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Abstract

We present control policies (CPs) based on nonlinear
differential equations with well-defined attractor dynam-
ics for learning by imitation and trajectory formation
in humanoid robotics. The CPs can fit complex move-
ments (presented as joint-angle trajectories) using incre-
mental locally-weighted regression techniques. Being im-
plemented as autonomous nonlinear differential equations
gives the CPs interesting properties such as robustness
against strong external perturbations and the ability to
generate movements which can easily be modified by ad-
ditional perceptual variables and re-used for new targets.
We evaluate the CPs in the context of a humanoid robot.
Typical reaching movements were collected with a Sarcos
Sensuit, a device to record joint angular movement from
human subjects, and approximated and reproduced with
our imitation techniques. Our results demonstrate (a) that
multi-joint human movements can be encoded successfully
by the CPs, (b) that a learned movement policy can read-
ily be reused to produce robust trajectories towards differ-
ent targets, (c) that a policy fitted for one particular target
provides a good predictor of human reaching movements
towards neighboring targets, and (d) that the parameter
space which encodes a policy is suitable for measuring to
which extent two trajectories are qualitatively similar.

1 Introduction

This article addresses the question of how to encode de-
sired trajectories to be performed by a humanoid robot.
This question is particularly relevant to learning by imi-
tation. Let us imagine, for instance, a situation in which
some arm movements are demonstrated to the robot. Let
us also assume the robot is able to extract the relevant
kinematics of the movements, such as the joint-angles of
the different degrees of freedom (DOFs), for instance. Fi-
nally, let us assume to robot is provided with inverse dy-
namics algorithms for reproducing the movement. The
problems which remain to be solved are (1) how to store
the demonstrated movements for future reuse, and (2) how
to modify them for new external conditions, e.g for faster
execution or for reaching another end position.

In [1], we identified five desirable properties that such a
trajectory formation system should possess, namely:
the ease of representing and learning a goal trajectory,

(1)
(2)

compactness of the representation, (3) robustness against
perturbations and changes in a dynamic environment, (4)
ease of re-use for related tasks and easy modification for
new tasks, and (5) ease of categorization for movement
recognition. To the best of our knowledge, no system
has yet been developed which combines all five properties.
Previous approaches range from memorizing the entire tra-
jectory at the sampling rate of the control servo [2], using
spline-based methods [3], using optimization criteria [4],
or employing lookup tables and neural networks that rep-
resent global control policies [5]. These approaches do not
satisfy all our desirable properties. For instance, memo-
rized trajectories are easy to learn, but are hard to re-use
for new tasks and not robust towards significant changes
of the environment. Spline-based approaches have a more
compact representation, but otherwise share most of the
properties of memorized trajectories. Optimization ap-
proaches are computationally expensive and cannot re-
plan rapidly when the environment changes, and neural
network based control policies are very hard to learn for
even moderately dimensional systems.

This article is part of our exploration of combining non-
linear dynamical systems with regression techniques for
encoding trajectories. In [1], we developed a system based
on a mixture of pattern generators built from simple non-
linear autonomous dynamical systems. An observed move-
ment was approximated by finding a best fit of the mixture
model to its data by a recursive least squares regression
technique. The system was used in combination with a
movement execution controller (an inverse dynamics con-
troller) for replaying the trajectories in a humanoid simu-
lation. It could robustly replay the trajectories by taking
perturbations to the robot into account, and by modi-
fying the desired trajectories accordingly. It could also
replay the trajectories towards different goals than the
one of the demonstrated, while keeping the same qualita-
tive velocity profiles as the demonstrated movement. One
disadvantage of that system was that each basis function
(i.e. each pattern generator) was a system of differential
equations, which means that the number of state variables
could become large when a high-quality fit was required,
i.e. when many basis functions were needed. In this ar-
ticle, we develop a new system of control policies (CPs)
based on similar nonlinear dynamical systems, which has
the same properties as the system in [1] but which uses
much fewer state variables. The velocity profiles of the
demonstrated movements are learned using gaussian basis
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functions and locally weighted regression. The advantage
of this approach is that the number of state variables does
not depend on the number of basis functions, and arbitrary
accuracy can therefore be obtained with a fixed number
of state variables.

