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Abstract. This paper briefly reviews synthetic approaches to neurobi-
ology and presents results of two experiments on the use of evolutionary
algorithms for the design of neural controllers for locomotion. The first
experiment consists in using the evolutionary algorithm for instantiat-
ing low level parameters of a connectionist simulation of the lamprey’s
locomotor circuitry. The second experiment develops potential neural cir-
cuits for the swimming and trotting of the salamander; an animal whose
locomotor circuitry has currently not been decoded. In both cases, bio-
logically plausible control circuits are developed which produce a neural
activity with many similarities to that measured in the real animals.

1 Synthetic approaches to neurobiology

The fields of artificial life and artificial intelligence have developed tools and
methods which have the potential to significantly help computational neurobiol-
ogy. Synthetic approaches to neurobiology can indeed increase our understanding
of the central nervous system, and this at two levels.

At a high —behavioural— level, fields such as computational neuroethol-
ogy [1, 2], or also synthetic psychology [3], investigate how behaviour results
from neural circuits through the development of neural controllers for artificial
animats (robots or simulations). Models of escape and feeding behaviours in
frog [4], insect locomotion [1, 5], fly vision [6, 7], cricket phonotaxis [8], classi-
cal conditioning [9] have, for instance, been simulated and/or implemented in
real robots. These studies investigate hypotheses on central nervous systems by
embedding neural models into bodies (simulated or real) in interaction with an
environment. An interesting aspect of these investigations, compared to more tra-
ditional computational neurobiology, is therefore that they test the completeness
of a model, that is, they verify whether all elements necessary for the production
of an observed behaviour have been taken in account. They are also useful for
analysing the effect of having a real body in terms of sensory feedback and body
dynamics. Finally, their synthetic essence, i.e. the fact that, although biolog-
ically plausible, the developed neural models do not necessarily correspond to
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existing mechanisms, is interesting for investigating possible control mechanisms
and, potentially, inspiring new neurobiological measurements.

At a lower level, techniques from artificial neural networks can be used as
tools for completing neurobiological models. Backpropagation algorithms have
been used for instantiating synaptic weights of a connectionist model of the
escape reflex in a leech [10], and the locomotor circuit of the stick insect [5],
for instance. More recently, evolutionary algorithms are being used for setting
parameters of compartmental models of single neurons [11], or for defining synap-
tic weights in a model of the salamander’s visual system [12]. The interesting
outcome of these approaches is the development of tools which automatically in-
stantiate multiple parameters of complex non-linear systems modelling biological
circuits, given a description of their observed output.

We will next present two experiments in which a genetic algorithm is used
for generating part of control circuits for anguiliform locomotion. In the first
experiment, the genetic algorithm is used to instantiate synaptic weights of a
neural circuit whose general structure is well known —the locomotor circuitry
of the lamprey— while in the second experiment it is used for generating po-
tential neural controllers for the locomotion of the salamander, an animal whose
locomotor circuitry has not been decoded for the moment.

2 Design of the lamprey’s swimming controller

2.1 Ekeberg’s connectionist model

The lamprey —one of the earliest vertebrates— swims using an anguiliform
swimming gait, i.e. by propagating a travelling undulation from head to tail. Its
locomotor circuitry has been studied in detail by neurobiologists (see [13] for a
review), and is known to be a central pattern generator (CPG) made of a chain
of approximately 100 segmental oscillators located in the spinal cord (Figure 1).

