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Abstract

We use sum-frequency generation spectroscopy (SFG) in the infrared 2800–3000 cm−1 spectral range and UV–vis spectroscopy (trans-
mission) in the 450–650 nm spectral range in order to characterize vibrational and electronic properties of various interfaces composed of
organic monolayers adsorbed on gold nanoparticles (AuNPs) with 19 nm average diameter. SFG signal is observed for AuNPs films deposited
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n glass substrates using the following silane intermediates: 3-(aminopropyl) triethoxysilane and 3-(mercaptopropyl) trimethoxys
ensity of AuNPs and their aggregates are measured with a scanning electron microscope. For the samples showing a strong
urface plasmon resonance (SPR), we also observe an enhancement of their non-linear optical properties. Furthermore, the SFG m
how that 1-dodecanethiol films are rather well ordered on specific AuNPs substrates. In this way, the presence of the SFG si
omes from both the bulk electronic s–d interband transition and the vibrational states of the adsorbed molecules, depends on a S
his phenomenon is evidenced on the AuNPs by the incident visible beam located at 532 nm, i.e. near the SPR energy maxim

nterfaces. These results open the door to experiments involving macromolecular and biological materials networks deposited
etal electrodes in a controlled electrochemical environment.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

Recent developments in electrochemistry have put
nterest on ultrathin electrodes made of nanoparticles. One
f the most extensively and intensively studied system is
old nanoparticles (AuNPs), with various diameters ranging

rom 5 to 20 nm, showing structural stability under various
pplied voltage conditions in DC-voltammetry experiment
r environment. The fundamentals of AuNPs (synthesis and
ssembly, physical and chemical properties, biological inter-
st, catalysis and experimental investigation techniques) are
ell detailed in a recent review article and in the numerous

eferences therein[1]. Our purpose is to apply some recent
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methods of non-linear optics in order to probe vibratio
properties of ordered self-assembled molecular films
these particular metallic electrodes. Until now, rese
works in non-linear optics such as coherent second harm
generation (SHG)[2] and incoherent Hyper Rayleig
Scattering (HRS)[3] techniques were limited to the study
AuNPs electronic properties. In vibrational sum-freque
generation (SFG) spectroscopy, one successful attem
characterization was performed on a cationic surfac
deposited on anionic stabilized AuNPs forming a monol
on a silicon wafer[4]. Other major works with SFG o
nanoparticles are based on catalysis experiments such
the case of CO molecules adsorbed on Pd or Pt nanopa
at controlled pressure and temperature[5–7]. In this paper
we characterize by SFG, at ambient conditions, thio
self-assembled monolayers (SAMs) on AuNPs films. T
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films are deposited on microscope glass substrates by two
specific simple appropriate silanisation steps explained here-
after. SFG combined with UV–vis spectroscopy confirms
that AuNPs free electrons play a major role in the existence
of the SFG process. This is the first step leading to the
electrochemical investigation of their interfacial properties
with this surface sensitive spectroscopic tool.

2. Samples preparation

2.1. Preparation of the glass substrates

Prior to the silanisation step, the glass substrates were son-
icated in a methanolic solution for 20 min and then cleaned in
a piranha bath (mixture of 1:4 ratio of H2O2 (30%, Fluka) and
H2SO4 (95–98%, Fluka)). The substrates were rinsed abun-
dantly with absolute ethanol (99.8%, Pancrea) and ultrapure
water (conductivity: 0.8�S cm). After that, the procedure of
silanisation was performed using three different methods.

2.1.1. Method 1 (samples A)
The substrates were immersed in a solution of 10% (vol-

ume) 3-(aminopropyl) triethoxysilane (95%, Aldrich) in ab-
solute ethanol for 2 h. The samples were carefully washed
with absolute ethanol and ultrapure water. The deposition of
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that, the glass slides were immersed in an aqueous colloidal
solution (2.5× 10−4 M of gold salt) of gold nanoparticles
(19± 0.21 nm) for a period of 24 h. The samples were rinsed
with ultrapure water. The final step was the immersion in a
solution of absolute ethanol containing 4.2 mM of either do-
decanethiol (sample C1) or 2-aminoethanethiol (sample C2)
for 24 h.