We apply the CPs to a task involving the imitation of
human movements by a humanoid robot. This experi-
ment is part of a project in rehabilitation robotics —the
Virtual Trainer project —which aims at using humanoid
rigid body simulations and humanoid robots for supervis-
ing rehabilitation exercises in stroke-patients. This article
presents how trajectories recorded from human subjects
performing a reaching task towards a set of predefined tar-
gets can be reproduced using the CPs. In particular, the
purpose of this reaching experiment is three-fold. First,
we quantify how well these different trajectories can be
fitted with our CPs. Second, we estimate to which extent
a CP, which is fitted to a particular reaching movement,
is a good predictor of the movements performed by the
human subject towards neighboring targets. And third,
we compare the parameters of the basis functions of the
systems fitted to different trajectories in order to evalu-
ate how similar the trajectories are in parameter space.
This last point aims at demonstrating that the CPs are
not only useful for encoding trajectories, but also for clas-
sifying them.

2 Dynamical Systems As Control
Policies

For the purpose of learning how to imitate human-like
movement, we choose to represent movement in kinematic
coordinates, e.g., joint angles of a robot or Cartesian coor-
dinates of an endeffector —indeed only kinematic variables
are observable in imitation learning. Thus, CPs represent
kinematic movement plans, i.e., a change of position as
a function of state, and we assume that an appropriate
controller exist to convert the kinematic policy into mo-
tor commands. A controller policy is defined by the fol-
lowing differential equations which specify the attractor
landscape of the policy for a goal g:

= (Blg—y)—v) (1)
= ay(p+v) (2)
z = f(z) (3)

where

ar(g—r)

fe) = las (—s+<1—s>g%<g—r>2)] = [i]e

and oy, o, ag, B and b are positive constants.

The attractor landscape of the policy can be adjusted by
learning a nonlinear mapping p approximated by locally
weighted regression [6]. A prediction p is given by the
normalized weighted sum of all locally linear models p;:

N «
Zi:l U;p;

= (5)
Eﬁvﬂ Wi

ﬁ:

where
(6)

w; denotes the parameter of each local model and v de-
notes an input. ¥; is a Gaussian basis function

1
\I/i = exp (— 20_2 A (S — Cs,i)2>

which determines the region of validity of each locally lin-
ear model. w; for each basis function can be learned by
incremental locally weighted regression (LWR) [6] on line
assuming that the goal is known (see Section 3). With the
choice of locally linear model, (2) can be written in the

Pi = W;v

(7)

form
N
=1 Viw;
J=ay (Zﬁvliw“)v. (8)
2ima Vi
Notice that when w; = 0 for all 4, (y,v) dynamics in

(1) and (8) are reduced to a simplified linear second or-
der system. For notational convenience, we assume that
all state variables v,y,z are initially zero, and g # O.
Note that this dynamical system has a unique equilib-
rium point at (v,y,z) = (0,9,(g,0)7) assuming that
(S wiwi/ X ) [s=o + 1> 0.

Figure 1 demonstrates an exemplary time evolution of
the equations. We identify the state y as the desired po-
sition that the policy outputs to the controller, and 3 as
the desired velocity. v is an internal state whose dynamics
guarantee the unique point attractor at g. z implements a
timing signal that is used to localize the Gaussian (7). It
is the internal state of this timing signal that allows gener-
ating much more complex policies than a policy that has
no internal state, as is indicated by the movement direc-
tion reversal in Figure 1. As will be demonstrated later,
the choice of representing a timing signal in form of au-
tonomous differential equations will allow us to be robust
towards external perturbations of the movement— essen-
tially, we can slow down, halt, or even reverse “time” by
means of coupling terms in the z dynamics (see below).

