�Dodgem� (bumper cars) game.  Roof  and bottom of
the arena are electrified, creating a potential difference
of  10V between them.  The robots carry a long stick
touching both ends of  the cage from which they receive
the current to power their battery and light bulb.  In
picture 10 (top right), we see the learner robot in front
of  the aluminum covered area, and behind it the box
and cardboard.  In picture 10 (bottom right), we see the
teacher robot followed by the learner robot, managing
the corner between first and second corridor.  We esti-
mate that about 20 to 30% of the sensor measurements
are noisy: 80% of  the radio transmissions are correctly
received (i.e. if  a signal is received, then it is perfect; the
noise corresponds to the case where an emitted signal
has not been received).  The quadrants given by the com-
pass are correctly detected in all cases (we did not ob-
serve any influence of  the magnetic fields produced by
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the motors and the powering of  the cage).  The alumi-
num foil and the boxes are correctly detected in about
90% of  the cases (limited sensitivity of  the light detec-
tors and flickering of  the whiskers).

Simulation studies are carried out in a 2-D simulator,
whose graphical representation is made using the
MATLAB environment.  The simulated environment
consists, in the first experiment, of  a rectangular arena
measuring 500 by 800 units (see Figure 10 top left),
and, in the second experiment, of  a series of  corridors
(Figure 10 bottom left).  In the graphical representation
of  the simulator (Figures 10 left), the robots are repre-
sented as rectangles of  30 by 20 units, a triangle indicat-
ing the front; hills and boxes are represented as big rect-
angles on the sides of the arena and small squares in
the middle respectively.  In Figure 10 (top left), we see
the teacher robot (No 2) followed by the learner robot
(1), moving between hill 2 and 3.  The simulated robots
are provided with color vision (three colors), infra-red
vision to see the walls and detect the boxes, an inclina-
tion sensor to detect the hilly region (which is equiva-
lent to the light detectors underneath the robots� body
in the physical implementation).  They also carry a ra-
dio transceiver to communicate, a compass that mea-
sures bearing of  45 degrees and an energy sensor that
gives a relative measure of  the traveled distance.  The
energy sensor value is incremented, at each cycle, by a
factor proportional to the robot�s speed (note that robot�s
speed varies depending on whether the robot crosses
the plane or a hill, that is, its speed is slowed down or
accelerated when it is climbing up or down the hill).
Infra-red and light detectors are associated with a cone
of  vision of  180 degrees, which is segmented into eight
quadrants.  The measurements of  these sensors are given
by an 8-bit string where each bit corresponds to the
values measured in each of  the eight quadrants (e.g. in-
fra-red=(11000000) stands for an infra-red activation
of  the first two quadrants).  The range of  sensitivity of
the sensors is given in Table 2.

The robots� behaviors are calculated in the simula-
tion by the same routines as used in the physical robots,

that is, there is one network (DRAMA architecture) per
robot and the same retrieving and updating functions
(Equations 2, 4 and 5) are applied sequentially to them
for determining the behavior and learning of  each of
the robots independently.  Code is written in C and is
processed serially.6  In order to produce a more realistic
simulation, the following behavior is made imperfect.
Following is mutual, each agent aligns towards the other
one on the basis of its light measurement.  As often
occurs in reality, an agent is able to determine the posi-
tion of  the other agent in respect to itself  with a preci-
sion of  20 degrees.  Therefore, the alignment of  the
two robots is imprecise, which results in differences
between the two agents� perceptions.  This accounts for
most of  the noise, i.e. incorrect teaching-observation
associations, which occur in the physical experiments.
However, unlike what happens in physical reality, we
did not simulate imprecision of  the sensor measure-
ments nor did we vary the external conditions (intensity
of light or infra-red emissions) in the course of the ex-
periments, an effect that can be observed in the real
world.  Instead, randomness was introduced in the cal-
culation of  the robot�s movements in order to represent
the imprecision measured in the real robot�s movements.
In addition, in the first experiment, the robots� direc-
tion of  movement was reset to a random value every
1000 cycles (after about one complete cycle in the arena)
in order for them to cover the space homogeneously,
such as to approach each object from different direc-
tions (to avoid cyclic behavior).  In the real world, this
occurs naturally as the effect of  light variation, result-
ing, e.g. , in the two robots to be suddenly attracted by
one of  the room corners or to loose sight of  each other
and then wander randomly in other directions.

4.3  The internal processing

Figure 11 gives a schematic representation of  the pro-
cessing of  the sensor-actuator information through the
DRAMA architecture.  We restrict the schema to 4 sen-
sor systems (radio, motors, compass, infra-red sensor)

