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Abstract

Many control problems take place in continuous state-action spaces,
e.g., as in manipulator robotics, where the control objective is of-
ten defined as finding a desired trajectory that reaches a particular
goal state. While reinforcement learning offers a theoretical frame-
work to learn such control policies from scratch, its applicability to
higher dimensional continuous state-action spaces remains rather
limited to date. Instead of learning from scratch, in this paper we
suggest to learn a desired complex control policy by transforming
an existing simple canonical control policy. For this purpose, we
represent canonical policies in terms of differential equations with
well-defined attractor properties. By nonlinearly transforming the
canonical attractor dynamics using techniques from nonparametric
regression, almost arbitrary new nonlinear policies can be gener-
ated without losing the stability properties of the canonical sys-
tem. We demonstrate our techniques in the context of learning a
set of movement skills for a humanoid robot from demonstrations
of a human teacher. Policies are acquired rapidly, and, due to the
properties of well formulated differential equations, can be re-used
and modified on-line under dynamic changes of the environment.
The linear parameterization of nonparametric regression moreover
lends itself to recognize and classify previously learned movement
skills. Evaluations in simulations and on an actual 30 degree-of-
freedom humanoid robot exemplify the feasibility and robustness
of our approach.

1 Introduction

Learning control is formulated in one of the most general forms as learning a control
policy u = π(x, t,w) that maps a state x, possibly in a time t dependent way, to an
action u; the vector w denotes the adjustable parameters that can be used to opti-
mize the policy. Since learning control policies (CPs) based on atomic state-action
representations is rather time consuming and faces problems in higher dimensional
and/or continuous state-action spaces, a current topic in learning control is to use
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higher level representations to achieve faster and more robust learning [1, 2]. In this
paper we suggest a novel encoding for such higher level representations based on the
analogy between CPs and differential equations: both formulations suggest a change
of state given the current state of the system, and both usually encode a desired
goal in form of an attractor state. Thus, instead of shaping the attractor landscape
of a policy tediously from scratch by traditional methods of reinforcement learning,
we suggest to start out with a differential equation that already encodes a rough
form of an attractor landscape and to only adapt this landscape to become more
suitable to the current movement goal. If such a representation can keep the policy
linear in the parameters w, rapid learning can be accomplished, and, moreover, the
parameter vector may serve to classify a particular policy.

In the following sections, we will first develop our learning approach of shaping
attractor landscapes by means of statistical learning, extending preliminary previous
work [3, 4] towards a unified treatment of both rhythmic and discrete dynamical
systems, their use in movement classification, and new experimental evaluations.
Second, we will present a particular form of canonical CPs suitable for manipulator
robotics, and finally, we will demonstrate how our methods can be used to classify
movement and equip an actual humanoid robot with a variety of movement skills
through imitation learning.

2 Learning Attractor Landscapes

We consider a learning scenario where the goal of control is to attain a particular
attractor state, either formulated as a point attractor (for discrete movements) or
as a limit cycle (for rhythmic movements). For point attractors, we require that the
CP will reach the goal state with a particular trajectory shape, irrespective of the
initial conditions — a tennis swing toward a ball would be a typical example of such
a movement. For limit cycles, the goal is given as the trajectory shape of the limit
cycle and needs to be realized from any start state, as for example, in a complex
drumming beat hitting multiple drums during one period. We will assume that,
as the seed of learning, we obtain one or multiple example trajectories, defined by
positions and velocities over time. Using these samples, an asymptotically stable
CP is to be generated, prescribing a desired velocity given a particular state1.

Various methods have been suggested to solve such control problems in the lit-
erature. As the simplest approach, one could just use one of the demonstrated
trajectories and track it as a desired trajectory. While this would mimic this one
particular trajectory, and scaling laws could account for different start positions
[5], the resultant control policy would require time as an explicit variable and thus
become highly sensitive toward unforeseen perturbations in the environment that
would disrupt the normal time flow. Spline-based approaches [6] have a similar
problem. Recurrent neural networks were suggested as a possible alternative that
can avoid explicit time indexing — the complexity of training these networks to ob-
tain stable attractor landscapes, however, has prevented a widespread application
so far. Finally, it is also possible to prime a reinforcement learning system with
sample trajectories and pursue one of the established continuous state-action learn-
ing algorithms; investigations of such an approach, however, demonstrated rather
limited efficiency [7]. In the next sections, we present an alternative and surprisingly
simple solution to learning the control problem above.