3. Spectroscopy and microscopy tools

The UV–vis transmission measurements are carried out
with a pulsed Xenon lamp (spectral range: 190–1100 nm,
spectral resolution: 1.5 nm) of a Cary 50 Scan (Varian)
spectrophotometer. Prior to the measurements, the baseline
is set for a clean glass substrate. The SFG measurements
are carried out with a tuneable optical parametric oscilla-
tor (OPO) built around an AgGaS2 crystal, giving access to
the 2000–4000 cm−1 infrared spectral range. One part of the
amplified energy of a picosecond laser system based on a pas-
sive/active mode-locked flash-pumped Nd:YAG laser source
[9] is used to pump the OPO. The 15 ps pulses are deliv-
ered in a 1�s train. The OPO bandwidth is 3 cm−1 in the
3�m region with 10�J pulse energy. The other part of the
YAG beam is frequency-doubled in a BBO crystal to obtain
a 532 nm visible radiation with 5�J pulse energy. The in-
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anoparticles was performed by immersion of the glass
trates in an aqueous colloidal solution[8] (2.5× 10−4 M of
old salt) of gold nanoparticles (19± 0.21 nm) during 6 h. F
ally, the samples were rinsed with ultrapure water. Sa
1 underwent no further treatment. The final step cons
f the immersion of the substrates in a solution of 4.2 mM
odecanethiol (sample A2) in absolute ethanol for a pe
f 24 h.

.1.2. Method 2 (samples B)
The substrates were immersed in a solution of 1

volume) 3-(mercaptopropyl) trimethoxysilane in abso
thanol for 2 h. The samples were carefully washed
bsolute ethanol and ultrapure water, then immersed
queous colloidal solution (2.5× 10−4 M of gold salt) of gold
anoparticles (19± 0.21 nm) during 6 h. Finally, the samp
ere rinsed with ultrapure water. The final step consi
f the immersion of the substrates in a solution of 4.2
f either dodecanethiol (sample B1) or 2-aminoethane
sample B2) in absolute ethanol for a period of 24 h.

.1.3. Method 3 (samples C)
As previously described, glass microscope slides

sed. The former treatment consisted on soaking the
trates for 30 min in an aqueous solution of NaOH (3
he samples were abundantly washed with absolute et
nd ultrapure water. The second step was the imme

nto a 10% solution of 3-(mercaptopropyl) trimethoxy
ane in absolute ethanol during 6 h. The substrates
gain rinsed with absolute ethanol and ultrapure water.
rared and visible beams are then mixed at the probed
f the interface with angles of incidence of 65◦ and 55◦, re-
pectively. The beams are p-polarized and the SFG sig
ormalized to the one generated by a ZnS reference c

n order to compensate for laser fluctuations or atmosp
bsorption. Transmission electron microscope (TEM) m
urements are performed with a Philips CM20 microsc
ccelerating voltage 200 kV, LaB6 source, point resolu
.8Å, maximum tilt capacity±45◦, absolute minimum prob
ize∼2 nm, minimum useful probe size for EDS∼20 nm in
rder to deduce the size distribution of the AuNPs in

ution. Scanning electron microscope (SEM) measurem
re carried out on the samples with a Philips XL 30 F
igh resolution/low accelerating voltage SEM, 1–30 kV fi
mission SEM, nominal resolution <2 nm at high kV, <8
t 1 kV.

. Spectroscopy and microscopy results

.1. UV–vis measurements

UV–vis measurements are performed on the samples
50–650 nm spectral range, i.e. where the plasmon reso

s expected for 19 nm average diameter AuNPs. The dom
9 nm average size distribution of the AuNPs is confirme
EM measurements (Fig. 1).

For AuNPs attached on glass substrates with
aminopropyl) triethoxysilane (Fig. 2), the clean AuNP
nterface (sample A1) and the 1-dodecanethiol/Au
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Fig. 1. TEM picture and size distribution of the AuNPs contained in an aqueous colloidal solution. The AuNPs average diameter is 19 nm.
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Fig. 2. SEM picture and UV–vis measurements in the 450–650 nm wavelength range for the clean AuNPs (A1 curve) and for the 1-dodecanethiol monolayer
adsorbed on AuNPs (A2 curve), fixed on glass with the 3-(aminopropyl)trimethoxysilane intermediate. The dashed lines indicate the SPR maximum.

interface (sample A2) both show a well-defined surface
plasmon resonance (SPR), much stronger for sample A2. The
maximum is located at 525 and 565 nm, respectively, i.e. near
the 532 nm wavelength of the incident visible beam in SFG
configuration. The SPR maximum position for sample A1 is
in accordance with similar works on gold colloidal solutions
and clean AuNPs films[1,10]. We may note that molecular
adsorption induces a redshift of the SPR maximum position.