Table 2.  Table of  the robots� sensors sensitivity and information encoding in physical and simulated experiments.
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for reasons of  clarity of  the picture.  In the simulations,
seven sensor systems (radio, motors, compass, inclina-
tion, IR, light (3 colors), energy) are used.  At each pro-
cessing cycle, the DRAMA network output to the robot�s
motors is calculated, in order to determine the motor
activity, which is defined by the activity of  the DRAMA
motor units.  The motor activity is encoded in a 3-bit
string.  Bit 1 determines the state of  activity of  the motor
(active/not = 1/0), bit 2 encodes for the direction (for-
ward/reverse = 1/0), while the third bit determines the
speed (full/half = 1/0).  Basic behaviors, such as ob-
stacle avoidance and mutual following of  the robots
(phototaxis with light detectors), are predefined by set-
ting the connection parameters (namely the confidence
factors and time parameters) between the infra-red (IR)
and light detector systems and the motor system.  In
order to perform a purely reactive behavior, the thresh-
olds of  the event detector modules of  the IR and light
sensor systems were set to zero.  Thus, the motor activ-
ity results from the winner-take-all retrieval mechanism
applied on the inputs of  these two sensors.  Figure 12
shows the variation of  activity of  the units correspond-
ing to the left and right motors, the compass, light, in-
fra-red and radio sensors, during 1000 processing cycles
(each sensory system is in fact represented by more than
one unit; what we represent in Figure 12 is the maximal
activation of  all units corresponding to this system).  We
observe that activation of  the infra-red detector unit at
times 210, 350, 430 and 780 produce an immediate de-
activation of  the right motor.  The robot turns to the
left when it faces an obstacle, as it was predefined by
setting up the values of  the connection parameters.  As
a result of  the robot�s rotation, a new value for the com-
pass is measured at time 450.  Light detection (which
correspond to detect the second robot) at time 380 and
500, produce a deactivation of  left and right motors
alternatively.  As a result, the robot aligns behind the
other robot.

Teacher and learner�s behaviors are controlled by the
same set-up, that is they have the same predefined basic
behaviors.  However, no learning mechanism is used
for the teacher and its knowledge of  the vocabulary is
defined by setting the connections between the radio
sensor (words are radio signals) and other sensors, which
correspond to the sensor measurement which the words
describe.  The learner robot uses both the input and the
output of  the radio module to receive the teacher�s sig-
nals and to emit its answer (which corresponds to its
retrieval of  the learned radio signal given its current
sensor measurements), which is recorded by the experi-
menter in order to evaluate the progress of  the robot�s
learning during the experiment.  The teacher robot uses
only the output of its radio emitter to send the signals
to the learner robot.  That is, the learner robot�s answer

is not used by the teacher robot to check the efficiency
of  the teaching.  For this reason, the teaching in these
experiments is completely unsupervised.

Similarly to what is done for the motor activation,
the teacher robot�s ability to emit radio signals (speak-
ing/teaching) results from retrieving the output of  the
radio sensor system, given the robot�s current sensor-
motor state.  The teacher �speaks� only when it sees the
learner.  The inhibition of  the activation of  the radio
output is achieved by giving a very high value to the
confidence factor of  the connections between the light
detector units (learner recognition) and the radio out-
put units.  The input to this connection is 1 as long as
the learner is not in view, otherwise 0.  Therefore, when
the learner is not in view, the activation of  the light
units wins the competition of  activation (because of  its
very high confidence factor value), inhibiting activation
from other sensor units.  As a result, all the radio units
are activated, which by definition would produce no
output.

Learning occurs when one unit in one sensor system
is newly activated, that is when the output of  the event
detector associated to this sensor system is activated.
The time parameters and confidence factors of  the
network�s connections linking previously or simulta-
neously activated units to the newly activated unit are
then updated following Equations 4 and 5, given in Sec-
tion 2.5.4.  The time parameters give a measure of  the
mean time delay between consecutive activation of  the
two units, while the confidence factors record the fre-
quency of  co-activation of  the two units.
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The DRAMA network keeps a memory of  each unit
activation for a fixed time delay, which is determined by
the rate of  activation decrease along the units self-con-
nection.  In the example of  Figure 12, a unit�s activation
is conserved for about 100 cycles by the effect of  the
recurrent connections, similarly to what was done in the
simulation of  the first experiment.  The level of  activity
decreases by a ratio of  0.9 at each cycle.  In Figure 12,
we can see the decrease of  activation of  the radio and
compass units.  Motor and infra-red units do not de-
crease because they are constantly maximally activated
by the new input (since there is no event detection for
these sensor systems).  When the radio unit is activated,
at cycles 380 and 890, it is associated with the following
activation of  the compass unit, just before its deactiva-
tion.  These bidirectional associations between simulta-
neous and sequential sensory activations lead to the
learning of  the vocabulary because radio bit-strings are
associated with particular sensor activities.  Simulta-
neously, other associations occur between other sensory
stimuli showing physical regularities in the environment
(e.g. associating the objects� features with their location
in terms of  compass and energy measurements).

5  RESULTS

In this section we report on the results of  the two ex-
periments simultaneously, comparing the results of  the
simulation studies with those of  the physical experi-
ments.  In the first part, we evaluate the speed and sta-
bility of  the learning by following the variation of  the
learning parameter values during the experiments.  In

the second part, we show the success of  sequence learn-
ing in the second experiment, by running off-line re-
hearsal of  the sequence.  In the third part, we study the
influence of  the winner-take-all threshold T (on the
confidence factors) on the determination of  the learn-
ing success in the first experiment.

5.1  Speed and stability of  the learning

In a Hebbian type of  associative memory such as ours,
there is no notion of  convergence as in RNNs trained
with backpropagation algorithm or in the Hopfield as-
sociative memory (since connection parameter update
is only of  one time step).  The success of  the learning
can be measured at each time step as the ratio between
the connection parameters values.  At each presentation
of  a new example (new teaching), the connection pa-
rameters (confidence factor and time parameter) are
updated.  The study of  the parameter values� variation
during the experiment inform us about the variation of
the percentage of  noise and consecutively about the
stability of  the learning.  Noise, which is in our case an
incorrect matching between sensor information, can be
due either to noisy sensor measurements (hardware im-
perfection) or to learner and teacher agents making dif-
ferent observations (i.e. observing different events).
Because the following of  the two agents is imperfect
(bad alignment, �zigzagging�), their respective measures
of  compass direction can, for instance, differ.  It might
also happen that an object is in the teacher�s field of
view cone while not in that of  the learner.

