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To get rid of ail numerical aspects in flow simulation results and to have more informations about 

the evolution of the physical values inside the computational domain, we have developed a 

controlling and analysing method of these results. This method is based on the physical 

conservation laws. The balances are computed on the external surfaces of the computational 

domain and on a liquid surface moving along the main flow direction. The use of this method is 

iliustrated in the case of an Euler code. This method allowed us to correct this Euler code and to 

define a domain of validity for the numerical results obtained. 

RESUME 

Pour se départir des problèmes liés à l'aspect numérique d'un résultat de calcul et pour avoir plus 

d'informations sur l'évolution des grandeurs physiques à l'intérieur du domaine de calcul, nous 

avons développé une méthode de contrôle et d'analyse de ces résultats. La méthode est basée sur les 

équations de conservation des grandeurs physiques. Les bilans sont calculés sur les surfaces 

extérieures au domaine de calcul et sur une surface liquide se déplaçant sùivant la direction 

principale de l'écoulement. L'utilisation de cette méthode de contrôle est démontrée dans le cas d'un 

code Euler. Elle nous a permis de corriger ce code Euler et de définir un domaine de validité des 

résultats numériques obtenus. 
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INTRODUCTION 
In the flow simulation, the first classical action 9ne does, is the verification of the convergence of 

numerical results by watching the evolution of velocity, pressure or other residues as a fonction of 

iteration number. If tliese residues reach the convergence criteria defined by the user, according to 

the computer case, then the solution is said to be numerically converged. But we still have to know 

whether these results are physically meaningful, since, due to numerical approximations 

implemented in the code ( modelization, discretization, simplification ... ) some discrepancies may 

appear between the computed values and the reality. 

Until now two different methods wcre usable to analyse the results : 

the computation of global physical values as : flow rate at the inlet and outlet, torque 

or forces on the blades, ... 

the visualization of the flow or pressure fields. 
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Figure 1 Typical convergence curve as 
pressure residues fonction of 
iteration number 

1400 1'00 

Figure 2 Visualization of the pressure 
field in a Francis runner 

The first method is very interesting in order to have the balance of physical fluxes between the 

surfaces surrounding the computational domain, yet this method is unable to provide any 

information on the evolution of these fluxes inside the domain. For example, if the flow rate at the 

inlet is not the same as the one at the outlet, we can not conclude whether it is due to a 

discontinuity of the mesh, or to.a numerical evolution. 

The second method is only valid when you are sure of the results, to sec the local variations of the 

values, or to compute other derived values as streamlines. But, it will be inefficient for showing a 

flow mass discontinuity, as for example, the ·evolution of the energy transfer along a runner blade, 

or the evolution of the drag along a wing. 

For ail these reasons, we have developed a method to evaluate numerical results by the use of 

simple physical conservation laws of hydraulic in an intrinsic manner. 
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PRINCIPLES 
The IMHEF Euler code will be considered in this paper to detailed our method of flux control. This 

code allows us to compute incompressible, inviscid and steady-state flows in a stationary or 

rotating frame of reference. It has the following numerical features : structured meshes, a fini te 

volume discretization scheme, a three steps Runge-Kutta resolution scheme, a pseudo 

compressibility scheme to compute the pressure and a pseudo viscosity scheme for the dissipation 

[1][2][3]. We also take H-H mesh types which are quite well adapted to the computation of 

hydraulic machinery [4]. The basic idea of the method of flux control is to survey, along any 

specific mesh lines, the evolution of the flow rate, momentum, moment of momentum and energy 

fluxes on mesh faces. When using an Euler code, the fluxes computed by our method will be : flow 

rate, momentum in the case of stationary elements (stay-vanes, guide-vanes, ... ) or moment of 

momentum for the rotating parts (runner) and the energy. The latest one is computed even in the 

case of Euler code in order to see the energy coupling between kinetic terms and pressure. 

When we compute the momentum or the moment of momentum we split the computational domain 

in two parts : 

liquid faces : which include the inlet, the outlet and the faces going form the inlet to 

the outlet along a specific logical line, 

the other faces, among which the walls. 

OU!let(s) 

Figure 3 Schematic drawing of a H-H mesh, with definition of mesh faces 

The interest of this partition is to distinguish what is supplied to the system by the fluid, from what 

is transformed or restored by the system along the walls (blades), in terms of forces for stationary 

parts and in terms of torque in a rotating case. 

When a H-H type mesh is used, the specific mesh line taken is easily found, as it is the median 

logical mesh line corresponding of the dominating convection flow. 