For the samples with the 3-(mercaptopropyl) trimeth-
oxysilane intermediate (Fig. 3), the SPR are measurable
for both samples but these AuNPs films exhibit a strongly
damped plasmon band compared toFig. 2, which is attributed
to a chemical interface damping. Indeed, the SEM picture

of Fig. 3 shows two differences withFig. 2: the density of
AuNPs aggregates is more important whereas the mean cov-
erage is lower. These observations prove that method 1 is
better than method 2 with regard to the homogeneity of the
AuNPs films, which is crucial to obtain large SAMs domains
and efficient optical properties. In addition, we observe major
differences between the UV–vis curves features of samples
B1 and B2 for which we cannot even clearly locate a SPR
maximum in the probed spectral range. They may be related
to the nature of the molecules involved in the adsorption pro-
cess. It is thus clear that the 2-aminoethanethiol molecules
strongly affect the optical surface properties of the AuNPs
film.
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Fig. 3. SEM picture and UV–vis measurements in the 450–650 nm wavelength range for the 1-dodecanethiol monolayer adsorbed on AuNPs (B1 curve) and
for the 2-aminoethanethiol monolayer adsorbed on AuNPs (B2 curve), fixed on glass with the 3-(mercaptopropyl)triethoxysilane intermediate.

Finally, the effect of the treatment applied to samples C
appears inFig. 4. In this case, we obtain again well-defined
SPR, with their maxima located at different wavelengths,
as a function of the adsorbate nature. However, we may
already note that the stronger SPR maximum is located
near 560 nm for the deposited 1-dodecanethiol molecules
(sample C1), analogous to what we observed inFig. 2
(sample A2). Samples A2 and C1 exhibit in fact very
alike UV–vis curves, leading us to consider that they have
similar optical properties. This is confirmed by their SEM
pictures, which show analogous surface homogeneity and
density of AuNPs aggregates. It must be pointed out that

increasing the surface coverage, and thus lowering the dis-
tance between AuNPs induces a clear redshift of the surface
plasmon band due to quadrupole effects (samples A2 and
C1).

4.2. SFG/DFG measurements

The SFG measurements are performed in the
2800–3000 cm−1 infrared spectral range in order to
detect the terminal CH stretching vibration modes of the
molecules forming SAMs on gold nanoparticles. In our
experiments, only two 1-dodecanethiol samples, A2 and C1,
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Fig. 4. SEM picture and UV–vis measurements in the 450–650 nm wavelength range for the 1-dodecanethiol monolayer adsorbed on AuNPs (C1 curve) and
for the 2-aminoethanethiol monolayer adsorbed on AuNPs (C2 curve), fixed on glass substrate, after NaOH contact, with the 3-(mercaptopropyl)triethoxysilane
intermediate. The dashed lines indicate the SPR maximum.

exhibit SFG vibrational features (Figs. 5 and 6). For all other
samples, no SFG signal was detected.

On Fig. 5, we clearly see three vibration modes, inter-
fering destructively with a rather constant SFG background
coming from the AuNPs substrate. In keeping with previous
SFG works on similar organic 1-dodecanethiol SAMs ad-
sorbed on thick films or Au(1 1 1) single crystals[11], these
vibration modes located at 2881, 2941 and 2968 cm−1 are
related to the symmetric, Fermi resonance and degenerate
stretching modes of the methyl CH3 end-groups, respectively.
Moreover, this spectrum exhibits two weaker vibration modes
at ∼2850 and∼2915 cm−1 related to the methylene CH2
alkane chains symmetric and asymmetric stretching modes.

The presence of these two latter modes and the ratio of the
relative intensities of the CH2 and CH3 symmetric stretch-
ing modes are good indications of the order of the molecular
chains within the SAMs. If this ratio is close to 0, it means
that the alkane chains have few gauche defects and that the
molecules are relatively well ordered within the organic film,
with their CH3 groups pointing out of the interface.

OnFig. 6, we also observe the CH3 vibration modes but no
obvious sign of the CH2 stretching modes. This may originate
from the weak signal-to-noise ratio, which is due to the fact
that the SFG signals are very weak and not far above the
detection threshold. However, at this stage, an increase of
the incident laser beam energies intended to generate more
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Fig. 5. SFG (ppp polarisation combination) spectrum of the A2 sample (see
text for details). The theorethical fit is the black continuous line.

SFG would melt the films. Nevertheless, we consider that the
differences in the CH2 stretching mode region between the
two spectra are significant and not only due to the quality of
the data.

We equally tentatively performed SFG measurements on
similar substrates with adsorbed 2-aminoethanethiol in the
2000–4000 cm−1 spectral range but it was unsuccessful: no
SFG signal, neither resonant nor non-resonant, could be de-
tected.