Several models of that circuitry have been developed, and this research is
based, in particular, on the connectionist model developed by Ekeberg [14].
That model simulates the complete 100-segment CPG of the lamprey organ-
ised as illustrated in Figure 1. It is composed of neuron units modelled as leaky
integrators with a saturating transfer function which represent populations of
functionally similar neurons in the real lamprey. The output u of a neuron unit
corresponds to the mean firing frequency of the population it represents (€ [0, 1])
and is calculated as follows:
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Fig. 1. Lamprey’s swimming controller. The controller is made of 100 interconnected
segmental oscillators (only 4 segments shown) composed of 8 neurons each. Four types
of neurons are present in the oscillators: 3 types of interneurons EIN, CIN and LIN and
the motoneurons MN. Sensory feedback is provided by stretch sensitive edge cells EC.
The dashed lines indicate the projections from segmental connections to neighbouring
segments.

where w; are the synaptic weights, ¥, and W¥_ represent the groups of pre-
synaptic excitatory and inhibitory neurons respectively, £, and £_ are the de-
layed ‘reactions’ to excitatory and inhibitory input, and 1 represents the fre-
quency adaptation observed in some real neurons.

The model is able to produce the following behaviours observed in the real
lamprey: 1) when excitation is applied to the neurons of the different segmental
oscillators, the segmental circuits develop an oscillatory activity with a frequency
proportional to the level of excitation; 2) applying extra excitation to segments
closest to the head leads the system to oscillate with small phase lags between
segments which are constant over the spinal cord, therefore producing the typical
wave of neural activity observed in anguiliform swimming; 3) for a given level of
extra excitation, the wavelength of the undulation is independent of the oscilla-
tion frequency. Furthermore, when the motoneuron signals are used to determine
the muscular activity of the simple mechanical simulation of the lamprey that
Ekeberg developed, a swimming gait is produced which is very similar to that
of real lampreys.

2.2 Parameter instantiation using a genetic algorithm

The implementation of a model such as Ekeberg’s requires a significant amount
of time for the setting of a large number of parameters, including the neuron
parameters and the synaptic weights of all connections (Ekeberg, personal com-
munication). We will here present how a genetic algorithm can be used as a tool
for automatically instantiating those parameters, given a description of the de-



sired behaviour of the system. This experiment follows evolutions of “artificial”
controllers for swimming [15], i.e. controllers without the lamprey’s connectivity.
For a more detailed description of the results, see [16].

The evolved controllers are composed of the same type of neurons as those
of Ekeberg and their connectivity corresponds to that observed in the lamprey.
The design process is made in three stages, with first the development of seg-
mental oscillators, then the development of intersegmental coupling and finally
the development of sensory feedback connections from stretch sensitive cells.

Genetic algorithm. The same real number genetic algorithm is used for the
three stages. Genes are real numbers between 0.0 and 1.0 which directly encode
parameters of the neural controller (see below). Parents chromosomes are chosen
with a rank-based probability, and children chromosomes are created with a 2-
point crossover and a mutation operator. Mutation consists of modifying the old
gene value by a small random value.

Stage 1: segmental oscillators. In this stage, the synaptic weights of the 26
connections within one segment are evolved. Because a left-right symmetry is
assumed, chromosomes have 13 genes, which directly encode a synaptic weight
through a linear transformation. The fitness function is defined to reward solu-
tions which 1) produce regular motoneuron oscillations, and 2) have a frequency
and an amplitude of oscillations which increase with the level of external exci-
tation (for the mathematical definition of the function see [16]).

Ten runs were carried out with populations of 100 chromosomes for 500
generations. All populations converged to best solutions oscillating regularly and
covering a large range of frequencies. Interestingly, the range of frequencies of
the evolved oscillators (e.g. from 0.9 to 11.0 Hz) is much closer to that observed
in the real lamprey (from 0.25 to 10.0 Hz) than Ekeberg’s segmental oscillator
(from 1.7 to 5.6 Hz).

Stage 2: intersegmental coupling. The second stage consists of developing
the coupling connections between segmental oscillators. In the lamprey, oscil-
lators are coupled through projections of segmental connections towards neigh-
bouring segments. The extent of the projections are currently not known in
detail, and for that reason Ekeberg chose a simplified coupling in which all seg-
mental connections project symmetrically in the rostral and caudal directions
except for the connections from the CIN neurons which project more caudally.

