Noniterative approach to the total asymmetric synthesis of 15-carbon polyketides and analogs with high stereodiversity

Starting from inexpensive furan and furfuryl alcohol, a noniterative approach to the synthesis of pentadeca-1,3,5,7,9,11,13,15-octols and their derivatives has been developed. The method relies upon the double [4+3]-cycloaddition of 1,1,3-trichloro-2-oxylallyl cation with 2,2'-methylenedifuran and conversion of the adducts into meso and (+/-)-threo-1,1'-methylenebis (cis- and trans-4,6-dihydroxycyclohept-1-ene) derivatives. The latter undergo oxidative cleavage of their alkene moieties, generating 5-hydroxy-7-oxoaldehydes that are reduced diastereoselectively into either syn or anti-5,7-diols. Asymmetry is realized using either chiral desymmetrization with Sharpless asymmetric dihydroxylation or by kinetic resolution of polyols using lipase-catalyzed acetylations. All of the possible stereomeric pentadeca-1,3,5,7,9,1 1,13,15-octols and derivatives can be obtained with high stereoselectivity applying simple operations, thus demonstrating the high stereodiversity of this new, noniterative approach to the asymmetric synthesis of long-chain polyketides.


Published in:
Pure Appl. Chem., 77, 1, 131-137
Year:
2005
ISSN:
0033-4545
Keywords:
Laboratories:




 Record created 2005-11-09, last modified 2018-03-17


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)