Sets of  thirty and ten simulated runs were carried
out for the first and second experiment respectively.  In
the first experiment, a run simulated 200,000 process-
ing cycles of the robots (about 55 hours of real experi-
ment).  For each run, the robots started in a different
position, randomly generated, sometimes close together
and already aligned one behind the other one, some-
times far apart.  To prevent any bias in the experiments
we allowed homogeneous covering of  the space by add-
ing randomness in the robots� traveling, so that each
word was taught about the same number of  times and
so that each object was approached from different di-
rections.  In the second experiment, each run started
with the robots aligned one behind the other and placed
at the bottom left entrance of  the series of  corridors.  A
run consisted of  the robots traveling ten times along
the corridors, each time in the same direction.  Two sets
of  physical experiments were carried out to reproduce
the simulated Experiments 1 and 2 (with 5 runs for each
set).

Table 3 gives, for each set of  experiments, the mean
value and standard deviation of  1) the ratio between
the confidence factor (cf) values associated with the
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correct word and the maximal value of  cf  attached to
all words for a given sensor measurement, i.e.
cf(cor rectcor relations)/(cf(cor rectcor relations) +
max(cf(incorrectcorrelations)), 2) the number of  words
learned at the end of  a run, and 3) the number of  teach-
ings given in a run.  We observe that in all experiments
the confidence factor ratio is greater than 0.5, which
means that the correct correlations have been made more
often on average than the incorrect ones, hence that learn-
ing is successful.  In addition, learning is stable as the
standard deviation for the ratio is small, keeping its value
above the threshold of  0.5.  Learning of  the complete
vocabulary is always successful in the second experi-
ment, but not in the first one.  This is due to the fact
that in the first experiment, the robots could sometimes
miss an object during a run, hence making no teachings
about it.  This is especially the case in the simulation as
the covering of  the whole space depends on the ran-
domness of  the robots� behavior; in the physical experi-
ments, however, the human observer could �force� the
robots to cover the whole space by attracting them us-
ing an external light.  Note that the fact that the vocabu-
lary was not completely learned was not due to unsuc-
cessful learning but to the absence of  teaching for these
particular objects (no update of  the connection param-
eters for the corresponding radio unit).  In the second
experiment, this cannot happen since the robots� path is
constrained by the corridors which forces them to per-
ceive at each time the expected stimuli.

Figure 13 shows the variation of  the time parameters
values for each correct connection between radio units
(signal) and corresponding sensor measurement (object)
along a run.  Data represent mean value over all runs.
Left and right figures show the result of  simulation stud-
ies and physical experiments 1 and 2.  As expected, we
observe that the values for the time parameter in the
first experiment (Figure 13 top) do not stabilize and
that significant fluctuations (up to ten times bigger than
in Experiment 2, outside values are out of  the graphic)
are measured all along the experiment.  The vocabulary
is learned, but there is no regularity in the time of  oc-
currence of  the consecutive

5.2  Sequence rehearsal

Based on a quantitative and qualitative comparison be-
tween the connection parameter values at the end of
each run, we were able to assess, in the previous sec-
tion, the success of  the learning of  the second experi-
ment.  We observed that the robot had made the ex-
pected correlations between its different sensor mea-
surements: it had made the correct correlations between
the three radio signals and the different compass and
light measurements, which was demonstrated by the ratio
of  confidence factors remaining above the threshold of
0.5, see Table 3; it had correctly recorded a temporal
correlation between specific sensor measurements of
compass and light sensors, that was demonstrated by
the stabilization of  the time parameter values in Figure
13.  However, it now remains to demonstrate that the
robot has learned the correct sequence of  stimuli, i.e.,
that it has learned the correct timing between each sen-
sor measurement occurrence.

We demonstrate this, by running off-line rehearsal of
the sequence of  measurements, taking the radio signal
�South� as the starting activation (the signal �South� is
supposed to be the first sensor measurement the robot
perceives when entering the first corridor).  Rehearsal
consists of  retrieving all the network units� outputs for
600 cycles (this corresponds to the time needed by the
robot to make one circle across the three corridors, about
10 minutes), starting with all units� input and output set
to zero, apart from the input to the third radio sensor
unit which is set to �1� (this unit corresponds to the
signal `South�).  Rehearsal of  the network was done,
using the values of  connection parameters, obtained at
the end of  the run with the highest ratio of  word learn-
ing success.

Results show that the starting activation of  the radio
unit 1, (�signal 1�), for �South� is followed by a sequence
of  unit output activations in the radio, compass and
light sensors.  Figure 14 shows the sequence of  sensor
measurements, which results from the rehearsal process
applied to the network, using parameters obtained in
the simulation (figure left) and in the physical experi-
ment (figure right).  We observe that in both cases the
radio signal for �South� retrieves successively the com-

Table 3.  Comparison between results of  simulations and physical experiments.