2.1 Properties of the Policy Representa-
tion

2.1.1 Stability

Stability can be analyzed separately for the z dynamics
and the (y,v) dynamics. To see that z is globally asymp-
totically stable, we shift the equilibrium point of the dy-
namics (3) to the origin using the change of variables
F=r—g:

T = —Q,T
$

= oy (—s+ (1= 5)57?) (9)

Consider a Lyapunov function candidate

1

294 2 I 4
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V(z) = 2
(z) T+ o,

(10)
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Figure 1: Time evolution of the dynamical systems. The num-
ber of RBFs is N=25, a,=4 [1/s], ay=0.2 [1/s], ar=1.6 [1/5],
as=5 [1/s], B=5, and b=15. The cs,; are spread out between
¢s,1=0.2 and ¢s,y=0.92 in order to be equally spaced in time.
The same parameters will be used throughout the article. In
this particular example, g=2 and the parameters of the basis
functions were set by hand to arbitrary values.

where z = [ 7, 5 ]T. Then, V(2) is given by
26 \*
%s) .11

V(z) is positive definite for all z € R?, radially unbounded,
and V(Z) is negative definite for all z € R?. Thus, Z = 0
is globally asymptotically stable, which implies that z =
(g,0) is globally asymptotically stable.

We now investigate long time behavior of the rest of the
state variables. For t — oo, we have

1'.) = a,(B(g—y) —v)

= Qo

N
. 2icy Yiwi
Qoo = ay lim | ===—— 41 | = const

. 4a2
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where

AP I 7

since s — 0 as t — oo. It is straightforward to see that
y— gand v— 0ast— oo aslong as ay > 0.

2.1.2 Spatial and Temporal Scale Invariance

Spatial invariance of (3) requires that a scaling of the
goal g does not affect the topology of the attractor land-
scape of the policy. Summarizing all state variables as
q=1[v, y, 2" |7 and abreviating ¢ = F(q), such topo-
logical equivalence [7] can be proven by finding a home-
omorphism H that fulfills H(q) = F(H(q)). For scal-
ing the g by a factor ¢, g — cg, it is easy to show that
H(q) =[cv, cy, cr, s]T is an adequate homeomorphism.

Temporal scaling can be accomplished by scaling all the
time parameters of the differential equations uniformly,
Oy, Oy, 0 and o,

—
2 Yplanned
15 — Yacwal
1
05
0 ‘ ‘
) 05 1 15 2
10
> 5
0
) 05 1 15 2
1
nos 1
05
0 0
) 05 1 15 2 0 05 1 15 2
Time [s] Time [s]

Figure 2: Time evolution of the dynamical systems under a
perturbation (actual position § set to zero between 0.6 and
1.0s). For this example aypy = 10 and ;- = 1000 are used in
(14) and (15) respectively.

2.2 Robustness against Perturbations
during Movement Execution

In the current form, the CP would create a desired move-
ment irrespective of the ability of the controller to track
the desired movement. When considering applications of
our approach to physical systems, e.g., robots and hu-
manoids, interactions with the environment may require
an on-line modification of the policy. As an example, we
show how a simple feedback coupling term can implement
a stop in the time evolution of the policy.

Let y denote the actual position of the movement sys-
tem. We introduce the error between the planned trajec-
tory y and g to the differential equations (2) and (3) in
order to modify the planned trajectory according to ex-
ternal perturbations:

U= ay(p+v)+ apy (7 —vy)
F=an(g—r) (1+ap(i—1)?) "

Figure 2 illustrates the effect of a pertubation where
the actual position is artificially fixed during a short pe-
riod of time. During the perturbation, the time evolution
of the states of the policy is gradually halted. As soon as
the perturbation stops, the system rapidly returns to the
planned trajectory. Such on-line modifications are one of
the most interesting properties of using autonomous dif-
ferential equations for control policies.