We could not detect any DFG signal of sample A2 and
C1 contrary to what is expected on the basis of theoretical
and experimental considerations made in previous combined
SFG/DFG measurements on various metal interfaces in elec-
trochemical conditions[12,13]. We only detect a weak flu-
orescence response decreasing with the energy. Considering
the poor signal-to-noise ratio inFigs. 5 and 6, it is probable
that the DFG photons are hidden by the intrinsic fluorescence
inherent to this particular spectroscopy.

F e (see
t

5. Discussion

In previous works[11,14], it was experimentally shown
that the s–d interband electronic properties of Au(1 1 1) sin-
gle crystals or thick Au(1 1 1) films was the physical process
accounting for the interference patterns observed in SFG ex-
periments and analogous to the spectra inFigs. 5 and 6. Using
a visible laser source between 450 and 700 nm, the authors
showed that the metal interband transition was resonant with
the SFG frequency, but not the incident visible one. This
idea was first suggested by Le Rille and co-workers, work-
ing in electrochemical conditions on gold electrodes[12,13].
In order to detect the weak non-linear response of adsorbed
molecular species on gold substrate without being disturbed
by the metal non-resonant contribution to the SFG signal,
they performed DFG measurements. Indeed, as the interband
s–d transition was located at∼480 nm in their experimental
conditions, i.e. in the probe SFG energy range, they chose to
work in DFG detection, i.e. at∼630 nm.

In our SFG measurements, it seems that an additional
electronic process is involved in the generation of the inter-
face SFG signal. Our visible incident beam at 532 nm is near
the maximum of the SPR (560 nm) in both samples A2 and
C1 where the adsorbate SFG response is detected. On the
contrary, the SFG and DFG wavelengths are near 460 and
630 nm, respectively, i.e. far from the SPR resonance energy.
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ent through SPR excitation. Indeed, a giant enhancem
ptical second harmonic generation (SHG) signal is pred
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an be seen as a particular case of SFG theory, simila
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wo reasons may explain the absence of SFG signal. Th
ne is that the 2-aminoethanethiol molecules do not
n ordered SAM on such substrates. The other one is

he electronic properties at the interface are modified b
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possible to induce a coherent non-linear optical SFG
process. This second hypothesis seems to be correlated with
the UV–vis measurements onFigs. 2–4for each sample.
Sum-frequency is thus generated only at interfaces showing
a strong, well-defined SPR peak in the UV–vis spectra. The
combination of SEM pictures and UV–vis spectra indicates
that this is achieved when the overall density of AuNPs is
high but that of aggregates low, and that the silanisation step is
crucial for that respect. In addition, the molecule adsorbed on
the AuNPs may have a positive (1-dodecanethiol) or negative
influence (2-aminoethanethiol) on the linear optical proper-
ties, and thus strongly condition the spectroscopic analysis
by SFG.

At this stage, it is interesting to note that an electrochem-
ical control of the AuNPs electrode potential may induce
variations in the electric field components at the interface
and therefore modify its molecular adsorption properties and
SFG activity. Combining in situ electrochemistry and SFG
on AuNPs films in order to characterize them in a controlled
interface conformation as it is commonly done on Au sin-
gle crystals (electrodes) or films[12,13] is thus an attractive
challenge.

In order to discuss the conformational information
extracted from the SFG data, we summarize here the way
we fit our SFG spectra inFigs. 5 and 6. SFG is a coherent
process whose intensity is described by[17]:
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constant, taking account of infrared and Raman selection
rules as detailed in[14]. The vibration modes are supposed
to have a homogeneous broadening, which explains the
presence of Lorentzian oscillators in Eq.(1). The fit curves
are drawn inFigs. 5 and 6, with the corresponding parameters
displayed inTables 1 and 2. We arbitrarily fixed each phase
of the methyl (CH3) vibration modes to 0 in order to simplify
the fitting procedure. Indeed, the phase parameters (ϕ) could
theoretically vary due to the various symmetries of these
modes and to the interference between two close modes. An
illustration is given inFig. 5 andTable 1for the symmetric
stretching methyl and methylene modes. We chose to letϕ

vary for the CH3 symmetric stretching mode to get a better
correlation with the experimental data. However, this does
hardly change the values deduced for the key parametersa,
ω andΓ . In a general way, with a fixed visible wavelength
at 532 nm, the electronic properties of the 1-dodecanethiol
molecules are not modified in our probe energy range as
illustrated in[14]. This explains why it is sufficient to keep
ϕ = 0, making the hypothesis that the molecules are relatively
well ordered and the vibration modes not interfering as
observed inFig. 6. In these conditions, we observe a strong
correlation between the experimental SFG data and this
simplified simulation procedure.

