Files

Abstract

Currently two types of chip systems are used in conjunction with MS: out-of-plane devices, where hundreds of nozzles, nanospray emitters are integrated onto a single silicon substrate from which electrospray is established perpendicular to the substrate, and planar microchips, embedding a microchannel at the end of which electrospray is generated in-plane, on the edge of the microchip. In the last two years, carbohydrate research greatly benefited from the introduction and implementation of the chip-based MS. In two laboratories the advantages of the chip electrospray in terms of ionization efficiency, sensitivity, reproducibility, quality of data in combination with high mass accuracy, and resolution of detection were systematically explored for several carbohydrate classes: O- and N-glycopeptides, oligosaccharides, gangliosides and glycoprotein-derived O- and N-glycans, and glycopeptides. The current state-of-the-art in interfacing the chip electrospray devices to high-performance MS for carbohydrate analysis, and the particular requirements for method optimization in both positive and negative ion modes are reviewed here. The recent applications of these miniaturized devices and their general potential for glycomic-based surveys are highlighted.

Details

Actions

Preview