3 Learning From Imitation And
Classification

Assume we extracted a desired trajectory ygemo from the
demonstration of a teacher. Adjusting the CP to embed
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this trajectory in the attractor landscape is a linear func-
tion approximation problem. The demonstrated trajec-
tory is shifted to a zero start position, and the time con-
stants of the dynamical system are scaled such that the
time dynamics z reaches zero at the same time as the goal
state is reached in the target trajectory. Given that the
goal state is known, it is guaranteed that the policy will
converge to the goal; only the time course to the goals
needs to be adjusted.

At every moment of time, we have v as input to the
learning system, and as target output we have target =

Ydeme — . We use recursive least squares (RLS) with a
Y

forgetting factor of A [6] to determine the parameters w;
on line assuming that the goal is known.
Given a training point (v, target), w; is updated by

wit = wt + P lve (16)
where
1 Ptv)?
Pf“z— Pf—/\(’iv) , & = target — wv
)\ W, + U2Pit

Despite this learning problem being a nonstationary
learning task due to the effect of the change of the param-
eters w; on the input distribution throught the variable v,
very rapid learning is accomplished, and a single learning
run through the target trajectory is usually sufficient for
the learning to converge!'. In practice, we set w; = 0 in
the course of learning so that we expect that oo ~ ay.

4 Experimental evaluations

4.1 Humanoid robot implementation

One of the motivations to develop the CPs comes from
our Virtual Trainer (VT) project. The aim of this project
is to supervise rehabilitation exercises in stroke-patients
by (a) computerized learning the exercises from demon-
strations by a professional therapist, (b), demonstrating
the exercise to the patient with a humanoid simulation or
robot, (c¢) video-based monitoring the patient when per-
forming the exercise, and (d) evaluating the patient’s per-
formance, and suggesting and demonstrating corrections
with the simulation when necessary.

In this article, we tested the CPs for a learning by im-
itation task in a humanoid robot with 30 DOFs [9]. The
robot is a 2-meter high hydraulic anthropomorphic robot
with legs, arms, a jointed torse, and a head. The robot
is fixed at the hip, which means that it does not require
balance. The CPs are used in combination with a mo-
tor system which uses inverse dynamics for generating the
torques necessary to accurately reproduce a desired tra-
jectory. As will be described next, the task involves arm
reaching movements towards specific points on a vertical
plane. As such, it is not part of a standard rehabilitation
exercize, but rather represents an experiment for quanti-
tatively evaluating the CPs.

INote that the locally linear models we use have singurality at
v = 0. In practice, this singularity during fitting only occurs with a
few trajectories which we have recorded. A solution to this problem
is provided in [8].
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Figure 3: Grid containing the 25 reaching targets with 5 typ-
ical reaching trajectories. Each trajectory is represented by
the joint angles of four degrees of freedom drawn from top to
bottom: shoulder flexion-extension (SFE), shoulder adduction-
abduction (SAA), humerus rotation (HR), and elbow flexion-
extension (EB). The five points surrounded by a square were
used as test sets for the experiment described in Section 4.2.3.

4.2 Results

4.2.1 Recording of trajectories from human sub-
jects

We recorded trajectories performed by a human subject
using a joint-angle recording system, the Sarcos Sensuit
(Figure 8 left). The Sensuit directly records the joint an-
gles of 35 DOFS of the human body at 100Hz using hall
effect sensors with 12 bit A/D conversion.

We recorded reaching trajectories towards 25 points lo-
cated on a vertical plane placed 65cm in front of the sub-
ject. The points were spaced by 20cm on a 80 by 80cm grid
(Figure 3). The middle point was centered on the shoul-
der, i.e it corresponded to the (perpendicular) projection
of the shoulder on the plane. The reaching trajectories to
each target were repeated three times.