1tnemirepxE 2tnemirepxE
snoitalumiS tnemirepxElacisyhP snoitalumiS tnemirepxElacisyhP
dtS&naeM dtS&naeM dtS&naeM dtS&naeM

1 20.0±79.0 81.0±17.0 1.0±26.0 30.0±86.0
2 40.0±99.0 01.0±69.0 0±1 0±1
3 91±03 8±63 02±385 51±671
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pass value for �South� (1st corridor), the compass value
for �West� (2nd corridor), the radio signal for �Object�
(signal 2), that is the patch (aluminum plate in the physi-
cal experiment) lying on the middle of  the second corri-
dor, the radio signal for �North� (signal 3) and the corre-
sponding value of  compass.  This demonstrates that
the expected stimuli sequences (see the introduction of
this chapter) have been correctly learned in both simu-
lations and physical experiments.  However, the exact
time delay in terms of  processing cycles between re-
trieval of  each stimulus differs between simulation and
physical experiments.  Although the simulated set-up is
quite similar to the experimental one (same proportion
between corridor length and robots� size, same position
and dimension for the patch), the two environments
differ.  The robots� wandering along the corridors in the
real environment is very chaotic and varies significantly
from one run to the next.  In addition, radio reception is
not perfect in reality which results in significant varia-
tion in the time delay between reception of  the signal

and measure of  the corresponding sensor  stimuli.7

These two facts account for the observed differences in
time delay in the sequence rehearsal between simulated
and physical experiments.

5.3  Retrieval with threshold T

When discussing the model�s capacity in Section 3.1, we
pointed out the importance of  the threshold parameter
T for determining the success of  the learning.  The value
of T determines the minimal ratio between the values
of  confidence factors of  correctly and incorrectly up-
dated connections.  Learning is unsuccessful when the
percentage of  noisy examples, i.e. incorrect update of
connections, exceeds 1=T times the total number of
examples, because in this case the G function of  Equa-
tion 2 would output �0� when applied to the correctly
updated connections, thus preventing the correct asso-
ciation to be retrieved.  The value of T needs then to be
carefully chosen, taking into account an estimation of
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Figure 13.  Variation of  the time parameter values for each correct connection signal-object.
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the percentage of  experimental noise.  In Table 4 left,
we show the confidence factor values at the end of  the
run (mean values over all runs) for the simulation stud-
ies of  the first experiment.  We observe that some asso-
ciations between radio units (each unit defines a differ-
ent word) and boxes and hills� features are spurious.
That is, for instance, the radio unit standing for Hill 3 is
correlated with the combination of  features of  both Box
2 (color2 + shape2) and Hill 3 (color2 + inclination2),
but with different values of  confidence factor.  Lower-
ing too much the threshold on confidence factor could
then have the effect of  allowing retrieval of  the two
combinations of features rather than just the one for
Hill 3 when presenting the radio signal for Hill 3.  In
Table 4 right, we show the effect of  varying the value
of T on our determination of  the correlation success
for these results.

As mentioned previously, we estimate a proportion
of  at least 20% of  experimental noise due to hardware
imperfection, onto which we should add the noise due
to the imprecise following of  the two agents resulting
in incorrect matchings of  sensor perceptions.  Taking a
threshold of  1/T = 0.5 allows correct retrieval of  the
data in the face of  a maximum of  50% of  noisy data.
As expected, with this value for the threshold, only the
correct correlations (from each object to its correspond-
ing word and vice-versa) are correctly retrieved.  How-
ever, when lowering the threshold, spurious correlation
can also be retrieved.  E.g. , with a threshold 1/T = 0.1
the radio signal for hill3 retrieves the sensor features
for both Box 2 and Hill 3 and with a threshold 1/T =
0.01 the combination of  features for hill3 retrieves both
signals for hill3 and box2.  On the other hand, a too
restrictive threshold, that is too high, means that some
correlations are no longer retrieved, e.g. with T = 0.97,
the radio signals for Box 2, Hill 2 and Hill 3 no longer

retrieve the full set of  features of  the corresponding
elements.

6  DISCUSSION

An important part of  this paper (Sections 2 and 3) was
used to describe the DRAMA (Dynamical Recurrent
Associative Memory Architecture) architecture, which
we developed to allow learning of  spatio-temporal regu-
larities by an autonomous robot.  The model consists
of  a fully recurrent neural network without hidden units,
which uses Hebbian update rules.  Similarly to time de-
lay networks, it uses two weight parameters for each
connection, to record separately the time delay and the
frequency of  two input patterns co-occurrence.  The
DRAMA network differs from other structurally or func-
tionally similar ANN models in two main aspects: 1) By
opposition to other recurrent neural networks, it is based
on an unsupervised learning algorithm, which uses
Hebbian rules.  2) In contrast to other associative
memory models, such as Hebbian networks, the con-
nections of  the network are associated with two param-
eters (instead of  one) in order to keep a separate record
of  the spatial and temporal structure of  the input pat-
terns.  In particular, the temporal parameter allows re-
cording the real time of  occurrence of  the pattern.

In Section 3, we analyzed theoretically and through
numerical simulations the properties of  the model.  The
model was shown to cope (that is, the capacity remains
maximal) with up to 30% of  noise, where the noise
corresponded to a 30% likelihood of  spurious unit ac-
tivation when presenting the training patterns and a 30%
variation of  time delay between consecutive activation
of  the input and output units of  the pattern.  The model
was shown to be able to learn time series of  inputs,

Figure 14.  Retrieval of  the sequence of  sensor measurement with radio signal �South� (signal 2) as start activation,
for simulated (left) and physical (right) experiments.
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while the series can overlap on one or more inputs (that
is, it can learn several time series, where the series can
have several similar inputs but with a different ordering
of  occurrence).