Here the GA is used to investigate potential coupling configurations between
100 copies of a chosen segmental oscillator. The chromosome encodes the extent
of the projections of each segmental connection for both the rostral and caudal
direction. The fitness function is defined to reward solutions which are able 1) to
produce regular oscillations of the motoneurons in all segments, 2) to produce
a travelling wave whose wavelength can be modulated by the extra excitation
applied to the segments closest to the head, and 3) to produce swimming gaits
covering a large range of speeds.
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Fig. 2. Top: swimming gait produced by the optimised lamprey’s controller. Bottom:
Corresponding neural activity in the 50th segmental oscillator (left) and in the mo-
toneurons along the left side of the spinal cord (right).

Five runs were realised with populations of 40 chromosomes for 100 gener-
ations. All five runs converged to controllers with similar performances to Eke-
berg’s biological model, in particular they cover larger ranges of lags and can
reach slightly higher speeds. The range of lags of the best solution, for instance,
varies between 0.0 and 3.5% of the oscillation period, which corresponds to the
lags observed in the real lamprey (up to 3.0%) when local concentrations of ex-
citatory bathes are varied [17]. Figure 2 illustrates the swimming gait produced
by one of the evolved controllers.

Stage 3: sensory feedback from stretch sensitive cells. The last evo-
lutionary stage consists of evolving the synaptic weights of sensory feedback
connections from stretch sensitive cells. The lamprey has a series of inhibitory
and excitatory stretch sensitive cells —the edge cells— located on both sides of
the body which project to the segmental oscillators [18]. In [19], Ekeberg demon-
strated that these cells could be useful for crossing a speed barrier (a local area
with an increase of the speed of the water).

In order to further investigate how sensory feedback could be best used by
the swimming CPG, the GA was used to generate weights for these feedback
connections, given a fitness function rewarding the capacity to progress against
the speed barrier with as small deviation as possible.

In all 5 runs tested (populations of 100 chromosomes, 100 generations), con-
trollers were generated capable of crossing the chosen speed barrier (15 cm wide



with a speed 40% higher than the lamprey’s swimming speed). Interestingly, the
evolved sensory feedback pathways correspond very closely to those observed
in [18]: for all established (inhib. and excit.) biological connections, the evolved
controllers have developed sensory feedback connections with the same sign.

3 Design of the salamander’s locomotor controller

This second experiment concerns the salamander, an animal whose locomotor cir-
cuitry has not been decoded for the moment. The aim of the synthetic approach
is here to investigate which kind of neural circuits can produce the observed
gaits of the salamander.

3.1 Neurobiology of the salamander’s locomotor circuitry

A salamander swims like a lamprey, and on ground it switches to a trotting
gait with the body producing a standing wave coordinated with the movements
of the limbs [20]. It has been hypothesised that the neural circuitry capable
of producing both the travelling and the standing wave is based on a similar
organisation to that of the lamprey [21, 22].
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Fig. 3. Mechanical simulation of a salamander-like animat.
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Fig. 4. Organisation of the evolved controllers for the salamander.



3.2 Evolution of potential locomotor controllers for the salamander

Following that assumption, we use a genetic algorithm to generate synaptic
weights of a controller made of a lamprey-like body CPG and two limb oscilla-
tors which are copies of the body’s segmental oscillators (Figure 4). The limb
oscillators project to the motoneurons of the limbs and to the segmental oscil-
lators of the body CPG, creating an unilateral coupling between them and the
body CPG. ! A simple 2D mechanical simulation of a salamander-like animat is
developed for testing the swimming and trotting gaits (Figure 3, see [23] for a
more detailed description). The aim is to be able to switch between the swim-
ming and the trotting gaits by applying external excitation either to the body
CPG or to both the body and the limb CPGs, respectively.
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Fig. 5. Trotting (left) and swimming (right) salamander.
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Fig. 6. Neural activity during trotting.
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Left: Neural activity in the limb oscillators (M,

and M, represent the motoneuron activity of body segments 5 and 95, respectively).
Right: Motoneuron activity along the left side of the body.