Figure 3 shows five typical reaching trajectories in joint
space. As could logically be expected, the trajectories
present qualitative differences between movements to the
left and right, with the shoulder adduction-abduction
(SAA) angle increasing and decreasing respectively (ad-
duction corresponds to a positive SAA angle). Another
qualitative difference is observable between humerus rota-
tion (HR) towards bottom and top targets on the left side.
The differences in shoulder flexion-extension (SFE) angles
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Figure 4: Fitting of a reaching movement with 4 DOFs shoul-
der flexion-extension (SFE), shoulder adduction-abduction
(SAA), humerus rotation (HR) and elbow rotation (EB) to-
wards a target located at <0,0>cm. The recorded and fitted
angles of the DOF's are drawn in dotted and continuous lines,
respectively.

and elbow flexion-extension (EB) are essentially quantita-
tive rather than qualitative. The distances between initial
and final SFE angles are, for instance, approximately twice
as large for the reaching towards high targets compared to
reaching towards low targets.

4.2.2 Fitting each reaching movement

A reaching movement is fitted by the CPs as four inde-
pendent trajectories, one for each degree of freedom (SFE,
SAA, HR and EB). Each of these trajectory is fitted by a
system of 25 basis functions. One reaching movement is
therefore encoded by a total of 100 parameters.

We fitted the total of 75 reaching movements performed.
Figure 4 compares the recorded and fitted trajectories for
one particular example. The figure illustrates that 25 basis
functions per degree of freedom are sufficient to fit the
demonstrated movements with little residual error.

4.2.3 Modulation of the goal of the reaching
movement

We tested how well the CP fitted to one particular tra-
jectory could be used as a predictor of the trajectories
performed by the human subject towards neighboring tar-
gets. Five control policies —those fitted to the five targets
surrounded by a a square in Figure 3— were tested.

The test is performed as follows. Once a CP is fitted
to one particular reaching movement, its parameters are
fixed and only the goals g, i.e. the four angles (one per
DOF) to which the CP will converge, are modulated. The
different goals that we feed into the CP are then pro-
vided by the final postures of the human subject when
reaching towards different target points. This therefore
allows us to directly compare the angular trajectories pre-
dicted by the CPs with those performed by the subject.
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Figure 5: Error between predictions of the TFSs and recorded
movements. The targets of the recorded movements which were
used for fitting each of the five TFS are shown with circles.
The widths of the squares are proportional to the square error
measurements as described in the text.

The accuracy of the prediction is measured by comput-

ing the square error between the recorded and predicted

velocities normalized by the difference between the max-

imum and minpimum velocities of the recorded movement
rec_ pre

Ei(maw(:'.'EC)Jnin(v!'eC))27 summed for the four degrees of

freedom, and averaged over the three instantiations of each
recorded movement.?

Figure 5 shows the resulting square error measurements
between predictions and recorded movements for the five
chosen CPs and Figure 6 illustrates a predicted trajectory
by one of the CP. Two observations can be made. First, a
CP tends to be a better predictor of recorded movements
which were made towards a target close to the target for
which it was fitted. This is logical, as it simply means
that human reaching movements towards close by goals
tend to follow similar trajectories. Note that, because of

2Note that this error measure is relatively crude and tends to
overestimate how different two trajectories are. It is sensitive to
differences between the actual starts of the movements. Two trajec-
tories with very similar profiles can potentially have a large error if
they do not start at the same time.
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Figure 6: Comparison of a recorded and predicted trajectory.
Dotted lines show a recorded trajectory towards a target lo-
cated at <-20,0>cm. Continuous lines show the prediction
from a CP which has been fitted with a trajectory towards a
target located at <-20,-20>cm, and which has been given new
angle goals.

the variability of human movements, the prediction error
for the recorded trajectories towards the same targets as
those used for the fitting are not zero, as the two other in-
stantiations might vary slightly from the trajectory used
for the fitting. Second, a CP is a significantly better pre-
dictor of recorded movements which are made towards tar-
gets located above or below the original target, compared
to targets located left or right to that target. This is in
agreement with our observation that human trajectories
in our recordings present qualitative differences between
left and right —which therefore require different CPs—,
and only quantitative differences between top and bottom
—which can be represented by a single CP with different
goals.