Training and retrieval algorithms are of  one-time-step,
which makes the model computationally fast and inex-
pensive to run and, therefore, allows its implementation
for on-line learning of  a computationally limited robot.
The advantages of  the model in terms of  quick and
easy computation will be further discussed in Section
6.1.  In the following, we discuss the general properties
of  the model by comparison with associative memory
models and recurrent neural networks, of  which it has
several similar properties.

The model as an associative memory

The DRAMA architecture has several characteristics in
common with associative memory models, such as
Hebbian networks, as it uses a similar training algorithm
(Hebbian rules) and a similar retrieval algorithm (win-
ner-take-all).  Similarly to Hebbian networks which use
a binary encoding for the patterns, the capacity of  the
DRAMA model decreases when trained with patterns
whose encoding overlaps, that is, patterns which have
common units active.  In Section 2, we compared the
DRAMA model to the Willshaw network, which is a
special case of  the Hebbian neural network, and from
which we inspired ourselves.  In addition, Simulation
studies showed that the decrease of  the DRAMA net-
work capacity in the face of  noisy data is graceful and
remains above 90% of  the maximal capacity with up to
90% of  noise, which is an improvement compared to
the Willshaw network, which decreases to 10% of  the
maximal capacity in the face of  at minimum 40% of
noise (Graham & Willshaw, 1996).  The DRAMA ar-
chitecture differs from other Hebbian networks mainly

in its recurrent structure (self-connections on the units
and bidirectional asymmetric connections between the
units), while other models use unidirectional or sym-
metric connections.  The recurrent connections intro-
duce a short-term memory of  the units� activity, which
allows association of  temporally delayed unit activations,
while the time delay between the two units� activation is
unspecified, but remains within the margin of  the short-
term memory duration.  By transitivity of  the associa-
tions, time series of  unit activations can be learned.
Retrieval of  the associations is such that each unit acti-
vates its correlated unit only when the correct time de-
lay has passed.  This property of  DRAMA to introduce
explicitly the time into one of the connection param-
eters (the time parameter) is what distinguishes it most
significantly from other models of  associative memory.
Associative memory models that can learn sequences
of  patterns do exist (Hattori & Hagiwara, 1996; Kolen
& Pollack, 1991; Rinkus, 1995; Schwenker et al., 1996).
However, in these models, the time delay between each
pattern occurrence is fixed and is equal to one process-
ing cycle (it has therefore no intrinsic relationship with
the real time of  pattern occurrence).  That is, the pat-
terns of  the series are presented sequentially to the net,
without delay, and are retrieved similarly.

The model as a recurrent neural network

The structure of  the DRAMA network is a fully recur-
rent network, without hidden units.  Similarly to other
recurrent neural networks, it allows learning of  time
series of  inputs.  DRAMA differs from other RNN
models by the fact that it uses an unsupervised training
algorithm, based on Hebbian rules, while other RNNs
use a supervised training algorithm, such as the
backpropagation algorithm and other derivatives
(Chauvin & Rumelhart, 1995; Pearlmutter, 1995).  The

Note: Left: Confidence factor values for connections between radio units (1 unit = 1 �word�: 5 words for the three
hills and 2 boxes) and colors, shape and inclination sensors units (hills and boxes features).  Right: Success of
signal-object correlation given 4 different values of  threshold T.  Y/N stand for Yes/No (correct/incorrect
correlation); R: radio sensor, O1: Box1, O2: Box2, H1: Hill 1, H2: Hill2, H3: Hill 3.  � R→ � and � →R � columns
show results of  learning for each direction of  association (from radio sensor to object�s description and vice-
versa).

Table 4.  Results of  Simulations.

serutaeF 79.0=T/1 5.0=T/1 1.0=T/1 10.0=T/1

1roloC 2roloC 1epahS 2epahS 1lcnI 2lcnI →R R→ →R R→ →R R→ →R R→
1xoB 02.1 00.0 02.1 00.0 20.0 00.0 Y Y Y Y Y Y N Y
2xoB 00.0 09.0 00.0 09.0 00.0 21.0 Y N Y Y N Y N N
1lliH 52.0 00.0 80.0 00.0 52.0 00.0 Y N Y Y N Y N N
2lliH 00.0 51.0 00.0 00.0 51.0 00.0 Y Y Y Y Y Y Y Y
3lliH 00.0 55.0 00.0 50.0 00.0 55.0 Y N Y Y N Y N N
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advantage of  using Hebbian rules is that training of  the
network requires only one-time-step for each process-
ing cycle, which allows to process the information (e.g.
sensor information of  the robot) in real time, while
backpropagation needs several time steps of  computa-
tion (usually of  order 100 to 1000) between each infor-
mation processing cycle.  The drawback of  using
usupervised Hebbian learning algorithm is that it can
not be used to train a network with hidden units, that is,
with intermediary units between input and output units,
whose values are unknown.  The algorithms developed
to train RNNs with hidden units are the Boltzmann
machine learning procedure (Hinton & Sejnowski, 1986),
Backpropagation (Pineda, 1987) and other similar pro-
cedures, which all require several time steps of  compu-
tation for each information processing cycle (which pre-
vents on-line learning in computationally limited robotic
system as ours).  It would be interesting, however, to
investigate how hidden units could improve the network
performance and, in particular, its capacity.  �Hidden
units makes it possible for the network to discover and
exploit regularities of  the task at hand such as symme-
tries or replicated structures� (Pearlmutter, 1995).  There-
fore using hidden units might improve the network�s
ability for discriminating between redundant or over-
lapping patterns and consequently increase the network�s
capacity, that is the number of  patterns the network can
store, by allowing more overlap between the patterns
before the network fails to distinguish between them.