1Note that we restrict our approach to purely kinematic CPs, assuming that the move-
ment system is equipped with an appropriate feedback and feedforward controller that can
accurately track the kinematic plans generated by our policies.



Table 1: Discrete and Rhythmic control policies. αz, βz, αv, βv, αz, βz, µ, σi and ci are
positive constants. x0 is the start state of the discrete system in order to allow non-
zero initial conditions. The design parameters of the discrete system are τ , the temporal
scaling factor, and g, the goal position. The design parameters of the rhythmic system
are ym, the baseline of the oscillation, τ , the period divided by 2π, and ro, the amplitude
of oscillations. The parameters wi are fitted to a demonstrated trajectory using Locally
Weighted Learning.
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)
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)

ci ∈ [0, 1] ci ∈ [0, 2π]

2.1 Dynamical systems for Discrete Movements

Assume we have a basic control policy (CP), for instance, instantiated by the second
order attractor dynamics

τ ż = αz(βz(g − y)− z) τ ẏ = z + f (1)

where g is a known goal state, αz, βz are time constants, τ is a temporal scaling
factor (see below) and y, ẏ correspond to the desired position and velocity generated
by the policy as a movement plan. For appropriate parameter settings and f = 0,
these equations form a globally stable linear dynamical system with g as a unique
point attractor. Could we insert a nonlinear function f in Eq.1 to change the rather
trivial exponential convergence of y to allow more complex trajectories on the way
to the goal? As such a change of Eq.1 enters the domain of nonlinear dynamics,
an arbitrary complexity of the resulting equations can be expected. To the best
of our knowledge, this has prevented research from employing generic learning in
nonlinear dynamical systems so far. However, the introduction of an additional
canonical dynamical system (x, v)

τ v̇ = αv(βv(g − x)− v) τ ẋ = v (2)

and the nonlinear function f

f(x, v, g) =

∑N
i=1Ψiwiv
∑N

i=1Ψi

Ψi = exp
(

−hi(x/g − ci)
2
)

(3)

can alleviate this problem. Eq.2 is a second order dynamical system similar to
Eq.1, however, it is linear and not modulated by a nonlinear function, and, thus,
its monotonic global convergence to g can be guaranteed with a proper choice of
αv and βv. Assuming that all initial conditions of the state variables x, v, y, z are
initially zero, the quotient x/g ∈ [0, 1] can serve as a phase variable to anchor the
Gaussian basis functions Ψi (characterized by a center ci and bandwidth hi), and v
can act as a “gating term” in the nonlinear function (3) such that the influence of
this function vanishes at the end of the movement. Assuming boundedness of the
weights wi in Eq.3, it can be shown that the combined dynamical system (Eqs.1–3)
asymptotically converges to the unique point attractor g.

Given that f is a normalized basis function representation with linear parameter-
ization, it is obvious that this choice of a nonlinearity allows applying a variety of
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Figure 1: Examples of time evolution of the discrete CPs (left) and rhythmic CPs (right).
The parameters wi have been adjusted to fit ẏdemo(t) = 10 sin(2πt) exp(−t2) for the dis-
crete CPs and ẏdemo(t) = 2π cos(2πt)− 6π sin(6πt) for the rhythmic CPs.