Note that the purpose of our CPs is not to explain hu-
man motor control, and there is no reason to expect that
a single CP could predict all these human reaching move-
ments. As mentioned above, the movements exhibit qual-
itative differences in joint space. One would need some
cartesian space criterion (e.g straight line of the end point
of the arm) and some optimization criterion (e.g. mini-
mum torque) to explain human motor control. Our pur-
pose is rather to develop a system to be used in humanoid
robotics which can accurately encode specific trajectories,
replay them robustly, and modulate them to different goals
easily. Here we observe that, for the specific trajectories
that we recorded from human subjects, a CP fitted to-
wards a particular target has the additional property of
being a a good predictor for human movements to neigh-
bor targets.

4.2.4 Comparison of trajectories in parameter
space

In the last test, we compared the parameters w; fitted to
the different reaching movements. As a measure of sim-
ilarity, we computed the average correlation between set
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Figure 7: Averaged correlation between parameters w; of dif-
ferent CPs. The square width is proportional to the absolute
value of the correlation as described in the text. Squares filled
with black and white indicate positive and negative correla-
tion, respectively. The circles indicate the target movements
with which all the others are compared.

3 1 w;w{)
I=19 [wi||w]|
is the vector containing all the parameters of the CPs fit-
ted with the ith (out of three) reaching movement towards
target a.

Figure 7 shows the correlations for five chosen CPs. A
general trend is that parameters w; of CPs fitted to tra-
jectories towards the same targets tend to have high posi-
tive correlation and that the correlation decreases (some-
times changing sign) for trajectories towards distant tar-
gets. High correlation of parameters can therefore be used
as a measure of the similarity between trajectories. Re-
lated to our observation that trajectories towards different
heights present only quantitative differences, the correla-
tions tend to be higher along vertical axes rather than hor-
izontal axes. Qualitatively similar movements tend there-
fore to have similar parameters.

In [8], we demonstrated how a very similar system could
be used for classification of movements made for the draw-
ing of 2D graffiti alphabet characters. For that experi-
ment, trajectories for a particular character could be rec-

of parameters, as follows: Z§=1 > where w?
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Figure 8: Humanoid robot reproducing reaching movements
following a human demonstration.

ognized by simply using a highest correlation criterion of
their weights of the RBF network. In the present experi-
ment, the different trajectories are less distinct and more
part of a continuum.

4.2.5 Robot implementation

Figure 8 shows the humanoid robot performing a reaching
movement. The CPs fitted in the previous section were
used to perform the movements. Two sets of CPs were
used for one complete reaching movement: the reaching
trajectory as shown in the previous sections, and the re-
turn trajectory which brings the arm back to the resting
position (along the body). In our experiment, we varied
the cartesian targets of the reaching trajectory, such as to
investigate how realistic the movements appeared towards
different targets. Using a color-tracking system with two
cameras, the position of the target (an orange ball) was
computed, and fed into an inverse kinematic algorithm
to compute end goals in joint-angle space. New trajec-
tories were then generated by the CPs and fed into the
inverse dynamics system for motor execution. In these ex-
periments, we did not perturb the arm movements of the
robot, which means that the trajectories followed by the
arm are very similar to those reported in the previous fig-
ures. Similarly to the previous sections, we observed that

the reaching movements made to targets which are located
above or below the original targets looked very similar to
the demonstrated movement. Overall, the reaching move-
ments looked strikingly human-like.