Eq. (1) shows why the interfacial SFG response exhibits
a strong interference pattern between the non-linear activ-
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whereχNR and χR are the second order non-linear s

eptibilities of the AuNPs non-resonant signal and of
-dodecanethiol molecules resonant signal, respectiveln is

he number of considered vibration modes. This expres
ontains complex amplitudes, including a phase shift (Φ − ϕ)
etween these two distinct contributions to the SFG inten
his explains the interference pattern observed in the sp

n Fig. 5(n= 5) andFig. 6(n= 3).aq is the complex amplitud
f theqth vibration mode withωq frequency andΓ q damping

able 1
arameters set obtained from the fitting with Eq.(1) of the SFG signal inFi
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arameters

(rad)

dsorbate

arameters CH3–SS CH3–FR

q (cm−1) 2879.57 2940.83

q (cm−1) 3.04369 2.54476
|aq|| 0.137187 0.0743117

q (rad) −0.345436 0
ties of the AuNPs and the 1-dodecanethiol molecule
llustrated inTables 1 and 2by the important phase sh
Φ − ϕ > 2.5 rad). Even if the interband activity of the sec
rder non-resonant susceptibility of AuNPs is not invol

n the enhancement of the SFG signal at the interface d
ts weak amplitude (A≤aq), this is the physical origin of th
nterference pattern[11,14].

We consider that the lower ratio between CH2 and CH3
ymmetric stretching modes is an evidence of a better
n the alkane chains in sample C1 than in sample A2. Thi
een made possible thanks to method C, which improved

ability of the glass substrates. Basically, the surface sit
native substrate are SiH or Si OH. Because of the stron
H modification induced by the aqueous solution of Na
3 M), the glass surface is made completely hydrophilic

χNR

0.104601
2.54119

CH3–DS CH2–SS CH2–AS

2967.54 2852.75 2916.84
2.17197 7.84061 3.27013
0.162334 0.091664 0.0481327
0 1.27836 0.0296674
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Table 2
Parameters set obtained from the fitting with Eq.(1) of the SFG signal inFig. 6

Substrate

Parameters χNR

A 0.112784
Φ (rad) 2.53363

Adsorbate

Parameters CH3–SS CH3–FR CH3–DS

ωq (cm−1) 2880.85 2942.86 2967.39
Γ q (cm−1) 3.37492 4.58222 2.80217
||aq|| 0.19853 0.116988 0.214321
ϕq (rad) 0 0 0

the Si OH surface sites are largely favoured. Consequently,
Si O Si bounds created in the silanisation process are more
numerous than in B samples. It implies therefore that there are
more AuNPs fixed on the silanes, closer from each other; typi-
cally, they are 15 nm apart in such conditions instead of 25 nm
prior to the treatment. This gives us a more compact surface
but comprising less aggregates as observed by comparison of
SEM pictures inFigs. 3 and 4. We thus have a better-ordered
AuNPs set with more identical adsorption sites for the thiol
molecules. In this case, it is interesting to note that the intrin-
sic sensitivity of SFG spectroscopy to the surface order gives
information on the SAM adsorbate quality, directly related to
the substrate preparation, by revealing the vibrational activity
of the coherently oriented CH3 end-groups.

6. Conclusion and perspectives

We showed that a non-linear optical vibrational spectro-
scopic tool such as sum-frequency generation may apply
to self-assembled monolayers of 1-dodecanethiol adsorbed
on gold nanoparticles films. The SFG sensitivity to the
molecular vibration modes depends on the AuNPs ordering
(density of AuNPs and density of aggregates) on the glass
substrate and on the nature of the adsorbed molecules. This
i ess.
W ctly
c lass
i rked
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i ump
( SFG
s ectra
d tween
t the
m able
t d on
t

ech-
n copy
( sible

wavelength, should give a more precise understanding
of this complex phenomenon. Indeed, we will be able to
continuously probe the SPR range and study the coupling
processes between the AuNPs and the adsorbed species.

This kind of measurements show the ability of
SFG/DFG/2C-SFG to be used as in situ spectroscopies of the
structure and chemistry of AuNPs and adsorbed molecules.
They appear as efficient candidates to overcome the weak-
ness of the optical activity generated by such objects due to
their very low amount of material. This should be enhanced in
electrochemical conditions, thanks to the strong electric field
on the working electrode. Furthermore, the characterisation
of controlled AuNPs networks is of fundamental interest as
precursors to the manufacturing of molecular and biologi-
cal sensors, at the monolayer level development in real time,
whereas the electrochemical processes occur.
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