learning algorithms to find the wi. For learning from a given sample trajectory,
characterized by a trajectory ydemo(t), ẏdemo(t) and duration T , a supervised learn-
ing problem can be formulated with the target trajectory ftarget = τ ẏdemo − zdemo

for Eq.1 (right), where zdemo is obtained by integrating Eq.1 (left) with ydemo in-
stead of y. The corresponding goal state is g = ydemo(T ) − ydemo(t = 0), i.e., the
sample trajectory was translated to start at y = 0. In order to make the nominal
(i.e., assuming f = 0) dynamics of Eqs.1 and 2 span the duration T of the sample
trajectory, the temporal scaling factor τ is adjusted such that the nominal dynamics
achieves 95% convergence at t = T . For solving the function approximation prob-
lem, we chose a nonparametric regression technique from locally weighted learning
(LWL) [8] as it allows us to determine the necessary number of basis functions, their
centers ci, and bandwidth hi automatically — in essence, for every basis function
Ψi, LWL performs a locally weighted regression of the training data to obtain an
approximation of the tangent of the function to be approximated within the scope of
the kernel, and a prediction for a query point is achieved by a Ψi-weighted average
of the predictions all local models. Moreover, as will be explained later, the pa-
rameters wi learned by LWL are also independent of the number of basis functions,
such that they can be used robustly for categorization of different learned CPs.

In summary, by anchoring a linear learning system with nonlinear basis functions in
the phase space of a canonical dynamical system with guaranteed attractor properties,
we are able to learn complex attractor landscapes of nonlinear differential equations
without losing the asymptotic convergence to the goal state.

2.2 Extension to Limit Cycle Dynamics

The system above can be extended to limit cycle dynamics by replacing the canon-
ical system (x, v) with, for instance, the following rhythmic system which has a
stable limit cycle in terms of polar coordinates (φ, r):

τ φ̇ = 1 τ ṙ = −µ(r − r0) (4)

Similar to the discrete system, the rhythmic canonical system serves to provide
both an amplitude signal ṽ = [r cosφ, r sinφ]T and phase variable mod(φ, 2π) to
the basis function Ψi of the control policy (z, y):

τ ż = αz(βz(ym − y)− z) τ ẏ = z +

∑N
i=1Ψiw

T
i ṽ

∑N
i=1Ψi

(5)

where ym is an anchor point for the oscillatory trajectory. Table 1 summarizes the
proposed discrete and rhythmic CPs, and Figure 1 shows exemplary time evolutions
of the complete systems.



2.3 Special Properties of Control Policies based on Dynamical Systems

Spatial and Temporal Invariance An interesting property of both discrete and
rhythmic CPs is that they are spatially and temporally invariant. Scaling of the goal
g for the discrete CP and of the amplitude r0 for the rhythmic CP does not affect the
topology of the attractor landscape. Similarly, the period (for the rhythmic system)
and duration (for the discrete system) of the trajectory y is directly determined
by the parameter τ . This means that the amplitude and durations/periods of
learned patterns can be independently modified without affecting the qualitative
shape of trajectory y. In section 3, we will exploit these properties to reuse a
learned movement (such as a tennis swing, for instance) in novel conditions (e.g
toward new ball positions).

Robustness against Perturbations When considering applications of our ap-
proach to physical systems, e.g., robots and humanoids, interactions with the en-
vironment may require an on-line modification of the policy. An obstacle can, for
instance, block the trajectory of the robot, in which case large discrepancies between
desired positions generated by the control policy and actual positions of the robot
will occur. As outlined in [3], the dynamical system formulation allows feeding back
an error term between actual and desired positions into the CPs, such that the time
evolution of the policy is smoothly paused during a perturbation, i.e., the desired
position y is modified to remain close to the actual position ỹ. As soon as the
perturbation stops, the CP rapidly resumes performing the (time-delayed) planned
trajectory. Note that other (task-specific) ways to cope with perturbations can be
designed. Such on-line adaptations are one of the most interesting properties of
using autonomous differential equations for CPs.

Movement Recognition Given the temporal and spatial invariance of our policy
representation, trajectories that are topologically similar tend to be fit by similar pa-
rameters wi, i.e., similar trajectories at different speeds and/or different amplitudes
will result in similar wi. In section 3.3, we will use this property to demonstrate
the potential of using the CPs for movement recognition.