5 Discussion

This article is part of our exploration of combining non-
linear dynamical systems with regression techniques for
encoding trajectories, and follows from preliminary exper-
iments presented in [1]. Two key characteristics of the CPs
are 1) that the trajectory is not indexed by time but rather
develops out of integrating autonomous nonlinear differen-
tial equations, and 2) that the CP does not encode one sin-
gle specific desired trajectory but rather a whole attractor
landscape with a unique point attractor, the goal state. It
should be noted that our suggested approach to trajectory
formation is in strong contrast with methods which explic-
itly index the trajectory by time, such as spline fitting be-
tween via points. Explicit time indexing makes is hard to
modify a trajectory in response to dynamically changing
environments and strong perturbations that are beyond
the abilities of a PD servo. Moreover, time-indexed tra-
jectories are specific to initial conditions and re-using of
the trajectory for new movement goals is complicated.

Our approach is inspired by the concepts of pattern gen-
erators [10] and force fields [11] found in biology. Related
work includes [12, 13, 14]. The CPs presented here are
most closely related to the VITE model [12], but with
the extension that we use multiple basis functions (the ¥;
functions) to allow generating a larger class of movements,
and that our dynamical systems do not require artificial
resetting of the states of the dynamical systems after a
movement. The concept of combining multiple basis func-
tions has parallels in statistical learning theory [15, 16].

Our CPs are interesting candidates for satisfying the
desirata enumerated in the introduction:

1. Ease of representing and learning a goal trajectory.
The CP can acquire desired trajectories by on-line re-
cursive least squares regression techniques assuming that
the goal is known. This property compares favorably in
terms of learning speed and convergence properties to-
wards other approaches of trajectory learning. Our only
requirement is that trajectories end with zero-velocity, i.e.,
that they represent discrete movement. In our work, a set
of 25 basis functions was sufficient to represent trajectories
lasting between 1.0 and 3.0 seconds. More basis functions
can be added for longer sequences, and/or for representing
finer details of movement.

2. Compactness. The encoding in a mixture of dynam-
ical systems is comparable in compactness with spline fit-
ting using via points as movements are encoded by few
parameters, namely the N parameters w; and the goals G
for each trajectory.

3. Robustness against perturbations and dynamically
changing environments. As illustrated in this article, the
ability to smoothly recover from perturbations is a pri-
mary feature of the dynamical systems we used. Further-
more, the CPs give a good basis for dealing with pertur-
bations at a planning level instead of the execution level.
For instance, recovering from a perturbation requires dif-
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ferent actions depending on the purpose of the imitation
task. If the purpose is to respect the subgoals of a move-
ment despite the perturbation, the timing of the subgoals
can be modified such that the next subgoal is fed into the
system only when the current goal is reached within a sat-
isfactory limit. On the other hand, if the purpose is to
respect the timing at all costs, subgoals can be fed in at
their original timings, and the CPs will naturally modify
the desired trajectory during the perturbation, and skip
desired subgoals (without building up a potentially huge
torques in the robot’s motors, as could happen in a PD
controller).

4. Ease of modification. Desired trajectories can read-
ily be modified by manipulating the values and timings
of the subgoals, and by adding additional coupling terms.
For instance, if the aim of a movement is to reach a partic-
ular object with a particular velocity profile (e.g. a tennis
serve), the CP can learn that particular velocity profile
and reuse it in multiple occasions by adapting the goal
to the current location of the object (if necessary, using
inverse kinematics for finding the desired end positions of
each DOF). Another possibility is to use potential field
approaches to add attracting or repelling terms into the
differential equations to navigate obstacles. In this arti-
cle, we have demonstrated that CPs which have learned
a trajectory to one specific target, can readily generate
trajectories to different targets, and that these newly gen-
erated trajectories present many similarities to those of the
human subject when the targets are close to the original
target.

5. FEase of categorization. An important question in
learning movements by imitation is how to recognize simi-
lar movements and which metrics to use to measure differ-
ences between movements. In this article, we showed that
computing the correlation of parameters of two CPs is a
good first approach to get an estimation of how qualita-
tively similar two trajectories are. In a related article [8],
we have demonstrated that such a simple measure is suf-
ficient to distinguish different 2D characters drawn with a
mouse. In future work, we intend to investigate in more
detail different metrics for comparing movements in the
CPs’ parameter space.
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