6.1  DRAMA performance in robotic
experiments

The experiments reported in Section 5 demonstrated a
possible implementation of the model for controlling
the behavior and learning of  autonomous robotic agents.
The learning task involved in the experiments was rela-
tively complex.  Multiple associations had to be made
between stimuli with variable time lags of  occurrence.
In particular, patterns composed of  the same set of  fea-
tures (color, inclination, compass measurement) but in
different combinations had to be distinguished.  Learn-
ing was successful, although about 30% of  the data was
corrupted (because of  hardware noise and imprecision
of  the teaching/following method).  The experiments
showed 1) that the DRAMA architecture enables real-
time computation and can be used for on-line control
and learning of  autonomous mobile robots; 2) that it
performs static and sequential associations leading to
the robot�s learning of  spatial regularities across the sen-
sor-actuator space and of  time series of  consecutive
sensor measurements.

Simulation versus physical experiments

Simulation studies were carried out before physical ex-
periments in order to demonstrate and test the stability
and success of  the learning in the proposed experimen-
tal set-up.  The main advantage of  simulations over
physical experiments was that they were repeatable, faster
(simulating a 1 hour experiment takes about 5 minutes)
and did not suffer unexpected hardware breakdowns.
The disadvantages in terms of  model faithfulness are,
of  course, well known (for a more complete discussion
of  this see Torrance, 1992).  In our experiments, physi-
cal and simulated worlds differ in many aspects.  For
instance in the simulation a poor account is given of
the physics of  the sensors and of  the world perceived
by the robot (a simple field of  view is defined for the
light dispersion whose intensity is invariant over time,
the inclination of  the hills is perfect in all points, etc.).
In addition, simulated and real objects are not described
by the same nor the same number of  features in the
first set of  experiment.  Because of  this, the results of
simulations and physical experiments can only be com-
pared qualitatively.  Thus our claims on the results (see
1 and 2 above) are on qualitative characteristics of  the
DRAMA architecture, which are demonstrated by both
simulations and physical experiments.

Evaluation of  the learning parameters

The success of  the learning depends on correctly choos-
ing the values of  the learning parameters, namely the
duration of  the short-term memory and the values of
the threshold parameters, T and e, which appear in the
neuronal activation function 2.  In Billard & Dautenhahn
(1998), we reported on experiments where we could
relate cases of  success and failure of  the learning to
particular choices of  environmental constraints (objects�
relative dispersion and featural descriptions), and val-
ues of  the duration of  short-term memory of  events.
We could then determine bounds on these parameters
inside which learning would be successful.

 The threshold factors T and e, which appear in the
units activation function (see Equation 2) determine also
the success of  the learning, by fixing the tradeoff  be-
tween considering two units co-activation as spurious
or relevant.  The threshold e discards correlations due
to spurious unit activity, by evaluating the mean time
delay of  two units co-activation and considering as ir-
relevant the association of  units, whose delay of  co-
activation varies too importantly during the training,
relative to a maximal variation fixed by e.  The threshold
T determines the tradeoff  between spurious and rel-
evant associations, by comparing the frequency of  co-
activation of  the correlated units (given by the confidence
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factor parameter of  the connection linking the two units).
The more often the units have been co-activated, the
more likely it is that this co-activation is not hazardous.
In Section 5.3, we discussed the influence of  the thresh-
old parameter T on our determination of  the success
of  the first experiment.  In Section 3.1, we presented an
algorithm to determine on-line the values of  these
thresholds, i.e. to calculate these values at each time step.
Further, in Section 3.4, we presented an algorithm for
on-line tuning of  the short-term memory value and
tested it in simulation for learning a sequence of  nine
patterns.  The algorithm was shown to successfully con-
verge, for up to a proportion of  20% of  noise in the
input.  However, as the time needed for convergence
was relatively long, the algorithm was found to be too
slow to be used reliably in physical robotic experiments
(Billard & Dautenhahn, in press).

Note finally, that other factors also influence the suc-
cess of  an experiment, e.g. the agent�s sensor capabili-
ties (range and sensitivity) and behavior control (non
homogeneous traveling).  Further implementation of
the model in different robotic set-ups, in particular in
robots with more degrees of  freedom and finer sensor
sensitivity would allow to determine the real influence
of  these hardware characteristics on the success of  the
learning.  Note, however, that the fact that we imple-
mented the architecture in three different robotic set-
ups (FischerTechnik vehicles (Billard & Hayes, 1997),
LEGO vehicles (this experiment) and a doll robot
(Billard et al., 1998)), using different sensors and ap-
plied in different environments, showed that the suc-
cess of  the learning is not dependent on a particular
type of  hardware.  However, it might be improved by
using finer sensor capabilities, which would give more
information to distinguish between the objects of  the
teaching (lowering the overlap between teaching patterns
and thus improving the network capacity), and better
actuator capacities, which would make the robot fol-
lowing the other robot smoother and thus less prone to
incorrect measurements.  A last remark concerns the
fact that the learning method we proposed is bottom-
up, starting from a fixed segmentation process of  the
information to an associative learning process.  Inter-
esting would also be to investigate a bottom-up-bottom
mechanism, as proposed e.g. by (Grossberg & Merrill,
1992) and discussed by (Mozer, 1993), where feedback
from the associative memory can activate a tuning
mechanism of  the threshold parameters of  the event
recognition modules.