3 Experimental Evaluations

3.1 Learning of Rhythmic Control Policies by Imitation

We tested the proposed CPs in a learning by demonstration task with a humanoid
robot. The robot is a 1.9-meter tall 30 DOFs hydraulic anthropomorphic robot
with legs, arms, a jointed torso, and a head [9]. We recorded trajectories performed
by a human subject using a joint-angle recording system, the Sarcos Sensuit (see
Figure 2, top). The joint-angle trajectories are fitted by the CPs, with one CP
per degree of freedom (DOF). The CPs are then used to replay the movement
in the humanoid robot, using an inverse dynamics controller to track the desired
trajectories generated by the CPs. The actual positions ỹ of each DOF are fed back
into the CPs in order to take perturbations into account.

Using the joint-angle recording system, we recorded a set of rhythmic movements
such as tracing a figure 8 in the air, or a drumming sequence on a bongo (i.e.
without drumming sticks). Six DOFs for both arms were recorded (three at the
shoulder, one at the elbow, and two at the wrist). An exemplary movement and its
replication by the robot is demonstrated in Figure 2 (top). Figure 2 (left) shows the
joint trajectories over one period of an exemplary drumming beat. Demonstrated
and learned trajectories are superposed. For the learning, the base frequency was
extracted by hand such as to provide the parameter τ to the rhythmic CP.

Once a rhythmic movement has been learned by the CP, it can be modulated
in several ways. Manipulating r0 and τ for all DOFs amounts to simultaneously
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Figure 2: Top: Humanoid robot learning a figure-8 movement from a human demon-
stration. Left: Recorded drumming movement performed with both arms (6 DOFs per
arm). The dotted lines and continuous lines correspond to one period of the demon-
strated and learned trajectories, respectively. Right: Modification of the learned rhyth-
mic pattern (flexion/extension of the right elbow, R EB). A: trajectory learned by the
rhythmic CP, B: temporary modification with r̃0 = 2r0, C: τ̃ = τ/2, D: ỹm = ym + 1
(dotted line), where r̃0, τ̃ , and ỹm correspond to modified parameters between t=3s
and t=7s. Movies of the human subject and the humanoid robot can be found at
http://lslwww.epfl.ch/˜ijspeert/humanoid.html.

modulate the amplitude and period of all DOFs, while keeping the same phase
relation between DOFs. This might be particularly useful for a drumming task
in order to replay the same beat pattern at different speeds and/or amplitudes.
Alternatively, the r0 and τ parameters can be modulated independently for the
DOFs each arm, in order to be able to change the beat pattern (doubling the
frequency of one arm, for instance). Figure 2 (right) illustrates different modulations
which can be generated by the rhythmic CPs. For reasons of clarity, only one DOF
is showed. The rhythmic CP can smoothly modulate the amplitude, frequency, and
baseline of the oscillations.

3.2 Learning of Discrete Control Policies by Imitation

In this experiment, the task for the robot was to learn tennis forehand and backhand
swings demonstrated by a human wearing the joint-angle recording system. Once
a particular swing has been learned, the robot is able to repeat the swing motion
to different cartesian targets, by providing new goal positions g to the CPs for the
different DOFs. Using a system of two-cameras, the position of the ball is given
to an inverse kinematic algorithm which computes these new goals in joint space.
When the new ball positions are not too distant from the original cartesian target,
the modified trajectories reach the ball with swing motions very similar to those
used for the demonstration.

3.3 Movement Recognition using the Discrete Control Policies

Our learning algorithm, Locally Weighted Learning [8], automatically sets the num-
ber of the kernel functions and their centers ci and widths hi depending on the com-
plexity of the function to be approximated, with more kernel functions for highly



Figure 3: Humanoid robot learning a forehand swing from a human demonstration.

nonlinear details of the movement. An interesting aspect of locally weighted re-
gression is that the regression parameters wi of each kernel i do not depend on the
other kernels, since regression is based on a separate cost function for each kernel.
This means that kernel functions can be added or removed without affecting the
parameters wi of the other kernels.