To compute the fluxes , we use the following integrals : 

flow rate : 

f.... .... f .... .... 
c . nc!A = - c . nc!A 

Ae As + 1 
(1) 
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momentum for stationary parts : 

J-;[-;,;]dA+ J[!+i.;J;dA=- J[! .+i.;J;dA+fm (2) 

Ae+s At 

moment of momentum for rotating parts : 

f [ -+ -+ ] -+ -+ J-+ [.I! -+ -+]-+ J [-+ -+ -+ -+ -+ ] ./\ r x w w . n dA + r x p + g. r n dA + co x co x r + 2 co x w dV 

Ae+s 

=- f ;x[!+g,;J;dA+Emm 

At 

(3) 

power or energy flux : 

p + 2c2+g.r c.ndA=Eeor p + 2w2_. 2 coxr +g.r w.ndA=Ee(4) 1[.I! 1 -+ -+]-+-+ J[.I! 1 1 [-+ -+] 2 -+ -+]-+-+ 

With the following remarks : 

the symbol E means: "global numerical losses", 

the partition of the surface in the flow mass integral allows the visualization of the 

evolution of this value. Otherwise, if the whole surface is taken into account to 

compute the integral, a resulting flux near zero would be obtained. 

With this Euler code, the above integrals have the following meaning : 

flow rate : checks if the velocity field computed with the momentum equations 

verifies the mass conservation equation, thereby controlling that the pseudo 

compressibility scheme does not create any artificial source, 

momentum or moment of momentum : the fluxes show the energetic transfer 

between velocity and pressure, 

energy : .the flux shows the effect of the pseudo viscosity scheme. The coupling of 

the velocity and the pressure is also illustrated in terms of total energy, since the 

mass conservation and momentum equations are the only ones used to compute 

velocity and pressure fields. 

In order to avoid any artificial discrepancy between the results and the analysis, identical 

discretization schemes between the controlled and the controlling codes must be used for 

integrating the fluxes. To each type of code will correspond a specific controlling software. 
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the samc sign ) 

encrgy nux 
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: outlet (l)surfac:cs 
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0 '-=~t==~c=====-r--=· 1 ' (i) 

(e) number or curvilinear abscissa (s) 
of the logical mesh line 

Hgure 4 Typical flux control curves in an hydraulic runner 

The values of fluxes are then represented as a fonction of the logical position or of the curvilinear 

abscissa on the mesh line, since each mesh line in a structured mesh can be described by a sole 

index. The integrated values on liquid faces are shown with the same sign as the ones on walls, 

equations (2) or (3) ; thus it makes it possible to directly compare these two fluxes. 

IMPLEMENTATION IN THE EULi<:R CODE 
The computation of the elementary fluxes on a face between two contiguous cells in the IMHEF 

Euler code is done by perfonning the arithmetic mean of the local velocity components and of the 

pressure according to the following : 

flow rate 

(5) 

momentum 

(6) 

The elementary moment of momentum flux is done in a similar way ( as this value is not calculated 

in the Euler code ). 
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fac.con which clcmcntary fluxes 1re comput.cd 

Figure 5 Schematic drawing of mesh face with contiguous cells 

moment of momentum 

1 [ [---> ---> ]---> [ ---> ---> ] ---> J ---> ---> 4 c 1.dA c 1 + c 2.dA c 2 x(r 1 +r2 )+ 

(7) 

energy 

1 [ [p 1 1 2 ---> ---> ] ---> [ P2 1 2 ---> ---> ] ---> J ---> 2 p + 2 C1 + g. r I C 1 + p + 2 Cz + g. r 2 C 2 . dA (8) 

A similar discretization is used for the rotating flow. 

The next step is to sum up ail these elementary fluxes on each different surfaces of the domain : 

inlet, lateral faces including walls, periodic boundaries, ... and internai surface at a given position 

along the previously defined mesh line. The last step is to move this position from the inlet to the 

outlet in order to obtain a complete survey of the fluxes inside the domain. For instance, the 

following fonction is obtained for the mass conservation equation : 

(i)=(S) 

Q(i) = I I t.q (9) 
(i)=(e) A;+I 

Where i is the index of the median mesh line, i'.q the elementary quantity defined in equation (5) 

and Q the flow rate. 
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IMPLEMENTATION IN THE CASE OF A NA VIER-STOKES CODE 

We can expand this rnethod to the case of finite element Navier-Stokes code. This demonstration is 

illustrated with the general purpose fini te element program . FIDAP of Fluid Dynamics 

International, Inc . . In this case the equation are different since it is necessary to introduce the 

Reynolds stress tensor. The corresponding integrals are written : 

flow mass : identical to the Euler case, 

momentum for stationary parts : 

J[;[;_;]+J.;JdA+ J[!+ g.;J;dA=- J[!+g.;J;dA (10) 
A Ae+s A1 

moment of momentum for rotating parts : 