Robot�s grounding of  perceptions and actions

One of  our requirements for starting this work was that
the system should learn quickly, i.e. that it would not

require a long series of  examples before performing
adequately.  In the first experiment, we showed that cor-
rect associations between radio signals and object fea-
tures were learned in less than 30 teachings, which cor-
respond to about 15 to 30 minutes of  physical experi-
ment.  Similar experiments on grounding radio signals
into robots� sensor capabilities were carried out previ-
ously by Yanco & Stein (1993) and Steels & Vogt (1997),
who respectively used reinforcement learning and evo-
lutionary techniques.  Their experiments showed that a
vocabulary of  five and three words was learned after
900 and 60 training examples respectively.  Our method
then seems faster at learning a larger or similar vocabu-
lary.  In addition, it is more general than the above men-
tioned methods, as we were not restricted in the sensor
stimuli the robots could talk about.  In Yanco & Stein�s
work (1993), the vocabulary consisted only of  the robot�s
actions because the learning algorithm was based on an
action-selection mechanism.  In Steels & Vogt (1997),
the vocabulary concerned only the robots� external per-
ceptions as these were the only perceptions they could
share.  By contrast, the mutual following strategy we
use in our work allows the two agents to share a com-
mon context of  both external (face the same direction)
and internal perceptions (perform the same movement,
travel the same distance and on the same ground).  In
addition, because the learning mechanism we use is based
simply on mutual associations between inputs from any
sensor or actuator systems of  the agent, the vocabulary
can potentially concern any proprio and extero percep-
tions of  the agent.  We reported here on experiments
where the agents talked about external perceptions of
objects and internal perceptions of  inclination and di-
rection.  In Billard & Hayes (1998), we reported on ex-
periments where the learner agent is taught a vocabu-
lary of  eight words for describing its movements in terms
of  motor states stop, move, turn right, turn left and its di-
rection North, South, West, East relative to its compass.

Robot�s learning of  sequences of  perceptions

In the second experiment, the robot learned the timing
and ordering of  a sequence of  compass, radio and light
measurements, resulting from its regular traveling in a
series of  three corridors and its regular reception of  the
teacher robot�s signals.  This experiment demonstrated
the DRAMA architecture capacity at learning spatio-
temporal regularities and time series of sequences of a
robot�s perceptions.

There have been a number of  studies in robotics, in
which the robot learned spatio-temporal regularities in
its sensor inputs.  These works used, for instance, a two-
layer topographical map to store separately the spatial
and temporal regularities (in each layer) of  the robot�s
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visual information (CCD camera and infra-red sensors;
Gaussier et al., 1998; Owen & Nehmzow, 1996), or a
recurrent neural network to predict sequences of  a
robot�s perception-action, when traveling in a corridor
(Tani et al., 1997).  Our experiment, using the DRAMA
architecture, has two advantages compared to these
works: 1) learning and retrieval can be performed on-
line,8 by contrast to (Owen & Nehmzow, 1996; Tani et
al., 1997) works where it was done off-line, 2) learning
concerns several sensor and actuator modalities, as op-
posed to (Gaussier et al., 1998; Owen & Nehmzow, 1996;
Tani et al., 1997), which consider only association from
the robot�s sensor perception to the robot�s actions.

Why not using another ANN architecture for the
experiments

Since part of  the learning task in our experiments was
to learn the topography of  the environment relative to
landmarks, one might wonder why we did not use a
self-organizing map such as, e.g., Kohonen nets
(Kohonen, 1989) or other models developed previously
for robotic tasks (e.g., Owen & Nehmzow, 1996; Zrehen,
1995).  The reason is simply that the associations we
want to make in the sensor-actuator state are point-like,
that is they have no topographical relationships in the
sensor-actuator vector space (this is demonstrated in
Figure 15 left where we show the dispersion of  the as-
sociations at the end of  the learning).

One may question why we did not use one of  the
current recurrent neural network models (e.g. Elman net
(Elman, 1990), Jordan net (Jordan, 1986), dynamical
recurrent net (Giles et al., 1994) and others (Pearlmutter,
1995; Chauvin & Rumelhart, 1995).  There are several
reasons for that.  The first one is that, because of  hard-
ware limitations, we were restricted to defining a system
that would use only integers (no floating points) and
that should be computationally fast (because of the lim-
ited on-board processing power).  Recurrent neural net-
works using the backpropagation algorithm, as devel-
oped first by (Pineda, 1987), and other extension
(Pearlmutter, 1995; Chauvin & Rumelhart, 1995) had
to be eliminated because of their long time computa-
tion (multiple training steps) and their complex compu-
tation (calculating derivatives).  Associative Hebbian
networks were very attractive because of  their simplic-
ity.  One may argue in favor of  buying a more powerful
hardware system.  Apart from the financial aspect, there
is a motivation to try to do the best with what is at our
disposal.  We are not using expensive robots nor expen-
sive sensors (no camera, laser, etc.), but we developed a
system that is capable of more complex cognition than
the simple behaviors of  obstacle avoidance, wall fol-
lowing, etc.