Chromosomes encode the synaptic weights of all possible connections from
the two limb oscillators, as well as the connections from the brain stem to the limb
motoneurons. The fitness function is defined to reward solutions which 1) trot
as fast as possible, 2) can cover a large range of speeds when the excitation
applied to both the body and the limb CPGs is varied, and 3) can change the
direction of motion when left-right asymmetrical excitation is applied. The same
real number genetic algorithm as for the experiment on the lamprey is used.

! This configuration is more biologically plausible than the one used in initial ex-
periments in which there was no coupling between the swimming and the trotting

CPGs [23].



Ten evolutions with populations of 100 chromosomes are carried out for 50
generations. All but 3 evolutions converged to controllers exhibiting a trotting
gait with a trunk-limb coordination very similar to the real salamander (Figure 5,
left). The speed of the trotting can be increased by increasing the amount of
excitation, and applying a small asymmetry of excitation between the left and
right sides of the CPGs leads to the salamander trotting in a circle. Finally, a
lamprey-like swimming gait can be produced when excitation is applied only to
the body CPG (Figure 5, right).

During trotting, the effect of the unilateral coupling from the limb oscillators
on the body CPG is to force the anterior and posterior part of the body to
oscillate in antiphase (Figure 6, right). Interestingly, the timing of the flexor and
extensor limb motoneurons compared to the body motoneurons is very similar
to that measured in the real salamander [22].

4 Discussion

These two experiments illustrated how a genetic algorithm could be used as a
tool for neurobiological modelling. The interesting features of the method are:

1. GAs allow automatic instantiation of multiple parameters in complex non-
linear models of central nervous systems. The evolution of controllers for the
lamprey illustrate, for instance, that the GA can generate a significant part
of the model that Ekeberg has designed by hand.

2. Specific characteristics specified by the user can be optimised. It was, for
instance, possible to optimise the frequency range of Ekeberg’s model and
to obtain a better fit of biological data.

3. As illustrated with the salamander, the GA can also be used to investigate
potential control mechanisms for biological systems whose structure is not
known for the moment.

Compared to more traditional learning algorithms for artificial neural net-
works, such as variations of the backpropagation algorithm, for instance, a GA
has the advantage that the fitness function does not need to be differentiable and
that the desired output of the system can be described at a higher level. There
is no need to provide a specific output cycle that the network should learn, and
the desired behaviour of the system can, for example, be described in terms of
a desired range of frequencies or the capacity of fast swimming. Note that the
GA is here not used as a simulation of natural evolution, and that, similarly to
[24, 25, 26], the staged evolution approach taken here rather corresponds to an
“engineering” approach to artificial life.

It is hoped that, in the case of the salamander, this synthetic approach can
provide news ideas for neurobiological measurements, and that a back and forth
processus between modelling and measurements on the real animal will lead to
a progressive improvement of the model by incorporating new neurobiological
data when it becomes available.

Finally, the types of developed connectionist controllers may also be useful
to robots using animal-like locomotion. The neural controllers are capable of



transforming simple commands into the multiple rhythmic signals sent to the
different actuators for efficient locomotion. They present the interesting property
that by simply varying the amplitude of the commands, the speed, direction and
type of locomotion can be modulated.

5 Conclusion

This paper briefly reviewed synthetic approaches to neurobiology and presented
two experiments in the use of genetic algorithms for designing connectionist
models for anguiliform locomotion. In these experiments, the genetic algorithm
is used for instantiating synaptic weights of neural circuits whose structure cor-
responds to that decoded (for the lamprey) or hypothesised (for the salamander)
in the real animal. It is found that 1) the GA is successful in automatically in-
stantiating variables which require a long time to be set by hand, and 2) it can
generate solutions which optimise high level characteristics specified by the user
such as the speed of locomotion of a mechanical simulation.
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