We here use this feature to perform movement recognition within a large variety
of trajectories, based on a small subset of kernels at fixed locations ci in phase
space. These fixed kernels are common for fitting all the trajectories, in addition
to the kernels automatically added by the LWL algorithm. The stability of their
parameters wi w.r.t. other kernels generated by LWL makes them well-suited for
comparing qualitative trajectory shapes.

To illustrate the possibility of using the CPs for movement recognition (i.e., recogni-
tion of spatiotemporal patterns, not just spatial patterns as in traditional character
recognition), we carried out a simple task of fitting trajectories performed by a hu-
man user when drawing two-dimensional single-stroke patterns. The 26 letters of
the Graffiti alphabet used in hand-held computers were chosen. These characters
are drawn in a single stroke, and are fed as a two-dimensional trajectory (x(t), y(t))
to be fitted by our system. Five examples of each character were presented (see
Figure 4 for four examples).

Fixed sets of five kernels per DOF were set aside for movement recognition. The

correlation
w

T

a
wb

|wa||wb|
between their parameter vectors wa and wb of character a and

b can be used to classify movements with similar velocity profiles (Figure 4, right).
For instance, for the 5 instances of the N, I, P, S, characters, the correlation is
systematically higher with the four other examples of the same character. These
similarities in weight space can therefore serve as basis for recognizing demonstrated
movements by fitting them and comparing the fitted parameters wi with those
of previously learned policies in memory. In this example, a simple one-nearest-
neighbor classifier in weight space would serve the purpose. Using such a classifier
within the whole alphabet (5 instances of each letter), we obtained a 84% recognition
rate (i.e. 110 out of the 130 instances had a highest correlation with an instance of
the same letter). Further studies are required to evaluate the quality of recognition
in larger training and test sets — what we wanted to demonstrate is the ability
for recognition without any specific system tuning or sophisticated classification
algorithm.

4 Conclusion

Based on the analogy between autonomous differential equations and control poli-
cies, we presented a novel approach to learn control policies of basic movement skills
by shaping the attractor landscape of nonlinear differential equations with statisti-
cal learning techniques. To the best of our knowledge, the presented approach is the
first realization of a generic learning system for nonlinear dynamical systems that



50 100 150 200 250 300 350 400 450

150

200

250

300

350

400

X

Y

0 0.2 0.4 0.6 0.8 1 1.2
100

200

300

400

500

Y

0 0.2 0.4 0.6 0.8 1 1.2
150

200

250

300

350

400

X

Time [s]

200 250 300 350 400

280

300

320

340

360

380

400

420

440

460

X

Y

0 0.2 0.4 0.6 0.8
250

300

350

400

450

500

Y

0 0.2 0.4 0.6 0.8
260

280

300

320

340

X

Time [s]

200 250 300 350 400

320

340

360

380

400

420

440

460

480

X

Y

0 0.2 0.4 0.6 0.8 1 1.2
300

350

400

450

500

Y

0 0.2 0.4 0.6 0.8 1 1.2
250

300

350

X

Time [s]

200 250 300 350 400

340

360

380

400

420

440

460

480

X

Y

0 0.2 0.4 0.6 0.8 1
300

350

400

450

500

Y

0 0.2 0.4 0.6 0.8 1
200

250

300

350

400

X

Time [s]

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

N I P S

N

I

P

S

Figure 4: Left: Examples of two-dimensional trajectories fitted by the CPs. The demon-
strated and fitted trajectories are shown with dotted and continuous lines, respectively.
Right: Correlation between the weight vectors of the 20 characters (5 of each letter) fitted
by the system. The gray scale is proportional to the correlation, with black corresponding
to a correlation of +1 (max. correlation) and white to a correlation of 0 or smaller.

can guarantee basic stability and convergence properties of the learned nonlinear
systems. We demonstrated the applicability of the suggested techniques by learn-
ing various movement skills for a complex humanoid robot by imitation learning,
and illustrated the usefulness of the learned parameterization for recognition and
classification of movement skills. Future work will consider (1) learning of multidi-
mensional control policies without assuming independence between the individual
dimensions, and (2) the suitability of the linear parameterization of the control
policies for reinforcement learning.
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