Note, finally, that the DRAMA architecture�s poor
space efficiency (capacity of  order two) was not a dis-
advantage in the particular robotic experiments we used
it for.  More important for us was the time efficiency
and the capacity at learning complex time series.  How-
ever, it might be a disadvantage for application using
sensors with high sensitivity, such as a camera, which
would require an important number of  units to repre-
sent the sensor information (one unit per pixel or set of
pixels).  In this case, it might be relevant to pre-process
the data using another ANN architecture, such as a to-
pographical map or a feed forward NN, for a prelimi-
nary classification of  the data.9  Then, the reduced
amount of  information could be used by the DRAMA
network for higher level classification.  Such an approach
has been followed by Tani (1997), who uses a combina-
tion of  a Hopfield associative memory network and a
RNN.  The robot�s camera information is processed by
the Hopfield net which determines categories of  visual
inputs.  The recurrent neural network is trained on the
output of  the Hopfield net and on the simultaneous
motor state of  the robot.  The net learns sequences of
visual perception and action of  the robot, while the ro-
bot travels in a circling corridor.  Because Tani (1997)
used backpropagation algorithm to train the RNN, he
could not process the information on-line.  It would be
interesting to carry out the same work using the DRAMA
architecture, instead of  the RNN with backpropagation,
and to determine whether it would allow to carry out
successfully and on-line the same computation.

7  CONCLUSION

We described a novel connectionist architecture,
DRAMA, for dynamic control and learning of  autono-
mous robots.  DRAMA stands for dynamical recurrent
associative memory architecture.  It is a time-delay re-
current neural network, using Hebbian update rules.  The
first part of  this paper presented a mathematical de-
scription of DRAMA and analyzed theoretically and
through numerical simulations the architecture�s perfor-
mance.  The model was shown to allow learning of  spa-
tiotemporal regularities and time series in sequences of
inputs, in the face of  an important amount of  noise.
Training and rehearsal of  the DRAMA architecture is
computationally fast and inexpensive, which makes the
model particularly suitable for controlling
�computationally-challenged� robots.

The second part of  the paper reported on the imple-
mentation of  DRAMA in simulated and physical ro-
botic experiments, for on-line learning and control of
an autonomous robot.  In the first experiment, the ro-
bot extracted spatial regularities in its perceptions, which
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resulted in the recognition and labeling of objects in
the environment.  The objects� labels where taught by a
second autonomous robot.  In the second experiment,
the robot learned time series of  its perceptions, while
traveling in a series of  corridors.

Results of  simulated and physical experiments were
consistent, in showing successful learning, and there-
fore demonstrating the robustness of  the learning ar-
chitecture in the face of  a significant amount of  experi-
mental noise.  Grounding of  the objects� names was
shown to be faster than other similar robotic experi-
ments, which used less general, that is, more task re-
lated, learning mechanisms than we did, using the
DRAMA architecture.  In addition, we used a single
architecture, DRAMA, for enabling learning and direct-
ing of  the robot�s behavior, while the learning mecha-
nism were not restricted to a particular direction of  as-
sociation between sensor-actuator states as is the case
in most robotics learning experiments.  However, the
complexity of  the experiments was limited by the poor
sensor capabilities and computational power of  our ro-
bots.  In particular this restricted the number of  things
the robot could learn, as it could perceive few features
and could not record an important amount of  data.  It
would now be interesting to implement the model in
more powerful robots using more complex sensor mo-
dalities.

NOTES

1The variation of  the environmental constraints are, in
our experiments, e.g., changes in spatial distribution
of  objects, variation of  lighting and electro magnetic
field, and changes in the timing of  sequence mea-
surements, due to the variable speed of  travel of  the
robots.

2In order to prevent the confidence factor values from
becoming too large in the experiments, all values are
rescaled by dividing by a factor of  100 when they
reach the value of  1000; the increase factor a is also
rescaled by the same factor to keep the same propor-
tional increase between the time parameters.

3An interesting option is to make the slope proportional
to the value of  cf

ji
, the more confident the greater the

increase.  This would speed up the learning and may
increase the robustness of  the model against noisy
data by giving a greater influence to nodes that are
more often activated (see Section 3 for a more gen-
eral discussion of the robustness of the model).

4The following scenario results in the follower agent
implicitly imitating or replicating the followed agent�s
movement in the 2-D plane.

5Note that the robots measure a distorted component
of  the earth magnetic field, due to the noisy mag-
netic emissions of  the laboratory machines; thus the
labels South, West and North do not always corre-
spond to their usual meaning.

6The C programs for the simulations were run on Ultra
1 Model 140s SPARCstations.

7The teacher sends the same signal about ten times for a
given stimulus in order to compensate for the loss in
the reception; the variation in the time delay arises
from the learner catching only the first or the latest
signals.

8In the experiments reported here, only learning is done
on-line; in (Billard et al., 1998), we reported on on-
line learning and retrieval of  different sequences of
actions and perceptions of  the robot.

9Note that topographical maps are particularly relevant
for sensors with high resolution as the classification
often relies on finding topological invariance in the
input.
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