J [..... ..... ..... ..... ..... ] J..... [~ .......... ] ..... 
ro x ro x r + 2 ro x w dV = - r x p + g. r n dA 

A1 

(li) 

power or energy flux : 

J [ [ -]] 1 .......... .......... ..... = ,: ..... J [2 c2 + g. r] c. n dA + n ! I + p . c dA = 0 
A 

(12) 

As we said before, we have to take into account the scheme used in this specific code that is to say 

the discretization of the equations in terrns of basic fonctions. Since our geometries are treated with 

structured meshes of eight node isoparametric bricks as elements, we use a decomposition in 

trilinear interpolation fonctions to compute the surface and volume integrals. 

f f 
.......... 
q.n J drdu or f f f ..... q J dr du dv (13) 

-1 -1 •I -1 -1 

..... 
where q is one of the computed value defined in equations (1), (10), (11) or (12) and J the jacobian 

of the geometrical transforrn. 



These integrals of elementary fluxes are calculated either in an analytic way or by using a gaussian 

quadrature. Finally, the same summation as described in formulation (9) is used with the values 

defined in equations (13). 

EXAMPLES OF APPLICATION 

To illustrate the method, we present two exarnples from our experience in the use of our Euler 

code. The first exarnple illustrates an interesting result of this control procedure, as it enabled us to 

correct our numerical discretization scheme. The second example shows how to avoid any 

disturbance generated by the outlet boundary condition. 

Modification of the discretil.lltion scheme 

Computations with the Euler code were perforrned in a Francis runner gcomctry, and the following 

results were obtained : 

::::: 
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a very good numerical convergence ( up to 10-s in terrn of pressure residue ), 

a discrepancy bctween the inlet and the outlet mass flow of 1.4 %, 

a torque integrated on the blades 17 .8 % greater then the balance of moment of 

momentum bctween the inlet and the outlet of the computational domain. 
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Figure 6 Flux control bcfore correction Figure 7 Flux control after correction 

The latest result is totally unacceptable, because it shows an internai production of hydraulic energy 

and therefore modifies the initial operating point. 

After checking ail the different aspects of the numerical parameters such as for example the size of 

mesh cells near the blades or the extrapolation of the pressure on the blades we found it impossible 

to explain this production of energy. Even 3-D colour images of velocity or pressure fields seemed 

to be correct. Fortunately experimental values of the averaged velocity and pressure at the inlet a.'ld 

outlet as well as the pressure field on the blades were available to compare them with the flow 
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computation. Yet the small differences between experimental [5] and computed [6] values were not 

sufficient to e!:(plain the increase of torque. 

The fluxes gave more information about the evolution of the torque and the moment of momentum, 

as they emphasized a discontinuity of flow rate and moment of momentum just after the inlet 

boundary condition. This information was self-important enough to determine the numerical 

problem causing the discantinuity and to enable its solving. 

Truncation of the computed domain 
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Figure 8 Truncated dornain where the conservation laws are checked 

Analysing the previous results one can observe near the outlet boundary surface local variations 

moment of momemum. The global results of the torque and the moment of momentum shov 

same behaviour, even with the previous correction done. Using the flux analysis, we are? . 

determine the domain where the decrease of moment of momentum occurs. Since this sub· 

begins a few cells after the trailing edge and continues up to the outlet, we can assum-

results inside the runner are correct and remove this sub-domain from the contrai domain for globa, 

analysis. Doing so we can keep the numerical results even with though it shows a numerical 

problem at the outlet boundary, since this problem is probably a reflecting boundary condition 

which will take time to correct. 

CONCLUSIONS 

To have more information than only convergence curve and coloured images of velocity or 

pressure fields, we have developed a method which allows to control and also analyse ail the 

physical evolutions of flow simulation results inside hydraulic machinery. This -method also helps 

the understanding of the numerical behaviour of computational codes in a physical way. As a result 

it eased the improvement of the numerical shape of our Euler code and it helps to determine a 

domain of validity of the computed results. This tool is now a full part of our analysis process. 
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LIST OF SYMBOLS 

.... 
[ms·IJ C Absolute velocity 

p Starie pressure [Pa] 
.... 
g Gravity acceleration [ms·2J 
.... 
(J) Rotating speed [rad s·IJ 
.... 
n Normal unity vector [-] 

dV Elementary volume [m3] 

,: Reynolds stress tensor [Pa] 

r,u,v Intrinsic variables [-] 

.... 
w 

p 
.... 
r 

dA 

J 

I 

Relative velocity 

Density 

Vector 

Time 

Elementary surface 

Jacobian 

Identity ten sor 

[m s-1] 

[kgm·3J 

[m] 

[s] 

[m2] 

[m3] 

[-] 

For the indices we have: e : inlet, s : outlet, 1 : lateral surfaces. 
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